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Abstract

Alzheimer’s disease (AD) is a debilitating and ultimately fatal neurodegen-
erative disorder, with no known treatment or prevention method, and is
widespread, with 1.6% of the US population estimated to have AD. AD is
estimated to be 70% heritable, but the underlying genetic causes of AD are not
fully known. To better understand the genetic basis of AD, this work aimed
to create a machine learning model that can predict if an individual has AD
based on their DNA sequence. This will help us identify the genes relevant for
AD. Utilizing the Alzheimer’s Disease Neuroimaging Initiative dataset (ADNI)
(518 cases of AD or mild cognitive impairment, 276 controls), transformer and
support vector machine (SVM) models were applied to whole genome sequen-
cing data of various genes previously associated with AD. The transformer
model was unable to find a signal on the ADNI dataset, but its prediction
worked when an artificial signal was introduced to the DNA sequencing data.
The SVM model was able to find a signal on many SNPs within the genes
tested. These results suggest that SVM models are more effective when applied
to small datasets with limited signal, and that transformers require a larger
dataset or greater amount of signal to be effective. To our knowledge, this is the
first study applying neural networks to unbroken stretches of DNA sequencing
data to attempt the prediction of a phenotypic trait.
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1
Introduction

1.1 Rationale

Alzheimer’s disease (AD) is a neurodegenerative disorder that affects memory

and brain function. In its late stages, it can severely affect an afflicted person’s

ability to perform basic functions and can ultimately result in death [Breijyeh

and Karaman, 2020]. The available treatments for Alzheimer’s disease treat

only symptoms, and do not cure the disease or slow its progression [Breijyeh

and Karaman, 2020]. Moreover, Alzheimer’s disease is widespread, with

1.6% of the US population in 2014 having Alzheimer’s disease and related

dementias [Matthews et al., 2019]. This makes treatment of Alzheimer’s

disease a large unmet need.

Alzheimer’s disease is highly heritable [Andrews et al., 2020]. AD’s es-

timated heritability of 70% makes it one of the human multifactorial diseases

with the greatest heritability [Bellenguez et al., 2020]. There are currently

over 40 gene loci known to be associated with Alzheimer’s disease [Novikova

et al., 2021]. However, we still do not understand the causal relationship and

functional variants underlying the statistical relationship between these genes
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1. Introduction 2

and Alzheimer’s disease [Novikova et al., 2021]. A better understanding of the

genetic basis of Alzheimer’s disease could help us discover prevention and

treatment methods and identify drug targets. It could also help identify people

at risk for developing the disease, who may benefit from preventative measures

and early treatment once these methods are discovered.

To better understand the genetic basis of Alzheimer’s disease, it may be

helpful to use powerful modeling approaches. One such approach is deep

learning. Deep learning has achieved impressive results in areas such as image

recognition (e.g. AlexNet [Krizhevsky et al., 2012]), natural language (e.g

GPT-3 [Brown et al., 2020]), and biological problems such as protein folding

(e.g. AlphaFold [Jumper et al., 2021]). These successes are encouraging for the

applications of deep learning in other domains, such as in biomedical problems.

Deep learning approaches have benefited from large amounts of labeled

training data. The advent of high-throughput genomic sequencing, other omic

techniques, and electronic health records have made the collection of large

amounts of biomedical data possible. Various initiatives have emerged to collate

this data and make it available for research. The UK Biobank plans to collect

whole exome sequencing (WES) data from 500,000 participants, with 200,000

samples already amassed [Szustakowski et al., 2021]. Other data collection

initiatives exist as well, such as The Cancer Genome Atlas, which has collected

WES data from 20,000 tumor and matched normal samples [Institute, n.d.].

Despite this massive proliferation of data, there is currently little research on

applying neural networks directly to raw DNA sequence data. It may be worth

exploring the potential of deep learning in this area, and the results of such

studies could be applicable to a variety of human genetic diseases. Among

the range of human genetic diseases, Alzheimer’s disease is a strong choice

for investigation using deep learning approaches due to its high heritability

and large unmet medical need.
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1.2 Objectives

This work aims to create a machine learning (ML) model that can predict if

an individual has Alzheimer’s disease based on their DNA sequence. Such a

model can be used to better understand the genetic basis of AD by identifying

genes and variants that are associated with AD. Further, this work aims to

provide insight on the utility of deep learning and other machine learning

methods when applied to genome sequencing data.

1.3 Contributions

The work of this dissertation has contributed the following:

• SVM positive results: The support vector machine (SVM) model was

able to find a signal in prediction of Alzheimer’s disease in participants

on many of the single nucleotide polymorphisms (SNPs) within the genes

examined from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

whole genome sequencing (WGS) dataset. Some of the SNPs have been

described in the literature as being related to AD, while other SNPs’

relation to AD have not been described.

• Transformer negative results: The transformer model, based on the

DNABERT pre-trained model, was unable to find a signal in predicting

AD on any of the 100 base pair-long windows of the APOE gene from the

ADNI dataset or on any of the other three gene sequences examined.

• Validation of transformer model on DNA sequence data: The trans-

former model, based on the DNABERT pre-trained model, was able to

predict the presence of AD with high accuracy when an artificial signal

was introduced into the ADNI whole genome sequencing data.
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• Novelty of running NNs on DNA sequence data to predict phenotype:

There has been little research on applying neural networks to raw DNA

sequence data in general. To my knowledge, this is the first study

applying NNs to attempt to predict the phenotype (presence or absence

of AD) of an individual based on their DNA sequence. Previous studies

applying NNs to genome sequence data have attempted to predict

information about the DNA itself, such as whether a region is a promoter,

rather than predicting phenotype.

1.4 Dissertation Structure

Chapter 2 contains a literature review of previous research in the fields of

Alzheimer’s disease genetics and applying neural networks to genomic data.

It discusses known genetic factors of AD, along with methods of discovering

these genetic factors, including wet lab experiments, genome-wide association

studies, and machine learning techniques. It also discusses a variety of prior

studies that have applied NNs to sequencing data, whether on single nucleotide

polymorphisms, amino acid sequences, or whole genome sequencing data.

Chapter 3 provides the background on the techniques used in this study.

Explanations of support vector machines and transformers are provided, along

with explanations of the metrics used to evaluate the performance of these

models when used for binary classification. In addition, an explanation of

the computational pipeline used to analyze next-generation whole genome

sequencing data is provided. A sample DNA sequence file is also shown.

Chapter 4 explains the datasets used in this project and the preprocessing

applied to the data, and describes the models and experiments conducted.

It describes the ADNI dataset, results of exploratory data analysis on this

dataset, the SVM and transformer models and architectures used, and the

experiments run with these models.
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Chapter 5 contains the results of all the experiments run in this study.

Experiments were run using SVM and transformer models on SNP and DNA

sequencing data. Data tables with the results of the prediction metrics, figures

of the training curves, and narrative explanations of the results are provided.

Chapter 6 provides an interpretation of the results. It links the results of this

study back to previous studies on AD genetics. It also attempts to explain trends

in the results, including why certain models performed better than others and

departures from previous results. It also compares the results of this model with

previous results on the prediction of AD using genetic data and on applying

NNs to genetic data. It explains challenges and limitations of the study, which

notably include issues with the size of the dataset that may have adversely

affected the prediction accuracy. It also describes directions for future study.

Chapter 7 discusses the conclusions of this study and broader implications

of this work, connecting this study to the broader field of machine learning re-

search and the potential impacts of applying machine learning to genomic data.



2
Related Work

2.1 Previous research on predicting Alzheimer’s dis-
ease

2.1.1 Known genetic factors of AD

Alzheimer’s disease is a strongly genetic disease, with 70% of AD cases

being related to genetic factors [Breijyeh and Karaman, 2020]. Previous work

has identified over 40 genes or loci related to AD [Bellenguez et al., 2020].

Bellenguez et al., 2020’s paper contains a table of genes shown to be associated

with AD and their corresponding odds ratios for the development of AD.

There are two types of Alzheimer’s disease: late onset, in which in which

the disease begins at age 65 or later, and early onset, in which the disease begins

before age 65. The APOE gene, located on chromosome 19, is the gene that is

the highest known risk factor for late onset AD [Potkin et al., 2009; C.-C. Liu

et al., 2013]. The ε4, ε3, and ε2 alleles of the APOE gene are associated with

a higher, neutral, and lower risk of AD, respectively [Breijyeh and Karaman,

2020]. Having two copies of the deleterious ε4 allele results in an odds ratio of

14.49 for developing AD [Bellenguez et al., 2020]. The genes APP, PSEN1, and

6



2. Related Work 7

PSEN2 are the genes with the greatest risk factor for early onset AD [Cacace

et al., 2016]. APOE is also associated with early onset AD [Cacace et al., 2016].

Studies on AD genetics have also been conducted on the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) dataset, which was used for this

dissertation project. (More information on the ADNI dataset is in Section

4.1.1.) Potkin et al., 2009 conducted a GWAS study on the ADNI dataset, using

hippocampal atrophy determined through MRI scans as a measure of mild

AD. They confirmed that APOE was a risk factor for AD and also identified

the novel gene TOMM40 (translocase of outer mitochondrial membrane 40),

on chromosome 19, as a risk factor for AD, with a p-value of ≤ 10−6.

2.1.2 Methods for discovering genetic factors of AD

Lab-based and clinical approaches

Prior to the advent of next-generation sequencing technology, and to supple-

ment gnomic analyses with validated laboratory experiments, a variety of

clinical and lab-based approaches have been used to discover and validate

genes associated with Alzheimer’s disease. Several of the genes with the

greatest implication in AD have been investigated in wet lab studies. For

example, the study by Weyer et al., 2011 investigated APP (amyloid precursor

protein) knockout mice, which have had their APP gene deactivated. They

found that these mice had diminished body weight, brain weight, and grip

strength, and that aged mice had learning and memory issues. The APOE

gene’s role in AD has also been validated through lab studies. Namba et al.,

1991 showed that Apolipoprotein-E is deposited in the senile plaques located

in the brains of AD patients.

Clinical studies have also demonstrated the association between genes and

AD. For example, Smith et al., 1998 evaluated patients with AD and MCI and

normal control subjects on a series of cognitive tests, finding that patients
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with AD and MCI who also had the APOE ε4 allele performed worse on

cognitive tests than those without the allele, but this effect was not present

in healthy patients without AD or MCI.

Genome-wide association studies

The advent of next-generation, high-throughput genome sequencing has en-

abled the proliferation of whole genome and whole exome sequencing datasets.

These datasets can be used for genome-wide association studies (GWAS).

GWAS search for genetic variants which have alleles that are more frequent

in people with a certain phenotype, controlling for ancestry [Uffelmann et al.,

2021]. The genetic variant that is most frequently used are single nucleotide

polymorphisms (SNPs), although copy-number variants or sequence variants

can also be considered [Uffelmann et al., 2021]. Since GWAS usually consider

SNPs, they do not consider the effects of longer stretches of DNA sequences

on the formation of a phenotypic trait. However, GWAS have the strength of

being able to find associations across the genome rather than only focusing

on a single locus at a time, which can be useful in complex, polygenic traits

such as height, schizophrenia, and AD. To test for associations, GWAS typically

use linear regressions or logistic regressions [Uffelmann et al., 2021]. The

individuals’ inputted genotypes are usually found with microarrays, whole

exome sequencing, or whole genome sequencing [Uffelmann et al., 2021]. Many

software tools exist for conducting GWAS, such as PLINK [Purcell et al., 2007],

which is widely used for finding associations. As of 2021, more than 5,700

GWAS have been carried out [Uffelmann et al., 2021].

A study by Potkin et al., 2009 conducted a GWAS of 381 participants from

the ADNI dataset and found the APOE gene as a risk gene, a new risk gene,

TOMM40, and identified five new candidate risk genes for AD.

Genome-wide association studies by proxy (GWAX) use parental history of

a disease or a trait as a proxy for an individual possessing a trait. This helps
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increase the sample size of the number of positive cases of a disease, which is

especially important for AD, since its late onset means that younger participants

may not be able to have their cases of AD confirmed, excluding them from the

study if only confirmed individual cases of AD were considered. Using parental

history as a proxy decreases the statistical power compared to using only

confirmed individual cases, but can increase the statistical power overall due to

the increase in sample size [Andrews et al., 2020]. Marioni et al., 2018 conducted

a GWAX of the UK Biobank dataset, using data from 314,278 participants, and

identified 27 susceptibility loci for AD, including three novel loci.

Other GWAS for AD have been conducted. Jansen et al., 2019 performed

a GWAS on 455,258 participants (71,880 cases, 383,378 controls) using data

from a variety of AD consortia, using AD and proxy AD cases, resulting in

the finding of 29 risk loci. Moreover, Kunkle et al., 2019 performed a GWAS

that included 94,437 individuals: 35,274 diagnosed cases of late-onset AD, and

59,163 controls, identifying 24 susceptibility loci.

As discussed, GWAS have been successful in identifying many loci associ-

ated with AD. However, there are limitations to GWAS. One major limitation is

that GWAS identify many susceptibility loci, but do not distinguish between

causal variants and variants that are not causal but are highly correlated to the

causal variants [Nicholls et al., 2020]. GWAS also do not provide information

on the biological mechanisms underlying a gene’s association with AD, and

more work is needed to discover this [Andrews et al., 2020]. In addition,

GWAS struggle with determining the genetic basis of complex traits, such as

those that depend on gene-gene or gene-environment interactions [Tam et al.,

2019]. Moreover, GWAS struggles to recognize epistasis, the phenomenon in

which the expression of certain genetic variants depend on the alleles present

in other genes [Tam et al., 2019]. Given these limitations of GWAS, it may

be useful to investigate alternative approaches to determining the genetic

factors underlying diseases.
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One such approach is machine learning (ML). According to Nicholls et al.,

2020, machine learning can be an important tool for prioritizing loci identified

by GWAS. More studies using ML for prediction of AD and other genetic

diseases are described below.

Machine learning

Several studies have used machine learning for classification of AD based on

SNP data. The study by Ghose et al., 2022 developed a novel approach called

Genome wide association neural networks (GWANN), which they used to

identify nonlinear and SNP-SNP interactions in the UK Biobank dataset of

family history of AD. They were able to identify previously known AD genes,

target nominations, and novel genes. They used SNPs and other covariates as

input and a convolutional neural network-based architecture for their model.

Another study by Venugopalan et al., 2021 utilized stacked denoising

autoencoders and 3D-convolutional neural networks, to predict the stage of

AD based on magnetic resonance imaging, SNP, and clinical test data. They

found that the deep learning approaches outperformed support vector machine,

decision tree, and k-nearest neighbor techniques [Venugopalan et al., 2021].

The study by Jo et al., 2022 used convolutional neural network (CNN),

random forest, and XGBoost approaches on windows of multiple SNPs from

the ADNI dataset, finding that the results were comparable between the models.

They also confirmed that the APOE gene was the most significant within

their dataset.

Other research studies have used machine learning for predictive tasks

related to AD, but that do not directly use genome sequencing data. A study by

Huang et al., 2018 utilized a support vector machine to classify AD candidate

genes using gene expression data and gene network data that was specific

to the human brain. In addition, a machine learning model, using a logistic

regression, was used to predict candidate drugs for repurposing to treat AD
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using data on lists of gene names, the levels of gene expression associated

with these genes, and the stage of AD as identified by the Braak staging

method [Rodriguez et al., 2021].

2.2 Previous research on applying NNs to genome
sequencing data

While there is much research on the genetic basis of AD, and many of these

studies use computational or machine learning techniques, to my knowledge,

there have been no studies that have worked with windows greater than 1 base

pair (bp) long of raw whole genome sequencing data for prediction of AD.

Studies that use multiple base pairs at a time, such as those by Ghose et al.,

2022 and Jo et al., 2022, use multiple SNPs at a time, rather than unaltered

strings of raw DNA sequences. While there are no studies operating on strings

of DNA sequences specific to Alzheimer’s disease, there have been studies that

applied machine learning and deep learning to raw whole genome sequencing

data to predict other characteristics. Some of these studies are described below.

BERT-based models

The DNABERT model, created by Ji et al., 2021, applies deep learning to

raw WGS data. The DNABERT paper applies principles used for training

natural language processing models such as BERT (Bidirectional Encoder

Representations from Transformers) [Devlin et al., 2018]. Previous findings

have suggested that DNA shares similarities to natural language (for example,

Brendel and Busse, 1984), motivating the use of language models for making

predictions about DNA.

The BERT model has been a highly successful language model, and it

achieved state-of-the-art performance on many natural language processing

tasks and benchmarks at the time of its publication in 2018 [Devlin et al., 2018].
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One of its key contributions was the prediction of values in a bidirectional

manner, rather than in a traditional left-to-right or right-to-left manner used by

other models. To train the BERT model in a bidirectional manner, the authors

used a training procedure of masking certain words (tokens) from the inputted

text and training the BERT model to predict these masked words. This resulted

in a pre-trained model that was later able to be fine-tuned on a variety of tasks,

achieving high performance in many of them.

The DNABERT model applies many of the principles used in the BERT

natural language model to DNA. It is also a bidirectional encoder representation

transformer, and has a similar pre-training procedure to BERT, as it was pre-

trained on the task of completing missing pieces of DNA sequence that were

removed from the training data of actual DNA sequences. Unlike other SNP-

based models, the DNABERT model actually operated directly on unbroken

stretches of whole genome sequencing data. The inputted DNA sequences

were split into k-mers with k between 3 and 6. These k-mer tokens contained

overlapping stretches of DNA sequence to give the model more information on

the local context surrounding each nucleotide [Ji et al., 2021]. Their model took

25 days to pre-train on 8 NVIDIA 20280Ti GPUs, and the authors have released

the pre-trained model on GitHub. The DNABERT pre-trained model can then

be fine-tuned on a variety of tasks, similarly to BERT. The DNABERT authors

fine-tuned their pre-trained model on the tasks of predicting proximal and core

promoter regions, transcription factor binding sites, and splice sites, achieving

state-of-the-art performance on these tasks [Ji et al., 2021]. The authors hope

that the DNABERT model is generalizable, stating that they ‘anticipate that

the pre-trained DNABERT model can be [fine] tuned to many other sequence

analyses tasks’ [Ji et al., 2021].
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Other models

One study that has used deep learning on raw sequencing data is that of

Sundaram et al., 2018. Rather than using DNA sequencing data as input, they

used amino acid sequences. The inputs of their deep residual convolutional

neural network model were the amino acid sequences on either side of the

variant being investigated, along with the orthologous sequences from other

primate species [Sundaram et al., 2018]. The output they tried to predict was

the pathogenicity of the variant in question, and they trained the model using a

dataset of variants labeled as either pathogenic or benign by humans [Sundaram

et al., 2018]. They achieved 91% accuracy on predicting variants as benign, an

improvement over previous methods. This study is an interesting in that it

predicts a phenotypic trait of clinical consequence, namely the pathogenicity

of a variant. This study also takes the interesting approach of bringing an

evolutionary biology perspective to human disease, as it compares variants

in humans to variants in primates, including chimpanzees, bonobos, and

macaques, to determine if a variant in humans is pathogenic, asserting that

a missense variant present in another primate species is usually benign in

humans [Sundaram et al., 2018]. The article tends to focus on whether variants

are benign from an evolutionary standpoint, rather than if they are directly

implicated in a human disease such as AD.

The SpliceAI model, proposed by Jaganathan et al., 2019, used a ResNet

CNN-based architecture to predict if a pre-mRNA transcript was a splice site,

based on a training dataset of pre-mRNA transcripts and labels of whether

a transcript is a splice site. They achieved 95% accuracy as defined by their

top-k metric [Jaganathan et al., 2019]. While this study did not use DNA

sequencing data, it did use strings of RNA sequencing data, and this data

was preprocessed using one-hot encoding.
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Avsec et al., 2021 utilized a transformer and convolution-based model,

called the Enformer model, for the prediction of gene expression. They took

in very large stretches of DNA as their input, taking in 196,608 bp at a time.

They used a dataset consisting of 38,000 DNA sequences [Avsec et al., 2021].

They achieved a mean correlation of 0.85, while the experimental accuracy is

estimated to be 0.94 [Avsec et al., 2021]. Gene expression is also a phenotypic

rather than genotypic trait.

NNs have also been applied to the genomes of non-human species. Ranawana

and Palade, 2005 used neural networks to identify promoter regions within

DNA sequence strings from Escherichia coli. This work was published in 2005,

indicating that the application of neural networks to DNA sequences has been

a topic of study for many years.



3
Technical Background

3.1 Support Vector Machines

Support vector machines (SVMs) are models used for supervised machine

learning problems. The idea behind support vector machines is illustrated in

Figure 3.1. An SVM aims to find a hyperplane to separate two classes, such

that all the data points of each class fall on one side of the hyperplane [Bishop,

2006]. The SVM attempts to choose a hyperplane that falls between the two

data classes. The SVM aims to maximize the margin, which is the distance

between the hyperplane and the closest data point [Bishop, 2006]. The closest

data points in each of the two classes are called the support vectors.

The SVM maximizes the margin by writing the problem as a constrained

optimization problem. Lagrange multipliers can then be applied to the problem

to frame it as a quadratic optimization problem, which can be solved with

computational techniques [Bishop, 2006].

In order to use an SVM on non-linearly separable data, we can use kernels.

This involves replacing dot products with a non-linear kernel function, which

results in the data being projected to a higher-dimensional feature space.

15
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Figure 3.1: Illustration of an SVM hyperplane, support vectors, margin, and classifica-
tion of data points on either side of the hyperplane. Figure from Misra et al., 2020.

In this higher-dimensional space, it may be possible to separate the data

with a hyperplane.

Some commonly-used kernels, that were used in this project, are as follows.

The formulas are from Bishop, 2006 and Scikit-learn Developers, n.d.[a].

1. Linear kernel: k(x, x′) = xTx′ (also known as the identity kernel)

2. Polynomial kernel: k(x, x′) = (xTx′+ c)M, where c is a constant > 0 and

M is the desired degree

3. Radial basis function (RBF) kernel: k(x, x′) = exp(−γ||x − x′||2), where

γ is a parameter > 0
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SVMs are popular classifiers that can be used effectively in a wide variety of

cases, including in high-dimensional datasets [Scikit-learn Developers, n.d.(a)].

They may struggle with overfitting in cases in which there are many more

features than samples in the dataset [Scikit-learn Developers, n.d.(a)].

3.2 Transformers

Transfomrmers were first described by Vaswani et al., 2017. Transformers were

initially built for sequence transduction tasks, e.g. machine translation, as

an innovation over the recurrent neural networks (RNNs) and convolutional

neural networks commonly used at the time [Vaswani et al., 2017]. Instead of

using convolutional or recurrent layers, they use an attention mechanism.

The attention function involves ‘mapping a query and a set of key-value

pairs to an output, where the query, keys, values, and output are all vectors’

[Vaswani et al., 2017].

The attention computation returns a weighted sum, and is defined as fol-

lows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V

where Q is the query matrix, K is the keys matrix, V is the values matrix,

and dk is the dimension of the keys (formula from Vaswani et al., 2017).
√

dk

serves as a scaling factor.

They perform a multi-head attention mechanism, which involves projecting

the keys, values, and queries into different subspaces, running the attention

function on each of these, concatenating the results, and projecting the results

again [Vaswani et al., 2017]. They utilize multi-head attention for self-attention,

which allows each encoder position to use attention on every position of the

previous encoder layer, and for each decoder position to use attention on itself

and every position in the decoder previous to that position [Vaswani et al., 2017].
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Figure 3.2: Illustration of the various approaches to local and global dependencies
taken by RNNs, CNNs, and transformers, from Ji et al., 2021. RNNs consider the
data sequentially, CNNs consider the data along with local context, and transformers
consider the data in a global context, taking long-range dependencies into account.

One of the key advantages of transformer models over RNNs and CNNs

is that its self-attention mechanism allows for a shorter ‘path length between

long-range dependencies’. Transformers have a lower big-O upper bound

for maximum path length compared to RNNs and CNNs [Vaswani et al.,

2017]. This makes long-range dependencies easier to learn [Vaswani et al.,

2017]. Figure 3.2 provides an illustration of the various approaches to local

and global dependencies taken by RNNs, CNNs, and transformers. RNNs

consider the data sequentially, CNNs consider the data along with local context,

and transformers consider the data in a global context, taking long-range

dependencies into account.

The architecture of the original transformer model is shown in Figure 3.3.

The transformer model achieved the state of the art on machine translation

benchmarks when it was released, and it has since achieved great success in

natural language processing in models such as BERT and GPT-3 [Devlin et al.,

2018; Brown et al., 2020]. It has even been applied to DNA sequences in models

such as DNABERT and the Enformer, described in Section 2.2.
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Figure 3.3: Illustration of the Transformer model architecture, from Vaswani et al.,
2017.
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3.3 Evaluation of binary classifiers

For datasets with an imbalance between the number of data points in each of the

two classes, evaluating a binary classifier’s performance becomes more difficult,

as one must pay special attention to the classifier’s ability to distinguish between

members of the two classes. For example, suppose we have a dataset for an

uncommon disease in which 98% of the samples in the dataset do not have

the disease, and only 2% of the samples do. A classifier that always predicted

the mode of the dataset as its output, in this case always predicting that an

individual did not have the disease, would achieve a 98% accuracy on the

dateset overall, but a 0% accuracy on patients with the disease, and would fail

to inform patients and their healthcare providers that they had a disease. This

could have dangerous consequences if a disease that requires early treatment,

such as cancer, is not caught. As such, we use a suite of metrics to evaluate a

binary classifier’s performance, taking the possibility of imbalanced datasets

into account. These metrics are defined below.

In the metrics below, y denote the true values, and ŷ denote the pre-

dicted values.

Accuracy

Accuracy is the simplest metric with which to interpret a binary classifier’s

performance. It can be thought of as the proportion of samples which were

correctly placed into their class. The accuracy ranges from 0 to 1, with higher

accuracies, greater than 0.5, being better. An accuracy of 0.5 indicates that the

model has performed the same as random classification of the data points

would perform.

The formula for calculating accuracy is

accuracy(y, ŷ) =
1

nsamples

nsamples−1

∑
i=0

1(ŷi = y)
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where 1() is the indicator function (formula from [Scikit-learn Developers,

n.d.(b)]).

As mentioned above, a high accuracy score may not reflect a model’s actual

performance in an imbalanced dataset.

Confusion Matrix

For the remaining metrics, it is helpful to discuss the confusion matrix. The

confusion matrix contains four values:

1. true positives (TP): number of data points which are actually positive,

and correctly predicted as positive by the classifier

2. false positives (FP): number of data points which are actually negative,

but incorrectly predicted as positive by the classifier

3. true negatives (TN): number of data points which are actually negative,

and correctly predicted as negative by the classifier

4. false negatives (FN): number of data points which are actually positive,

but incorrectly predicted as negative by the classifier

The TP, FP, TN, and FN values are illustrated in the confusion matrix

in Figure 3.4.

With the definitions of TP, FP, TN, and FN in hand, we can define the

remaining evaluation metrics.

Balanced Accuracy

Blaanced accuracy can be thought of as a weighted average of the accuracies for

each sample, where each sample is weighted by the inverse of the prevalence

of its actual class [Scikit-learn Developers, n.d.(b)]. It is not as prone to the

providing inflated results on imbalanced datasets as accuracy is [Scikit-learn

Developers, n.d.(b)]. Balanced accuracy can be interpreted like an accuracy
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Figure 3.4: Illustration of the confusion matrix with true positives, false positives, false
negatives, and true negatives, from Draelos, 2019.

score, and it ranges from 0 to 1, with higher scores being better. In datasets

with equal class balance, accuracy and balanced accuracy are equal [Scikit-

learn Developers, n.d.(b)].

The formula for calculating balanced accuracy is

balanced_accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(formula from [Scikit-learn Developers, n.d.(b)]).

Precision

Precision can be thought of as a model’s ability to only identify as positive

those data points that are actually positive, avoiding false positives. It ranges

from 0 to 1, with higher values being better.

The formula for calculating precision is

precision =
TP

TP + FP
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Recall

Recall can be thought of as a model’s ability to not miss positive samples

and incorrectly label them as negative. It ranges from 0 to 1, with higher

values being better.

The formula for calculating recall is

precision =
TP

TP + FN

F1 score

F1 score is a weighted average (harmonic mean) of precision and recall. It

ranges from 0 to 1, with higher values being better.

The formula for calculating F1 score is

F1_score =
2 · precision · recall
precision + recall

ROC AUC

The receiver operating characteristic (ROC) curve is a plot of the true positive

rate on the y-axis and the false positive rate on the x-axis. The true positive

(TP) rate is the same as recall. The false positive (FP) rate is the proportion

of negative data points that are incorrectly labeled as positive out of all

negative data points.

The formula for calculating the false positive rate is

false_positive_rate =
FP

FP + TN

The area under the receiver operating characteristic curve (ROC AUC) is

the two-dimensional area under the ROC curve. An example of the ROC curve

and the area under the curve are shown in Figure 3.5.

Intuitively, as we vary the classification threshold of our model (the value

above which the model needs to score a data point for it to be considered
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Figure 3.5: Illustration of the receiver operating characteristic (ROC) curve and the
area under the curve (AUC). The y-axis is the true positive rate, and the x-axis is the
false positive rate. The area under the curve (AUC) is shaded in. Image from Google
Developers, 2022.

positive), we achieve different TP and FP rates. These different TP and FP

rates are shown in the ROC curve. At all classification thresholds, we would

like to maximize the true positive rate. As such, we would like to maximize

the area under the ROC curve, as this would achieve a maximization of true

positives across all values of the false positive rate.

The value of ROC AUC can be thought of as the classifier’s ability to

distinguish between the classes at all classification thresholds. The ROC AUC

ranges from 0 to 1, with values closer to 1 indicating better performance.

An ROC AUC of 0.5 indicates an inability of the classifier to distinguish
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between the classes.

Matthews Correlation Coefficient (MCC)

Matthews Correlation Coefficient (MCC) is a value useful for indicating a

model’s predictive performance, even on unbalanced classes. It ranges from 1 to

-1 and can be interpreted as a correlation coefficient, with a value of 1 indicating

a perfect positive correlation, a value of 0 indicating no correlation, and a value

of -1 indicating a perfect negative correlation [Scikit-learn Developers, n.d.(b)].

The formula for calculating MCC is

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(formula from [Scikit-learn Developers, n.d.(b)]).

3.4 Genome sequencing

Next-generation sequencing, which is massively parallel and high-throughput,

has enabled the collection of vast amounts of genomic data. One popular

platform for next-generation sequencing is the set of products by the company

Illumina. Illumina sequencing has been used by a variety of medical data

projects, including ADNI.

The process for converting a file outputted by the Illumina sequencing

technology to a usable DNA sequence file is multi-step. First, raw sequence files

in FASTQ format are generated by the sequencing machine. FASTQ format is

very similar to the FASTA format listed below. These files are of small snippets

of the genome, since the chromosomes are cut into pieces during sequencing

to allow for sequencing to be conducted in a massively parallel manner. Next,

these FASTQ raw sequence files are aligned to the reference genome using

an aligner such as the Burrows-Wheeler Aligner. The reference genome is a

consensus sequence of the human genome that research bodies have agreed
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upon to be the standard human genome, without mutations. An example of a

reference genome is GRCh37 (Genome Reference Consortium Human Build 37).

Next, the aligned genome is converted to a BAM file. A BAM is a binary version

of a file containing sequence alignment data. Then, variant calling is conducted

on the BAM file to obtain the differences between the individual’s genome and

the reference genome, known as variants. The results of this are stored in a

VCF file. More information on the next-generation sequencing data processing

pipeline is contained in a document by University of Warwick [Nho, n.d.].

Analysis can be conducted on VCF files, but I chose to work with FASTA files

because they provide the DNA sequence in an easy-to-read format. Another

processing step needs to be completed to convert the VCF files to FASTA

files. If desired, we can extract only the data from the chromosome or region

we are examining into the FASTA file. The FASTA files I had access to only

contained the DNA sequences from chromosome 19, so I only studied genes

located on chromosome 19.

The ultimate file format I worked with looked like this:

>19

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

GATCACAGAGGCTGGGCTGCTCCCCACCCTCTGCACACCTCCTGCTTCTAACAGCAGAGC

TGCCAGGCCAGGCCCTCAGGCAAGGGCTCTGAAGTCAGGGTCACCTACTTGCCAGGGCCG

ATCTTGGTGCCATCCAGGGGGCCTCTACAAGGATAATCTGACCTGCAGGGTCGAGGAGTT

GACGGTGCTGAGTTCCCTGCACTCTCAGTAGGGACAGGCCCTATGCTGCCACCTGTACAT

GCTATCTGAAGGACAGCCTCCAGGGCACACAGAGGATGGTATTTACACATGCACACATGG

CTACTGATGGGGCAAGCACTTCACAACCCCTCATGATCACGTGCAGCAGACAATGTGGCC

TCTGCAGAGGGGGAACGGAGACCGGAGGCTGAGACTGGCAAGGCTGGACCTGAGTGTCGT

CACCTAAATTCAGACGGGGAACTGCCCCTGCACATAGTGAACGGCTCACTGAGCAAACCC
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FASTA files consist of labels and sequences. The labels are on the line

starting with ‘>’. In this case, the label is 19 to indicate this sequence came from

chromosome 19. The line after the label contains the sequence. The sequence

is the sequence of DNA present in this individual’s genome. A value of N

indicates ther was no data present at that location. To my knowledge, the

sequences I used in my study were not missing nucleotides.

The end results of completing the genomic data processing pipeline for

one individual’s sequence are two FASTA files, one for each set of alleles

belonging to a person. For my analysis, I extracted the DNA sequences for

each individual from each FASTA file, referencing the sequence I wanted by

its location within the chromosome.



4
Methods

4.1 Dataset

4.1.1 ADNI

Description

This project used data from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI). As per the ADNI website, ‘Data used in the preparation of this article

were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. Weiner, MD. The

primary goal of ADNI has been to test whether serial magnetic resonance

imaging (MRI), positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early Alzheimer’s

disease (AD)’ [Alzheimer’s Disease Neuroimaging Initiative, 2016].

For this project, I used ADNI’s whole genome sequencing (WGS) dataset.

The WGS data was collected using Illumina technology during 2012-2013 from

ADNI participants [Alzheimer’s Disease Neuroimaging Initiative, 2015]. The

28
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dataset has 518 individuals labeled as cases: those with confirmed cases of

AD or mild cognitive impairment (MCI) and 276 patients as controls. MCI

is a form of cognitive impairment that does not affect a person’s ability to

function in their daily activities, while dementia can affect a person’s daily

activities. MCI is regarded as a transitional stage between normal functioning

and dementia. It may progress to dementia, but does not always [Campbell

et al., 2013]. In keeping with the labels provided by the ADNI dataset as to

whether each patient is a case or control, I labeled the patients with AD or

MCI as positive (1) and those without either as negative (0).

From the whole genome sequence BAM files, the data were aligned to the

Genome Reference Consortium Human Build 37 (GRCh37) reference genome,

and the consensus sequence was saved to FASTA files. The preprocessing to

these FASTA files was completed by other lab members.

From these FASTA files, four genes were investigated: APOE (chr19: 45,409,038

- 45,412,650), TOMM40 (chr19: 45,394,476 - 45,406,946), SIGLEC11 (chr19:

50,452,249 - 50,464,429) and EXOC3L2 (chr19: 45,715,878 - 45,737,469). SIGLEC11

stands for Sialic Acid Binding Ig Like Lectin 11, and EXOC3L2 stands for

Exocyst Complex Component 3 Like 2. The locations of these genes were

given by the UCSC Genome Browser [Kent et al., 2002]. These genes were

chosen because they were shown to be related to AD by previous analyses

published in journal articles (APOE, TOMM40) or conducted by lab members

(SIGLEC11, EXOC3L2) [Potkin et al., 2009; Saykin et al., 2010; C.-C. Liu et al.,

2013]. The DNA sequences of these four genes for each patient were extracted

from these FASTA files using the pysam library. Unless otherwise indicated,

the chromosome positions reported refer to the GRCh37 reference genome.

Because humans have two copies of each chromosome, each patient has two

alleles for each location on the chromosome. This results in two FASTA files

being available for each patient, with each FASTA file containing one of the two

alleles present at each location in the chromosome. Due to time constraints,
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Table 4.1: Number of SNPs found in each gene of ADNI’s WGS data.

Gene Gene length Number of SNPs Percent of nucleotides with differences
APOE 3,612 14 0.388%
TOMM40 12,471 106 0.850%
SIGLEC11 12,181 86 0.706%
EXOC3L2 21,592 199 0.922%

only one set of alleles for each patient was investigated for all the experiments

described below. The pre-trained DNABERT model was also set up to only

take in one set of alleles at a time, which is why I began with the approach

of inputting one allele at a time rather than both.

Exploratory Data Analysis

To determine how much of a signal was present in the dataset, and how much

the DNA sequences actually differed between the case and control patients, I

ran an analysis to determine the positions of the nucleotides which had any

differences at all between the patients. My motivation for performing this

analysis was that the transformer models, which were the first I tried, were not

picking up a signal from the data, so I wanted to check how much variation

was present in the data and be sure that the patients’ DNA sequences were

not all identical or near-identical.

The results of this analysis are shown in Table 4.1. A SNP was defined

as any nucleotide that did not have an identical value for all patients in the

dataset. All other nucleotides not counted in the number of SNPs were identical

between all the patients. On average, each of the genes examined only had

0.716% of their nucleotides having any differences at all between patients. This

is a very small amount of signal to work with, especially when considering

that the transformer would be operating on the entire gene or windows of the

gene at once. The results of this exploratory data analysis show that there is

a low signal to noise ratio in the ADNI WGS dataset.
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4.2 SVM model

For each of the SNPs found in each of the four genes investigated, the nucle-

otides were one-hot encoded (as a four-bit vector, with each bit representing

the count of the nucleotides A, T, C, and G), and then an SVM model was run

on this encoding along with its positive or negative label to attempt to classify

the patient as a case of AD or as a control. A second set of experiments was

run, in which all SNPs found for each gene were one-hot encoded and inputted

into the SVM at once for classification of AD. Three different SVM kernels

were tested: linear, sigmoid, and RBF. The linear kernel experiment used the

scikit-learn implementation of the stochastic gradient descent classifier with

the hinge loss function [Scikit-learn Developers, n.d.(c)]. The sigmoid and RBF

kernels used the corresponding settings from the scikit-learn C-Support Vector

Classification function [Scikit-learn Developers, n.d.(d)]. All hyperparameters

were set to the scikit-learn defaults. The numpy random seed was set to

42 for all SVM experiments.

Different methods of balancing the dataset were investigated as well. In

addition to running the SVM models on the full dataset, I also ran random

downsampling to create a balanced dataset. This is to avoid issues that come

with there being far more data points in one class than the other, as there

were almost twice as many case as control samples in the dataset. Random

downsampling involves randomly choosing a subset of the data points from the

larger class to keep in the dataset, discarding the rest of the data points from

this class. The random downsampling approach resulted in 276 data points

remaining in each of the case and control classes. When the train-test split

was taken, the same dataset balance, whether that of the original dataset or

the downsampled dataset, was maintained in each of the training and testing

splits. A 90%/10% training-testing split of the was used for the models. A split

with such a high proportion of data in the training split was chosen because
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of the small size of the dataset, to give the model as much data as possible

to train on. The prediction results for each gene on both the original and

downsampled datasets are shown in Section 5.1.

The SVM’s performance on the metrics of accuracy, balanced accuracy,

precision, recall, F1 score, ROC AUC, and MCC were calculated. The scikit-

learn implementation of these metrics was used [Scikit-learn Developers,

n.d.(b)]. Along with reporting the location of each SNP in the chromosome

and its prediction accuracy results, the rsID (reference SNP cluster ID) of

each SNP was also reported. The rsID, also referred to as an rs number, is

a unique identifier for each SNP that has been assigned by researchers. The

rsIDs were included so that the results of this study can easily compared to

the many other studies which also identify their SNPs using rsIDs, and to

make the results of this study more relevant in a biological context to other

researchers studying the genetic basis of AD and other diseases. The rsID

for each SNP was programmatically retrieved from the NCBI SNP database

[National Library of Medicine, n.d.] with the Biopython Entrez package [The

Biopython Contributors, n.d.] using its chromosome number and position

within the chromosome as the search term.

The results of the SVM experiments are described in Section 5.1.

4.3 Transformer model

A transformer architecture was chosen as the deep learning approach for

this project. The success of the DNABERT and Enformer models [Ji et al.,

2021; Avsec et al., 2021] in predicting traits related to DNA from unbroken

stretches of whole genome sequencing data seemed promising for the use of

transformers to predict the presence or absence of AD from DNA sequencing

data. In addition, the nature of a transformer may be well-suited to tasks

relating to prediction from DNA. As described in Section 2.2, DNA shares
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similarities to natural language, and transformers have achieved great success

on natural language processing tasks. Furthermore, as discussed by Ji et al.,

2021, transformers have the advantage of taking global contexts into account

via their self-attention mechanisms, while CNNs only take local contexts

into account. Taking global contexts into account could be useful for DNA-

related tasks, since DNA regions which are far apart may impact each others’

expression. As such, because of the strength and flexibility of transformers, and

the promising previous results achieved with them, transformers were chosen

for this project. I used the pre-trained DNABERT implementation because I

thought the additional information about DNA’s structure and patterns that

the model had learned during its 25-day pre-training process might come in

useful for the AD predictions. The DNABERT model had already been shown

to be generalizable to a variety of tasks relating to predictions on DNA [Ji et al.,

2021], and I thought it might work on AD prediction as well.

The pre-trained DNABERT model, as described by Ji et al., 2021, was used.

The DNABERT model is a bidirectional encoder representation transformer,

pre-trained on the task of completing missing pieces of DNA sequence that

were removed from training data of actual DNA sequences. The architecture of

the DNABERT model is shown in Figure 4.1. The DNABERT model contains

3 embedding layers, 12 transformer blocks which then feed to an additional

hidden layer, and a classification layer.

I used the pre-trained DNABERT model that was set up to perform binary

classification tasks, specifically the dnaprom task of predicting whether a

region of DNA is a promoter. I used the pre-trained model that was trained

to fill in missing sections of DNA, rather than the model fine-tuned on

predicting whether a region is a promoter. I ran the DNABERT model on

two tasks, described in the sections below. For both of these tasks, I used the

hyperparameters described in Table 4.2, which were the defaults provided by Ji

et al., 2021 in their model code. I also balanced the ADNI dataset to ensure the
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Figure 4.1: DNABERT transformer model’s architecture, from Ji et al., 2021’s paper.



4. Methods 35

Table 4.2: Transformer model’s hyperparameters.

Hyperparameter Value
Batch size 32
Learning rate 2.00E-04
Training epochs 5
Warmup percent 0.1
Hidden dropout probability 0.1
Weight decay 0.01
Max sequence length 100

number of cases and controls was the same by using random downsampling,

resulting in 276 each of case and control samples.

4.3.1 On each window of APOE gene

I fine-tuned this pre-trained DNABERT model on the task of predicting if

an individual has a case of AD (labeled 1) or is a control (labeled 0) based

on a 100 bp-long window of their APOE gene sequence. The APOE gene

sequence was split into windows of size 100, except for the window at the

very end of the sequence, which was made only as long as the remaining

number of nucleotides left in the APOE gene after all the previous 100 bp

windows had been allotted. Between each subsequent window, there was a

50-bp overlap. A separate transformer model was trained for each window

of the APOE gene. Each window’s DNA sequence was tokenized into k-mers

with k = 6 using the methodology described by Ji et al., 2021, as this was the

preprocessing methodology they used on the raw DNA sequence data inputted

to DNABERT. A random seed of 24, the default used by the DNABERT authors,

was used for all DNABERT experiments. The results of these experiments

are described in Section 5.2.1.
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4.3.2 On entire gene sequences

In addition to running the models on the smaller windows of the APOE gene, I

also ran the models on the task of predicting if an individual has AD based on

the full gene sequences of each of the four genes, APOE, TOMM40, SIGLEC11,

and EXOC3L2. These results are also described in Section 5.2.1.

4.3.3 Introduction of artificial signal

I found that my transformer models were achieving poor results on the ADNI

dataset, and I wanted to rule out the possibility of an error in the set up and

training. I also wanted to validate that the transformer could indeed pick up on

signals within the data. As such, I introduced an artificial signal into the DNA

sequence data from the ADNI dataset. The artificial signal was as follows: a

certain percentage of the DNA sequences that belonged to patients with cases

of AD were changed to sequences of all ‘A’ nucleotides in both the train and

test data. The DNA sequences were also preprocessed into 6-mers, as described

in Section 4.3.1. The DNABERT transformer was then trained and tested on

this altered dataset. This experiment was conducted setting the percentage of

positive data points altered to 10%, 70%, and 90%. The 70% level was chosen

because AD is considered to be approximately 70% heritable, and I wanted to

see the models’ prediction performance when 70% of the data points had a

strong genetic signal. The 90% and 10% levels were chosen to see the results

when almost all, or almost none, of the positive data points, respectively, had a

signal. The results of these experiments are described in Section 5.2.3.

The results on the metrics of accuracy, F1 score, and ROC AUC during

training and testing are provided in Section 5.2. These metrics were calculated

by functions within Ji et al., 2021’s code and utilized the scikit-learn functions for

these metrics [Scikit-learn Developers, n.d.(b)]. I also modified the training and

testing code to enable logging of metrics for the visualization of training curves.
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Results

5.1 SVM results

The results of the SVM experiments on the SNPs within the APOE, TOMM40,

SIGLEC11, and EXOC3L2 genes in the ADNI dataset, using a linear kernel and

without any random downsampling, are shown in Tables 5.1, 5.3, 5.5, and 5.7.

The results that the linear kernel SVM was able to achieve on prediction of

AD using just the value of this single nucleotide on the metrics of accuracy,

balanced accuracy, precision, recall, F1 score, ROC AUC, and MCC are shown

in the tables. Each SNP is identified by its location within chromosome 19

and its rsID, which is a unique identifier for each SNP. The genes listed in

these tables had more than ten SNPs present in the ADNI dataset. Only the

top ten SNPs for which the highest metric of balanced accuracy was achieved

are shown in the tables, in order to highlight only the most promising results.

The full results for all SNPs found in each of the four genes are shown in the

Supplementary Materials. Out of all the metrics that take imbalanced dataset

classes into account, the metric of balanced accuracy was chosen for ranking the

results because it is easy to interpret, as it can be thought of as an accuracy score.

37
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In addition, balanced accuracy correlates closely with the ROC AUC score,

which is another commonly used metric for binary classification performance.

The rest of the various metrics calculated do not necessarily correlate with each

other in the results obtained, so it was essential to pick only one metric on

which to base the prioritization of results. (Note: For any results in which the

MCC calculation result was undefined due to the denominator being 0, the

MCC value was reported as 0, which is the default scikit-learn behavior.)

In addition to reporting the SVM results for the full, unbalanced dataset,

the results for the datasets for each gene balanced with random downsampling

to achieve an equal number of case and control samples are shown in Tables

5.2, 5.4, 5.6, and 5.8. The effects of random downsampling were mixed, but it

seemed to improve the results for SIGLEC11 and worsen the results for APOE.

The SNP with the highest SVM prediction performance was the SNP

at position 45,409,167 within the APOE gene of chromosome 19, with a

corresponding rsID of rs11542028. This SNP achieved a balanced accuracy

of 0.65, an F1 score of 0.77, an ROC AUC of 0.65, and an MCC of 0.28 when

investigated without random downsampling. These values are fairly high

across all the metrics. The next highest score for balanced accuracy was

achieved at the SNP at position 50,454,375 within the SIGLEC11 gene of

chromosome 19, with a corresponding rsID of rs117180821. This SNP achieved

a balanced accuracy of 0.61, an F1 score of 0.36, an ROC AUC of 0.61, and an

MCC of 0.36 when investigated with random downsampling.

The highest balanced accuracy performance within the TOMM40 gene was

achieved at the SNP at position 45,406,673 within chromosome 19, with a

corresponding rsID of rs58185379. This SNP achieved a balanced accuracy

of 0.59, an F1 score of 0.59, an ROC AUC of 0.59, and an MCC of 0.15

when investigated without random downsampling. Furthermore, the highest

balanced accuracy performance within the EXOC3L2 gene was achieved at

the SNP at position 45,722,517 within chromosome 19, with a corresponding
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rsID of rs60528995. This SNP achieved a balanced accuracy of 0.56, an F1

score of 0.2, an ROC AUC of 0.56, and an MCC of 0.24 when investigated

with random downsampling.

The effects of varying the kernels and sampling techniques are shown

in Table 5.9. The SNP with the highest score across the evaluated metrics,

rs11542028 located at 45,409,167 in chromosome 19 within the APOE gene, was

used for this analysis because this SNP provides a larger amount of signal to

work with, better illustrating the positive or negative effects of varying kernel

and sampling techniques, as opposed to a SNP without any signal, which

might show the same results of there being no signal regardless of which

techniques are tried on it. Linear, polynomial, and RBF kernels were used for

the SVM, and the results of each are shown. The kernel achieving the highest

balanced accuracy was the linear kernel. As such, this kernel was used for the

other experiments testing the SVM on the various genes’ SNPS. The effects of

varying the sampling techniques are also shown in Table 5.9. Using random

downsampling decreased the ROC AUC compared to the peak value achieved

without downsampling using the linear kernel for this particular SNP. However,

random downsampling increased the balanced accuracy performance for other

genes and SNPS, and increased the balanced accuracy for the polynomial and

RBF kernels, as shown in Table 5.9.

Table 5.10 shows the results of running the SVM linear kernel model on all

SNPs of each of the four genes at once, with the SNP data one-hot encoded.

Table 5.11 shows the results of the same experiment but with the datasets

balanced using random downsampling. The results were generally worse for

the SVM model operating on all SNPs in each gene compared to the results

of the top SNP for each gene, for both of the experiments with and without

downsampling. For all four genes, running the SVM on all SNPs decreased

the balanced accuracy, precision, ROC AUC, and MCC, but increased the
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Table 5.1: AD prediction accuracy results when running SVM on ADNI SNPs from
APOE gene with linear kernel.

rsID Location
in chr19

Accuracy Balanced
accur-
acy

Precision Recall F1 score ROC
AUC

MCC

rs11542028 45,409,167 0.69 0.65 0.83 0.73 0.77 0.65 0.28
rs1486677963 45,409,283 0.75 0.52 0.75 1 0.86 0.52 0.19
rs769451 45,410,911 0.74 0.52 0.74 0.98 0.85 0.52 0.09
rs9282609 45,409,113 0.74 0.5 0.74 1 0.85 0.5 0
rs769448 45,409,579 0.74 0.5 0.74 1 0.85 0.52 0
rs769449 45,410,002 0.74 0.5 0.74 1 0.85 0.64 0
rs61357706 45,410,273 0.74 0.5 0.74 1 0.85 0.51 0
rs74253333 45,410,444 0.74 0.5 0.74 1 0.85 0.51 0
rs115299243 45,410,548 0.74 0.5 0.74 1 0.85 0.51 0
rs201672011 45,411,064 0.74 0.5 0.74 1 0.85 0.51 0

Table 5.2: AD prediction accuracy results when running SVM on ADNI SNPs from
APOE gene with linear kernel, with random downsampling.

rsID Location
in chr19

Accuracy Balanced
accur-
acy

Precision Recall F1 score ROC
AUC

MCC

rs11542028 45,409,167 0.58 0.58 0.56 0.74 0.63 0.58 0.18
rs769449 45,410,002 0.58 0.58 0.67 0.3 0.41 0.58 0.19
rs9282609 45,409,113 0.49 0.5 0.49 1 0.66 0.5 0
rs1486677963 45,409,283 0.49 0.5 0.49 1 0.66 0.5 0
rs769448 45,409,579 0.49 0.5 0.49 1 0.66 0.46 0
rs61357706 45,410,273 0.49 0.5 0.49 1 0.66 0.5 0
rs74253333 45,410,444 0.49 0.5 0.49 1 0.66 0.52 0
rs115299243 45,410,548 0.49 0.5 0.49 1 0.66 0.5 0
rs769451 45,410,911 0.51 0.5 0 0 0 0.5 0
rs201672011 45,411,064 0.49 0.5 0.49 1 0.66 0.5 0

recall and F1 score (in the case of EXOC3L2 without downsampling, the

MCC remained the same).

5.2 Transformer results

5.2.1 On each window of APOE gene

The results of the transformer experiments on the windows of the APOE gene

within the ADNI dataset’s WGS data are shown in Table 5.12. Only the results
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Table 5.3: AD prediction accuracy results when running SVM on ADNI SNPs from
TOMM40 gene with linear kernel.

rsID Location
in chr19

Accuracy Balanced
accur-
acy

Precision Recall F1 score ROC
AUC

MCC

rs58185379 45,406,673 0.52 0.59 0.82 0.46 0.59 0.59 0.15
rs34095326 45,395,844 0.4 0.58 0.92 0.2 0.33 0.58 0.19
rs11668327 45,398,633 0.7 0.57 0.77 0.85 0.81 0.57 0.15
rs59841965 45,406,798 0.76 0.55 0.76 1 0.86 0.55 0.27
rs71337246 45,397,512 0.56 0.52 0.75 0.61 0.67 0.52 0.03
rs2238680 45,398,264 0.56 0.52 0.75 0.61 0.67 0.52 0.03
rs386539078 45,398,716 0.56 0.52 0.75 0.61 0.67 0.52 0.03
rs140684051 45,399,456 0.74 0.52 0.74 0.98 0.85 0.52 0.09
rs183743534 45,404,866 0.75 0.52 0.75 1 0.86 0.52 0.19
rs59915866 45,397,229 0.72 0.51 0.74 0.97 0.84 0.51 0.03

Table 5.4: AD prediction accuracy results when running SVM on ADNI SNPs from
TOMM40 gene with linear kernel, with random downsampling.

rsID Location
in chr19

Accuracy Balanced
accur-
acy

Precision Recall F1 score ROC
AUC

MCC

rs16979513 45,396,144 0.56 0.56 0.64 0.26 0.37 0.56 0.15
rs58185379 45,406,673 0.56 0.56 0.58 0.41 0.48 0.56 0.13
rs74253332 45,404,691 0.55 0.55 0.53 0.74 0.62 0.55 0.11
rs76841546 45,402,589 0.53 0.52 1 0.04 0.07 0.52 0.14
rs183743534 45,404,866 0.51 0.52 0.5 1 0.67 0.52 0.13
rs117843462 45,405,634 0.53 0.52 1 0.04 0.07 0.52 0.14
rs59841965 45,406,798 0.51 0.52 0.5 1 0.67 0.52 0.13
rs1160985 45,403,412 0.51 0.51 0.5 0.67 0.57 0.51 0.03
rs56951511 45,403,858 0.51 0.51 0.5 0.67 0.57 0.51 0.03
rs59019406 45,404,431 0.51 0.51 0.5 0.67 0.57 0.51 0.03

for the first 10 windows are shown for brevity, while the full results for the

all the windows are shown in the Supplementary Materials. ‘AUC’ in the

DNABERT results tables refers to ROC AUC.

As can be seen, none of the windows had a signal for either the testing or

training tasks. The accuracy of approximately 50% on the dataset balanced

with random downsampling is similar to what would have been achieved with

predicting the outcome randomly. The relatively low F1 score and the AUC
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Table 5.5: AD prediction accuracy results when running SVM on ADNI SNPs from
SIGLEC11 gene with linear kernel.

rsID Location
in chr19

Accuracy Balanced
accur-
acy

Precision Recall F1 score ROC
AUC

MCC

rs61467868 50,456,770 0.49 0.53 0.76 0.44 0.56 0.53 0.05
rs57860877 50,457,346 0.49 0.53 0.76 0.44 0.56 0.53 0.05
rs73932071 50,459,806 0.28 0.51 1 0.02 0.03 0.51 0.07
rs4802641 50,452,341 0.74 0.5 0.74 1 0.85 0.5 0
rs114819375 50,452,606 0.74 0.5 0.74 1 0.85 0.5 0
rs143688215 50,452,641 0.74 0.5 0.74 1 0.85 0.5 0
rs138574928 50,452,960 0.74 0.5 0.74 1 0.85 0.5 0
rs200448773 50,453,203 0.74 0.5 0.74 1 0.85 0.5 0
rs56579996 50,453,317 0.74 0.5 0.74 1 0.85 0.43 0
rs201942673 50,453,351 0.74 0.5 0.74 1 0.85 0.5 0

Table 5.6: AD prediction accuracy results when running SVM on ADNI SNPs from
SIGLEC11 gene with linear kernel, with random downsampling.

rsID Location
in chr19

Accuracy Balanced
accur-
acy

Precision Recall F1 score ROC
AUC

MCC

rs117180821 50,454,375 0.62 0.61 1 0.22 0.36 0.61 0.36
rs2076155786 50,454,383 0.62 0.61 1 0.22 0.36 0.61 0.36
rs117126572 50,457,876 0.62 0.61 1 0.22 0.36 0.61 0.36
rs76691680 50,457,915 0.62 0.61 1 0.22 0.36 0.61 0.36
rs117971487 50,457,927 0.62 0.61 1 0.22 0.36 0.61 0.36
rs117428283 50,458,411 0.62 0.61 1 0.22 0.36 0.61 0.36
rs79972908 50,458,488 0.62 0.61 1 0.22 0.36 0.61 0.36
rs56579996 50,453,317 0.56 0.57 0.53 0.89 0.67 0.57 0.18
rs62126307 50,454,086 0.56 0.57 0.53 0.89 0.67 0.57 0.18
rs10405621 50,455,351 0.56 0.57 0.53 0.89 0.67 0.57 0.18

around 0.5 also indicate a lack of signal.

In addition to conducting the experiments described in section 4.3, I also

tried the DNABERT transformer model on the tasks of predicting longer

windows of 200 bp and predicting the presence of AD using a window

surrounding a known significant AD SNP within the APOE gene from the

GWAS Catalog [EMBL-EBI, n.d.]. I also tried using a lower learning rate of

1.00 · 10−5 as compared to the original learning rate of 2.00 · 10−4. None of



5. Results 43

Table 5.7: AD prediction accuracy results when running SVM on ADNI SNPs from
EXOC3L2 gene with linear kernel.

rsID Location
in chr19

Accuracy Balanced
accur-
acy

Precision Recall F1 score ROC
AUC

MCC

rs59647713 45,736,003 0.62 0.55 0.76 0.71 0.74 0.55 0.09
rs112759099 45,726,845 0.32 0.54 1 0.08 0.16 0.54 0.15
rs28645301 45,724,692 0.31 0.53 1 0.07 0.13 0.53 0.14
rs28564302 45,724,868 0.31 0.53 1 0.07 0.13 0.53 0.14
rs386809738 45,724,961 0.31 0.53 1 0.07 0.13 0.53 0.14
rs60269219 45,724,963 0.31 0.53 1 0.07 0.13 0.53 0.14
rs59356929 45,725,127 0.31 0.53 1 0.07 0.13 0.53 0.14
rs58213824 45,725,185 0.31 0.53 1 0.07 0.13 0.53 0.14
rs57294488 45,725,481 0.31 0.53 1 0.07 0.13 0.53 0.14
rs73568222 45,725,975 0.31 0.53 1 0.07 0.13 0.53 0.14

Table 5.8: AD prediction accuracy results when running SVM on ADNI SNPs from
EXOC3L2 gene with linear kernel, with random downsampling.

rsID Location
in chr19

Accuracy Balanced
accur-
acy

Precision Recall F1 score ROC
AUC

MCC

rs60528995 45,722,517 0.56 0.56 1 0.11 0.2 0.56 0.24
rs57354345 45,717,615 0.51 0.52 0.5 0.85 0.63 0.52 0.04
rs1969894901 45,724,561 0.51 0.52 0.5 0.89 0.64 0.52 0.05
rs1426173634 45,724,633 0.51 0.52 0.5 0.89 0.64 0.52 0.05
rs12978617 45,724,658 0.51 0.52 0.5 0.89 0.64 0.52 0.05
rs73568222 45,725,975 0.53 0.52 0.6 0.11 0.19 0.52 0.07
rs57399322 45,726,106 0.53 0.52 0.6 0.11 0.19 0.52 0.07
rs58715307 45,726,458 0.53 0.52 0.6 0.11 0.19 0.52 0.07
rs10423753 45,726,563 0.53 0.52 0.6 0.11 0.19 0.52 0.07
rs113728460 45,726,654 0.53 0.52 0.6 0.11 0.19 0.52 0.07

Table 5.9: Effect of altering SVM kernel and dataset balancing method on SVM accuracy
of predicting AD for SNP with ID rs11542028 in APOE gene in ADNI dataset.

Kernel Dataset balan-
cing method

Accuracy Balanced
accuracy

Precision Recall F1 score ROC AUC MCC

Linear None 0.69 0.65 0.83 0.73 0.77 0.65 0.28
Polynomial None 0.74 0.5 0.74 1 0.85 0.5 0
RBF None 0.74 0.5 0.74 1 0.85 0.65 0
Linear Random down-

sampling
0.58 0.58 0.56 0.74 0.63 0.58 0.18

Polynomial Random down-
sampling

0.56 0.57 0.54 0.7 0.61 0.57 0.14

RBF Random down-
sampling

0.56 0.57 0.54 0.7 0.61 0.57 0.14
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Table 5.10: AD prediction accuracy results when running SVM on all SNPs in each
gene tested from ADNI dataset.

Gene Accuracy Balanced accuracy Precision Recall F1 score ROC AUC MCC
APOE 0.74 0.5 0.74 1 0.85 0.6 0
EXOC3L2 0.74 0.52 0.74 0.98 0.85 0.53 0.09
SIGLEC11 0.7 0.47 0.73 0.95 0.82 0.52 -0.12
TOMM40 0.74 0.5 0.74 1 0.85 0.48 0

Table 5.11: AD prediction accuracy results when running SVM on all SNPs in each
gene tested from ADNI dataset, with random downsampling.

Gene Accuracy Balanced accuracy Precision Recall F1 score ROC AUC MCC
APOE 0.49 0.5 0.49 1 0.66 0.5 0
EXOC3L2 0.45 0.46 0.47 0.93 0.62 0.47 -0.2
SIGLEC11 0.45 0.46 0.47 0.74 0.57 0.46 -0.1
TOMM40 0.53 0.53 0.52 0.63 0.57 0.54 0.06

these methods resulted in a signal being found.

5.2.2 On entire gene sequences

In addition to running the DNABERT model on smaller windows of the APOE

gene, I also ran it on the entire DNA sequence of each of the four genes at

once. The results of these experiments are shown in Table 5.13. As can be

seen by accuracy and AUC scores on the balanced dataset being around 0.5,

a signal was not found during these experiments either.

Table 5.12: Results of running DNABERT transformer model on each window of APOE
gene from ADNI dataset, using random downsampling for dataset balance.

Window
start pos.

Window
end pos.

Train ac-
curacy

Train F1
score

Train
AUC

Test
accuracy

Test F1
score

Test AUC

45,409,038 45,409,138 0.501 0.334 0.482 0.491 0.329 0.482
45,409,088 45,409,188 0.499 0.333 0.388 0.509 0.337 0.388
45,409,138 45,409,238 0.499 0.333 0.321 0.509 0.337 0.321
45,409,188 45,409,288 0.499 0.333 0.519 0.509 0.337 0.519
45,409,238 45,409,338 0.501 0.334 0.482 0.491 0.329 0.482
45,409,288 45,409,388 0.501 0.334 0.500 0.491 0.329 0.500
45,409,338 45,409,438 0.499 0.333 0.482 0.509 0.337 0.482
45,409,388 45,409,488 0.501 0.334 0.481 0.491 0.329 0.481
45,409,438 45,409,538 0.499 0.333 0.500 0.509 0.337 0.500
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Figure 5.1: Training loss curve and train and test accuracy metric curves over the steps
of running the DNABERT transformer model on predicting presence of AD based on
the APOE gene sequence from the ADNI WGS dataset.

Figure 5.1 shows the training and testing curves for the accuracy, F1 score,

and AUC metrics, as well as the training loss curves, over the training steps

of the model. The accuracy, F1 score, and AUC do not trend upwards over

time, and merely fluctuate, indicating the model struggling to find a signal

and converge. The loss function also does not have a clear downward trend,

as it ends at a similar place to where it started, also indicating the model

having difficulty in training and converging.

5.2.3 With introduction of artificial signal

The results of the transformer experiments on the entire APOE gene within

the ADNI dataset’s WGS data, with an artificial signal introduced into 10%,

70%, and 90% of the positive samples, are shown in Table 5.14.
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Table 5.13: Results of running DNABERT transformer model on entire gene sequences
from ADNI dataset, using random downsampling for dataset balance.

Gene Train accur-
acy

Train F1
score

Train AUC Test accur-
acy

Test F1
score

Test AUC

APOE 0.501 0.334 0.519 0.491 0.329 0.519
EXOC3L2 0.499 0.333 0.446 0.509 0.337 0.446
SIGLEC11 0.501 0.334 0.482 0.491 0.329 0.482
TOMM40 0.499 0.3329 0.5185 0.5091 0.3373 0.5185

The results from when 10% of the positive data points had an artificial

signal introduced are similar to the results from the experiments in which

no artificial signal was introduced. The train and test accuracy and AUC are

approximately 0.5, and the train and test F1 scores do not surpass 0.5. This

suggests that the model was not able to find a signal with only 10% of the

data points having an artificial signal either.

The results for the experiments in which 70% and 90% of the data points

had an artificial signal introduced look much better. The test accuracy, F1 score,

and AUC results are slightly higher than the percentage of positive data points

for which an artificial signal was introduced, thereby surpassing either 70% or

90% in each case, which can be interpreted as a high accuracy. This indicates

that the DNABERT model was able to distinguish between the positive and

negative data points when the artificial signal was introduced in these cases.

In addition, the training and testing accuracy metric curves and the training

loss curve over the training steps for the experiment in which an artificial signal

was introduced in 90% of data points are shown in Figure 5.2. As can be seen,

the loss curve has a clear downward trend over time. The training and testing

curves for accuracy, F1 score, and AUC do not have a clear upward trend.

Rather, they fluctuate slightly or remain the same, but all started at a high value

in the first iteration, indicating a generally high performance by the model.
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Table 5.14: Results of running DNABERT transformer model on the entire APOE gene
sequence from the ADNI dataset, using random downsampling for dataset balance
and introducing artificial signal into a percentage of positive-labeled data points.

Artificial signal
percentage

Train accuracy Train F1 score Train AUC Test accuracy Test F1 score Test AUC

10% 0.539 0.414 0.519 0.527 0.404 0.519
70% 0.847 0.843 0.750 0.764 0.752 0.750
90% 0.952 0.951 0.931 0.927 0.927 0.931

Figure 5.2: Training loss curve and train and test accuracy metric curves over the steps
of running the DNABERT transformer model on predicting presence of AD based on
the APOE gene sequence from the ADNI WGS dataset, having introduced an artificial
signal into 90% of positive-labeled data points.
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Discussion

6.1 Discussion

6.1.1 Interpretation of AD prediction results

The SNP with the single highest overall balanced accuracy and results on

other metrics was rs11542028 in the APOE gene. The fact that this SNP with

highest accuracy metrics came from the APOE gene supports previous results,

as APOE is the gene with the highest known relationship to AD [Potkin et al.,

2009; C.-C. Liu et al., 2013]. Previous analyses run on the ADNI dataset have

also found the APOE gene to be the most significant gene for AD within

this dataset [Potkin et al., 2009].

The SIGLEC11 gene had the greatest number of SNPs with a balanced

accuracy above 0.60. While this gene is not commonly cited in studies or review

articles about the genetic basis of AD, there have been studies linking this gene

to AD. For example, the review article by Salminen and Kaarniranta, 2009

discusses studies linking Siglec receptors and their corresponding proteins

to accumulation of amyloid plaques, which are implicated in AD. The high

48
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accuracy results of my study on the SIGLEC11 gene may suggest that this gene

could be a good target for further research on studies related to AD.

One departure that my study has from previous results is that the APOE

SNP that my study identified as most significant was also not the same as

the two SNPs reported by Bellenguez et al., 2020’s review article to be most

significant: rs429358 and rs7412. A second departure from previous results

is that while the APOE gene had the single SNP with the highest signal for

prediction of AD, and had a couple of other SNPs that demonstrated a signal,

the APOE gene did not have as many SNPs with a high balanced accuracy as

SIGLEC11 did. This is surprising, since the APOE gene is generally regarded to

be the gene with the greatest known implication in Alzheimer’s disease.

There are several factors we could potentially attribute these departures

from previous results to. One factor is the small sample size of this dataset.

With such a small dataset used, especially compared to the larger GWAS studies,

associations found will have less statistical power and may be more likely to

be due to chance. My models may have also labeled false negatives due to the

small dataset, and the previously known significant ADNI SNPs could be some

of these false negatives. Another factor is the difference in methodology used.

While previous studies used a GWAS, including, for example, Potkin et al.,

2009’s study that found APOE to be the most significant gene within the ADNI

dataset, my study used SVMs. Using a different model may achieve different

results. In addition, the higher number of SNPs with signal found in the other

genes as compared to APOE may be due in part to the size of the genes; APOE is

approximately four to seven times smaller in length than the other three genes

studied, and has far fewer SNPs present in the dataset than the other genes do,

as shown in Table 4.1. As the total number of SNPs in the gene increases, the

likelihood of finding SNPs with a signal present may also increase.

Moreover, my study only used one of the two alleles present in its input

data. Other studies that used both alleles may have achieved different results



6. Discussion 50

for the findings of which SNPs within APOE are most related to AD. The use

of only one of the two alleles may also have an effect on which genes are found

to be most significant. APOE is known to be dosage-dependent: for example, a

patient with two alleles of the deleterious APOE ε4 allele is more likely to have

AD than a patient with only one of these alleles [Bellenguez et al., 2020]. Using

only one of the two alleles as input data to the SVM may result in cases which

both alleles are present and which would thereby have a stronger association

with AD being missed. In addition, the other genes investigated might have

dominant effects, meaning that only one copy of the allele needs to be present

to result in the full effect of the allele being expressed in the phenotype. APOE

is known to be dosage-dependent and to not have dominant effects, so other

genes that may have dominant effects may show a stronger association with

AD than APOE does when only one allele is used for analysis.

Relation of SNPs found to previous studies

I attempted to connect the results of this study to previous biomedical studies

related to AD. I did so by investigating previous studies that have been

conducted on the SNPs my study found to be most predictive of AD. Table

6.1 shows the results of this investigation. I examined each of the top two

SNPs with the highest balanced accuracy for each of the four genes across the

experiments with both the unbalanced and balanced datasets. In cases which

there is a tie in the balanced accuracy, I examined the SNP that appeared first

in the data tables in Section 5.1, which are listed in order of lowest to highest

position within chromosome 19. I searched each SNP’s rsID in the NCBI

dbSNP SNP database [National Library of Medicine, n.d.], and investigated

the database’s results for this SNP. For those SNPs with an rsID that has been

merged into another as indicated by NCBI dbSNP, the results from the new

merged rsID are shown. In Table 6.1, I have listed the number of studies

referencing each SNP as listed in dbSNP and the number of studies that
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reference this SNP that relate to AD or dementia. Studies were defined as being

related to AD or dementia if their titles contained the words ‘Alzheimer’s’,

‘dementia’, or ‘cognitive impairment’ or something similar; no reference to

the main text of the articles was made. With further time, all of the SNPs

found to have a signal could be examined in this way, rather than only the

top two SNPs for each gene.

The results of this search for previous studies relating to my study’s most

significant SNPs provides some validation of my results, as they are consistent

with previous results. The SNP with the best performance on the accuracy

metrics, rs11542028 within APOE, was referenced 33 times in papers, and 6

times in papers concerning AD or dementia. In addition, SNP rs58185379 within

TOMM40, a gene which has been shown to be associated with AD [Potkin et al.,

2009], was referenced in 8 studies relating to AD or dementia. These results

being replicated across multiple studies is supportive of the idea that these

SNPs are related to AD. On the other hand, the most significant SNPs found in

the SIGLEC11 and EXOC3L2 genes were not referenced in any studies at all, as

per dbSNP. I would suggest that further research is done into these genes to

see if they are associated with AD, given the results of my and my labmate’s

experiments, both of which suggest that these genes are indeed related to AD.

6.1.2 Comparison of prediction accuracy to previous results

Prediction of AD using ML

Jo et al., 2022 utilized a convolutional neural network (CNN) on AD SNPs from

the ADNI dataset, achieving a highest mean accuracy from cross-validation of

75.02% and area under the curve (AUC) of 0.8157. The results from their CNN

were comparable with the results of the other machine learning approaches

they tried, random forest and XGBoost [Jo et al., 2022]. My transformer and

SVM results were not as high as these. Jo et al., 2022’s model utilized SNPs
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Table 6.1: The number of studies on any topic and on topics relating to AD or dementia
that reference each of the SNPs with highest balanced accuracy present, as per the
NCBI dbSNP database.

rsID Gene Highest bal-
anced accur-
acy achieved

Downsampled?#
citations

# citations
related to
AD/dementia

rs11542028 APOE 0.65 No 33 6
rs769449 APOE 0.58 Yes 24 4
rs58185379 TOMM40 0.59 No 14 8
rs34095326 TOMM40 0.58 No 1 0
rs117180821 SIGLEC11 0.61 Yes 0 0
rs2076155786 SIGLEC12 0.61 Yes 0 0
rs60528995 EXOC3L2 0.56 Yes 0 0
rs57354345 EXOC3L3 0.52 Yes 0 0

from across the genome, testing windows of between 100 to 10,000 SNPs at a

time, with the highest accuracy and AUC results being achieved when using

a 4000-SNP window. My model used fewer SNPs at a time, from only one

gene at a time, which may explain the lower accuracy results reported. I also

only looked at four genes on chromosome 19, while Jo et al., 2022’s study

looked at all genes across the genome, which may also negatively impact

my models’ performance compared to theirs. In addition, my model only

considered one of the two alleles present, while theirs may have considered

both, resulting in more signal being present.

Ghose et al., 2022 used a CNN to predict AD using SNP data, but did

not report accuracy metrics for the predictive performance of their model,

and only reported p-values. This makes it difficult to compare my models’

performance with theirs, as I did not report p-values. However, I did directly

correspond with the author to inquire about their accuracy results. They

estimated their accuracy of predicting AD to be around 65-66%, which was

achieved with the APOE gene. My results on the highest APOE SNP are

comparable to theirs, as my model achieved a balanced accuracy of 65% on

the highest-performing APOE SNP.
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There were some differences between my study and Ghose et al., 2022’s,

though. Ghose et al., 2022 used the UK Biobank dataset, which is larger than

the ADNI dataset that I used. They also used additional variables, such as age,

education level, and gender for their classification, while my model only used

genetic data. Age, education level, and gender are all environmental variables,

whose information is not contained in genetic data, that are correlated with

AD. AD onsets later in life, making AD correlated with age. Higher education

has been shown to be related to a faster cognitive decline from AD [Bruandet

et al., 2008]. Furthermore, according to Andrew and Tierney, 2018, two thirds

of AD cases occur in women. While the genetic basis of sex is contained in

the X and Y chromosomes (though I did not use these chromosomes in my

analysis and only used chromosome 19), purely genetic data lacks information

on the environmental impacts of gender, which could include, for example,

differential access to higher education based on gender. These additional

environmental variables provide more signal to the data that may improve

others’ accuracy results compared to mine.

Prediction using NNs on DNA sequencing data

Prior results have shown the ability of NN-based models to achieve high

accuracy on predictive tasks related to properties of DNA. The DNABERT

model achieved accuracy, F1, and MCC scores greater than 0.9 on all tasks

related to prediction of proximal and core promoter regions and transcription

factor bindings sites within DNA sequences [Ji et al., 2021]. SpliceAI achieved

a 95% top-k accuracy in the prediction of splice junctions from pre-mRNA

transcripts [Jaganathan et al., 2019]. These results demonstrate the promise of

NN approaches in predictions on DNA sequences. The DNABERT transformer

model did not achieve as high accuracy results when I applied it to the

prediction of AD from WGS data from ADNI. However, the task is different

and more difficult that the predictive tasks described in Ji et al., 2021’s paper,
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since it involves predicting a phenotypic trait that is not entirely determined

through genetics, as it is only 70% heritable.

6.1.3 Commentary on models’ performance

The best of the SVM results are fairly close to the baseline results, though

still not quite as good. On the other hand, the results from the transformers

were poor and were worse than my SVM results and results from previous

studies. Potential reasons for why Jo et al., 2022’s results on the ADNI dataset

outperformed my SVM results were discussed in Section 6.1.2.

Within the SVM experiments, the SVMs operating on a single SNP at a

time performed better on the best SNPs found than the SVMs operating on

multiple SNPs at a time on all metrics except recall and F1 score. The decrease

in performance on metrics besides recall and F1 score may be due to the

SVMs that operated on multiple SNPs overfitting and not being able to find a

separator between all the data points. In addition, the inclusion of additional

SNPs to the model that might not have had a signal may have decreased the

signal-to-noise ratio. The increase in performance on recall and F1 score on

the SVM models that used multiple SNPs may indicate the model’s increased

ability to not miss positive samples when there is more information present

from the multiple SNPs, which is reflected in the increase in recall score and

which in turn affects the F1 score, as the F1 score is the harmonic mean of

precision and recall. In real-world applications in which maximizing the recall

is paramount, such as in cases where the cost of a false negative result is high,

running the SVM model on all SNPs at once may be helpful.

For some of the genes, the random downsampling to balance the dataset

improved the predictive performance of the SVMs, while for other genes, the

random downsampling worsened the predictive performance. I attribute this

to differences in the dataset, as the model used remained the same. Perhaps
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for some of the genes, having a balanced dataset enabled to model to better

distinguish between classes, while for other genes, the presence of more training

data was of more use to the model.

Although transformer models are larger and more sophisticated than SVMs,

the SVM models outperformed the transformers in this scenario. There are

several reasons why this could be the case. One reason is the difference in

the data inputted. The SVMs were fed one or more SNPs as input, while the

transformers were fed sequences of 100 or more nucleotides at once. As shown

in Table 4.1, there were very few variations of the genome sequences between

the different patients in the ADNI dataset, with only 0.812% of the nucleotides

across all four genes having any differences between patients. Considering

these nucleotides as the signal, there was 0.812% of signal and 99.188% of noise

in the dataset. The 0.812% of signal could be considered an upper bound on

the amount of signal in the dataset, as not all the SNPs present might be related

to AD. Some of the SNPs could be related to other traits, or may have no effect

on gene expression or phenotype at all. From this viewpoint, the SVM models

were fed data with a much higher signal-to-noise ratio than the transformers

were, which could help explain the difference in accuracy between the two.

Despite all the extra noise in the datasets taking the whole DNA sequence

windows as input, these DNA sequences were still a superset of the inform-

ation contained in the SNPs, and all the SNPs were indeed present in these

windows. One could hypothesize that the transformers, which had access to

all the information that the SVMs did, could have matched or exceeded the

performance of the SVMs. Even in stretches of DNA where there is no variation

between the patients, the nearby or distal DNA context may have an effect

on the expression of a particular SNP, so the additional information provided

by the full DNA sequence data as opposed to just SNPs could be valuable.

The superior performance of the SVMs compared to the transformers may

support the claim that SVMs and other traditional machine learning methods
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perform better on datasets with less of a signal and fewer data points, and

that transformers are data-hungry and require large quantities of data with a

high amount of signal. Natural language datasets, which transformers have

shown exceptional results on, may have a large amount of signal, but this may

not be the case for genomic datasets, in which there may be few variations

between patients, lots of junk DNA present, and few available samples due to

the relative difficulty of collecting genome sequencing samples from patients

versus the massive amount of human-created text available in digital format.

Large transformer-based natural language processing models, such as GPT-3,

have used datasets many times bigger than what I used. While GPT-3 used the

Common Crawl dataset which contains petabytes of data [Brown et al., 2020],

the balanced dataset I used contained data from only 576 patients.

Beyond the small size of the ADNI dataset, there are further complications

in the quality and amount of signal in the data present. Not all the cases in

the ADNI dataset actually had Alzheimer’s disease, with many having mild

cognitive impairment instead. MCI is a transitional stage between AD and

dementia. MCI could progress to dementia, but it does not always do so. MCI

could also progress to a variety of dementias besides AD, including vascular

and frontotemporal dementia [Campbell et al., 2013]. These other dementias

may not have the same genetic basis and mechanisms as Alzheimer’s-type

dementia. The APOE gene is also known as a risk factor for MCI [Campbell

et al., 2013], so there is some evidence that MCI and AD are genetically related,

but as explained above, MCI and AD are not always the same. As such, the

presence of MCI patients within the sample may add additional noise to the

task of trying to predict AD from genetic data.

Moreover, there may be issues with the correctness of the labels in the

dataset. Those patients labeled as having AD may have been misdiagnosed.

The only way to diagnose AD with certainty is to perform a postmortem

autopsy of the brain [Gaugler et al., 2013], which I would imagine that few
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patients in the ADNI dataset have had, especially if they are still alive. Studies

have reported that 12-23% of patients with AD are misdiagnosed, as their

brain pathology during autopsy is not consistent with the presence of AD

[Gaugler et al., 2013]. As such, it is not certain that all the cases in the dataset

that are labeled as AD actually have it, which may further negatively impact

the performance of the models.

Another factor that could contribute to poor prediction of AD based on

genetic factors is that AD is not purely a genetic disease. While 70% of AD

cases are related to genetic factors [Breijyeh and Karaman, 2020], the remaining

30% are not related to genetic factors. If patients whose AD is not due to

genetic factors are in the dataset, then the model will be unable to predict these

patients’ presence or absence of AD solely based on their genome sequence.

Indeed, one could imagine that the highest accuracy achievable in predicting

AD from genetic data is the heritability of the disease, at 70%.

The difficulty of predicting presence of AD is also discussed by Osipowicz et

al., 2021. They assert that the maximum performance of a model for classifying

AD based on genotype is an AUC of 0.55-0.7, and that models with a higher

AUC are likely to be overfitting. By this measure, my SVM models’ performance

is acceptable and in line with the expected accuracy.

6.2 Critical evaluation of work

6.2.1 Strengths

Novelty of my approach for NNs on DNA sequences

While other studies have used machine learning for prediction of AD-related

traits, few studies have used ML or NNs for prediction of AD based on genome

sequencing data. Jo et al., 2022 and Ghose et al., 2022’s studies are two such

studies that did so, but they used SNP data, rather than WGS or WES data.

My approach used ML for prediction of AD using WGS data.



6. Discussion 58

In addition, there have been few studies applying deep learning to genomic

data. To my knowledge, my study is the first to attempt to predict a phenotypic

trait (presence or absence of AD) from raw genome sequencing data, rather

than a genotypic trait (e.g. whether a region of DNA is a promoter).

Finding signal with a simpler model

When my initial approach of transformers did not work on my dataset, I

pivoted and tried an alternative, simpler approach of SVMs, which did find

some signal. It was good that my SVM models were able to find some signal in

the data and that some of the SNPs that the SVMs identified were consistent

with previous results in the literature.

6.2.2 Limitations

Size of dataset

The main limitation of this study is the size of the dataset used. With such a

small dataset containing only 518 cases and 276 controls, there is not much

information available for machine learning models to learn how to predict

AD. While some signal was still found with the SVM models, the transformer

model was not able to find a signal. With more data, it is possible that the

transformer would have achieved better results.

I realized the limitation of the size of the dataset and attempted to pivot

from using the ADNI dataset to using the UK Biobank dataset, which has over

500,000 participants [Szustakowski et al., 2021]. I ran the preprocessing steps of

indexing the whole exome sequencing CRAM files with the reference genome,

converting the CRAM files to binarized BAM files, converting the outputted

BAM files to FASTA files, and extracting the appropriate region from the FASTA

files. This preprocessing computation was very time-consuming, taking 16

days to run when parallelized across 100 out of the 104 cores present on the

lab’s computing cluster. Because the preprocessing computation took so long
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to run, I did not have time to attempt to re-run my analyses on the UK Biobank

data. The preprocessed data and the batch code to run the preprocessing in

parallel is now stored on the lab’s server, making it easy for other lab members

to pick up this analysis if they choose.

Even in the UK Biobank dataset, there are still limitations. Whole genome

sequencing data is available for many individuals within the UK Biobank, but

my lab only had access to whole exome sequencing (WES) data from the UK

Biobank due to the high cost of accessing the WGS data. WES data contains less

infomration than WGS data, as many stretches of DNA that are not expressed

and are absent from the exome are left blank in the WES data. Despite there

being less data in the WES data, having a larger dataset could be helpful.

However, there is still not that much data for patients with AD present in the

UK Biobank. Within the WES data files from the UK Biobank that my lab has

access to, there are only 95 confirmed cases of AD present. This is fewer than

the number of WGS samples present in the ADNI dataset, so these files alone

would likely not result in an improvement over the ADNI results.

To augment the amount of data for positive AD cases available, my lab and

others have used the sequences from people who either have AD or have a

family history of AD as cases and those with neither as controls. While this

might reduce the amount of signal present since people with only a family

history of AD might have less strong of a signal for AD, studies find that the

increase in the amount of data available that comes from using family history

generally outweighs this drawback (see discussion on GWAX in Section 2.1.2).

I investigated the breakdown of cases and controls as per this methodology

in the UK Biobank WES dataset. I counted patients with AD or with either a

positive maternal or paternal history of AD (or both parents positive) as cases

and those with both parents negative as controls, leaving out those with no

data. This resulted in a total of 3,558 cases and 19,169 controls.
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This amount of data is an improvement over the ADNI datset, but even

if the UK Biobank data had been used, there still may not have been enough

signal in the data. People with family history of AD may not actually develop

the disease, as there is still an environmental component to AD and not

everyone with a family history of AD will develop the disease. As such, the

UK Biobank dataset still has limitations.

Even with such a large medical data collection initiative as the UK Biobank,

there are still challenges in finding enough high-quality data to make predic-

tions for this project. As such, I would argue that collecting sufficient medical

data is a challenge for medical AI projects in general.

Validation techniques

If I had more time, I would have run k-fold cross-validation to determine the

results. This would help ensure that the results reported hold up over all

permutations of the data and are not due to randomness.

I also would have run the model over multiple random seeds and reported

the average of the accuracy metrics. I ran the model on only one random seed,

as reported, but the results may change over different random seeds, so it

might be more thorough to incorporate this into the reporting of results.

It may also be worth investigating some additional genes which have

not been shown in previous studies to be associated with AD to serve as

controls. With the high number of nucleotides investigated (49,856 across

all four genes), some of the signals found in the SNPs may have been due

to chance. Experiments attempting the SVM prediction methods used in

this study on other genes could help show that these genes are truly related

to AD if the same experiments find no signal on genes not known to be

related to AD. It may also be helpful to report p-values for the SNPs found

to evaluate their significance levels.
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6.3 Future work

6.3.1 Experiments related to this project

This study used only one of the two alleles present in the ADNI WGS data

due to time constraints. To enhance the dataset fed to the SVM models,

I would use both alleles present for the SVM prediction models. I would

use a ‘two-hot encoding’ method to encode the data: each SNP would be

represented as 4 variables that can take the values of 0, 1, or 2, depending on

how many of each nucleotide A, T, C, and G are present across the two alleles.

I would choose this encoding style because the quantity of alleles present

could affect the prevalence of AD, as with APOE and its known dependence

on dosage [Bellenguez et al., 2020].

I would also complete the additional validation steps described in Section

6.2.2.

In addition, data on age and gender could have been added alongside the

genomic dataset. AD is correlated with both of these variables, and previous

studies have often used these variables in their predictions of AD [Ghose et al.,

2022]. The addition of these features may enhance the signal present. These

features may not necessarily help in understanding the genetic basis of AD,

but they could help in understanding the interactions between genes and the

environment and may improve the classification accuracy.

I would also try a random forest model on the data from multiple SNPs

(e.g. the experiments described in Table 5.10). A random forest might be able

to better handle many different binary variables than SVMs can. It may also be

helpful to try other machine learning models, such as XGBoost, CNNs, and

regressions on the data used in this study to see if any of the other models

yield better results. Jo et al., 2022 achieved slightly better results than I did with

random forests, XGBoost, and CNNs, so it might be worth trying to replicate

and improve upon their results. I would also try the transformer model on
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the multiple SNP experiments. Graph neural networks (GNNs) may also be a

promising class of model to use with windows of multiple SNPs. GNNs can

be thought of as a generalization of CNNs, and CNNs have already shown

good results as per Jo et al., 2022 and Ghose et al., 2022. In addition, the GNNs

may be able to represent more data on the relationship between SNPs, such

as the distance between them or known gene-gene interactions, which may

have bearing on the prediction results.

In addition to the random downsampling used to balance the dataset in

this study, I would try random upsampling to see if adding data rather than

deleting data results in better predictive performance.

To enhance the transformer models, I would train them on more epochs

than just five to give them additional time to potentially converge. Each

transformer took between one to two minutes to train over the five epochs I

used, so it would be feasible to train the transformer for more epochs and still

finish training within a reasonable amount of time. I would also add k-fold

cross-validation to the transformer experiments. I would also conduct further

hyperparameter tuning on the DNABERT model.

An additional method of validating that the DNABERT transformer is

capable of making predictions from DNA sequences is to use a more realistic

artificial signal than the one I used. The signal I used was changing the entire

sequence to all ‘A’ nucleotides. While this signal is strong, it is not very realistic.

A more realistic artificial signal might come from simulating mutations such as

SNPs, insertions, deletions, and larger structural variants. A random selection

of these types of known mutations may help with a proof of concept for

DNABERT. To make the artificial signal experiments more relevant to AD, it

may be helpful to do a literature review on which exact mutations are present

in AD patients, and to simulate those within the dataset.

With additional time, I would repeat my analyses on the larger UK Biobank

dataset. The bulk of the preprocessing has already been completed, so all
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that is needed is to re-run the code from my project on this new dataset.

Hopefully, this larger dataset would yield a better signal. I would also perform

the extensions described above on the UK Biobank dataset.

6.3.2 Other directions

To increase the amount of high-quality data available for predictions, it may

be helpful to try to predict other traits for which more data is available. For

example, the trait of height is highly heritable, with a heritability estimated

at 80% [Génin, 2020], and there are 499,956 patients whose height is available

in the UK Biobank [Data-Field 50 n.d.]. This is far more than the number of

patients with AD present in the Biobank. As such, with a much larger quantity

of data available, more of a signal might be able to be found. This could make

height a better first trait than AD for NN models applied to unbroken DNA

sequencing data to attempt to predict.

One of the contributions of this project was applying NNs on unbroken

DNA sequencing data to attempt to predict a phenotypic trait. It seemed that

the AD data from the ADNI dataset had very few mutations present, and little

variation between patients. It is possible that other diseases which are the result

of broader-scale mutations, rather than a small number of SNPs and point

mutations, might be a better fit for transformer-based approaches, which take

the global context of each input data point into account. For example, some

forms of cancer result from chromothripsis, an event in which a chromosome

shatters and is repaired with mechanisms that are error-prone [Forment et al.,

2012]. Such large-scale mutations may result in a large amount of signal being

present in DNA sequencing data, and may be well-suited to a transformer

model. The transformer model could potentially interpret the new mutations

present in the genome as cancer-causing.

In addition, to address the general problem of the quality and quantity of

medical data available, which I encountered in this project, I would suggest that



6. Discussion 64

more efforts are undertaken to collect large amounts of high-quality medical

data and make it available to researchers.



7
Conclusion

7.1 Conclusions from study

This study provides a first attempt at using neural networks, specifically the

complex, natural-language inspired language models of transformers, to predict

the presence of a disease based on unbroken whole genome sequencing data.

However, the transformer models were unable to find a signal in predicting

Alzheimer’s disease from the experiments run on the ADNI dataset. The

SVM models were able to find a signal in prediction of AD from many of the

SNPs within the four genes examined from the WGS data in the ADNI dataset.

Several of the SNPs found were also found to be related to AD in previous

studies. One can conclude from this study that the amount of data used was

not enough to elicit a signal from the transformer models, and that more

data should be used when trying to train a transformer model for prediction

of AD or other complex phenotypic traits. While the NN-based approaches

may be more powerful, the simpler, SVM-based approaches displayed more

effectiveness in predicting the presence or absence of AD in this study. This

may support the idea that SVMs are more effective than large, complex models

65
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such as transformers for problems on smaller datasets.

7.2 Broader context

The difficulties encountered in this study with finding large quantities of high-

quality data reaffirm the commonly-held belief that one of the great challenges

in machine learning today is obtaining appropriate data to use with our models,

rather than merely improving the architectures of our models. The challenges

faced in this study emphasize the need to collect large amounts of high-quality

medical data and make it available to researchers in order to make strides in

the field of applying ML to biomedical problems.

While there were no positive results from the deep learning models applied

in this study when they were applied to the genomic dataset, the potential

for applying deep learning and other machine learning techniques to genomic

data remains vast. Natural language models are growing more advanced,

especially with the advent of large language models such as GPT-3, PaLM, and

DALL-E. Many in the field of AI believe that large language models are the

closest approach we currently have to achieving artificial general intelligence.

Just as natural language is the language of human knowledge, with high

generalizability to a variety of domains, DNA is the language that underpins

biological systems. Understanding DNA through the use of deep learning

approaches and natural language approaches could unlock the answers to

many unsolved problems in the biological domain. I believe the potential for

this field is vast, and that more research applying deep learning approaches

to genomic data is needed.



Bibliography

Alzheimer’s Disease Neuroimaging Initiative (May 2015). Whole genome sequencing
(WGS) data. url: https://adni.loni.usc.edu/data- samples/data- types/
genetic-data/wgs/.

Alzheimer’s Disease Neuroimaging Initiative (Jan. 2016). ADNI Manuscript Citations.
url: https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Manuscript_Citations.pdf.

Andrew, M. K. and M. C. Tierney (2018). ‘The puzzle of sex, gender and Alzheimer’s
disease: Why are women more often affected than men?’ In: Women’s Health 14,
p. 1745506518817995.

Andrews, S. J., B. Fulton-Howard and A. Goate (2020). ‘Interpretation of risk loci from
genome-wide association studies of Alzheimer’s disease’. In: The Lancet Neurology
19.4, pp. 326–335.

Avsec, Ž., V. Agarwal, D. Visentin, J. R. Ledsam, A. Grabska-Barwinska, K. R. Taylor,
Y. Assael, J. Jumper, P. Kohli and D. R. Kelley (2021). ‘Effective gene expression
prediction from sequence by integrating long-range interactions’. In: Nature methods
18.10, pp. 1196–1203.

Bellenguez, C., B. Grenier-Boley and J.-C. Lambert (2020). ‘Genetics of Alzheimer’s
disease: where we are, and where we are going’. In: Current Opinion in Neurobiology
61, pp. 40–48.

Bishop, C. M. (2006). Pattern recognition and machine learning. Vol. 4. 4. Springer.

Breijyeh, Z. and R. Karaman (2020). ‘Comprehensive review on Alzheimer’s disease:
causes and treatment’. In: Molecules 25.24, p. 5789.

Brendel, V. and H. Busse (1984). ‘Genome structure described by formal languages’.
eng. In: Nucleic acids research 12.5, pp. 2561–2568. issn: 0305-1048.

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P.
Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever and D. Amodei (2020). ‘Language Models are Few-Shot Learners’.
In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M.
Ranzato, R. Hadsell, M. Balcan and H. Lin. Vol. 33. Curran Associates, Inc.,

67

https://adni.loni.usc.edu/data-samples/data-types/genetic-data/wgs/
https://adni.loni.usc.edu/data-samples/data-types/genetic-data/wgs/
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf


BIBLIOGRAPHY 68

pp. 1877–1901. url: https : / / proceedings . neurips . cc / paper / 2020 / file /
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Bruandet, A., F. Richard, S. Bombois, C. Maurage, I. Masse, P. Amouyel and F.
Pasquier (2008). ‘Cognitive decline and survival in Alzheimer’s disease according
to education level’. In: Dementia and geriatric cognitive disorders 25.1, pp. 74–80.

Cacace, R., K. Sleegers and C. Van Broeckhoven (2016). ‘Molecular genetics of early-
onset Alzheimer’s disease revisited’. In: Alzheimer’s & Dementia 12.6, pp. 733–748.
issn: 1552-5260. doi: https://doi.org/10.1016/j.jalz.2016.01.012. url:
https://www.sciencedirect.com/science/article/pii/S1552526016000790.

Campbell, N. L., F. Unverzagt, M. A. LaMantia, B. A. Khan and M. A. Boustani (2013).
‘Risk factors for the progression of mild cognitive impairment to dementia’. In:
Clinics in geriatric medicine 29.4, pp. 873–893.

Data-Field 50 (n.d.). url: https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=
50.

Devlin, J., M. Chang, K. Lee and K. Toutanova (2018). ‘BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding’. In: CoRR abs/1810.04805.
arXiv: 1810.04805.

Draelos, R. (Feb. 2019). Measuring Performance: The Confusion Matrix. url: https :
//scikit-learn.org/stable/modules/model_evaluation.html.

EMBL-EBI (n.d.). Trait: Alzheimer disease. url: https : / / www . ebi . ac . uk / gwas /
efotraits/MONDO_0004975.

Forment, J. V., A. Kaidi and S. P. Jackson (2012). ‘Chromothripsis and cancer: causes
and consequences of chromosome shattering’. In: Nature Reviews Cancer 12.10,
pp. 663–670.

Gaugler, J. E., H. Ascher-Svanum, D. L. Roth, T. Fafowora, A. Siderowf and T. G. Beach
(2013). ‘Characteristics of patients misdiagnosed with Alzheimer’s disease and
their medication use: an analysis of the NACC-UDS database’. In: BMC geriatrics
13.1, pp. 1–10.

Génin, E. (2020). ‘Missing heritability of complex diseases: case solved?’ In: Human
Genetics 139.1, pp. 103–113.

Ghose, U., W. Sproviero, L. Winchester, M. Fernandes, D. Newby, B. Ulm, L. Shi,
Q. Liu, C. Adams, A. Albukhari, M. Almansouri, H. Choudhry, C. van Duijn and
A. Nevado-Holgado (2022). ‘Genome wide association neural networks (GWANN)
identify novel genes linked to family history of Alzheimer’s disease in the UK
BioBank’. In: medRxiv. doi: 10.1101/2022.06.10.22276251. eprint: https://www.
medrxiv.org/content/early/2022/06/14/2022.06.10.22276251.full.pdf.
url: https://www.medrxiv.org/content/early/2022/06/14/2022.06.10.
22276251.

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.jalz.2016.01.012
https://www.sciencedirect.com/science/article/pii/S1552526016000790
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=50
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=50
https://arxiv.org/abs/1810.04805
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://www.ebi.ac.uk/gwas/efotraits/MONDO_0004975
https://www.ebi.ac.uk/gwas/efotraits/MONDO_0004975
https://doi.org/10.1101/2022.06.10.22276251
https://www.medrxiv.org/content/early/2022/06/14/2022.06.10.22276251.full.pdf
https://www.medrxiv.org/content/early/2022/06/14/2022.06.10.22276251.full.pdf
https://www.medrxiv.org/content/early/2022/06/14/2022.06.10.22276251
https://www.medrxiv.org/content/early/2022/06/14/2022.06.10.22276251


BIBLIOGRAPHY 69

Google Developers (July 2022). Classification: ROC Curve and AUC. url: https://
developers.google.com/machine-learning/crash-course/classification/
roc-and-auc.

Huang, X., H. Liu, X. Li, L. Guan, J. Li, L. C. A. M. Tellier, H. Yang, J. Wang and J. Zhang
(2018). ‘Revealing Alzheimer’s disease genes spectrum in the whole-genome by
machine learning’. In: BMC neurology 18.1, pp. 1–8.

Institute, N. C. (n.d.). The Cancer Genome Atlas Program. url: https://www.cancer.
gov/about-nci/organization/ccg/research/structural-genomics/tcga.

Jaganathan, K., S. K. Panagiotopoulou, J. F. McRae, S. F. Darbandi, D. Knowles, Y. I. Li,
J. A. Kosmicki, J. Arbelaez, W. Cui, G. B. Schwartz et al. (2019). ‘Predicting splicing
from primary sequence with deep learning’. In: Cell 176.3, pp. 535–548.

Jansen, I. E., J. E. Savage, K. Watanabe, J. Bryois, D. M. Williams, S. Steinberg, J. Sealock,
I. K. Karlsson, S. Hägg, L. Athanasiu et al. (2019). ‘Genome-wide meta-analysis
identifies new loci and functional pathways influencing Alzheimer’s disease risk’.
In: Nature genetics 51.3, pp. 404–413.

Ji, Y., Z. Zhou, H. Liu and R. V. Davuluri (2021). ‘DNABERT: pre-trained Bidirectional
Encoder Representations from Transformers model for DNA-language in genome’.
In: Bioinformatics 37.15, pp. 2112–2120.

Jo, T., K. Nho, P. Bice, A. J. Saykin and F. T. A. D. N. Initiative (Feb. 2022). ‘Deep
learning-based identification of genetic variants: application to Alzheimer’s disease
classification’. In: Briefings in Bioinformatics 23.2. bbac022. issn: 1477-4054. doi:
10 . 1093 / bib / bbac022. eprint: https : / / academic . oup . com / bib / article -
pdf/23/2/bbac022/42804951/bbac022.pdf. url: https://doi.org/10.1093/
bib/bbac022.

Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyas-
uvunakool, R. Bates, A. Žıdek, A. Potapenko et al. (2021). ‘Highly accurate protein
structure prediction with AlphaFold’. In: Nature 596.7873, pp. 583–589.

Kent, W. J., C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler and
D. Haussler (2002). ‘The human genome browser at UCSC’. In: Genome research 12.6,
pp. 996–1006.

Krizhevsky, A., I. Sutskever and G. E. Hinton (2012). ‘ImageNet Classification with
Deep Convolutional Neural Networks’. In: Advances in Neural Information Processing
Systems. Ed. by F. Pereira, C. Burges, L. Bottou and K. Weinberger. Vol. 25. Curran
Associates, Inc. url: https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Kunkle, B. W., B. Grenier-Boley, R. Sims, J. C. Bis, V. Damotte, A. C. Naj, A. Boland,
M. Vronskaya, S. J. Van Der Lee, A. Amlie-Wolf et al. (2019). ‘Genetic meta-analysis
of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau,
immunity and lipid processing’. In: Nature genetics 51.3, pp. 414–430.

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://doi.org/10.1093/bib/bbac022
https://academic.oup.com/bib/article-pdf/23/2/bbac022/42804951/bbac022.pdf
https://academic.oup.com/bib/article-pdf/23/2/bbac022/42804951/bbac022.pdf
https://doi.org/10.1093/bib/bbac022
https://doi.org/10.1093/bib/bbac022
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf


BIBLIOGRAPHY 70

Liu, C.-C., T. Kanekiyo, H. Xu and G. Bu (2013). ‘Apolipoprotein E and Alzheimer
disease: risk, mechanisms and therapy’. In: Nature Reviews Neurology 9.2, pp. 106–
118.

Marioni, R. E., S. E. Harris, Q. Zhang, A. F. McRae, S. P. Hagenaars, W. D. Hill,
G. Davies, C. W. Ritchie, C. R. Gale, J. M. Starr et al. (2018). ‘GWAS on family
history of Alzheimer’s disease’. In: Translational psychiatry 8.1, pp. 1–7.

Matthews, K. A., W. Xu, A. H. Gaglioti, J. B. Holt, J. B. Croft, D. Mack and L. C. McGuire
(2019). ‘Racial and ethnic estimates of Alzheimer’s disease and related dementias in
the United States (2015–2060) in adults aged ≥ 65 years’. In: Alzheimer’s & Dementia
15.1, pp. 17–24.

Misra, S., H. Li and J. He (2020). ‘Noninvasive fracture characterization based on
the classification of sonic wave travel times’. In: Machine Learning for Subsurface
Characterization, pp. 243–287.

Namba, Y., M. Tomonaga, H. Kawasaki, E. Otomo and K. Ikeda (1991). ‘Apolipoprotein
E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in
Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease’. In:
Brain Research 541.1, pp. 163–166. issn: 0006-8993. doi: https://doi.org/10.
1016/0006-8993(91)91092-F. url: https://www.sciencedirect.com/science/
article/pii/000689939191092F.

National Library of Medicine (n.d.). dbSNP. url: https://www.ncbi.nlm.nih.gov/
snp/.

Nho, K. (n.d.). Practical Guideline for Whole Genome Sequencing. url: https://warwick.
ac.uk/fac/sci/statistics/staff/academic-research/nichols/presentations/
ohbm2014/imggen/Nho-ImgGen-WGSeqPractical.pdf.

Nicholls, H. L., C. R. John, D. S. Watson, P. B. Munroe, M. R. Barnes and C. P. Cabrera
(2020). ‘Reaching the end-game for GWAS: machine learning approaches for the
prioritization of complex disease loci’. In: Frontiers in genetics 11, p. 350.

Novikova, G., M. Kapoor, J. Tcw, E. M. Abud, A. G. Efthymiou, S. X. Chen, H. Cheng,
J. F. Fullard, J. Bendl, Y. Liu et al. (2021). ‘Integration of Alzheimer’s disease genetics
and myeloid genomics identifies disease risk regulatory elements and genes’. In:
Nature communications 12.1, pp. 1–14.

Osipowicz, M., B. Wilczynski, M. A. Machnicka and A. D. N. Initiative (2021). ‘Careful
feature selection is key in classification of Alzheimer’s disease patients based on
whole-genome sequencing data’. In: NAR Genomics and Bioinformatics 3.3, lqab069.

Potkin, S. G., G. Guffanti, A. Lakatos, J. A. Turner, F. Kruggel, J. H. Fallon, A. J. Saykin,
A. Orro, S. Lupoli, E. Salvi et al. (2009). ‘Hippocampal atrophy as a quantitative
trait in a genome-wide association study identifying novel susceptibility genes for
Alzheimer’s disease’. In: PloS one 4.8, e6501.

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller,
P. Sklar, P. I. De Bakker, M. J. Daly et al. (2007). ‘PLINK: a tool set for whole-genome

https://doi.org/https://doi.org/10.1016/0006-8993(91)91092-F
https://doi.org/https://doi.org/10.1016/0006-8993(91)91092-F
https://www.sciencedirect.com/science/article/pii/000689939191092F
https://www.sciencedirect.com/science/article/pii/000689939191092F
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/presentations/ohbm2014/imggen/Nho-ImgGen-WGSeqPractical.pdf
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/presentations/ohbm2014/imggen/Nho-ImgGen-WGSeqPractical.pdf
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/presentations/ohbm2014/imggen/Nho-ImgGen-WGSeqPractical.pdf


BIBLIOGRAPHY 71

association and population-based linkage analyses’. In: The American journal of
human genetics 81.3, pp. 559–575.

Ranawana, R. and V. Palade (2005). ‘A neural network based multi-classifier system for
gene identification in DNA sequences’. In: Neural Computing & Applications 14.2,
pp. 122–131.

Rodriguez, S., C. Hug, P. Todorov, N. Moret, S. A. Boswell, K. Evans, G. Zhou, N. T.
Johnson, B. T. Hyman, P. K. Sorger et al. (2021). ‘Machine learning identifies
candidates for drug repurposing in Alzheimer’s disease’. In: Nature communications
12.1, pp. 1–13.

Salminen, A. and K. Kaarniranta (2009). ‘Siglec receptors and hiding plaques in
Alzheimer’s disease’. In: Journal of molecular medicine 87.7, pp. 697–701.

Saykin, A. J., L. Shen, T. M. Foroud, S. G. Potkin, S. Swaminathan, S. Kim, S. L.
Risacher, K. Nho, M. J. Huentelman, D. W. Craig et al. (2010). ‘Alzheimer’s Disease
Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims,
progress, and plans’. In: Alzheimer’s & dementia 6.3, pp. 265–273.

Scikit-learn Developers (n.d.[a]). 1.4. Support Vector Machines. url: https://scikit-
learn.org/stable/modules/svm.html#.

Scikit-learn Developers (n.d.[b]). 3.3. Metrics and scoring: quantifying the quality of pre-
dictions. url: https://scikit-learn.org/stable/modules/model_evaluation.
html.

Scikit-learn Developers (n.d.[c]). sklearn.linear_model.SGDClassifier. url: https : / /
scikit - learn . org / stable / modules / generated / sklearn . linear _ model .
SGDClassifier.html.

Scikit-learn Developers (n.d.[d]). sklearn.svm.SVC. url: https://scikit-learn.org/
stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC.

Smith, G. E., D. L. Bohac, S. C. Waring, E. Kokmen, E. G. Tangalos, R. J. Ivnik and R. C.
Petersen (1998). ‘Apolipoprotein E genotype influences cognitive ‘phenotype’ in
patients with Alzheimer’s disease but not in healthy control subjects’. In: Neurology
50.2, pp. 355–362. issn: 0028-3878. doi: 10.1212/WNL.50.2.355. eprint: https:
//n.neurology.org/content/50/2/355.full.pdf. url: https://n.neurology.
org/content/50/2/355.

Sundaram, L., H. Gao, S. R. Padigepati, J. F. McRae, Y. Li, J. A. Kosmicki, N. Fritzilas,
J. Hakenberg, A. Dutta, J. Shon et al. (2018). ‘Predicting the clinical impact of human
mutation with deep neural networks’. In: Nature genetics 50.8, pp. 1161–1170.

Szustakowski, J. D., S. Balasubramanian, E. Kvikstad, S. Khalid, P. G. Bronson, A.
Sasson, E. Wong, D. Liu, J. Wade Davis, C. Haefliger et al. (2021). ‘Advancing
human genetics research and drug discovery through exome sequencing of the UK
Biobank’. In: Nature genetics 53.7, pp. 942–948.

https://scikit-learn.org/stable/modules/svm.html#
https://scikit-learn.org/stable/modules/svm.html#
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://doi.org/10.1212/WNL.50.2.355
https://n.neurology.org/content/50/2/355.full.pdf
https://n.neurology.org/content/50/2/355.full.pdf
https://n.neurology.org/content/50/2/355
https://n.neurology.org/content/50/2/355


BIBLIOGRAPHY 72

Tam, V., N. Patel, M. Turcotte, Y. Bossé, G. Paré and D. Meyre (2019). ‘Benefits and
limitations of genome-wide association studies’. In: Nature Reviews Genetics 20.8,
pp. 467–484.

The Biopython Contributors (n.d.). Bio.Entrez package. url: https://biopython.org/
docs/1.75/api/Bio.Entrez.html.

Uffelmann, E., Q. Q. Huang, N. S. Munung, J. De Vries, Y. Okada, A. R. Martin,
H. C. Martin, T. Lappalainen and D. Posthuma (2021). ‘Genome-wide association
studies’. In: Nature Reviews Methods Primers 1.1, pp. 1–21.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and
I. Polosukhin (2017). ‘Attention Is All You Need’. In: CoRR abs/1706.03762. arXiv:
1706.03762. url: http://arxiv.org/abs/1706.03762.

Venugopalan, J., L. Tong, H. R. Hassanzadeh and M. D. Wang (2021). ‘Multimodal
deep learning models for early detection of Alzheimer’s disease stage’. In: Scientific
reports 11.1, pp. 1–13.

Weyer, S. W., M. Klevanski, A. Delekate, V. Voikar, D. Aydin, M. Hick, M. Filippov,
N. Drost, K. L. Schaller, M. Saar et al. (2011). ‘APP and APLP2 are essential at
PNS and CNS synapses for transmission, spatial learning and LTP’. In: The EMBO
journal 30.11, pp. 2266–2280.

https://biopython.org/docs/1.75/api/Bio.Entrez.html
https://biopython.org/docs/1.75/api/Bio.Entrez.html
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762


Supplementary Materials 

 

The first set of tables in this section contains the full results of the SVM models run on 

all SNPs within the APOE, TOMM40, SIGLEC14, and EXOC3L2 genes. 

 

The last table contains the full results of the DNABERT experiment run on all 100-bp 

windows of the APOE gene.  
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AD prediction accuracy results when running SVM on ADNI SNPs from APOE  gene with linear kernel.

rsID Location in chr19 Accuracy

Balanced 

accuracy Precision Recall F1 score ROC AUC MCC

rs11542028 45,409,167         0.69 0.65 0.83 0.73 0.77 0.65 0.28

rs1486677963 45,409,283         0.75 0.52 0.75 1 0.86 0.52 0.19

rs769451 45,410,911         0.74 0.52 0.74 0.98 0.85 0.52 0.09

rs9282609 45,409,113         0.74 0.5 0.74 1 0.85 0.5 0

rs769448 45,409,579         0.74 0.5 0.74 1 0.85 0.52 0

rs769449 45,410,002         0.74 0.5 0.74 1 0.85 0.64 0

rs61357706 45,410,273         0.74 0.5 0.74 1 0.85 0.51 0

rs74253333 45,410,444         0.74 0.5 0.74 1 0.85 0.51 0

rs115299243 45,410,548         0.74 0.5 0.74 1 0.85 0.51 0

rs201672011 45,411,064         0.74 0.5 0.74 1 0.85 0.51 0

rs769452 45,411,110         0.26 0.5 0 0 0 0.5 0

rs61228756 45,411,941         0.74 0.5 0.74 1 0.85 0.39 0

rs769455 45,412,040         0.74 0.5 0.74 1 0.85 0.51 0

rs3200542 45,412,079         0.68 0.47 0.73 0.9 0.8 0.47 -0.08
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AD prediction accuracy results when running SVM on ADNI SNPs from APOE  gene with linear kernel, 

with random downsampling.

rsID Location in chr19 Accuracy

Balanced 

accuracy Precision Recall F1 score ROC AUC MCC

rs11542028 45,409,167         0.58 0.58 0.56 0.74 0.63 0.58 0.18

rs769449 45,410,002         0.58 0.58 0.67 0.3 0.41 0.58 0.19

rs9282609 45,409,113         0.49 0.5 0.49 1 0.66 0.5 0

rs1486677963 45,409,283         0.49 0.5 0.49 1 0.66 0.5 0

rs769448 45,409,579         0.49 0.5 0.49 1 0.66 0.46 0

rs61357706 45,410,273         0.49 0.5 0.49 1 0.66 0.5 0

rs74253333 45,410,444         0.49 0.5 0.49 1 0.66 0.52 0

rs115299243 45,410,548         0.49 0.5 0.49 1 0.66 0.5 0

rs769451 45,410,911         0.51 0.5 0 0 0 0.5 0

rs201672011 45,411,064         0.49 0.5 0.49 1 0.66 0.5 0

rs769452 45,411,110         0.49 0.5 0.49 1 0.66 0.5 0

rs61228756 45,411,941         0.51 0.5 0 0 0 0.63 0

rs769455 45,412,040         0.49 0.5 0.49 1 0.66 0.5 0

rs3200542 45,412,079         0.44 0.43 0.17 0.04 0.06 0.43 -0.23
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AD prediction accuracy results when running SVM on ADNI SNPs from TOMM40  gene with linear 

kernel.

rsID Location in chr19 Accuracy

Balanced 

accuracy Precision Recall F1 score ROC AUC MCC

rs58185379 45,406,673         0.52 0.59 0.82 0.46 0.59 0.59 0.15

rs34095326 45,395,844         0.4 0.58 0.92 0.2 0.33 0.58 0.19

rs11668327 45,398,633         0.7 0.57 0.77 0.85 0.81 0.57 0.15

rs59841965 45,406,798         0.76 0.55 0.76 1 0.86 0.55 0.27

rs71337246 45,397,512         0.56 0.52 0.75 0.61 0.67 0.52 0.03

rs2238680 45,398,264         0.56 0.52 0.75 0.61 0.67 0.52 0.03

rs386539078 45,398,716         0.56 0.52 0.75 0.61 0.67 0.52 0.03

rs140684051 45,399,456         0.74 0.52 0.74 0.98 0.85 0.52 0.09

rs183743534 45,404,866         0.75 0.52 0.75 1 0.86 0.52 0.19

rs59915866 45,397,229         0.72 0.51 0.74 0.97 0.84 0.51 0.03

rs61679753 45,400,747         0.72 0.51 0.74 0.97 0.84 0.51 0.03

rs111784051 45,402,262         0.72 0.51 0.74 0.97 0.84 0.51 0.03

rs17850098 45,394,819         0.74 0.5 0.74 1 0.85 0.5 0

rs185865 45,394,969         0.74 0.5 0.74 1 0.85 0.39 0

rs146539357 45,395,171         0.74 0.5 0.74 1 0.85 0.5 0

rs78245864 45,395,193         0.74 0.5 0.74 1 0.85 0.51 0

rs1969476125 45,395,266         0.74 0.5 0.74 1 0.85 0.6 0

rs141224510 45,395,318         0.26 0.5 0 0 0 0.5 0

rs2075649 45,395,330         0.74 0.5 0.74 1 0.85 0.46 0

rs60321974 45,395,619         0.74 0.5 0.74 1 0.85 0.6 0

rs11556507 45,395,714         0.74 0.5 0.74 1 0.85 0.39 0

rs73936968 45,395,816         0.74 0.5 0.74 1 0.85 0.52 0

rs151285748 45,395,875         0.74 0.5 0.74 1 0.85 0.5 0

rs34404554 45,395,909         0.74 0.5 0.74 1 0.85 0.6 0

rs16979513 45,396,144         0.74 0.5 0.74 1 0.85 0.6 0

rs778934950 45,396,219         0.74 0.5 0.74 1 0.85 0.61 0

rs116040278 45,396,240         0.74 0.5 0.74 1 0.85 0.5 0

rs138280231 45,396,257         0.74 0.5 0.74 1 0.85 0.5 0

rs142608136 45,396,258         0.74 0.5 0.74 1 0.85 0.5 0

rs4803768 45,396,276         0.74 0.5 0.74 1 0.85 0.55 0

rs111884388 45,396,318         0.74 0.5 0.74 1 0.85 0.5 0

rs59007384 45,396,665         0.74 0.5 0.74 1 0.85 0.6 0

rs386539077 45,396,673         0.26 0.5 0 0 0 0.49 0

rs480228 45,396,899         0.54 0.5 0.74 0.58 0.65 0.5 0

rs77301115 45,396,973         0.74 0.5 0.74 1 0.85 0.51 0

rs73936970 45,397,171         0.74 0.5 0.74 1 0.85 0.51 0

rs112849259 45,397,307         0.74 0.5 0.74 1 0.85 0.51 0

rs28480204 45,397,343         0.74 0.5 0.74 1 0.85 0.5 0

rs182472499 45,397,506         0.74 0.5 0.74 1 0.85 0.5 0

rs116881820 45,397,952         0.74 0.5 0.74 1 0.85 0.51 0

rs115676124 45,397,965         0.26 0.5 0 0 0 0.5 0

rs114083252 45,398,014         0.74 0.5 0.74 1 0.85 0.51 0

rs1313349 45,398,206         0.74 0.5 0.74 1 0.85 0.5 0
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rs1313347 45,398,319         0.74 0.5 0.74 1 0.85 0.5 0

rs140021317 45,398,360         0.74 0.5 0.74 1 0.85 0.5 0

rs77726367 45,398,457         0.26 0.5 0 0 0 0.5 0

rs79398853 45,398,785         0.74 0.5 0.74 1 0.85 0.51 0

rs1014387798 45,398,817         0.74 0.5 0.74 1 0.85 0.47 0

rs145752462 45,399,001         0.74 0.5 0.74 1 0.85 0.5 0

rs118111371 45,399,023         0.74 0.5 0.74 1 0.85 0.5 0

rs147707133 45,399,165         0.74 0.5 0.74 1 0.85 0.5 0

rs117100783 45,399,186         0.74 0.5 0.74 1 0.85 0.5 0

rs75687619 45,399,344         0.74 0.5 0.74 1 0.85 0.51 0

rs139399286 45,399,356         0.74 0.5 0.74 1 0.85 0.5 0

rs76366838 45,399,896         0.74 0.5 0.74 1 0.85 0.51 0

rs180854461 45,399,922         0.74 0.5 0.74 1 0.85 0.5 0

rs188605845 45,400,113         0.74 0.5 0.74 1 0.85 0.5 0

rs191946858 45,400,486         0.26 0.5 0 0 0 0.5 0

rs114536010 45,400,725         0.74 0.5 0.74 1 0.85 0.51 0

rs283817 45,400,775         0.74 0.5 0.74 1 0.85 0.5 0

rs116874600 45,400,871         0.74 0.5 0.74 1 0.85 0.51 0

rs113886004 45,401,159         0.74 0.5 0.74 1 0.85 0.5 0

rs73052317 45,401,211         0.26 0.5 0 0 0 0.5 0

rs143500700 45,401,270         0.74 0.5 0.74 1 0.85 0.52 0

rs191880358 45,401,392         0.74 0.5 0.74 1 0.85 0.5 0

rs137983845 45,401,579         0.74 0.5 0.74 1 0.85 0.5 0

rs57826936 45,401,666         0.74 0.5 0.74 1 0.85 0.47 0

rs118170342 45,401,868         0.74 0.5 0.74 1 0.85 0.51 0

rs139988932 45,401,918         0.74 0.5 0.74 1 0.85 0.5 0

rs814575 45,402,368         0.26 0.5 0 0 0 0.5 0

rs814574 45,402,470         0.74 0.5 0.74 1 0.85 0.5 0

rs34878901 45,402,477         0.74 0.5 0.74 1 0.85 0.51 0

rs113112231 45,402,516         0.74 0.5 0.74 1 0.85 0.5 0

rs140918487 45,402,546         0.74 0.5 0.74 1 0.85 0.5 0

rs76841546 45,402,589         0.74 0.5 0.74 1 0.85 0.51 0

rs35568738 45,402,718         0.74 0.5 0.74 1 0.85 0.51 0

rs573199 45,403,119         0.74 0.5 0.74 1 0.85 0.5 0

rs116860749 45,403,216         0.74 0.5 0.74 1 0.85 0.51 0

rs1160985 45,403,412         0.74 0.5 0.74 1 0.85 0.5 0

rs77100236 45,403,458         0.74 0.5 0.74 1 0.85 0.51 0

rs56951511 45,403,858         0.74 0.5 0.74 1 0.85 0.5 0

rs1160984 45,403,924         0.74 0.5 0.74 1 0.85 0.51 0

rs34459630 45,404,000         0.74 0.5 0.74 1 0.85 0.5 0

rs59019406 45,404,431         0.74 0.5 0.74 1 0.85 0.5 0

rs117264457 45,404,432         0.26 0.5 0 0 0 0.5 0

rs543763 45,404,579         0.74 0.5 0.74 1 0.85 0.5 0

rs74253332 45,404,691         0.74 0.5 0.74 1 0.85 0.58 0

rs116977783 45,404,721         0.74 0.5 0.74 1 0.85 0.51 0

rs950159943 45,404,857         0.74 0.5 0.74 1 0.85 0.51 0

rs181585594 45,404,883         0.74 0.5 0.74 1 0.85 0.5 0
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rs144738835 45,404,926         0.74 0.5 0.74 1 0.85 0.5 0

rs57188354 45,404,972         0.74 0.5 0.74 1 0.85 0.5 0

rs61583573 45,405,062         0.74 0.5 0.74 1 0.85 0.5 0

rs149311267 45,405,113         0.74 0.5 0.74 1 0.85 0.51 0

rs4803769 45,405,521         0.74 0.5 0.74 1 0.85 0.51 0

rs187250392 45,405,552         0.26 0.5 0 0 0 0.5 0

rs117843462 45,405,634         0.74 0.5 0.74 1 0.85 0.51 0

rs191178282 45,405,683         0.26 0.5 0 0 0 0.5 0

rs140853179 45,405,778         0.74 0.5 0.74 1 0.85 0.51 0

rs144737872 45,405,818         0.74 0.5 0.74 1 0.85 0.5 0

rs139361502 45,405,929         0.74 0.5 0.74 1 0.85 0.5 0

rs200337138 45,406,450         0.74 0.5 0.74 1 0.85 0.5 0

rs112328660 45,401,952         0.72 0.49 0.73 0.98 0.84 0.49 -0.07

rs141864196 45,405,499         0.72 0.49 0.73 0.98 0.84 0.49 -0.07

rs56892245 45,405,931         0.72 0.49 0.73 0.98 0.84 0.49 -0.07

rs73052321 45,404,121         0.71 0.48 0.73 0.97 0.83 0.48 -0.1
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AD prediction accuracy results when running SVM on ADNI SNPs from TOMM40  gene with 

linear kernel, with random downsampling.

rsID Location in chr19 Accuracy

Balanced 

accuracy Precision Recall F1 score ROC AUC MCC

rs16979513 45,396,144         0.56 0.56 0.64 0.26 0.37 0.56 0.15

rs58185379 45,406,673         0.56 0.56 0.58 0.41 0.48 0.56 0.13

rs74253332 45,404,691         0.55 0.55 0.53 0.74 0.62 0.55 0.11

rs76841546 45,402,589         0.53 0.52 1 0.04 0.07 0.52 0.14

rs183743534 45,404,866         0.51 0.52 0.5 1 0.67 0.52 0.13

rs117843462 45,405,634         0.53 0.52 1 0.04 0.07 0.52 0.14

rs59841965 45,406,798         0.51 0.52 0.5 1 0.67 0.52 0.13

rs1160985 45,403,412         0.51 0.51 0.5 0.67 0.57 0.51 0.03

rs56951511 45,403,858         0.51 0.51 0.5 0.67 0.57 0.51 0.03

rs59019406 45,404,431         0.51 0.51 0.5 0.67 0.57 0.51 0.03

rs57188354 45,404,972         0.51 0.51 0.5 0.67 0.57 0.51 0.03

rs17850098 45,394,819         0.49 0.5 0.49 1 0.66 0.5 0

rs185865 45,394,969         0.49 0.5 0.49 1 0.66 0.46 0

rs146539357 45,395,171         0.49 0.5 0.49 1 0.66 0.5 0

rs78245864 45,395,193         0.51 0.5 0 0 0 0.5 0

rs1969476125 45,395,266         0.49 0.5 0.49 1 0.66 0.43 0

rs141224510 45,395,318         0.49 0.5 0.49 1 0.66 0.5 0

rs2075649 45,395,330         0.49 0.5 0.49 1 0.66 0.46 0

rs60321974 45,395,619         0.49 0.5 0.49 1 0.66 0.44 0

rs11556507 45,395,714         0.49 0.5 0.49 1 0.66 0.46 0

rs73936968 45,395,816         0.49 0.5 0.49 1 0.66 0.52 0

rs34095326 45,395,844         0.49 0.5 0.49 1 0.66 0.56 0

rs151285748 45,395,875         0.49 0.5 0.49 1 0.66 0.5 0

rs34404554 45,395,909         0.49 0.5 0.49 1 0.66 0.44 0

rs778934950 45,396,219         0.49 0.5 0.49 1 0.66 0.46 0

rs116040278 45,396,240         0.49 0.5 0.49 1 0.66 0.5 0

rs138280231 45,396,257         0.49 0.5 0.49 1 0.66 0.5 0

rs142608136 45,396,258         0.49 0.5 0.49 1 0.66 0.5 0

rs4803768 45,396,276         0.49 0.5 0.49 1 0.66 0.5 0

rs111884388 45,396,318         0.49 0.5 0.49 1 0.66 0.5 0

rs59007384 45,396,665         0.49 0.5 0.49 1 0.66 0.44 0

rs386539077 45,396,673         0.49 0.5 0.49 1 0.66 0.52 0

rs480228 45,396,899         0.49 0.5 0.49 1 0.66 0.49 0

rs73936970 45,397,171         0.49 0.5 0.49 1 0.66 0.5 0

rs28480204 45,397,343         0.49 0.5 0.49 1 0.66 0.5 0

rs182472499 45,397,506         0.49 0.5 0.49 1 0.66 0.5 0

rs71337246 45,397,512         0.49 0.5 0.49 1 0.66 0.47 0

rs115676124 45,397,965         0.49 0.5 0.49 1 0.66 0.5 0

rs114083252 45,398,014         0.49 0.5 0.49 1 0.66 0.5 0

rs1313349 45,398,206         0.49 0.5 0.49 1 0.66 0.5 0

rs2238680 45,398,264         0.49 0.5 0.49 1 0.66 0.47 0

rs1313347 45,398,319         0.49 0.5 0.49 1 0.66 0.5 0

rs140021317 45,398,360         0.49 0.5 0.49 1 0.66 0.5 0
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rs77726367 45,398,457         0.49 0.5 0.49 1 0.66 0.5 0

rs386539078 45,398,716         0.49 0.5 0.49 1 0.66 0.46 0

rs1014387798 45,398,817         0.49 0.5 0.49 1 0.66 0.56 0

rs145752462 45,399,001         0.49 0.5 0.49 1 0.66 0.5 0

rs118111371 45,399,023         0.49 0.5 0.49 1 0.66 0.5 0

rs147707133 45,399,165         0.49 0.5 0.49 1 0.66 0.5 0

rs117100783 45,399,186         0.49 0.5 0.49 1 0.66 0.5 0

rs139399286 45,399,356         0.49 0.5 0.49 1 0.66 0.5 0

rs140684051 45,399,456         0.51 0.5 0 0 0 0.52 0

rs180854461 45,399,922         0.49 0.5 0.49 1 0.66 0.5 0

rs188605845 45,400,113         0.49 0.5 0.49 1 0.66 0.5 0

rs191946858 45,400,486         0.49 0.5 0.49 1 0.66 0.5 0

rs61679753 45,400,747         0.49 0.5 0.49 1 0.66 0.45 0

rs283817 45,400,775         0.49 0.5 0.49 1 0.66 0.5 0

rs116874600 45,400,871         0.51 0.5 0 0 0 0.5 0

rs113886004 45,401,159         0.49 0.5 0.49 1 0.66 0.5 0

rs73052317 45,401,211         0.51 0.5 0 0 0 0.5 0

rs143500700 45,401,270         0.49 0.5 0.49 1 0.66 0.5 0

rs191880358 45,401,392         0.49 0.5 0.49 1 0.66 0.52 0

rs137983845 45,401,579         0.49 0.5 0.49 1 0.66 0.5 0

rs57826936 45,401,666         0.49 0.5 0.49 1 0.66 0.54 0

rs118170342 45,401,868         0.51 0.5 0 0 0 0.44 0

rs139988932 45,401,918         0.49 0.5 0.49 1 0.66 0.5 0

rs112328660 45,401,952         0.49 0.5 0.49 1 0.66 0.5 0

rs111784051 45,402,262         0.49 0.5 0.49 1 0.66 0.45 0

rs814575 45,402,368         0.49 0.5 0.49 1 0.66 0.5 0

rs814574 45,402,470         0.49 0.5 0.49 1 0.66 0.5 0

rs113112231 45,402,516         0.49 0.5 0.49 1 0.66 0.5 0

rs140918487 45,402,546         0.49 0.5 0.49 1 0.66 0.5 0

rs35568738 45,402,718         0.49 0.5 0.49 0.96 0.65 0.5 0

rs573199 45,403,119         0.49 0.5 0.49 1 0.66 0.5 0

rs116860749 45,403,216         0.49 0.5 0.49 1 0.66 0.46 0

rs77100236 45,403,458         0.49 0.5 0.49 1 0.66 0.5 0

rs1160984 45,403,924         0.49 0.5 0.49 0.96 0.65 0.5 0

rs34459630 45,404,000         0.49 0.5 0.49 1 0.66 0.5 0

rs73052321 45,404,121         0.51 0.5 0 0 0 0.48 0

rs117264457 45,404,432         0.49 0.5 0.49 1 0.66 0.5 0

rs543763 45,404,579         0.49 0.5 0.49 1 0.66 0.5 0

rs116977783 45,404,721         0.51 0.5 0 0 0 0.5 0

rs950159943 45,404,857         0.49 0.5 0.49 1 0.66 0.46 0

rs181585594 45,404,883         0.49 0.5 0.49 1 0.66 0.5 0

rs144738835 45,404,926         0.49 0.5 0.49 1 0.66 0.5 0

rs61583573 45,405,062         0.49 0.5 0.49 1 0.66 0.51 0

rs149311267 45,405,113         0.51 0.5 0 0 0 0.5 0

rs141864196 45,405,499         0.51 0.5 0 0 0 0.52 0

rs4803769 45,405,521         0.49 0.5 0.49 1 0.66 0.46 0

rs187250392 45,405,552         0.49 0.5 0.49 1 0.66 0.5 0
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rs191178282 45,405,683         0.49 0.5 0.49 1 0.66 0.5 0

rs140853179 45,405,778         0.49 0.5 0.49 1 0.66 0.5 0

rs144737872 45,405,818         0.49 0.5 0.49 1 0.66 0.5 0

rs139361502 45,405,929         0.51 0.5 0 0 0 0.5 0

rs56892245 45,405,931         0.49 0.5 0.49 1 0.66 0.5 0

rs200337138 45,406,450         0.49 0.5 0.49 1 0.66 0.5 0

rs77301115 45,396,973         0.45 0.46 0.47 0.93 0.62 0.46 -0.2

rs112849259 45,397,307         0.45 0.46 0.47 0.93 0.62 0.46 -0.2

rs116881820 45,397,952         0.45 0.46 0.47 0.93 0.62 0.46 -0.2

rs79398853 45,398,785         0.45 0.46 0.47 0.93 0.62 0.46 -0.2

rs75687619 45,399,344         0.45 0.46 0.47 0.93 0.62 0.46 -0.2

rs76366838 45,399,896         0.45 0.46 0.47 0.93 0.62 0.46 -0.2

rs114536010 45,400,725         0.45 0.46 0.47 0.93 0.62 0.46 -0.2

rs34878901 45,402,477         0.45 0.46 0.46 0.67 0.55 0.46 -0.09

rs59915866 45,397,229         0.45 0.45 0 0 0 0.45 -0.24

rs11668327 45,398,633         0.45 0.45 0.33 0.11 0.17 0.45 -0.14
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AD prediction accuracy results when running SVM on ADNI SNPs from SIGLEC11   gene 

with linear kernel.

rsID Location in chr19 Accuracy

Balanced 

accuracy Precision Recall F1 score ROC AUC MCC

rs61467868 50,456,770         0.49 0.53 0.76 0.44 0.56 0.53 0.05

rs57860877 50,457,346         0.49 0.53 0.76 0.44 0.56 0.53 0.05

rs73932071 50,459,806         0.28 0.51 1 0.02 0.03 0.51 0.07

rs4802641 50,452,341         0.74 0.5 0.74 1 0.85 0.5 0

rs114819375 50,452,606         0.74 0.5 0.74 1 0.85 0.5 0

rs143688215 50,452,641         0.74 0.5 0.74 1 0.85 0.5 0

rs138574928 50,452,960         0.74 0.5 0.74 1 0.85 0.5 0

rs200448773 50,453,203         0.74 0.5 0.74 1 0.85 0.5 0

rs56579996 50,453,317         0.74 0.5 0.74 1 0.85 0.43 0

rs201942673 50,453,351         0.74 0.5 0.74 1 0.85 0.5 0

rs73932016 50,453,889         0.74 0.5 0.74 1 0.85 0.51 0

rs61141600 50,453,957         0.74 0.5 0.74 1 0.85 0.51 0

rs62126307 50,454,086         0.74 0.5 0.74 1 0.85 0.46 0

rs57663431 50,454,348         0.74 0.5 0.74 1 0.85 0.5 0

rs117180821 50,454,375         0.26 0.5 0 0 0 0.52 0

rs2076155786 50,454,383         0.26 0.5 0 0 0 0.52 0

rs111516788 50,454,489         0.26 0.5 0 0 0 0.5 0

rs182406893 50,454,529         0.74 0.5 0.74 1 0.85 0.5 0

rs73932017 50,454,723         0.26 0.5 0 0 0 0.51 0

rs73576644 50,454,801         0.74 0.5 0.74 1 0.85 0.5 0

rs7247753 50,454,973         0.74 0.5 0.74 1 0.85 0.5 0

rs45438992 50,455,180         0.74 0.5 0.74 1 0.85 0.5 0

rs112796514 50,455,202         0.26 0.5 0 0 0 0.5 0

rs10405621 50,455,351         0.74 0.5 0.74 1 0.85 0.46 0

rs188736707 50,455,676         0.26 0.5 0 0 0 0.5 0

rs140029606 50,455,837         0.74 0.5 0.74 1 0.85 0.5 0

rs1354287441 50,455,963         0.74 0.5 0.74 1 0.85 0.5 0

rs151333014 50,456,083         0.74 0.5 0.74 1 0.85 0.5 0

rs115420067 50,456,219         0.26 0.5 0 0 0 0.5 0

rs77312057 50,456,299         0.74 0.5 0.74 1 0.85 0.5 0

rs57719743 50,456,518         0.74 0.5 0.74 1 0.85 0.53 0

rs60765786 50,456,602         0.74 0.5 0.74 1 0.85 0.5 0

rs192228506 50,456,605         0.74 0.5 0.74 1 0.85 0.5 0

rs150046182 50,456,731         0.74 0.5 0.74 1 0.85 0.5 0

rs56666020 50,456,821         0.74 0.5 0.74 1 0.85 0.53 0

rs192269876 50,456,931         0.74 0.5 0.74 1 0.85 0.5 0

rs56139473 50,457,187         0.74 0.5 0.74 1 0.85 0.51 0

rs74605432 50,457,249         0.74 0.5 0.74 1 0.85 0.49 0

rs190335185 50,457,331         0.74 0.5 0.74 1 0.85 0.5 0

rs58768527 50,457,394         0.74 0.5 0.74 1 0.85 0.51 0

rs77695494 50,457,489         0.74 0.5 0.74 1 0.85 0.5 0

rs58603144 50,457,551         0.74 0.5 0.74 1 0.85 0.5 0

rs147552723 50,457,768         0.74 0.5 0.74 1 0.85 0.5 0
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rs117126572 50,457,876         0.26 0.5 0 0 0 0.52 0

rs76691680 50,457,915         0.26 0.5 0 0 0 0.52 0

rs117971487 50,457,927         0.26 0.5 0 0 0 0.52 0

rs73576651 50,458,360         0.74 0.5 0.74 1 0.85 0.5 0

rs117428283 50,458,411         0.26 0.5 0 0 0 0.52 0

rs181578199 50,458,542         0.74 0.5 0.74 1 0.85 0.48 0

rs186318895 50,458,546         0.74 0.5 0.74 1 0.85 0.5 0

rs150362483 50,458,743         0.74 0.5 0.74 1 0.85 0.5 0

rs77695568 50,458,850         0.26 0.5 0 0 0 0.52 0

rs8103552 50,458,931         0.74 0.5 0.74 1 0.85 0.46 0

rs112178012 50,458,932         0.74 0.5 0.74 1 0.85 0.5 0

rs149359449 50,459,048         0.74 0.5 0.74 1 0.85 0.5 0

rs283514 50,459,231         0.26 0.5 0 0 0 0.52 0

rs186219825 50,459,745         0.74 0.5 0.74 1 0.85 0.5 0

rs77620599 50,460,002         0.74 0.5 0.74 1 0.85 0.5 0

rs57566803 50,460,914         0.74 0.5 0.74 1 0.85 0.5 0

rs113440966 50,460,959         0.74 0.5 0.74 1 0.85 0.5 0

rs148890842 50,460,985         0.74 0.5 0.74 1 0.85 0.5 0

rs184846975 50,461,021         0.74 0.5 0.74 1 0.85 0.51 0

rs143608588 50,461,117         0.74 0.5 0.74 1 0.85 0.5 0

rs10423405 50,461,207         0.74 0.5 0.74 1 0.85 0.5 0

rs184556939 50,461,224         0.74 0.5 0.74 1 0.85 0.5 0

rs61652084 50,461,447         0.74 0.5 0.74 1 0.85 0.5 0

rs7259039 50,461,732         0.74 0.5 0.74 1 0.85 0.5 0

rs57682421 50,461,735         0.74 0.5 0.74 1 0.85 0.5 0

rs148610893 50,461,799         0.74 0.5 0.74 1 0.85 0.5 0

rs1865042 50,461,893         0.74 0.5 0.74 1 0.85 0.51 0

rs1811375 50,462,244         0.74 0.5 0.74 1 0.85 0.54 0

rs62113133 50,462,298         0.74 0.5 0.74 1 0.85 0.46 0

rs200466360 50,462,889         0.74 0.5 0.74 1 0.85 0.48 0

rs202060100 50,463,026         0.74 0.5 0.74 1 0.85 0.52 0

rs201740168 50,463,030         0.74 0.5 0.74 1 0.85 0.48 0

rs200380048 50,463,034         0.74 0.5 0.74 1 0.85 0.52 0

rs144427989 50,463,661         0.74 0.5 0.74 1 0.85 0.5 0

rs79085301 50,463,670         0.74 0.5 0.74 1 0.85 0.5 0

rs80184294 50,463,727         0.74 0.5 0.74 1 0.85 0.5 0

rs149855251 50,463,937         0.74 0.5 0.74 1 0.85 0.5 0

rs78673790 50,463,982         0.26 0.5 0 0 0 0.57 0

rs80021244 50,464,023         0.74 0.5 0.74 1 0.85 0.5 0

rs148651187 50,464,040         0.74 0.5 0.74 1 0.85 0.51 0

rs13343845 50,459,226         0.29 0.49 0.67 0.07 0.12 0.49 -0.05

rs79972908 50,458,488         0.28 0.48 0.6 0.05 0.09 0.48 -0.08

rs199756638 50,463,044         0.26 0.47 0.5 0.03 0.06 0.47 -0.12

83



AD prediction accuracy results when running SVM on ADNI SNPs from SIGLEC11  gene 

with linear kernel, with random downsampling.

rsID Location in chr19 Accuracy

Balanced 

accuracy Precision Recall F1 score ROC AUC MCC

rs117180821 50,454,375         0.62 0.61 1 0.22 0.36 0.61 0.36

rs2076155786 50,454,383         0.62 0.61 1 0.22 0.36 0.61 0.36

rs117126572 50,457,876         0.62 0.61 1 0.22 0.36 0.61 0.36

rs76691680 50,457,915         0.62 0.61 1 0.22 0.36 0.61 0.36

rs117971487 50,457,927         0.62 0.61 1 0.22 0.36 0.61 0.36

rs117428283 50,458,411         0.62 0.61 1 0.22 0.36 0.61 0.36

rs79972908 50,458,488         0.62 0.61 1 0.22 0.36 0.61 0.36

rs56579996 50,453,317         0.56 0.57 0.53 0.89 0.67 0.57 0.18

rs62126307 50,454,086         0.56 0.57 0.53 0.89 0.67 0.57 0.18

rs10405621 50,455,351         0.56 0.57 0.53 0.89 0.67 0.57 0.18

rs8103552 50,458,931         0.56 0.57 0.53 0.89 0.67 0.57 0.18

rs79085301 50,463,670         0.53 0.53 0.51 0.85 0.64 0.53 0.09

rs80184294 50,463,727         0.53 0.53 0.51 0.85 0.64 0.53 0.09

rs4802641 50,452,341         0.49 0.5 0.49 1 0.66 0.5 0

rs114819375 50,452,606         0.49 0.5 0.49 1 0.66 0.5 0

rs143688215 50,452,641         0.49 0.5 0.49 1 0.66 0.5 0

rs138574928 50,452,960         0.49 0.5 0.49 1 0.66 0.5 0

rs200448773 50,453,203         0.49 0.5 0.49 1 0.66 0.5 0

rs201942673 50,453,351         0.49 0.5 0.49 1 0.66 0.5 0

rs73932016 50,453,889         0.49 0.5 0.49 1 0.66 0.5 0

rs61141600 50,453,957         0.49 0.5 0.49 1 0.66 0.5 0

rs57663431 50,454,348         0.49 0.5 0.49 1 0.66 0.5 0

rs111516788 50,454,489         0.49 0.5 0.49 1 0.66 0.5 0

rs182406893 50,454,529         0.49 0.5 0.49 1 0.66 0.52 0

rs73932017 50,454,723         0.51 0.5 0 0 0 0.5 0

rs73576644 50,454,801         0.49 0.5 0.49 1 0.66 0.52 0

rs7247753 50,454,973         0.49 0.5 0.49 1 0.66 0.5 0

rs45438992 50,455,180         0.49 0.5 0.49 1 0.66 0.5 0

rs188736707 50,455,676         0.49 0.5 0.49 1 0.66 0.48 0

rs140029606 50,455,837         0.49 0.5 0.49 1 0.66 0.5 0

rs1354287441 50,455,963         0.49 0.5 0.49 1 0.66 0.5 0

rs151333014 50,456,083         0.49 0.5 0.49 1 0.66 0.5 0

rs115420067 50,456,219         0.49 0.5 0.49 1 0.66 0.5 0

rs77312057 50,456,299         0.49 0.5 0.49 1 0.66 0.5 0

rs57719743 50,456,518         0.51 0.5 0 0 0 0.49 0

rs60765786 50,456,602         0.49 0.5 0.49 1 0.66 0.52 0

rs192228506 50,456,605         0.49 0.5 0.49 1 0.66 0.5 0

rs150046182 50,456,731         0.51 0.5 0 0 0 0.5 0

rs61467868 50,456,770         0.51 0.5 0 0 0 0.49 0

rs56666020 50,456,821         0.51 0.5 0 0 0 0.49 0

rs192269876 50,456,931         0.49 0.5 0.49 1 0.66 0.5 0

rs56139473 50,457,187         0.49 0.5 0.49 1 0.66 0.5 0
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rs190335185 50,457,331         0.49 0.5 0.49 1 0.66 0.5 0

rs57860877 50,457,346         0.51 0.5 0 0 0 0.49 0

rs58768527 50,457,394         0.49 0.5 0.49 1 0.66 0.5 0

rs77695494 50,457,489         0.49 0.5 0.49 1 0.66 0.5 0

rs58603144 50,457,551         0.49 0.5 0.49 1 0.66 0.46 0

rs147552723 50,457,768         0.49 0.5 0.49 1 0.66 0.5 0

rs73576651 50,458,360         0.49 0.5 0.49 1 0.66 0.52 0

rs181578199 50,458,542         0.51 0.5 0 0 0 0.5 0

rs186318895 50,458,546         0.49 0.5 0.49 1 0.66 0.5 0

rs150362483 50,458,743         0.49 0.5 0.49 1 0.66 0.5 0

rs77695568 50,458,850         0.49 0.5 0.49 1 0.66 0.39 0

rs112178012 50,458,932         0.49 0.5 0.49 1 0.66 0.5 0

rs149359449 50,459,048         0.49 0.5 0.49 1 0.66 0.5 0

rs13343845 50,459,226         0.49 0.5 0.49 1 0.66 0.59 0

rs283514 50,459,231         0.49 0.5 0.49 1 0.66 0.5 0

rs186219825 50,459,745         0.49 0.5 0.49 1 0.66 0.5 0

rs73932071 50,459,806         0.51 0.5 0 0 0 0.5 0

rs77620599 50,460,002         0.49 0.5 0.49 1 0.66 0.52 0

rs57566803 50,460,914         0.49 0.5 0.49 1 0.66 0.48 0

rs113440966 50,460,959         0.49 0.5 0.49 1 0.66 0.5 0

rs148890842 50,460,985         0.49 0.5 0.49 1 0.66 0.5 0

rs184846975 50,461,021         0.51 0.5 0 0 0 0.5 0

rs143608588 50,461,117         0.51 0.5 0 0 0 0.5 0

rs10423405 50,461,207         0.49 0.5 0.49 1 0.66 0.5 0

rs61652084 50,461,447         0.49 0.5 0.49 1 0.66 0.5 0

rs7259039 50,461,732         0.49 0.5 0.49 1 0.66 0.5 0

rs57682421 50,461,735         0.49 0.5 0.49 1 0.66 0.5 0

rs148610893 50,461,799         0.49 0.5 0.49 1 0.66 0.52 0

rs1865042 50,461,893         0.51 0.5 0 0 0 0.5 0

rs1811375 50,462,244         0.49 0.5 0.49 1 0.66 0.49 0

rs62113133 50,462,298         0.51 0.5 0 0 0 0.57 0

rs200466360 50,462,889         0.51 0.5 0 0 0 0.52 0

rs201740168 50,463,030         0.49 0.5 0.49 1 0.66 0.48 0

rs200380048 50,463,034         0.49 0.5 0.49 1 0.66 0.54 0

rs199756638 50,463,044         0.51 0.5 0 0 0 0.46 0

rs144427989 50,463,661         0.49 0.5 0.49 1 0.66 0.5 0

rs149855251 50,463,937         0.51 0.5 0 0 0 0.48 0

rs78673790 50,463,982         0.51 0.5 0 0 0 0.57 0

rs80021244 50,464,023         0.49 0.5 0.49 1 0.66 0.5 0

rs148651187 50,464,040         0.51 0.5 0 0 0 0.5 0

rs112796514 50,455,202         0.47 0.48 0.48 0.96 0.64 0.48 -0.14

rs74605432 50,457,249         0.47 0.48 0.48 0.96 0.64 0.48 -0.14

rs184556939 50,461,224         0.47 0.48 0.48 0.96 0.64 0.48 -0.14

rs202060100 50,463,026         0.42 0.43 0.45 0.85 0.59 0.43 -0.29
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AD prediction accuracy results when running SVM on ADNI SNPs from EXOC3L2  gene 

with linear kernel.

rsID Location in chr19 Accuracy

Balanced 

accuracy Precision Recall F1 score ROC AUC MCC

rs59647713 45,736,003         0.62 0.55 0.76 0.71 0.74 0.55 0.09

rs112759099 45,726,845         0.32 0.54 1 0.08 0.16 0.54 0.15

rs28645301 45,724,692         0.31 0.53 1 0.07 0.13 0.53 0.14

rs28564302 45,724,868         0.31 0.53 1 0.07 0.13 0.53 0.14

rs386809738 45,724,961         0.31 0.53 1 0.07 0.13 0.53 0.14

rs60269219 45,724,963         0.31 0.53 1 0.07 0.13 0.53 0.14

rs59356929 45,725,127         0.31 0.53 1 0.07 0.13 0.53 0.14

rs58213824 45,725,185         0.31 0.53 1 0.07 0.13 0.53 0.14

rs57294488 45,725,481         0.31 0.53 1 0.07 0.13 0.53 0.14

rs73568222 45,725,975         0.31 0.53 1 0.07 0.13 0.53 0.14

rs57399322 45,726,106         0.31 0.53 1 0.07 0.13 0.53 0.14

rs10423031 45,726,224         0.31 0.53 1 0.07 0.13 0.53 0.14

rs58715307 45,726,458         0.31 0.53 1 0.07 0.13 0.53 0.14

rs10423753 45,726,563         0.31 0.53 1 0.07 0.13 0.53 0.14

rs113728460 45,726,654         0.31 0.53 1 0.07 0.13 0.53 0.14

rs142415915 45,726,745         0.31 0.53 1 0.07 0.13 0.53 0.14

rs146871722 45,726,758         0.31 0.53 1 0.07 0.13 0.53 0.14

rs113045530 45,726,821         0.31 0.53 1 0.07 0.13 0.53 0.14

rs143154520 45,726,869         0.31 0.53 1 0.07 0.13 0.53 0.14

rs111691933 45,726,964         0.31 0.53 1 0.07 0.13 0.53 0.14

rs112909419 45,726,968         0.31 0.53 1 0.07 0.13 0.53 0.14

rs112668741 45,726,976         0.31 0.53 1 0.07 0.13 0.53 0.14

rs111462669 45,727,167         0.31 0.53 1 0.07 0.13 0.53 0.14

rs1969927370 45,727,275         0.31 0.53 1 0.07 0.13 0.53 0.14

rs117316672 45,727,276         0.31 0.53 1 0.07 0.13 0.53 0.14

rs60048477 45,727,362         0.31 0.53 1 0.07 0.13 0.53 0.14

rs10405194 45,727,622         0.31 0.53 1 0.07 0.13 0.53 0.14

rs1387808030 45,727,671         0.31 0.53 1 0.07 0.13 0.53 0.14

rs60406788 45,727,930         0.31 0.53 1 0.07 0.13 0.53 0.14

rs59172754 45,728,059         0.31 0.53 1 0.07 0.13 0.53 0.14

rs57767166 45,728,123         0.31 0.53 1 0.07 0.13 0.53 0.14

rs58647388 45,728,231         0.31 0.53 1 0.07 0.13 0.53 0.14

rs60081440 45,728,238         0.31 0.53 1 0.07 0.13 0.53 0.14

rs57787576 45,728,406         0.31 0.53 1 0.07 0.13 0.53 0.14

rs58846289 45,728,576         0.31 0.53 1 0.07 0.13 0.53 0.14

rs61625909 45,728,595         0.31 0.53 1 0.07 0.13 0.53 0.14

rs57002525 45,728,695         0.31 0.53 1 0.07 0.13 0.53 0.14

rs59741163 45,728,806         0.31 0.53 1 0.07 0.13 0.53 0.14

rs57403313 45,728,942         0.31 0.53 1 0.07 0.13 0.53 0.14

rs56675703 45,729,123         0.31 0.53 1 0.07 0.13 0.53 0.14

rs61552519 45,729,200         0.31 0.53 1 0.07 0.13 0.53 0.14

rs57035271 45,729,275         0.31 0.53 1 0.07 0.13 0.53 0.14

rs56879892 45,729,587         0.31 0.53 1 0.07 0.13 0.53 0.14
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rs111269631 45,729,813         0.31 0.53 1 0.07 0.13 0.53 0.14

rs10424245 45,729,948         0.31 0.53 1 0.07 0.13 0.53 0.14

rs112405270 45,730,238         0.31 0.53 1 0.07 0.13 0.53 0.14

rs61463967 45,730,470         0.31 0.53 1 0.07 0.13 0.53 0.14

rs188601304 45,722,334         0.75 0.52 0.75 1 0.86 0.52 0.19

rs186531134 45,726,149         0.75 0.52 0.75 1 0.86 0.52 0.19

rs145952987 45,729,924         0.75 0.52 0.75 1 0.86 0.52 0.19

rs62118504 45,734,751         0.59 0.52 0.75 0.66 0.7 0.52 0.04

rs59259486 45,719,790         0.7 0.51 0.74 0.92 0.82 0.51 0.02

rs57045381 45,731,564         0.3 0.51 0.8 0.07 0.12 0.51 0.04

rs140013593 45,732,661         0.3 0.51 0.8 0.07 0.12 0.51 0.04

rs58258155 45,732,725         0.3 0.51 0.8 0.07 0.12 0.51 0.04

rs181222539 45,732,960         0.28 0.51 1 0.02 0.03 0.51 0.07

rs1970013094 45,733,214         0.3 0.51 0.8 0.07 0.12 0.51 0.04

rs189049349 45,733,309         0.28 0.51 1 0.02 0.03 0.51 0.07

rs10402739 45,733,897         0.3 0.51 0.8 0.07 0.12 0.51 0.04

rs1970025005 45,734,195         0.3 0.51 0.8 0.07 0.12 0.51 0.04

rs77003151 45,715,976         0.74 0.5 0.74 1 0.85 0.58 0

rs143393432 45,715,996         0.74 0.5 0.74 1 0.85 0.51 0

rs11667509 45,716,192         0.74 0.5 0.74 1 0.85 0.59 0

rs11667430 45,716,197         0.74 0.5 0.74 1 0.85 0.58 0

rs185860487 45,716,283         0.74 0.5 0.74 1 0.85 0.5 0

rs200836902 45,716,357         0.74 0.5 0.74 1 0.85 0.5 0

rs189063316 45,716,364         0.74 0.5 0.74 1 0.85 0.52 0

rs57437338 45,716,678         0.74 0.5 0.74 1 0.85 0.45 0

rs73034885 45,716,899         0.26 0.5 0 0 0 0.51 0

rs1969806189 45,717,169         0.74 0.5 0.74 1 0.85 0.5 0

rs151046811 45,717,248         0.74 0.5 0.74 1 0.85 0.52 0

rs142428371 45,717,296         0.74 0.5 0.74 1 0.85 0.52 0

rs1287006835 45,717,427         0.74 0.5 0.74 1 0.85 0.5 0

rs57354345 45,717,615         0.74 0.5 0.74 1 0.85 0.52 0

rs187175824 45,717,625         0.74 0.5 0.74 1 0.85 0.5 0

rs182773180 45,717,719         0.74 0.5 0.74 1 0.85 0.5 0

rs144670664 45,717,785         0.74 0.5 0.74 1 0.85 0.52 0

rs187458474 45,717,943         0.74 0.5 0.74 1 0.85 0.52 0

rs189424543 45,718,433         0.74 0.5 0.74 1 0.85 0.5 0

rs57112300 45,718,624         0.29 0.5 0.75 0.05 0.1 0.5 0.01

rs1305380718 45,718,720         0.74 0.5 0.74 1 0.85 0.5 0

rs188515109 45,718,852         0.74 0.5 0.74 1 0.85 0.5 0

rs59566001 45,719,065         0.26 0.5 0 0 0 0.54 0

rs73568206 45,719,106         0.26 0.5 0 0 0 0.5 0

rs115906914 45,719,138         0.74 0.5 0.74 1 0.85 0.5 0

rs141724506 45,719,193         0.74 0.5 0.74 1 0.85 0.5 0

rs56916276 45,719,426         0.74 0.5 0.74 1 0.85 0.51 0

rs73568208 45,719,463         0.26 0.5 0 0 0 0.5 0

rs76738189 45,719,493         0.74 0.5 0.74 1 0.85 0.52 0

rs149229776 45,720,307         0.74 0.5 0.74 1 0.85 0.5 0
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rs1160873375 45,720,764         0.74 0.5 0.74 1 0.85 0.51 0

rs58935155 45,721,596         0.74 0.5 0.74 1 0.85 0.5 0

rs79531457 45,722,020         0.74 0.5 0.74 1 0.85 0.5 0

rs73568210 45,722,077         0.26 0.5 0 0 0 0.5 0

rs114505591 45,722,186         0.74 0.5 0.74 1 0.85 0.5 0

rs117755077 45,722,230         0.29 0.5 0.75 0.05 0.1 0.5 0.01

rs111406553 45,722,265         0.26 0.5 0 0 0 0.5 0

rs60528995 45,722,517         0.74 0.5 0.74 1 0.85 0.53 0

rs74459616 45,722,529         0.74 0.5 0.74 1 0.85 0.51 0

rs144640143 45,722,616         0.74 0.5 0.74 1 0.85 0.52 0

rs59333887 45,722,743         0.74 0.5 0.74 1 0.85 0.53 0

rs73568215 45,722,773         0.26 0.5 0 0 0 0.5 0

rs192547359 45,723,142         0.74 0.5 0.74 1 0.85 0.5 0

rs183665617 45,723,228         0.74 0.5 0.74 1 0.85 0.5 0

rs111664793 45,723,233         0.26 0.5 0 0 0 0.5 0

rs1969881112 45,723,376         0.74 0.5 0.74 1 0.85 0.5 0

rs149548393 45,723,380         0.74 0.5 0.74 1 0.85 0.51 0

rs79890446 45,723,446         0.74 0.5 0.74 1 0.85 0.49 0

rs140668794 45,723,450         0.74 0.5 0.74 1 0.85 0.5 0

rs147898480 45,723,518         0.74 0.5 0.74 1 0.85 0.5 0

rs12461144 45,723,706         0.74 0.5 0.74 1 0.85 0.45 0

rs112102023 45,723,714         0.26 0.5 0 0 0 0.48 0

rs78222968 45,723,832         0.74 0.5 0.74 1 0.85 0.5 0

rs10406604 45,723,986         0.26 0.5 0 0 0 0.53 0

rs73034893 45,724,044         0.74 0.5 0.74 1 0.85 0.51 0

rs141046425 45,724,110         0.74 0.5 0.74 1 0.85 0.5 0

rs1194606521 45,724,296         0.26 0.5 0 0 0 0.53 0

rs1555756029 45,724,297         0.26 0.5 0 0 0 0.53 0

rs1969894901 45,724,561         0.26 0.5 0 0 0 0.54 0

rs1426173634 45,724,633         0.26 0.5 0 0 0 0.54 0

rs12978617 45,724,658         0.26 0.5 0 0 0 0.54 0

rs184287728 45,724,732         0.74 0.5 0.74 1 0.85 0.5 0

rs28607628 45,724,743         0.74 0.5 0.74 1 0.85 0.51 0

rs144619413 45,725,081         0.74 0.5 0.74 1 0.85 0.52 0

rs181890181 45,725,109         0.74 0.5 0.74 1 0.85 0.49 0

rs141681064 45,725,149         0.74 0.5 0.74 1 0.85 0.52 0

rs185288032 45,725,199         0.26 0.5 0 0 0 0.5 0

rs80074203 45,725,247         0.74 0.5 0.74 1 0.85 0.5 0

rs148021310 45,725,250         0.74 0.5 0.74 1 0.85 0.5 0

rs386422402 45,725,448         0.74 0.5 0.74 1 0.85 0.5 0

rs181959846 45,725,614         0.74 0.5 0.74 1 0.85 0.5 0

rs56715955 45,725,739         0.74 0.5 0.74 1 0.85 0.51 0

rs185002523 45,725,878         0.74 0.5 0.74 1 0.85 0.5 0

rs142986624 45,725,945         0.74 0.5 0.74 1 0.85 0.5 0

rs181170401 45,726,006         0.74 0.5 0.74 1 0.85 0.5 0

rs147468361 45,726,047         0.74 0.5 0.74 1 0.85 0.5 0

rs191434584 45,726,190         0.74 0.5 0.74 1 0.85 0.51 0
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rs77783265 45,726,549         0.74 0.5 0.74 1 0.85 0.5 0

rs148761251 45,726,701         0.74 0.5 0.74 1 0.85 0.5 0

rs192926463 45,727,043         0.74 0.5 0.74 1 0.85 0.5 0

rs150312307 45,727,190         0.74 0.5 0.74 1 0.85 0.5 0

rs185070442 45,727,443         0.74 0.5 0.74 1 0.85 0.52 0

rs12975661 45,727,496         0.74 0.5 0.74 1 0.85 0.5 0

rs143150894 45,727,571         0.74 0.5 0.74 1 0.85 0.5 0

rs1484323 45,727,902         0.74 0.5 0.74 1 0.85 0.46 0

rs57259996 45,728,546         0.74 0.5 0.74 1 0.85 0.47 0

rs188147127 45,728,651         0.74 0.5 0.74 1 0.85 0.5 0

rs180682471 45,728,671         0.74 0.5 0.74 1 0.85 0.5 0

rs1491279199 45,728,880         0.74 0.5 0.74 1 0.85 0.52 0

rs74253349 45,729,533         0.74 0.5 0.74 1 0.85 0.51 0

rs148814104 45,729,565         0.74 0.5 0.74 1 0.85 0.5 0

rs183330131 45,730,389         0.74 0.5 0.74 1 0.85 0.5 0

rs191036928 45,730,525         0.74 0.5 0.74 1 0.85 0.5 0

rs144251579 45,730,542         0.74 0.5 0.74 1 0.85 0.5 0

rs182375409 45,730,594         0.74 0.5 0.74 1 0.85 0.5 0

rs141492594 45,730,795         0.74 0.5 0.74 1 0.85 0.52 0

rs183418915 45,731,093         0.74 0.5 0.74 1 0.85 0.5 0

rs73939819 45,731,302         0.74 0.5 0.74 1 0.85 0.5 0

rs772723687 45,731,339         0.26 0.5 0 0 0 0.48 0

rs115648030 45,731,348         0.26 0.5 0 0 0 0.48 0

rs75426681 45,731,515         0.26 0.5 0 0 0 0.48 0

rs430319 45,731,762         0.74 0.5 0.74 1 0.85 0.5 0

rs346769 45,731,858         0.74 0.5 0.74 1 0.85 0.5 0

rs184344638 45,732,125         0.74 0.5 0.74 1 0.85 0.5 0

rs60537807 45,732,839         0.26 0.5 0 0 0 0.48 0

rs117473794 45,732,931         0.26 0.5 0 0 0 0.51 0

rs148613044 45,732,972         0.29 0.5 0.75 0.05 0.1 0.5 0.01

rs60507663 45,733,201         0.26 0.5 0 0 0 0.48 0

rs10402508 45,733,782         0.57 0.5 0.74 0.66 0.7 0.5 -0.01

rs186122312 45,733,794         0.74 0.5 0.74 1 0.85 0.5 0

rs190887667 45,733,925         0.74 0.5 0.74 1 0.85 0.5 0

rs116033882 45,734,152         0.26 0.5 0 0 0 0.48 0

rs184169354 45,734,194         0.74 0.5 0.74 1 0.85 0.5 0

rs150191999 45,734,397         0.74 0.5 0.74 1 0.85 0.47 0

rs182987942 45,734,409         0.74 0.5 0.74 1 0.85 0.5 0

rs644177 45,734,433         0.26 0.5 0 0 0 0.46 0

rs182768545 45,734,611         0.74 0.5 0.74 1 0.85 0.5 0

rs115530236 45,734,660         0.74 0.5 0.74 1 0.85 0.51 0

rs187447862 45,734,862         0.74 0.5 0.74 1 0.85 0.5 0

rs79744739 45,735,252         0.74 0.5 0.74 1 0.85 0.5 0

rs138339429 45,735,303         0.74 0.5 0.74 1 0.85 0.47 0

rs193056445 45,735,377         0.74 0.5 0.74 1 0.85 0.5 0

rs73570362 45,735,649         0.74 0.5 0.74 1 0.85 0.5 0

rs141551411 45,735,772         0.74 0.5 0.74 1 0.85 0.5 0
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rs187564987 45,735,794         0.74 0.5 0.74 1 0.85 0.5 0

rs150907907 45,735,900         0.74 0.5 0.74 1 0.85 0.5 0

rs112225752 45,736,058         0.74 0.5 0.74 1 0.85 0.5 0

rs144226760 45,736,212         0.74 0.5 0.74 1 0.85 0.51 0

rs181322752 45,736,469         0.74 0.5 0.74 1 0.85 0.5 0

rs147792159 45,736,659         0.74 0.5 0.74 1 0.85 0.5 0

rs75727214 45,737,149         0.74 0.5 0.74 1 0.85 0.52 0

rs60598859 45,737,218         0.74 0.5 0.74 1 0.85 0.55 0

rs182074053 45,737,388         0.74 0.5 0.74 1 0.85 0.5 0

rs182639370 45,722,328         0.72 0.49 0.73 0.98 0.84 0.49 -0.07

rs59242878 45,736,189         0.72 0.49 0.73 0.98 0.84 0.49 -0.07

rs74444899 45,724,060         0.71 0.48 0.73 0.97 0.83 0.48 -0.1

rs386809736 45,723,379         0.45 0.47 0.71 0.42 0.53 0.47 -0.05

rs202180860 45,723,570         0.64 0.46 0.72 0.83 0.77 0.46 -0.09

rs573244969 45,733,117         0.28 0.46 0.57 0.07 0.12 0.46 -0.12
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AD prediction accuracy results when running SVM on ADNI SNPs from EXOC3L2  gene 

with linear kernel, with random downsampling.

rsID Location in chr19 Accuracy

Balanced 

accuracy Precision Recall F1 score ROC AUC MCC

rs60528995 45,722,517         0.56 0.56 1 0.11 0.2 0.56 0.24

rs57354345 45,717,615         0.51 0.52 0.5 0.85 0.63 0.52 0.04

rs1969894901 45,724,561         0.51 0.52 0.5 0.89 0.64 0.52 0.05

rs1426173634 45,724,633         0.51 0.52 0.5 0.89 0.64 0.52 0.05

rs12978617 45,724,658         0.51 0.52 0.5 0.89 0.64 0.52 0.05

rs73568222 45,725,975         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs57399322 45,726,106         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs58715307 45,726,458         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs10423753 45,726,563         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs113728460 45,726,654         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs142415915 45,726,745         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs146871722 45,726,758         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs113045530 45,726,821         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs143154520 45,726,869         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs111691933 45,726,964         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs112909419 45,726,968         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs112668741 45,726,976         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs111462669 45,727,167         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs1969927370 45,727,275         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs117316672 45,727,276         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs60048477 45,727,362         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs1387808030 45,727,671         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs1484323 45,727,902         0.51 0.52 0.5 1 0.67 0.52 0.13

rs60406788 45,727,930         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs59172754 45,728,059         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs57767166 45,728,123         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs58647388 45,728,231         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs60081440 45,728,238         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs57787576 45,728,406         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs58846289 45,728,576         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs61625909 45,728,595         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs57002525 45,728,695         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs59741163 45,728,806         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs57403313 45,728,942         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs61552519 45,729,200         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs57035271 45,729,275         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs56879892 45,729,587         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs111269631 45,729,813         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs10424245 45,729,948         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs61463967 45,730,470         0.53 0.52 0.6 0.11 0.19 0.52 0.07

rs182768545 45,734,611         0.51 0.52 0.5 1 0.67 0.52 0.13

rs79744739 45,735,252         0.53 0.52 1 0.04 0.07 0.52 0.14

rs138339429 45,735,303         0.53 0.52 1 0.04 0.07 0.52 0.14
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rs77003151 45,715,976         0.51 0.5 0 0 0 0.54 0

rs143393432 45,715,996         0.49 0.5 0.49 1 0.66 0.5 0

rs11667509 45,716,192         0.49 0.5 0.49 1 0.66 0.48 0

rs11667430 45,716,197         0.51 0.5 0 0 0 0.54 0

rs185860487 45,716,283         0.49 0.5 0.49 1 0.66 0.5 0

rs200836902 45,716,357         0.49 0.5 0.49 1 0.66 0.5 0

rs189063316 45,716,364         0.49 0.5 0.49 1 0.66 0.48 0

rs57437338 45,716,678         0.49 0.5 0.49 1 0.66 0.53 0

rs73034885 45,716,899         0.51 0.5 0 0 0 0.48 0

rs1969806189 45,717,169         0.49 0.5 0.49 1 0.66 0.5 0

rs151046811 45,717,248         0.49 0.5 0.49 1 0.66 0.48 0

rs142428371 45,717,296         0.49 0.5 0.49 1 0.66 0.48 0

rs1287006835 45,717,427         0.51 0.5 0 0 0 0.5 0

rs187175824 45,717,625         0.49 0.5 0.49 1 0.66 0.5 0

rs182773180 45,717,719         0.51 0.5 0 0 0 0.5 0

rs144670664 45,717,785         0.49 0.5 0.49 1 0.66 0.48 0

rs187458474 45,717,943         0.49 0.5 0.49 1 0.66 0.48 0

rs189424543 45,718,433         0.51 0.5 0 0 0 0.5 0

rs57112300 45,718,624         0.49 0.5 0.49 1 0.66 0.52 0

rs1305380718 45,718,720         0.49 0.5 0.49 1 0.66 0.5 0

rs188515109 45,718,852         0.49 0.5 0.49 1 0.66 0.5 0

rs59566001 45,719,065         0.49 0.5 0.49 1 0.66 0.52 0

rs73568206 45,719,106         0.49 0.5 0.49 1 0.66 0.5 0

rs115906914 45,719,138         0.49 0.5 0.49 1 0.66 0.5 0

rs141724506 45,719,193         0.49 0.5 0.49 1 0.66 0.5 0

rs56916276 45,719,426         0.49 0.5 0.49 1 0.66 0.5 0

rs73568208 45,719,463         0.49 0.5 0.49 1 0.66 0.5 0

rs76738189 45,719,493         0.51 0.5 0 0 0 0.52 0

rs59259486 45,719,790         0.51 0.5 0 0 0 0.5 0

rs149229776 45,720,307         0.51 0.5 0 0 0 0.5 0

rs1160873375 45,720,764         0.49 0.5 0.49 1 0.66 0.5 0

rs58935155 45,721,596         0.51 0.5 0 0 0 0.48 0

rs79531457 45,722,020         0.51 0.5 0 0 0 0.5 0

rs73568210 45,722,077         0.49 0.5 0.49 1 0.66 0.5 0

rs114505591 45,722,186         0.49 0.5 0.49 1 0.66 0.5 0

rs117755077 45,722,230         0.51 0.5 0 0 0 0.5 0

rs111406553 45,722,265         0.49 0.5 0.49 1 0.66 0.5 0

rs182639370 45,722,328         0.49 0.5 0.49 1 0.66 0.5 0

rs188601304 45,722,334         0.49 0.5 0.49 1 0.66 0.5 0

rs74459616 45,722,529         0.49 0.5 0.49 1 0.66 0.5 0

rs144640143 45,722,616         0.49 0.5 0.49 1 0.66 0.48 0

rs59333887 45,722,743         0.49 0.5 0.49 1 0.66 0.52 0

rs73568215 45,722,773         0.49 0.5 0.49 1 0.66 0.5 0

rs192547359 45,723,142         0.49 0.5 0.49 1 0.66 0.5 0

rs183665617 45,723,228         0.49 0.5 0.49 1 0.66 0.5 0

rs111664793 45,723,233         0.49 0.5 0.49 1 0.66 0.5 0

rs1969881112 45,723,376         0.49 0.5 0.49 1 0.66 0.5 0
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rs149548393 45,723,380         0.49 0.5 0.49 1 0.66 0.5 0

rs79890446 45,723,446         0.49 0.5 0.49 1 0.66 0.54 0

rs140668794 45,723,450         0.51 0.5 0 0 0 0.5 0

rs147898480 45,723,518         0.49 0.5 0.49 1 0.66 0.5 0

rs202180860 45,723,570         0.49 0.5 0.49 1 0.66 0.53 0

rs12461144 45,723,706         0.49 0.5 0.49 1 0.66 0.48 0

rs112102023 45,723,714         0.49 0.5 0.49 1 0.66 0.5 0

rs78222968 45,723,832         0.49 0.5 0.49 1 0.66 0.5 0

rs10406604 45,723,986         0.49 0.5 0.49 1 0.66 0.45 0

rs73034893 45,724,044         0.51 0.5 0 0 0 0.48 0

rs74444899 45,724,060         0.49 0.5 0.49 1 0.66 0.48 0

rs141046425 45,724,110         0.49 0.5 0.49 1 0.66 0.5 0

rs1194606521 45,724,296         0.49 0.5 0.49 1 0.66 0.53 0

rs1555756029 45,724,297         0.51 0.5 0 0 0 0.53 0

rs28645301 45,724,692         0.49 0.5 0.49 1 0.66 0.48 0

rs184287728 45,724,732         0.51 0.5 0 0 0 0.5 0

rs28607628 45,724,743         0.49 0.5 0.49 1 0.66 0.46 0

rs28564302 45,724,868         0.49 0.5 0.49 1 0.66 0.48 0

rs386809738 45,724,961         0.49 0.5 0.49 1 0.66 0.48 0

rs60269219 45,724,963         0.49 0.5 0.49 1 0.66 0.48 0

rs144619413 45,725,081         0.51 0.5 0 0 0 0.48 0

rs181890181 45,725,109         0.51 0.5 0 0 0 0.5 0

rs59356929 45,725,127         0.49 0.5 0.49 1 0.66 0.48 0

rs141681064 45,725,149         0.51 0.5 0 0 0 0.48 0

rs58213824 45,725,185         0.49 0.5 0.49 1 0.66 0.48 0

rs185288032 45,725,199         0.49 0.5 0.49 1 0.66 0.52 0

rs80074203 45,725,247         0.49 0.5 0.49 1 0.66 0.5 0

rs148021310 45,725,250         0.51 0.5 0 0 0 0.5 0

rs57294488 45,725,481         0.49 0.5 0.49 1 0.66 0.48 0

rs181959846 45,725,614         0.49 0.5 0.49 1 0.66 0.5 0

rs56715955 45,725,739         0.49 0.5 0.49 1 0.66 0.44 0

rs185002523 45,725,878         0.49 0.5 0.49 1 0.66 0.5 0

rs142986624 45,725,945         0.51 0.5 0 0 0 0.5 0

rs181170401 45,726,006         0.49 0.5 0.49 1 0.66 0.5 0

rs147468361 45,726,047         0.51 0.5 0.5 0.04 0.07 0.5 0

rs186531134 45,726,149         0.49 0.5 0.49 1 0.66 0.5 0

rs191434584 45,726,190         0.49 0.5 0.49 1 0.66 0.5 0

rs10423031 45,726,224         0.49 0.5 0.49 1 0.66 0.48 0

rs77783265 45,726,549         0.51 0.5 0 0 0 0.5 0

rs148761251 45,726,701         0.49 0.5 0.49 1 0.66 0.5 0

rs112759099 45,726,845         0.51 0.5 0 0 0 0.52 0

rs192926463 45,727,043         0.49 0.5 0.49 1 0.66 0.5 0

rs150312307 45,727,190         0.49 0.5 0.49 1 0.66 0.5 0

rs185070442 45,727,443         0.49 0.5 0.49 1 0.66 0.48 0

rs12975661 45,727,496         0.49 0.5 0.49 1 0.66 0.5 0

rs143150894 45,727,571         0.51 0.5 0 0 0 0.5 0

rs10405194 45,727,622         0.49 0.5 0.49 1 0.66 0.48 0
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rs57259996 45,728,546         0.49 0.5 0.49 0.93 0.64 0.5 -0.01

rs188147127 45,728,651         0.51 0.5 0 0 0 0.5 0

rs180682471 45,728,671         0.49 0.5 0.49 1 0.66 0.5 0

rs1491279199 45,728,880         0.51 0.5 0 0 0 0.5 0

rs56675703 45,729,123         0.49 0.5 0.49 1 0.66 0.48 0

rs74253349 45,729,533         0.49 0.5 0.49 1 0.66 0.44 0

rs148814104 45,729,565         0.49 0.5 0.49 1 0.66 0.5 0

rs145952987 45,729,924         0.49 0.5 0.49 1 0.66 0.5 0

rs112405270 45,730,238         0.49 0.5 0.49 1 0.66 0.48 0

rs183330131 45,730,389         0.49 0.5 0.49 1 0.66 0.5 0

rs191036928 45,730,525         0.51 0.5 0 0 0 0.5 0

rs144251579 45,730,542         0.49 0.5 0.49 1 0.66 0.5 0

rs182375409 45,730,594         0.49 0.5 0.49 1 0.66 0.5 0

rs141492594 45,730,795         0.51 0.5 0 0 0 0.48 0

rs183418915 45,731,093         0.49 0.5 0.49 1 0.66 0.5 0

rs73939819 45,731,302         0.49 0.5 0.49 1 0.66 0.5 0

rs772723687 45,731,339         0.49 0.5 0.49 1 0.66 0.48 0

rs115648030 45,731,348         0.49 0.5 0.49 1 0.66 0.48 0

rs75426681 45,731,515         0.49 0.5 0.49 1 0.66 0.48 0

rs57045381 45,731,564         0.51 0.5 0 0 0 0.48 0

rs430319 45,731,762         0.49 0.5 0.49 1 0.66 0.5 0

rs346769 45,731,858         0.49 0.5 0.49 1 0.66 0.5 0

rs184344638 45,732,125         0.49 0.5 0.49 0.96 0.65 0.5 0

rs140013593 45,732,661         0.51 0.5 0 0 0 0.48 0

rs58258155 45,732,725         0.51 0.5 0 0 0 0.48 0

rs60537807 45,732,839         0.49 0.5 0.49 1 0.66 0.44 0

rs117473794 45,732,931         0.51 0.5 0 0 0 0.48 0

rs181222539 45,732,960         0.49 0.5 0.49 0.96 0.65 0.5 0

rs148613044 45,732,972         0.51 0.5 0 0 0 0.44 0

rs573244969 45,733,117         0.51 0.5 0 0 0 0.57 0

rs60507663 45,733,201         0.49 0.5 0.49 1 0.66 0.44 0

rs1970013094 45,733,214         0.51 0.5 0 0 0 0.52 0

rs189049349 45,733,309         0.49 0.5 0.49 1 0.66 0.46 0

rs10402508 45,733,782         0.49 0.5 0.49 1 0.66 0.53 0

rs186122312 45,733,794         0.49 0.5 0.49 1 0.66 0.5 0

rs10402739 45,733,897         0.51 0.5 0 0 0 0.48 0

rs190887667 45,733,925         0.49 0.5 0.49 1 0.66 0.5 0

rs116033882 45,734,152         0.49 0.5 0.49 1 0.66 0.48 0

rs184169354 45,734,194         0.49 0.5 0.49 1 0.66 0.5 0

rs1970025005 45,734,195         0.49 0.5 0.49 1 0.66 0.48 0

rs150191999 45,734,397         0.51 0.5 0 0 0 0.5 0

rs182987942 45,734,409         0.49 0.5 0.49 1 0.66 0.5 0

rs644177 45,734,433         0.49 0.5 0.49 1 0.66 0.46 0

rs115530236 45,734,660         0.49 0.5 0.49 1 0.66 0.5 0

rs62118504 45,734,751         0.51 0.5 0 0 0 0.52 0

rs187447862 45,734,862         0.49 0.5 0.49 1 0.66 0.5 0

rs193056445 45,735,377         0.49 0.5 0.49 1 0.66 0.5 0
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rs73570362 45,735,649         0.49 0.5 0.49 1 0.66 0.5 0

rs141551411 45,735,772         0.49 0.5 0.49 1 0.66 0.5 0

rs187564987 45,735,794         0.51 0.5 0 0 0 0.5 0

rs150907907 45,735,900         0.49 0.5 0.49 1 0.66 0.48 0

rs59647713 45,736,003         0.49 0.5 0.49 1 0.66 0.48 0

rs112225752 45,736,058         0.49 0.5 0.49 1 0.66 0.5 0

rs144226760 45,736,212         0.49 0.5 0.49 1 0.66 0.5 0

rs181322752 45,736,469         0.49 0.5 0.49 1 0.66 0.5 0

rs147792159 45,736,659         0.51 0.5 0 0 0 0.5 0

rs75727214 45,737,149         0.49 0.5 0.49 1 0.66 0.46 0

rs60598859 45,737,218         0.49 0.5 0.49 1 0.66 0.49 0

rs182074053 45,737,388         0.49 0.5 0.49 1 0.66 0.5 0

rs59242878 45,736,189         0.49 0.48 0 0 0 0.48 -0.13

rs386422402 45,725,448         0.44 0.44 0.46 0.81 0.59 0.44 -0.17

rs386809736 45,723,379         0.42 0.42 0.4 0.37 0.38 0.42 -0.17
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Results of running DNABERT transformer model on each window of APOE  gene from 

ADNI dataset, using random downsampling for dataset balance.

Window start 

pos.

Window end 

pos. Train accuracy Train F1 score Train AUC

Test 

accuracy

Test F1 

score Test AUC

45,409,038     45,409,138  0.501 0.334 0.482 0.491 0.329 0.482

45,409,088     45,409,188  0.499 0.333 0.388 0.509 0.337 0.388

45,409,138     45,409,238  0.499 0.333 0.321 0.509 0.337 0.321

45,409,188     45,409,288  0.499 0.333 0.519 0.509 0.337 0.519

45,409,238     45,409,338  0.501 0.334 0.482 0.491 0.329 0.482

45,409,288     45,409,388  0.501 0.334 0.500 0.491 0.329 0.500

45,409,338     45,409,438  0.499 0.333 0.482 0.509 0.337 0.482

45,409,388     45,409,488  0.501 0.334 0.481 0.491 0.329 0.481

45,409,438     45,409,538  0.499 0.333 0.500 0.509 0.337 0.500

45,409,488     45,409,588  0.499 0.333 0.518 0.509 0.337 0.518

45,409,538     45,409,638  0.501 0.334 0.500 0.491 0.329 0.500

45,409,588     45,409,688  0.499 0.333 0.482 0.509 0.337 0.482

45,409,638     45,409,738  0.501 0.334 0.519 0.491 0.329 0.519

45,409,688     45,409,788  0.499 0.333 0.518 0.509 0.337 0.518

45,409,738     45,409,838  0.501 0.334 0.482 0.491 0.329 0.482

45,409,788     45,409,888  0.501 0.334 0.518 0.491 0.329 0.518

45,409,838     45,409,938  0.501 0.334 0.481 0.491 0.329 0.481

45,409,888     45,409,988  0.501 0.334 0.500 0.491 0.329 0.500

45,409,938     45,410,038  0.499 0.333 0.631 0.509 0.337 0.631

45,409,988     45,410,088  0.501 0.334 0.520 0.491 0.329 0.520

45,410,038     45,410,138  0.501 0.334 0.518 0.491 0.329 0.518

45,410,088     45,410,188  0.501 0.334 0.518 0.491 0.329 0.518

45,410,138     45,410,238  0.499 0.333 0.481 0.509 0.337 0.481

45,410,188     45,410,288  0.499 0.333 0.519 0.509 0.337 0.519

45,410,238     45,410,338  0.499 0.333 0.482 0.509 0.337 0.482

45,410,288     45,410,388  0.501 0.334 0.481 0.491 0.329 0.481

45,410,338     45,410,438  0.499 0.333 0.500 0.509 0.337 0.500

45,410,388     45,410,488  0.501 0.334 0.439 0.491 0.329 0.439

45,410,438     45,410,538  0.501 0.334 0.380 0.491 0.329 0.380

45,410,488     45,410,588  0.499 0.333 0.500 0.509 0.337 0.500

45,410,538     45,410,638  0.499 0.333 0.519 0.509 0.337 0.519

45,410,588     45,410,688  0.499 0.333 0.518 0.509 0.337 0.518

45,410,638     45,410,738  0.501 0.334 0.519 0.491 0.329 0.519

45,410,688     45,410,788  0.501 0.334 0.518 0.491 0.329 0.518

45,410,738     45,410,838  0.501 0.334 0.519 0.491 0.329 0.519

45,410,788     45,410,888  0.501 0.334 0.482 0.491 0.329 0.482

45,410,838     45,410,938  0.495 0.338 0.499 0.473 0.321 0.499

45,410,888     45,410,988  0.499 0.333 0.500 0.509 0.337 0.500

45,410,938     45,411,038  0.501 0.334 0.519 0.491 0.329 0.519

45,410,988     45,411,088  0.501 0.334 0.518 0.491 0.329 0.518

45,411,038     45,411,138  0.499 0.333 0.481 0.509 0.337 0.481

45,411,088     45,411,188  0.501 0.334 0.481 0.491 0.329 0.481

45,411,138     45,411,238  0.501 0.334 0.500 0.491 0.329 0.500
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45,411,188     45,411,288  0.501 0.334 0.481 0.491 0.329 0.481

45,411,238     45,411,338  0.501 0.334 0.500 0.491 0.329 0.500

45,411,288     45,411,388  0.501 0.334 0.519 0.491 0.329 0.519

45,411,338     45,411,438  0.499 0.333 0.481 0.509 0.337 0.481

45,411,388     45,411,488  0.501 0.334 0.481 0.491 0.329 0.481

45,411,438     45,411,538  0.501 0.334 0.481 0.491 0.329 0.481

45,411,488     45,411,588  0.499 0.333 0.481 0.509 0.337 0.481

45,411,538     45,411,638  0.499 0.333 0.482 0.509 0.337 0.482

45,411,588     45,411,688  0.501 0.334 0.500 0.491 0.329 0.500

45,411,638     45,411,738  0.499 0.333 0.518 0.509 0.337 0.518

45,411,688     45,411,788  0.501 0.334 0.482 0.491 0.329 0.482

45,411,738     45,411,838  0.499 0.333 0.518 0.509 0.337 0.518

45,411,788     45,411,888  0.499 0.333 0.500 0.509 0.337 0.500

45,411,838     45,411,938  0.499 0.333 0.519 0.509 0.337 0.519

45,411,888     45,411,988  0.499 0.333 0.593 0.509 0.337 0.593

45,411,938     45,412,038  0.499 0.333 0.458 0.509 0.337 0.458

45,411,988     45,412,088  0.501 0.334 0.536 0.491 0.329 0.536

45,412,038     45,412,138  0.499 0.333 0.537 0.509 0.337 0.537

45,412,088     45,412,188  0.499 0.333 0.518 0.509 0.337 0.518

45,412,138     45,412,238  0.499 0.333 0.519 0.509 0.337 0.519

45,412,188     45,412,288  0.499 0.333 0.519 0.509 0.337 0.519

45,412,238     45,412,338  0.501 0.334 0.519 0.491 0.329 0.519

45,412,288     45,412,388  0.499 0.333 0.500 0.509 0.337 0.500

45,412,338     45,412,438  0.501 0.334 0.519 0.491 0.329 0.519

45,412,388     45,412,488  0.501 0.334 0.500 0.491 0.329 0.500

45,412,438     45,412,538  0.499 0.333 0.518 0.509 0.337 0.518

45,412,488     45,412,588  0.499 0.333 0.518 0.509 0.337 0.518

45,412,538     45,412,638  0.499 0.333 0.518 0.509 0.337 0.518

45,412,588     45,412,650  0.499 0.333 0.481 0.509 0.337 0.481
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