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Abstract

As satellite hardware configurations progress in terms of compute power, and the
number of orbiting satellites rises, there is a need for a modern space communication
security standard. While there are space security standards that use symmetric
cryptography, we believe that satellite hardware is capable of using asymmetric
cryptographic techniques that provide forward secrecy. To deal with potential
network issues such as packet loss that are specific to satellite links, and to be
able to make use of session-based modern asymmetric cryptographic methods, we
propose the use of an application-layer protocol called QUIC. We test the viability
of using this protocol in a realistic flight scenario by integrating it in a flight software
stack developed by NASA, and measuring the compute time and memory usage
overhead it generates when compared to an existing space security protocol that
uses symmetric cryptography. We assess the feasibility of using the QUIC protocol
in harsh network conditions by artificially inducing significant packet loss and
latency. We discuss advantages and disadvantages and conclude that the newly
presented protocol holds promising value.



Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6
2.1 core Flight System . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Layered design . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Execution flow . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Space Data Link protocols . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Packet structure . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Security protocol . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Transport Layer Security . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 TLS 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 QUIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Software setup and implementation 18
3.1 General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Output and Ingest modules . . . . . . . . . . . . . . . . . . 19
3.1.2 Benchmark Module . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Benchmark Tool . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Space Data Link Security protocol . . . . . . . . . . . . . . . . . . . 24
3.2.1 Security associations . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Overcoming missing functionality . . . . . . . . . . . . . . . 25
3.2.3 Merging into cFS . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 QUIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Server specifics . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Client specifics . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Common elements . . . . . . . . . . . . . . . . . . . . . . . 32

iii



Contents iv

3.3.4 Implementation details . . . . . . . . . . . . . . . . . . . . . 33
3.3.4.1 Server interface . . . . . . . . . . . . . . . . . . . . 33
3.3.4.2 Client interface . . . . . . . . . . . . . . . . . . . . 35
3.3.4.3 Connection and stream . . . . . . . . . . . . . . . . 37

3.3.5 cFS integration . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.5.1 Command Ingest modifications . . . . . . . . . . . 40
3.3.5.2 Telemetry Output modifications . . . . . . . . . . . 42

4 Analysis 44
4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Symmetric performance comparison . . . . . . . . . . . . . . . . . . 45

4.2.1 Testing different ciphers and TLS backends . . . . . . . . . . 47
4.3 Handshake performance . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Behaviour under packet loss and high latency . . . . . . . . . . . . 50
4.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusion 53

Bibliography 55



List of Figures

2.1 General cFS application code structure. . . . . . . . . . . . . . . . . 9
2.2 Specification of the Space Packet Primary Header. . . . . . . . . . . 11
2.3 Generalised SDLS packet structure. . . . . . . . . . . . . . . . . . . 13
2.4 QUIC handshake sequence. . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Benchmark system component interaction. . . . . . . . . . . . . . . 23
3.2 Security Association initialisation code. . . . . . . . . . . . . . . . . 26
3.3 QUIC server packet ingest execution flow. . . . . . . . . . . . . . . 30
3.4 The main data structure created in the QUIC server implementation. 33
3.5 The QUIC server interface functions. . . . . . . . . . . . . . . . . . 34
3.6 A modified part of the quic_server_step function. . . . . . . . . . 36
3.7 The main data structure created in the QUIC client implementation. 36
3.8 The QUIC client interface functions. . . . . . . . . . . . . . . . . . 37
3.9 Part of the structure used to abstract a QUIC connection. . . . . . 38
3.10 The structures used to abstract a QUIC stream. . . . . . . . . . . . 39
3.11 Usage of the QUIC server initialisation functions in the context of

the Command Ingest module. . . . . . . . . . . . . . . . . . . . . . 41
3.12 Usage of the QUIC server step function in the context of the Com-

mand Ingest module. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.13 Usage of the QUIC client write function in the context of the

Telemetry Output module. . . . . . . . . . . . . . . . . . . . . . . . 43
3.14 Usage of the QUIC client step function in the context of the Telemetry

Output module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 SDLS Encryption and Decryption times for varying payload sizes. . 45
4.2 QUIC packet processing and writing times, and AEAD payload

encryption and decryption times. . . . . . . . . . . . . . . . . . . . 46
4.3 The payload encryption and decryption times of two different ciphers

with wolfSSL as the TLS backend. . . . . . . . . . . . . . . . . . . . 48

v



List of Tables

4.1 QUIC read times for different TLS ciphers and backends. . . . . . . 47
4.2 QUIC write times for different TLS ciphers and backends. . . . . . 47
4.3 QUIC handshake times from a client and server perspective. . . . . 49
4.4 Memory usage of the whole cFS system in different security configu-

rations, as recorded by Heaptrack. . . . . . . . . . . . . . . . . . . 50
4.5 Part of a QUIC conversation in high latency and packet loss conditions. 51

vi



1
Introduction

In the past decade, one of the most significant and impactful changes on the web

was the rapid adoption of HTTPS and TLS (Transport Layer Security). As internet

usage grew rapidly, the importance of securing potentially sensitive traffic became

apparent to both companies and consumers. In 2015, about 60% [1] of the traffic

handled by Chrome on Windows was unencrypted. The adoption of web security

was so swift that at the beginning of 2022, more than 90% of the traffic handled

by Chrome on Windows was encrypted [1]. Web security thus evolved from an

unimportant afterthought to being mandatory and tightly integrated into the latest

HTTP/3 standard specifications, published in June 2022 [2].

Although the vast majority of data travels across the globe through terrestrial

fibre optic cables, a small yet significant portion of information is transmitted via

Earth orbiting satellites. As the overall digital communications volume continues

to grow, so does the quantity of data routed through these satellites [3]. Part of

the increase in the volume of satellite communications could also be attributed

to the recent growth of low-earth orbit satellite constellations such as Starlink

[4], which offer lower latency connectivity at consumer prices. Besides facilitating

internet access in isolated or war affected areas, satellites are also used to gather large

quantities of scientific data that needs to be transmitted back to Earth for processing.

1
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The same need for data encryption and authentication that led to the creation

and fast adoption of new HTTP protocols with out-of-the-box security support

also applies to satellite communications. Arguably, because of the potentially

increased density of sensitive information and relative ease of intercepting radio

communications compared to terrestrial communications, satellite security might

even be considered to be more important than its terrestrial counterpart. When

satellite connections are not properly secured, malicious actors with the right tools

and expertise could take over and lock out the rightful owners, causing them to

permanently lose access to expensive hardware.

That being said, there are many satellite security methods that are in use

right now, including frequency hopping [5], which is mainly used in tactical

communications, or the Common Scrambling Algorithm (CSA), mainly used to

encrypt video broadcasts. While frequency hopping is a physical layer security

method, and is quite expensive as a result of bandwidth licensing requirements,

CSA is known to be vulnerable to side-channel attacks [6]. Besides many other

potentially untrustworthy proprietary encryption solutions, the Space Data Link

Security (SDLS) [7] protocol was proposed by the Consultative Committee for

Space Data Systems (CCSDS) in an effort to provide a standardised way for

securing space communications across NASA missions, and in the hope of improving

international collaboration.

As sending payloads to space becomes financially accessible thanks to the devel-

opment of reusable rockets, more and more different organisations and individuals

will deploy their own cubesats to orbit. As such, the need for a standardised

way of securing the communication links of these satellites becomes apparent,

and while the SDLS protocol is a good step forward, it only supports symmetric

cryptography and is inherently less well tested when compared to the universally

adopted TLS protocol, for example.

The proposal and adoption of the SDLS protocol and the fact that modern space

missions such as SpaceX’s Falcon 9 reportedly use multiple x86 processors and run

on modified linux distributions [8] indicate that spacecraft hardware has progressed
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to be able to handle software based asymmetric cryptography. As such, in this paper

we aim to assess the viability of using modern asymmetric cryptography in spacecraft

communications by comparing its performance to a public implementation of the

SDLS protocol, which uses symmetric cryptography.

Asymmetric cryptography protocols such as TLS use key exchange algorithms

in order to generate session keys for later use in communication. Although we refer

to TLS as an asymmetric protocol, it also uses symmetric cryptography for all later

communication performed after the session keys are generated. Generally, TLS is

used on top of TCP connections, as the intuitive correspondence between TCP

streams and TLS sessions makes working with these protocols easier: after a TCP

connection is established, a handshake is performed to establish the symmetric keys

to be used for the remainder of the connection. TCP connections are established by

a three-way handshake, which could be costly in a high latency satellite network. To

avoid connection establishment delays and other TCP-specific problems such as head-

of-line blocking, UDP could be used instead. UDP also comes with disadvantages,

such as the fact that it is not stream-orientated and the fact that packet loss must

be handled at the application layer, but there is indication that it is more popular

as a protocol choice for satellite communication.

As such, we think that QUIC, an application layer protocol that is the basis

for HTTP/3 and that is built on UDP, is a good fit for loss-prone satellite

connections. This protocol is tightly integrated with the latest TLS 1.3 standard and

provides 1-RTT cryptographic handshakes, essentially eliminating TCP’s connection

establishment overhead. Moreover, it can be tweaked in multiple ways to optimise

data throughput on lossy space links.

We make use of the TLS 1.3 integration and general features of QUIC in order

to analyse the performance of asymmetric cryptography in a more realistic flight

scenario. This will be done by integrating both SDLS and QUIC in the context of

NASA’s core Flight System (cFS) [9], an open source spacecraft software platform

that aims to serve as a ready-to-use starting point for space missions. Furthermore,

we discuss the performance-security trade-offs between a number of cryptographic
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ciphers supported in the TLS 1.3 standard. To better grasp the computational

viability of using TLS in small spacecraft, we measure the memory footprint and

compute time of two popular TLS libraries. Finally, we explore how an untuned

configuration of the QUIC protocol would handle satellite network conditions,

namely high latency and packet loss.

1.1 Contributions

The main contributions of this paper are as follows:

• We created a functional implementation of the QUIC network protocol for

the core Flight System.

• We showed that the QUIC protocol behaves adequately under space link

conditions that involve significant packet loss and high latency.

• We measured the memory usage overhead of using QUIC in the core Flight

System and compared it to the overhead generated by using the SDLS protocol.

• We compared the symmetric cryptography performance of the SDLS protocol

to two different TLS 1.3 implementations.

• We assessed the viability of performing a TLS 1.3 handshake in a resource

limited space environment by comparing the compute time required to

complete the handshake to the compute time required to send packets over a

channel secured via symmetric cryptography.

1.2 Structure of the paper

This chapter motivates our work and states the main contributions of this paper.

In the next chapter, we further describe the systems and protocols we used as part

of our work. In Chapter 3, we present the software setup we used to perform our

experiments and detail how we implemented the QUIC protocol in the complex

cFS software stack. In Chapter 4, we analyse how QUIC behaves under space
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link conditions, compare its cryptographic performance to the SDLS protocol

and analyse its memory usage.



2
Background

This chapter will introduce NASA’s core Flight System (cFS), which provided us

with a realistic spacecraft software environment in which to conduct our experiments.

Then, we will briefly discuss the Space Data Link protocols proposed by CCSDS,

along with the SDLS security protocol proposed by the same committee. We

will discuss how the Transport Layer Security (TLS) protocol works, and what

changed in the latest version of this protocol. Finally, we will succinctly present

some of the features of the QUIC protocol.

2.1 core Flight System

The common practice for software development for new NASA spacecraft was to

simply copy the code of an older mission and use it as a starting point for the

new one [10]. Although this worked for some time, it also involved a significant

amount of reimplementing the same functionality. The reason for this was either

that the new flight software team was unaware of previous missions that shared

requirements with theirs, or that the requirements of the old mission differed

slightly, but the old code was too specific.

As such, in an effort to reduce the costs of developing flight software for

new missions, the Software Engineering Division at Goddard Space Flight Center

6
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analysed existing flight software and started work on cFS in 2005 [10]. In February

of 2015, cFS was completely open-sourced [11], and its source code is now available

on GitHub [12] for anyone to use.

Hardware that is sent into space is often designed to be radiation tolerant, which

means that it is constrained in terms of computational power and available memory,

and is also more expensive than traditional computers. If radiation tolerance is not

a requirement, more powerful but less reliable hardware might also be used. That

being said, cFS was designed to be efficient with the resources it uses. Along with

FreeRTOS [13] (a real-time operating system for embedded devices), cFS fits on just

800KB of flash storage and 2MB of RAM [9]. To facilitate the constraint-considerate

software engineering and design that was needed in order to achieve this small

footprint, cFS was written in the C programming language.

2.1.1 Layered design

The core Flight System was designed in a layered manner, so that individual

components can be more easily maintained and updated. The layered design also

helped to make cFS compatible with multiple different operating systems. Thus,

one of the layers handles OS abstraction and essentially hides the OS-specific

implementation details to offer higher-level APIs for different functionality, such

as sockets or shared memory.

On top of the OS abstraction layer is the core Flight Executive (cFE) collection

of reusable flight services. Amongst the modules included in cFE is the Executive

Services module, which contains functionality that handles the initial startup and

setup of the main program, and the creation and management of other tasks,

for example. Another notable module included in the core Flight Executive is

the Software Bus service. This is a key part of the design of cFS, and is the

only way that modules within cFS can communicate with each other. More

specifically, the Software Bus uses the publish/subscribe paradigm and routes

messages originating from one cFS module to any other module that requested

messages of that type by subscribing to them.
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Generic flight and mission-specific applications are the final layer of the cFS

architecture. Examples of cFS applications include network uplinks and downlinks,

data storage managers, and schedulers. Applications can essentially implement

any functionality that is wanted, including acting as I/O interfaces to custom,

mission-specific hardware.

2.1.2 Execution flow

The core Flight System was designed to not only be fault tolerant, but to also

allow software engineers to rapidly iterate and test new applications. To accomplish

this, the execution flow of all apps that are loaded into the cFS system must be

precisely controlled. Having a main process that is aware of the state of execution

of all running apps allows it to quickly determine when one of the apps is no longer

behaving as it should be. Knowing when an app is not functioning according to

its specifications further allows the main process to completely reset said app by

unloading it and restarting it, thus reverting it back to a known initial state.

For this highly controlled application system to function well, applications must

also interact with each other in a very controlled manner. As such, cFS applications

can only interact with each other via the Software Bus module. When an application

is initialised, it can subscribe to data that is published by some other application.

These subscriptions are all handled by the Software Bus module, and are centralised

in this manner. Therefore, if Executive Services decides that an application is

misbehaving and wants to reload it, it can simply remove the subscriptions of said

application from the Software Bus. This indirect manner in which applications

interact with each other assures that any problem that might otherwise be caused

by the fact that some application is unloaded from memory is avoided.

The requirement that cFS applications be precisely controlled by Executive

Services translates into a general code structure that all applications follow. An

example of such code structure is given in Figure 2.1.

The cFS software loads applications either as static libraries or dynamic libraries,

and runs them on a separate OS thread. Although linking every module together
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void My_App_Main() {
My_App_Init(); /* initialise application, perform subscriptions */
...
uint32 RunStatus = CFE_ES_RunStatus_APP_RUN;
while (CFE_ES_RunLoop(&RunStatus) == true) {

...
/* perform computations, poll I/O,

process pending Software Bus messages.. */
...

}
CFE_ES_ExitApp(RunStatus); /* announce exit to Executive Services */ ;

}

Figure 2.1: General cFS application code structure.

statically can lead to various size reductions and performance optimisations by using

techniques such as Link Time Optimisation, it means that code changes cannot

be performed without a complete system reset. As such, code that is expected

to be updated over time or that must be easily reloaded at runtime is loaded as

a dynamic library. The system takes the required information to do so from a

startup file. This text configuration file contains essential information such as

a path to the object file to be loaded, an internal name, the name of the main

entry function of the cFS application, and optionally a task priority and a limit

of the allowed stack size of said application.

A cFS application would need to contain a main entry function. The code

in Figure 2.1 shows how such an entry function called My_App_Main() might

look like. Applications would usually also have a function, corresponding to

My_App_Init() in this example, in which they perform various initialisations.

These initialisations might also include subscribing to Software Bus messages, or

perhaps setting a function to be used as a resource cleaning callback for when

the application is unloaded.

Applications are usually event-driven, and as such the main while loop can be

used to poll I/O, check the expiry of a timer, or process Software Bus messages, for
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example. The main logic of a cFS app is the response to such an event and might

end with the origination of another event for other applications to react to.

The continuation of the execution of some application is dictated by the

information returned by the call to CFE_ES_RunLoop(uint32*), which in this

case is the condition of the while loop. This function is part of the Executive

Services API and is used to instruct an application to stop in the event of an

external command or if a fault is detected in the execution of the app.

Finally, CFE_ES_ExitApp(uint32) is called as the last instruction at the end of

the main application function. If no error occurred, this function marks the cFS

app as stopped, and enters a NOOP loop until Executive Services completely

kills the thread.

2.2 Space Data Link protocols

The Consultative Committee for Space Data Systems [14] (CCSDS), is an inter-

national effort that aims to develop communication standards for use in space.

At the time of writing, 11 member agencies are part of the committee, including

the European Space Agency and NASA.

The committee has developed two widely-used communication standards: one

that is mainly used to control spacecraft, called the Telecommand (TC) standard,

and one that is mainly used for telemetry that is sent from the spacecraft back

to the ground station, called Telemetry (TM). The Telecommand and Telemetry

standards are Data Link protocols and are part of a more general classification

referred to as Space Data Link Protocols by CCSDS. By default, the TM and TC

protocols do not guarantee the delivery of packets, but there are other upper-layer

protocols that CCSDS has developed, such as Licklider Transmission Protocol (LTP)

[15], which can be used to achieve reliable data transfers.

2.2.1 Packet structure

Both the Telecommand and the Telemetry protocols have a common primary CCSDS

space packet header. This primary header includes an application ID, a sequence
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number, and the length of the payload, among other information. In addition to

the primary header, there is also an optional extended header that can be used by

missions to further classify packets. The size of the primary header is 6 bytes, and

the size of the extended header is just 4 bytes. The TC and TM protocols also have

their own separate extra headers, that contain different information between them.

Figure 2.2 illustrates how the 6-byte-long Space Packet Primary Header is

structured. In this figure, the header is split into three main parts for easier

visualisation: identifier, sequence and length.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Packet Version
Number

Type
Sec
Hdr
Flag

Application Process Identifier

 Packet
Identifier

Seq Flags Sequence Count or Packet Name

 Packet
Sequence

Packet Data Length

 Packet
Length

Figure 2.2: Specification of the Space Packet Primary Header, split in three 2 byte
sections.

2.2.2 Security protocol

Following the observation that many space missions were developing their own

security solutions on top of the Space Protocols briefly introduced in this section,

the CCSDS Security Working Group began work on a standardized security solution

for space communications [16]. More specifically, a data link security service that is

compatible with the Telecommand and Telemetry standards was developed.

The security standard developed by CCSDS was named Space Data Link Security

(SDLS). The security promises of SDLS are authentication, data confidentiality and

integrity. The standard supports both plain authentication and plain encryption,

but also authenticated encryption.
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The AES (Advanced Encryption Standard) is a block encryption specification

that can be used in multiple modes. One of the modes is called CMAC (Cipher-

based Message Authentication Code), and it provides authentication. Another

mode in which AES can be used is called CCM (counter with cipher block chaining

message authentication code), and it provides authenticated encryption. The GCM

(Galois/Counter Mode) mode also provides authenticated encryption. AES, much

like other cryptographic algorithms, uses an IV (Initialisation Vector) that provides

it with an initial and usually randomised state.

For the Telecommand protocol, CCSDS proposes a base mode of authentication

only, which uses the AES-CMAC algorithm with a 128-bit MAC, a 128-bit key,

and a 32-bit sequence number used for replay protection. For Telemetry, the

baseline mode that is proposed is authenticated encryption using AES-GCM with

a 128-bit MAC, 128-bit key and 96-bit IV. As the IV for AES-GCM can be an

incrementing counter for example, the sequence number is not needed, and as

such is not present in the packet.

Although SDLS only supports symmetric cryptography, it does have a tiered key

system. As such, considering the intended usage of said system, a master key would

be used to install, enable or disable different traffic keys. This kind of process is called

Over-The-Air rekeying, and is now the standard for NATO secure communications.

Figure 2.3 shows a generalised SDLS packet structure, with all optional fields

and trailer included. All packets that make use of SLDS security must contain a

Security Header. This header contains a 16-bit security parameter index, which is

used to indicate which security association to use. This indicates what cryptographic

key and mode to use, and as such also dictates what the security header will and

will not contain. The Security Header thus contains three more fields, all optional

and of differing length (according to the configuration): the IV, a sequence number,

and the length of the payload padding. The payload is padded because certain

cryptographic algorithms consume messages in fixed size blocks, and as such the

total message size must be a multiple of said block size. If authentication is used, the

MAC of the message is stored in a Security Trailer located at the end of the packet.
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0 16 128 144 176 192

Sec.
Index Initialization Vector Sequence

Number
Pad.
Len.


Security
Header

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh


Payload

Message Authentication Code


Security
Trailer

Figure 2.3: Generalised SDLS packet structure. Split into three main parts: Security
Header, a variable sized Payload, and the optional Security Trailer.

2.3 Transport Layer Security

TLS, or Transport Layer Security, is arguably one of the most popular cryptographic

protocols in use. It is used on almost all websites, but also in many other forms of

internet communication, such as in mobile applications. Connections established

using the TLS protocol benefit from confidentiality, integrity and authenticity.

TLS is a stateful protocol, as it has an initial part dedicated to establishing a

communication session. As such, one important part of the protocol is the initial

handshake, in which the client and the server negotiate various details of the

connection they are trying to establish.

The connection handshake is initiated by a client that would like to connect to a

server. The first step is for the client to send a list of ciphers it supports to the server.

Then, the server chooses one of the ciphers and sends its public-key certificate to

the client. In turn, the client proves the identity of the server by verifying the

certificate it received, and then the session-specific symmetric cryptography keys

are generated. If forward secrecy is desired, then the Diffie-Hellman key exchange

algorithm can be used to derive the session keys that will be used for the rest of the

current connection. If forward secrecy is not required, then RSA can also be used.
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Forward secrecy means that the session keys are independent of the server’s

private keys. This in turn means that even if one or multiple session keys are

compromised for some reason, no other communication between the two parties

will not be affected in any way. Authentication and key exchanges can either be

performed via RSA for both, or Diffie-Hellman can be used for the key exchanges

and RSA or DSA for authentication.

Both the RSA and Diffie-Hellman algorithms use many orders of magnitude

more computational power than symmetric key algorithms. If RSA is used for both

authentication and key exchange, there might be a computational advantage in

the sense that the algorithm is performed only once. This is because the fact that

the server correctly derived the session key indicates that it actually had access

to the private key. On the other hand, elliptic curve Diffie-Hellman for the key

exchange and an elliptic curve DSA certificate for authentication can be used to

provide forward secrecy and might actually be faster than RSA [17].

After the session keys are exchanged, confidentiality in TLS is accomplished

by using a symmetric cipher such as AES-GCM to encrypt all payloads. SHA

(Secure Hashing Algorithm) is used to assure message integrity. As mentioned,

authentication is done using either RSA or, for example, ECDSA (Elliptic Curve

Digital Signature Algorithm).

2.3.1 TLS 1.3

In the newest standard of TLS, introduced in August 2018 by the Internet Engineer-

ing Task Force (IETF) [18], less secure methods are no longer supported. As such,

only key exchange methods that benefit from forward secrecy remain supported in

this standard, meaning that RSA is not an option any more. In addition to changes

to the key exchange part of the protocol, TLS 1.3 also removed most of the ciphers

that were available for use in TLS 1.2. The ones that remain are AES in GCM and

CCM mode, and ChaCha20-Poly1305. Moreover, data integrity can now only be

established using Authenticated Encryption with Associated Data (AEAD) methods.
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As well as radically reducing the number of supported ciphers and no longer

allowing RSA based key exchanges, TLS 1.3 also restricts the parameters that can

be used with Diffie-Hellman in order to avoid users selecting unsafe parameters.

Protocol negotiation is also simplified in TLS 1.3, as a server can only support a

limited number of ciphers and only Elliptic-curve Diffie–Hellman (ECDHE) with

the X25519 or P-256 curves for key exchange. This leads to a common trick for

1-RTT (round-trip time) handshakes in TLS 1.3 that simply involves sending the

required handshake information in the first packet, and assuming that the server

will support that ECDHE curve [19]. In the unlikely event that the server does

not support said curve, the server can still let the client know which curves it

supports with another packet.

TLS 1.3 even offers 0-RTT sessions, in which data can be sent in the very

first packet. This is done using a resumption main secret that was derived during

a previous connection and that is used to encrypt the data in the first packet

[19]. The downside of 0-RTT in this context is that it allows for replay attacks.

As such, it should only be used for GET requests for example, as they do not

change the state of the server in any way.

2.4 QUIC

The QUIC protocol, standardized by IETF in May of 2021 [20], was designed to

minimise the time it takes for a client to establish a TLS-secured connection to a

server. It does this by using UDP instead of TCP, which immediately avoids the

three-way handshake that is specific to the latter protocol. An additional motivating

factor for the design of QUIC is a different TCP-specific problem called head-of-line

blocking. This problem appears when a single connection is used for multiple

requests, and the response to one of the first requests is lost in transit, causing the

network stack to wait until the packet is retransmitted, instead of processing the

responses to the other requests it sent using the same connection.

As QUIC uses UDP, and UDP is not inherently reliable like TCP, loss prevention

needs to be handled at the QUIC application layer. As such, some TCP concepts
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such as streams are also found in the QUIC protocol. Loss prevention algorithms

based on requesting acknowledge frames at set packet intervals are used to assure

timely loss recovery. QUIC streams are either bidirectional, meaning that both

the initiator and the other party can send data, or unidirectional, meaning that

only the party that initiated the stream can send data on it.

QUIC also allows for network path migration in the case of changes in the

network topology, allowing clients to essentially change IPs and still maintain the

state of their connection, without needing to reinitialise it. This is accomplished

with randomly generated connection IDs that are used by the server to keep

track of the client. In QUIC, a connection is an abstraction for the shared state

between a client and a server.

As TLS 1.3 is a default and mandatory part of the QUIC protocol, connection

establishment begins with a TLS handshake. The respective handshake and general

crypto packets are framed in a different manner than that specific to TCP, but the

result is the same. TLS 1.3 specific 0-RTT is also supported, and as such data can

be sent in the first packet if a resumption main secret exists between the two parties.

A diagram showing the connection establishing handshake between a QUIC

client and server is shown in Figure 2.4. After the handshake is done, the connection

can be used to send and receive application data and other QUIC protocol frames.

Among the supported congestion control algorithms in QUIC are the Reno,

CUBIC, BBR and BBRv2 algorithms. QUIC configurations that use one of the

two BBR versions seem to perform better than the classic CUBIC algorithm in

the context of GEO satellite networks [21].
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Client Server
Initial (Crypto); (*) 0-RTT

Initial (Crypto); Hand
shake (Crypto); (*) 1-RTT

Handshake (Crypto); (*) 1-RTT

Application and QUIC data

Figure 2.4: QUIC handshake sequence. 0-RTT and 1-RTT data is optional and as such
is marked with an asterisk. Client is on the left and server is on the right. The client sends
the first packet containing initial cryptographic data and optionally a 0-RTT payload.
The server then responds with handshake specific cryptographic data and optionally a
1-RTT payload. Finally, the client sends the final handshake data and optionally a 1-RTT
payload. After this, the two peers can communicate over the established session.



3
Software setup and implementation

This chapter will describe the process of integrating a security protocol benchmarking

system for SDLS and QUIC into the core Flight System. Our motivation for using

cFS as a starting point was the practical requirement that the security methods

we present and test be usable in a realistic flight context. Moreover, there exists a

public implementation of the popular SDLS protocol that was specifically designed

to function in the context of cFS, which further encouraged us to choose this route.

We start by presenting an overview of the setup we used, and describe how

we were able to integrate the various components we needed into the complex

cFS software stack. Then we explain how we used a publicly available library

to implement SDLS security, and the problems we encountered with said library.

Finally, we describe the intricacies of using a complex and modular QUIC library

in our context.

3.1 General overview

As discussed in the previous chapter, the core Flight System is a very complex

software package, but it is also highly modular in nature. This means that we

can quite easily add components to it, and that the single modules themselves

18
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are not necessarily that complex, as the complexity of the system stems from the

number of components that interact with each other.

3.1.1 Output and Ingest modules

Our goal was to identify how spacecraft running the core Flight System were

intended to communicate with ground stations, and modify these components

in order to add support for security in the form of SDLS and QUIC. The cFS

software does not ship with these network communication components packaged by

default. That being said, these two Output and Ingest modules are also created

and maintained by NASA, and can be found online on GitHub [22] [23].

The two modules are called Telemetry Output and Command Ingest, and

although they are indeed available on GitHub, they have not been updated since

2018. This is a problem only in the fact that the latest cFS development version

v7.0.0, which we chose to use, was no longer compatible with the two communication

modules. The two modules from 2018 offered the advantage of being modular in

the sense that they allowed for plug-in network protocols to be used. By default,

they supported UDP and RS-422, but other protocols could be easily added.

To overcome the incompatibility issue we just described, we used the Telemetry

Output Lab and Command Ingest Lab applications. These two cFS applications

come pre-packaged in the main cFS repository and although they have the word

Lab in their name, a quick code inspection revealed that they function in a very

similar way as the two separate modules. One significant difference between the two

variants is that the Lab versions are not protocol agnostic and instead only support

UDP. This is not a problem for our context, as we are interested only in UDP

based communications. As such, we will refer to these two Lab cFS applications

as Telemetry Output (TO) and Command Ingest (CI), respectively.

We have previously stated that all modules that run in cFS communicate

through the Software Bus, and the TO and CI applications are no exceptions to

this rule. The Telemetry Output app subscribes to various Software Bus pipes and

simply forwards the messages it receives over the network. On the other hand, the
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Command Ingest app listens on a predefined network port for any UDP messages,

and simply forwards them as Software Bus messages. As such, all communications

to and from cFS, which go via CI and TO, have a very specific format that is used

by the Software Bus to identity where to forward said messages to.

Although the CI module automatically binds to a predefined port on startup,

the TO module must first receive a command message via the Software Bus in

order to start forwarding telemetry. This command contains the destination IP

where TO should actually send the telemetry messages to. The Telemetry Output

application also supports modifying which types of messages it should forward

on the fly. It accomplishes this by implementing a number of possible commands

that can be used to either add a certain type of message to the set of forwarded

messages, or remove an existing one.

These two modules, TO and CI, represent the only way any other module in

cFS can communicate over the network in our setup, and we believe a similar mode

of operation is also used in practice, albeit not necessarily with UDP. As such, it

made sense that we modify these two base modules to integrate SDLS and QUIC

in the communication between cFS and a ground station. We will describe in detail

how this was accomplished in the next sections of this chapter.

3.1.2 Benchmark Module

We have identified and added the Telemetry Output and Command Ingest compo-

nents that are used by all the other cFS modules to communicate with external

peers via UDP, as described in the previous section. The next step in building a

functional benchmarking setup was to implement some logic that handles sending

and receiving a fixed number of packets in a set time interval.

It made sense for one part of this logic to be handled by another cFS application,

which we named the Benchmark Module. This module was created from scratch

but is not very complex in its functionality.

The Benchmark Module follows the same structure of general cFS application

which was briefly discussed in the Background chapter on this paper. No I/O
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is directly performed by this app, as network related operations are handled by

the TO and CI modules discussed in the previous section. As such, the only

manner in which external information can reach this module is via the Software

Bus, which is repeatedly polled for messages in a while loop, as was the case in

the example code we gave last chapter.

The module we implemented can receive a number of different commands through

the Software Bus, which it can then process. The first command it can receive is a

NOOP. This command is a NOOP in the sense that it does not trigger any action

from the module apart from the fact that it is received by it via the pipe.

The second command our module can receive is what we have called a data

command, as it contains a fixed sized arbitrary data payload. This command was

created to help us measure the compute time of the different security methods we

want to test. The command is directed to the Benchmark module we created.

Finally, we called the third available Benchmark module command the start

command, as it signals the app to start publishing a predetermined number of

packets on the Software Bus, with a fixed time delay between them. The packets

the module would publish are Telemetry messages with a specific message type.

This message type, in this case specific to the Benchmark Module, makes these

packets distinct from all the other messages that could be created by some other

components of cFS. It is intended that the Telemetry Output (TO) module we

described previously would be listening to these specific packet types, and that it

would then forward them over the UDP connection to the ground station.

3.1.3 Benchmark Tool

To complement the cFS module that can receive various commands and then start

sending its own data, we needed a tool that could actually send the required

commands to it. We call this tool the Benchmark Tool, and we can consider it

to act as the ground station in a context where the cFS suite is the spacecraft.

Unlike the Benchmark, TO and CI Modules, this tool is completely external of

cFS, and is essentially just a normal C executable.
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As such, this tool is used to send commands to cFS that will then be forwarded

by the Command Ingest module to their final destination, be that the Benchmark

Module or some other component. That being said, this is not the only use of the

tool, as we also designed it to be able to listen to any incoming telemetry that

is sent by the Telemetry Output cFS application.

We previously explained that the Telemetry Output module needs to first

receive a command that instructs it where exactly to forward telemetry messages

to. As such, the first command that our tool sends to the CI module is one that

is directed to the TO app. This first command configures the TO application to

send all telemetry to the Benchmark tool. The next command we send to cFS is

also directed to the TO app, and instructs it to add telemetry generated by the

Benchmark Module to the set of messages it should forward.

After the Telemetry Output module is properly configured by the two commands

that we mentioned, we can start properly communicating with the Benchmark

Module. This means that we can send what we have called a start command,

that will in turn trigger the module to start sending data packets back to us.

Alternatively, we can send what we have named data commands to the Benchmark

Module. Thus, the Benchmark Tool controls the flow of data packets both going

to cFS and coming from cFS.

To be able to more easily integrate SDLS encryption and QUIC into the data

flow, we decided to follow the good design choice of the already existing Command

Ingest app when it comes to listening for data packets. As such, the part of the

tool that listens to incoming telemetry does so in a while loop that continuously

checks if there are any pending messages on the bound socket. To be more specific,

the CI module does this in a finite for loop that is embedded within a while loop.

The outer while loop in this case should not be broken unless an error happens,

much like the while loop in the code example from last chapter.

Because we wanted to listen to telemetry in an infinite loop and still send the

commands that we need to send to cFS, we decided to use concurrency. As such, we

immediately fork the Benchmark Tool process on startup and make the resulting
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Telemetry Output (TO) Command Ingest (CI)

Software Bus (SB)

Benchmark Module (BM)

Benchmark Tool (BT)

cFS

Figure 3.1: Component interaction. Divided in two sections, one for internal cFS
components, and the separate Benchmark Tool. Dotted lines indicate communication via
UDP. Full lines indicate communication via Software Bus messages.

child process listen to telemetry. We make the parent process send the commands

to configure the Telemetry Output module, and then start the benchmark. We use

shared memory to facilitate communication between the two resulting processes.

3.1.4 Data flow

Having explained the three cFS modules and the external tool we built for running

benchmarks, we can now describe and illustrate the data flow in the system we

set up. Later on in this chapter, we will show how we integrated QUIC in this

system and compare the two versions.

Figure 3.1 illustrates how data flows between the cFS system and the Benchmark

Tool. The Telemetry Output (TO) and Command Ingest (CI) modules can

respectively send and receive data to and from the Benchmark Tool, over UDP. The

Benchmark Module can both send and receive messages to and from the Software

Bus. Although TO can write messages to the Software Bus, we are only interested

in its ability to read them. The Command Ingest module is shown to be able to

write messages that to the Software Bus in this figure. Many other cFS components

communicate via the Software Bus, but they are not shown in the figure.

As such, for a certain command to reach the Telemetry Output module, it has to

go through a number of hops. The command is initially sent by the Benchmark Tool
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via UDP and reaches the Command Ingest module, where it is placed in the Software

Bus with the Telemetry Output module as its destination. Similarly, for a telemetry

message to arrive back at the Benchmark Tool, it first travels via the Software Bus

to the Telemetry Output module. Here, it is sent via UDP to the Benchmark Tool.

3.2 Space Data Link Security protocol

We will now describe how we implemented the SDLS protocol in the Telemetry

Output and Command Ingest modules of cFS, and in our Benchmark Tool. This

was accomplished by using CryptoLib, a project started by NASA in October 2020

[24]. The purpose of this project was to build a software solution that implements an

extended version of SDLS. Initially, as can be seen by looking at an earlier version

of the code on GitHub [25], the library followed the code structure of a cFS module.

At some point in the course of its development, which officially ended in September

2021 [24], the library became more general and thus no longer follows said structure.

Although the NASA project that initiated CryptoLib ended in 2021, the open-

source community has not stopped contributing to the project on GitHub. As of

the writing of this paper, the last commit on the main branch of the repository was

pushed on the 23rd of May 2022. Although the project is still undergoing active

development by members of the community, a very significant part of the project is

still not finished. We will now refer specifically to the version of the library from

May 2022 and give some examples of unimplemented functionality. Firstly, only the

encryption of Telemetry frames is supported in the version that we mentioned, while

the decryption functionality is completely unimplemented. There is another Space

Link Protocol called Advanced Orbiting Systems (AOS) [26], and this protocol

should have also been supported in CryptoLib, but it is not implemented at all.

CryptoLib does not directly implement the cryptographic algorithms that

SDLS recommends. Instead, it uses Libgcrypt [27] as a backend for cryptographic

operations such as encryption or authentication. Libgcrypt was initially developed

as a module of GnuPG, an open source implementation of the OpenPGP standard,

and later exported as stand-alone.
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3.2.1 Security associations

As mentioned, CryptoLib implements an extended version of SDLS, that is called the

SDLS Extended Procedures [28]. This extension to SDLS includes a key management

system that allows for over-the-air rekeying and key activation and deactivation.

To achieve this, CryptoLib, as per the recommended SDLS standard, uses

something called Security Associations (SA). This is essentially the security context

that is used for communication over a certain virtual channel. A Security Association

defines the encryption cipher, the authentication cipher, the IV length and start

value, and other parameters. Security Associations could also be modified, disabled

or created at runtime in this extended protocol of SDLS.

That being said, we do not make use of this available extended functionality, but

instead create two active Security Association contexts that will not be modified

at runtime. We intend to use the first SA for Telemetry data that is outgoing

from cFS, and the second SA for Telecommand data that is incoming to cFS.

Although CryptoLib has many configuration options, we leave the settings mostly

on default and use AES-GCM with 256 bit keys. This decision to leave settings

on default was also influenced by the fact that the majority of other options are

not implemented. That being said, this provides us with authenticated encryption

as per the SDLS guidelines.

Part of the code we used to initialise the first Security Association is shown in

Figure 3.2. All fields are explained in comments. As we mentioned, we created

another Security Association that we linked to security parameter index 1, and

that we configured to be used with spacecraft id 1.

The SA shown in Figure 3.2 uses a key with id 130, and the other SA that

is not shown was configured to use a key with id 131. These two keys are also

manually defined in another part of the code.

3.2.2 Overcoming missing functionality

Although we did not initially plan on making use of the majority of what turned out

to be unimplemented parts of CryptoLib, we did want to use the library for both
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sa[0].spi = 0; /* security parameter index */
sa[0].ekid = 130; /* key id in keyring */
sa[0].sa_state = SA_OPERATIONAL; /* sate of Security Association */
sa[0].est = 1; /* encrypt if 1 */
sa[0].ast = 1; /* authenticate if 1 */
sa[0].ecs_len = 1;
sa[0].ecs = calloc(1, sa[0].ecs_len * sizeof(uint8_t));
*sa[0].ecs = CRYPTO_CIPHER_AES256_GCM; /* cipher to use */
sa[0].shivf_len = 12; /* security header transmitted IV length */
sa[0].iv_len = 12; /* local IV length */
sa[0].stmacf_len = 16; /* security trailer transmitted MAC length */
// allocate IV
sa[0].iv = (uint8_t *) calloc(1, sa[0].shivf_len * sizeof(uint8_t));
*(sa[0].iv + sa[0].shivf_len - 1) = 0; /* initialise IV */
sa[0].abm_len = ABM_SIZE; /* authentication bit mask. length 20 */
// allocate ABM
sa[0].abm = (uint8_t *) calloc(1, sa[0].abm_len * sizeof(uint8_t));
... /* ABM initialisation */
sa[0].arsnw_len = 1; /* anti-replay sequence number window length */
sa[0].arsnw = 5; /* anti-replay sequence number window */
// anti-replay sequence number length. unused with current AEAD mode
sa[0].arsn_len = 0;
sa[0].arsn = NULL; /* unused, as specified above */
sa[0].gvcid_tc_blk.tfvn = 0; /* transfer frame version number */
sa[0].gvcid_tc_blk.mapid = TYPE_TC; /* multiplexing mapping id */
sa[0].gvcid_tc_blk.scid = 0; /* spacecraft id */
sa[0].gvcid_tc_blk.vcid = 0; /* virtual channel id */

Figure 3.2: Part of the initialisation of a Security Association, modified from a CryptoLib
template. Configuration shown uses key with id 130 to perform Authenticated Encryption
using AES-256-GCM. It will be used for messages with spacecraft id 0 and virtual channel
id 0, and is identifiable by security parameter index 0.

Telecommand and Telemetry packets. As previously mentioned, the only protocol

that is in an usable state is Telecommand. Although we could have completed the

implementation of the Telemetry format on our own, this would have been extremely

time consuming and the risk of introducing bugs would have been very high.

As such, we found another solution that allows us to make use of the already
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implemented functionality but also to send any kind of payload we want, instead

of being limited to Telecommand packets. One downside of our solution is an

additional 5 byte size overhead, but we believe that the benchmark results will

not be affected by this in any significant manner.

The solution was to essentially encapsulate any generic payload by appending a

custom Telecommand header to it. This header has a size of 5 bytes, thus explaining

the size overhead we just mentioned. The only aspect that had to be considered

when doing this was the fact that we needed at least two Security Associations, one

that would be used for incoming data and one for outgoing data (observed from the

perspective of cFS). As such, the header we appended was either a 5 sized sequence

of 0 bytes, or the second byte was set to 1. The second byte of this header is used

to determine the spacecraft id. As we mentioned, the two Security Associations we

created corresponded to messages with spacecraft id 0 and 1. We decided to use

id 1 for actual Telecommand payloads, and id 0 for Telemetry payloads.

The size of the payload of standard Telecommand packets is encoded in the packet

header itself. The Crypto_TC_ApplySecurity and Crypto_TC_ProcessSecurity

functions are provided by CryptoLib and intended to encrypt and respectively

decrypt TC packets, while also taking care of authentication and other checks. The

ApplySecurity function, which is used for encryption, looks inside the header of

the input TC packet to determine the size of the payload, although it does also

receive a size parameter as an input. To simplify things and keep being able to use

an all-zero header, we modified this function to no longer do this, but to instead

derive the size of the packet it should encrypt from the input size parameter. We

also made a similar modification to the ProcessSecurity function.

3.2.3 Merging into cFS

As per Figure 3.1, in which we illustrated the data flow in our testing system, the

Telemetry Output and Command Ingest modules are how other cFS applications

interact with the external world. As such, it makes sense that we modify these two
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modules to perform the necessary cryptographic operations before the packets

are sent via UDP.

That being said, we also need to apply and process security at the other end,

namely in our Benchmark Tool. As such, we created a library that is both compatible

with the cFS structure, but that can also be used in an external context such as

that of our tool. This library, which we have named the Net Library, includes

some basic UDP socket functionality, some functions we used for printing debug

messages, and other functionality. What is relevant for the purpose of this section

are the NET_encrypt and NET_decrypt functions. These two functions are used

to apply and process security, and are essentially wrappers over the CryptoLib

Crypto_TC_ApplySecurity and Crypto_TC_ProcessSecurity functions, but that

also handle the artificial Telecommand header we appended.

The Net Library we made has an initialisation function, NET_LIB_Init, which

also initialises CryptoLib and sets up the Security Associations and keys as we

have described in the previous section. As such, we can simply use this library

on both ends of the communication, in cFS and in the external tool, in order

to apply and process security, if needed. We designed the 2 NET_encrypt and

NET_decrypt functions to support toggling between no security and SDLS-provided

security with a simple preprocessor macro.

We modified the Telemetry Output module and the sending part of our Bench-

mark Tool to first pass the packet through the NET_encrypt function, and then send

the output of this function over UDP instead. Similarly, we modified the Command

Ingest module and the receiving part of the tool to immediately call NET_decrypt

on all packets they receive, and only then pass the packets further. This enabled us

to toggle between raw communication and SDLS without great difficulty.

3.3 QUIC

As the QUIC protocol is quite complex in its nature, it would have been inefficient

and also risky for us to implement it from scratch. Our plan was to also test

multiple TLS libraries and compare their performance and resource utilisation
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when performing the cryptographic tasks needed by the QUIC protocol. As such,

we chose to use a project that supports multiple TLS libraries, but that is also

well-maintained and worked on.

The library we chose is named ngtcp2 [29], and is publicly available on GitHub.

It is modular in its nature, and it works using callback functions that are called when

the library needs to perform certain cryptographic operations. The functionality

that needs to be performed by these callbacks could be theoretically performed

using any cryptographic library. That being said, the ngtcp2 open-source developers

have also created compatibility layers with some cryptographic libraries, so that

they can be more easily used together with the QUIC library.

As such, the ngtcp2 project has support for OpenSSL [30] and wolfSSL [31],

among other popular cryptographic libraries. OpenSSL is one of the most popular

and widely-used cryptographic libraries, but it does not have official support for

the custom TLS 1.3 operations needed by QUIC. That being said, there is an

independently maintained fork of OpenSSL version 1.1.1, that adds support for

QUIC [32]. This is the fork that is supported by ngtcp2, and that we used.

We also used wolfSSL, which is a TLS library that was designed specifically

for embedded systems and as such is more lightweight that OpenSSL or other

general-purpose libraries. This library has also officially added support for the

QUIC protocol very recently. In fact, the pull request [33] that was eventually

merged into the main branch of the code was opened on the 21st of July 2022.

This pull request was merged into the main branch on the 9th of August 2022.

Shortly after, the community of ngtcp2 provided a compatibility layer between

wolfSSL and their QUIC library, which made it relatively easy to use wolfSSL

as an alternative to OpenSSL for QUIC.

3.3.1 Server specifics

Although the ngtcp2 library provides helper functions for interacting with the

multiple TLS backends it supports, a significant part of the logic required to use

it still needs to be written. As such, we wrote and adapted around 1000 lines
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Decode Version and Connection ID

New Connection?

Check Initial Packet Validity

Create Server Connection Context

Setup TLS Session Context

Process QUIC Packet

YES

NO

Figure 3.3: Execution flow triggered by a received UDP packet on the server side. Black
boxes represent operations that happen at the level above the ngtcp2 library. Red boxes
represent operations that are carried out by ngtcp2 library functions.

of code to further encapsulate the functionality of the ngtcp2 library for a single

connection QUIC server and client. Our goal was to make two similar and easy to

use interfaces that we could then easily integrate in cFS and into our Benchmark

Tool. Following the C++ examples provided by the developers of the library, we

created our own high level abstractions in C.

The ngtcp2 library was designed to be used in combination with event-based non-

blocking socket logic. In essence, this means that the user application continuously

checks for a signal that some socket is ready to be read from or written to. When the

kernel decides that said socket is indeed ready to be acted on, it marks it accordingly.

The user application observes that the socket is ready to for that action and starts

executing its logic: either reads packets or writes them. The advantage of this

approach is that the user application can still do any other computation it wants to

when the socket is not ready to be read from, or when there is nothing to write to it.

Although the library also uses timers that need to be managed by the higher

level application, the logic for them is quite simple. As such, we begin by presenting

a diagram of what the server application does when a packet is received. Figure 3.3
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shows the execution flow of the server application, presenting both the case in which

the packet corresponds to an already known connection, and the case in which

the server must begin the process of initialising a new connection. As can be seen

by the differently coloured boxes, library functionality is interleaved with higher

level functionality. For example, whenever the library creates a new connection

context object, the application also creates an abstraction of this connection, and

they are associated together.

As shown in Figure 3.3, a specific part of a QUIC server is accepting a new

client connection. In fact, this is the only part that majorly differs between the

client and the server. There are also some error states which are not shown in the

diagram, such as if the initial packet does not contain the required information

for example. Various error checks are spread throughout the whole code, but the

diagram only shows what happens if no errors are encountered.

3.3.2 Client specifics

In general, QUIC servers can handle multiple concurrent connections. For simplicity

of use and integration into the whole system, we only implemented functionality

that allows us to handle a single connection at a time, from a peer client. While

the server has a part that handles new connection requests that are identified by

the fact that the connection ID was not seen before, the client is the one that

actually initiates the connection establishment process.

The QUIC client library was designed to be able to connect to the server endpoint

and open a data stream that it can then write any user payload to. In QUIC,

there are both unidirectional and bidirectional streams. Our client implementation

opens a unidirectional stream as soon as it is possible to do so. Only the peer

that opened the unidirectional stream is actually able to send any data on it, as

per the QUIC protocol specifications.

We mentioned that we open a unidirectional stream as soon as possible, and

we do this by providing a callback to the ngtcp2 library. More specifically, we

provide it a custom callback parameter, which is then called by the library when
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the number of unidirectional streams can be increased. Inside of the function

we supplied as a callback, we open a single unidirectional stream and associate

it with an internal data context.

3.3.3 Common elements

The ngtcp2 library function that was at the end of the Figure 3.3 diagram and that

is used to process an incoming QUIC packet in the server application is also used in a

very similar way in the client. The difference comes from the fact that the client does

not require the previous step that decodes the Connection ID from the packet, as

there is only one connection. As is also the case when used in the server, this function

handles the QUIC handshake, making sure that received cryptographic information

is passed on to the TLS library, for example. That being said, the function in

question, called ngtcp2_conn_read_pkt, does not perform any writing. Although

the same function is used in both the client and the server, what it does internally

depends on the connection object it is given. This object of type ngtcp2_conn stores

the state of a connection, and is used both in the server and in the client context.

When the socket is ready to be written to, both if the peer has application data

that it would want to send and otherwise, the ngtcp2_conn_writev_stream should

be called. In the case that the user wants to actually write application data to the

connection, a stream id must be specified as an input parameter to this function.

This stream id would previously have been set by the user when the stream was

opened. In our case, we open a unidirectional stream in the client, and as such only

the client can use the previously mentioned function to actually write user data

to this stream. On the other hand, the server does still use the same function to

prompt the ngtcp2 library to write to the socket, but these writes simply do not

include user data. What they do include is different QUIC-specific frames, among

which are handshake frames, acknowledge frames and so on.

We previously mentioned the fact that the ngtcp2 library also makes use of

timers. These can be quite easily integrated in the same event-based system that

triggers events when sockets are ready to be read from or written to. Library
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typedef struct {
SSL_CTX *ssl_ctx; /* TLS library context data */
Connection *connection; /* could be a list of connections */

int epoll_fd; /* file descriptor for epoll handle */
int socket_fd; /* socket file descriptor */
struct sockaddr_storage local_addr; /* socket local address */
size_t local_addrlen; /* socket local address size */

ngtcp2_settings settings; /* ngtcp2 library settings */
} QuicServer;

Figure 3.4: The main data structure created in the QUIC server implementation. Fields
are briefly explained in the comments next to them.

documentation specifies what to do when a timer expires, but the library itself

does not actually create or trigger the timers itself. Instead, this is left to the user,

and the library only specifies when these timers should be called by the user, as a

result from the ngtcp2_conn_get_expiry function. When the timers do expire, we

call ngtcp2_conn_handle_expiry and then the same function we use for writing

to the connection, ngtcp2_conn_writev_stream.

Because this library was designed to be modular and compatible with multiple

TLS backends, it ended up also being harder to use. We say that it is harder

to use because the API it offers is quite low level, and complicated to use. That

being said, the advantage of offering a lower level API is that it makes the library

more robust and a good fit for more scenarios.

3.3.4 Implementation details

As we have previously mentioned, we wanted a very simple interface which we

could then integrate in the complex cFS system. We now present the Client and

Server interfaces we created, and describe how they work.

3.3.4.1 Server interface
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void quic_server_deinit(QuicServer *server);
void quic_server_init(QuicServer *server, ngtcp2_recv_stream_data read_cb,

bool log_print);
void quic_server_bind(QuicServer *server, const char *host,

const char *port);
void quic_server_setup_epoll(QuicServer *server);
int quic_server_step(QuicServer *server, int steps);

Figure 3.5: The server interface functions. These will be used by a higher level
application such as the Benchmark Tool.

Figure 3.4 shows the Server data structure. Comments were introduced to

briefly explain what each field represents. As explained in a previous section, an

event-based design was adopted, and as such we use epoll to know when our socket

is ready for operation or when our timer has expired. Using epoll requires that

we keep a file descriptor handle to manage it, which is what the epoll_fd field is

for. There are three fields used to store socket-related information such as the file

descriptor and the local address. We also created a Connection abstraction, which

is used for connection-specific operations that are mostly shared between the Client

and the Server. Finally, the settings field holds configuration parameters for the

library, and the ssl_ctx pointer holds TLS library specific general data.

Figure 3.5 shows the declarations of the functions that should be used with a

QuicServer object. The second function, quic_server_init, is used to initialise

a QuicServer object it receives via the first parameter. This function configures

the ngtcp2 library appropriately and creates a TLS library context which involves

loading the server’s private key and certificate from a hardcoded file path. The

second parameter of this function is of function type, and if it is not null, the server

will use it as a callback for when user data is received. That is, whenever a QUIC

packet that contains user data is received, this function will be called. This is

the intended way for data to be passed to the higher lever from this library level.

Finally, the last parameter indicates whether or not debug printing should be active.
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After the initialisation function described above is called, the intended use is for

quic_server_bind to be called next. This resolves the host and port to an address

and binds the UDP socket, setting the socket_fd field to the newly obtained file

descriptor. After this is done, the user should call quic_server_setup_epoll,

which opens the epoll file descriptor and subscribes to read and write status changes

for the previously bound socket.

Finally, after the three initialisation functions that we presented above are all

called and successfully return, the user can call the quic_server_step function in a

loop. The second argument of this function, named steps, indicates how many times

the function should also internally loop while checking for any events. Effectively,

this function should be used to perform any pending QUIC operations such as

reading from a socket, handling an expired timer, or writing to the socket. We show a

simplified version of this function in Figure 3.6. There are three lines, corresponding

to handling the three events, that are now shown entirely. epoll_wait is used with

a last argument of 0 that indicates it should not block at all, to essentially ask the

kernel if there are any pending events. The nfds integer it returns is the number of

file descriptors that have one or more pending events. We use two if statements to

determine if the file descriptor in question is the socket or a timer, and then process

the event accordingly. Two more if statements are necessary to determine if the

event triggered on the socket file descriptor is a read or a write, or both.

Finally, the quic_server_deinit function is used to free the Connection and

SSL objects that were created in the lifetime of the Server.

3.3.4.2 Client interface

We present the main client data structure in Figure 3.7. Many of the fields are shared

with the previously described server structure, but the client version is simpler.

Figure 3.8 shows the interface provided by our QUIC client implementation.

The functions are very similar to those on the server side, with a few notable

differences. The main initialisation function, quic_client_init, does not receive a

read callback as a parameter, as our version of the client does not support receiving
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int quic_server_step(QuicServer *server, int steps) {
struct epoll_event events[4]; /* maximum of 4 events at once */
for (int i = 0; i < steps; ++i) {

const int nfds = epoll_wait(server->epoll_fd, events, 2, 0);
for (int n = 0; n < nfds; n++) {

if (events[n].data.fd == server->socket_fd) {
if (events[n].events & EPOLLIN)

... /* handle incoming packet */
if ((events[n].events & EPOLLOUT) && server->connection)

... /* handle writing to socket */
} else if (server->connection &&

events[n].data.fd == server->connection->timer_fd) {
... /* handle timer expiry */

}
}

}
return 0;

}

Figure 3.6: A modified part of the quic_server_step function. Although this is not
exactly how the function looks in reality, it can be used to understand how it works.
The constant 4 used as the maximum number of events that can be received at once is
arbitrary and can be changed.

typedef struct {
SSL_CTX *ssl_ctx; /* TLS library context data */
Connection *connection; /* one single connection */

int epoll_fd; /* file descriptor for epoll handle */

ngtcp2_settings settings; /* ngtcp2 library settings */
ngtcp2_transport_params transport_params; /* extra ngtcp2 settings */

} QuicClient;

Figure 3.7: The main data structure created in the QUIC client implementation. Fields
are briefly explained in the comments next to them.
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void quic_client_deinit(QuicClient *client);
void quic_client_init(QuicClient *client, bool log_print);
void quic_client_setup_epoll(QuicClient *client);
int quic_client_step(QuicClient *client, int steps);
void quic_client_connect(QuicClient *client, const char *host,

const char *port);
int quic_client_write(QuicClient *client, const uint8_t *data, size_t size);

Figure 3.8: The client interface functions. These will be used by a higher level application
such as the Benchmark Tool.

user data. That being said, it would be simple to implement this functionality in

a similar manner as that in which the server handles it.

Furthermore, instead of the bind function offered in the server context, the

client has the quic_client_connect function, which should be used to connect to

a QUIC server that is listening at the given destination. This function should be

called after the first initialisation function, but before quic_client_setup_epoll.

This order is again similar to that of the server part.

As we have mentioned before, the client implementation automatically opens a

unidirectional stream as soon as possible. That being said, the quic_client_write

can be used to push arbitrary user data to said stream. Before the call to locally

open the stream was made, this function simply returns -1 if it is called. Otherwise,

if the stream was initiated locally, this function copies the data it receives as input

into a library buffer, and sends it as soon as possible.

Finally, the quic_client_step function is almost identical to that in the server,

and Figure 3.6 illustrates how it works as well. The client part also requires this

function to be continuously called in a loop for it to be able to process expired

timers and socket-pending operations. As such, the server and client parts work in

a uniform manner, which makes them even easier to integrate in a wider system.

3.3.4.3 Connection and stream

Both the server and the client data structures we described above contain

a pointer to an object of type Connection. This object is used internally to
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typedef struct {
SSL *ssl; /* TLS library session data */
ngtcp2_conn *conn; /* ngtcp2 connection handle */
ngtcp2_crypto_conn_ref conn_ref; /* ngtcp2 callback storage */
...
Stream *stream; /* stores stream data that is not yet acknowledged */

} Connection;

Figure 3.9: Part of the structure used to abstract a QUIC connection. Fields are briefly
explained in the comments next to them.

encapsulate the state of a connection. Figure 3.9 shows the important part of the

actual data structure as it is implemented. The ssl member points to session-

specific data that is used by the TLS library. The conn member is the ngtcp2

specific connection handle, and conn_ref is essentially a technicality that is used

by ngtcp2 to facilitate TLS library integration. Finally, the last member of the

structure as it is shown here is of Stream type and is used by a peer that sends

data over QUIC streams to store it until it is acknowledged by the other peer.

Among the functions that deal with objects of Connection type is a function

named connection_start. This function is used to initialise the TLS library-

specific session context and connect said session object to ngtcp2. The initialisation

of said context depends on whether or not it will be used for a server or a client,

and as such this function has a parameter that indicates that. Two other important

functions that deal with Connection are connection_read and connection_write.

The first one is used only by the client to process incoming packets, but its

functionality is also embedded in the server specific packet processing logic. The

latter function is used by both the client and the server, and handles all socket

and stream writing.

All objects of type Connection have a member of type Stream. The structure

named Stream, used to represent a QUIC stream, and an additional helper structure,

are shown in Figure 3.10. This is used to abstract the functionality needed to store

data specific to a QUIC stream. As per the ngtcp2 requirements, data must be
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typedef struct Node_ {
struct Node_ *next; /* next Node in the list */
size_t size; /* data size of this node */

} Node;
typedef struct {

int64_t id; /* stream id */
Node *head, *tail; /* head and tail list nodes */
size_t sent_offset; /* start offset of sent data */
size_t acked_offset; /* start offset of acknowledged data */

} Stream;

Figure 3.10: The structures used to abstract a QUIC stream. Fields are briefly explained
in the comments next to them.

stored until it is acknowledged by the peer. As the ngtcp2 library reasons about

data using offsets, information about how much of the data was sent and how much

of the data was already acknowledged is also stored as offsets.

To add data that is to be sent to a Stream object, a push function is called with

a pointer and a size. In this function, a new memory blob of size sizeof(Node) +

data_size is allocated. The data pointed to by the pointer given as an argument

to the function, which is of size data_size, is then copied to offset sizeof(Node)

in this blob. Thus, a Node contains the two fields that are visible in the figure, and

the actual data is stored contiguously in memory, right after this header.

A stream contains a list of data nodes, for which it stores the head and tail.

Whenever data is pushed to the stream, a node that contains a copy of the given

data is appended at the end of the list. Whenever data is pulled and marked as

sent from a stream, sent_offset is incremented. When a callback we installed

in the ngtcp2 library is called, indicating that a certain section of the data has

been acknowledged by the peer, the corresponding node is found in the list and

deallocated, and acked_offset is also incremented.

In practice, the client pushes data to a stream using the previously mentioned

quic_client_write function. Data is then sent as soon as possible in a call to

connection_write, and marked as sent. Whenever said data is acknowledged,
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which can only happen as a result of an incoming packet that was processed by

connection_read, data is marked as acknowledged and can finally be deallocated.

The reason for which the data must remain in scope until it is acknowledged is that

it could need to be resent if the initial packet that contained it was lost.

3.3.5 cFS integration

After creating two easy-to-use interfaces for the server and client parts of QUIC,

all that is left is to integrate them both in cFS and in our Benchmark Tool. We

modified our Benchmark Tool and added both a QUIC client and a server, as

this tool needs to be able to send and receive data. We added the QUIC client

to the Telemetry Output module, which is used only to send data, and we added

the QUIC server module to the Command Ingest module, which only receives

data. We maintained the option to use raw connections or SDLS security, and used

preprocessor macros to toggle between these two modes and a special QUIC mode.

In this section we explain how we integrated the two parts in the respective

cFS modules. This should be enough to fully understand how they are used and

also motivate the design choices that were made when creating the server and

client interfaces. That being said, usage in the context of the Benchmark Tool

is very similar but less complicated.

3.3.5.1 Command Ingest modifications

We start by describing how we modified the Command Ingest module to add support

for the QUIC server. As we have mentioned before, cFS applications usually have a

function in which they perform initialisation. In the case of the Command Ingest

module, among other initialisation it does, it also opens and binds a UDP socket.

As such, we identified the portion of logic that does this in the initialisation

function and surrounded it with preprocessor if guards. We added the code snippet

shown in Figure 3.11 that is executed when QUIC is desired instead of the two

other modes. The CI_LAB_Global.quic_server variable is of type QuicServer

and is stored in the global data portion of the CI app. We use the default address
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quic_server_init(&CI_LAB_Global.quic_server, recv_stream_data_cb, false);
quic_server_bind(&CI_LAB_Global.quic_server, "127.0.0.1", "1234");
quic_server_setup_epoll(&CI_LAB_Global.quic_server);

Figure 3.11: Usage of the QUIC server initialisation functions in the context of the
Command Ingest module.

quic_server_step(&CI_LAB_Global.quic_server, 10);

Figure 3.12: Usage of the QUIC server step function in the context of the Command
Ingest module.

and port, which are also used in the other modes. The recv_stream_data_cb

function is given as a parameter, indicating that that function will be called

whenever application data is received.

The Command Ingest module, as other cFS apps in general, executes most

of its logic in a while loop. In this while loop, it calls the CI_LAB_ReadUpLink

function, where it processes at most 10 messages that are pending on its socket. In

this 10 iteration loop, we previously added support for SDLS security. As such,

messages are read from the socket, optionally decrypted, and pushed to the Software

Bus to be consumed by other cFS modules.

We simply surrounded the whole logic in this function with preprocessor guards

and replaced with a singular line that is executed in the QUIC case. This line

is shown in Figure 3.12. As the initial for loop always did 10 iterations, we

considered it appropriate to use the quic_server_step we previously described

and also do 10 iterations.

This effectively deals with any incoming connection requests as we have previously

explained, and also calls the recv_stream_data_cb function that we set up in the

initialisation part whenever user data is received. As we wanted the flow of data

to remain the same no matter what type of security method we used, we moved

and adapted the logic from CI_LAB_ReadUpLink to the callback function. As such,

the same logic that pushed the received messages to the Software Bus is also
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executed in the QUIC case, but the code itself is in a different function. The

recv_stream_data_cb function has multiple arguments that are specific to ngtcp2,

but only two of them are relevant: const uint8_t *data and size_t datalen.

The processed user data is thus received via a pointer and a size variable, which

we then use to memcpy the data to a Software Bus compatible buffer.

3.3.5.2 Telemetry Output modifications

The Telemetry Output module does not immediately start forwarding telemetry

to the ground station. Instead, it requires a command that configures it to start

doing so. The function that is used to open a UDP socket when this command

is received is called TO_LAB_openTLM. To enable QUIC client functionality for

this module, we modified this function and added three lines that initialise the

client and make it start a connection to the destination address that was just

received in the command packet.

The main logic flow from the TO module also starts in a while loop, much like in

the Command Ingest module. In the TO module, the TO_LAB_forward_telemetry

is called in the main while loop, and it only exits after all available messages were

read from the Software Bus pipe. In the event that telemetry forwarding was not

yet enabled, meaning that the enable command was not yet received, messages

are simply discarded and not forwarded.

As such, we again surrounded a portion of the while loop that processes said

Software Bus messages in guards. This section optionally encrypted a message

and then simply sent it via the previously opened UDP socket. We replaced this

functionality with a single line, as shown in Figure 3.13. Here, the SBBufPtr

variable points to the beginning of the current Softare Bus message, and size

represents the size of this message. In the case that the QUIC handshake was not

yet finished and as such the message cannot be queued for sending, this function

returns -1. We treat this as if the enable command had not yet been received,

and simply discard the current telemetry message.
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quic_client_write(&TO_LAB_Global.quic_client, (const uint8_t *) SBBufPtr,
size);

Figure 3.13: Usage of the QUIC client write function in the context of the Telemetry
Output module.

#ifdef QUIC
if (TO_LAB_Global.downlink_on == true) {

quic_client_step(&TO_LAB_Global.quic_client, 10);
}

#endif

Figure 3.14: Usage of the QUIC client step function in the context of the Telemetry
Output module.

Finally, at the end of this function, after all messages that were in the Software

Bus pipe have been pushed to the Stream, we call the step function. There is

no equivalent to this functionality for the case in which QUIC is not used, as

messages are immediately sent to the socket in that case, and not just copied in

another location. Figure 3.14 shows how this is done in the QUIC case, where

the step function is called only if the downlink has been activated by the enable

command. We use only 10 steps as in the Command Ingest case, so as to not

block the execution flow in a loop for too long a time.



4
Analysis

In this chapter we contrast the performance of asymmetric cryptography to that of

symmetric cryptography by comparing SDLS to TLS. We use a relative metric that

will help us better understand how much costlier a TLS handshake is compared

to symmetric cryptography. We also compare the performance of the symmetric

algorithms implemented by CryptoLib for SDLS, to those used in TLS. We briefly

discuss performance-security trade-offs between different TLS 1.3 ciphers and groups,

and also compare OpenSSL to wolfSSL. Finally, we briefly look at how an untuned

QUIC implementation handles packet loss and high latencies.

4.1 Experimental setup

The experiments were conducted on a Dell laptop with a Intel i7-8750H CPU and

16GB of DDR4 memory. The processor has 6 cores and 12 threads, and was capped

to a stable 3.5GHz under load. The memory speed is 2667 megatransfers/s. As using

actual satellite hardware was not a possibility, we opted to use a personal computer

and focus on the relative performance of the security methods we wanted to test.

All code was compiled with GCC-11 and was run on Ubuntu 20.04. For

all software components, including the TLS libraries, the -O3 compiler flag was

44
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Figure 4.1: SDLS Encryption and Decryption times for varying payload sizes. Time is
in microseconds.

specified to enable the most amount of performance optimisations without sacrificing

arithmetic precision.

Although the cFS system creates multiple tasks, they can only use a single kernel

thread. We made sure that the kernel does not switch the process to another thread

by invoking it with taskset, thus making sure that it is pinned to a specific core.

All measurements are taken directly from the respective cFS modules. As

such, the Benchmark Tool is only used to interact with these modules and acts

as a ground station.

4.2 Symmetric performance comparison

Figure 4.1 illustrates the encryption and decryption (including authentication) time

of payloads of different sizes using SDLS. Tests were repeated 20 times and the

mean time was taken. We tested 4 different payload sizes: 128, 256, 512 and 1024

bytes. As a result of multiple limitations, including in CryptoLib and in the cFS

system, we decided to not test payload sizes greater than 1024.

We can see a slight increase in compute times for the authenticated encryption

operation as the payload size increases. That being said, this increase is quite

subtle, with the mean time difference between encrypting a payload of size 128 and

one of size 1024 being just 1.2 microseconds. Decryption times are significantly
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Figure 4.2: QUIC packet processing and writing times, and AEAD payload encryption
and decryption times, for varying payload sizes. TLS backend is OpenSSL and cipher is
AES256-GCM-SHA384. Time is in microseconds.

shorter at all sizes, although they also increase with payload size. The relatively

small difference of compute time necessary to process payloads of size 128 compared

to payloads of size 1024 indicates that the majority of time is not spent performing

the main AES operations on data.

In Figure 4.2, we present QUIC timings for the same payload sizes. Once again,

experiments were repeated 20 times and the mean time was taken. Both the times

to actually encrypt and decrypt the payloads using the chosen AEAD algorithm,

and the time spent writing and processing QUIC packets are shown. To record

the payload encryption and decryption times, we replaced the respective ngtcp2

cryptography callbacks with versions that encapsulate the real logic in timing code.

As such, the QUIC times represent the entirety of compute time spent on preparing

an outgoing QUIC packet or ingesting an incoming QUIC packet, meaning that

they include the TLS encryption and decryption times. Although other information

besides user data can be sent in QUIC packets (such as acknowledge frames), these

times are representative of packets that contain user payloads of the specified size.

It is immediately evident that the time spent performing AEAD operations

represents a small percentage of the total compute time. Although the time spent in

QUIC operations does appear to slightly increase with payload size, the variations

are too small to to accurately be discerned from measurement noise. Another
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Table 4.1: QUIC read times for different TLS ciphers and backends. Times are in
microseconds and there are four payload sizes shown.

Cipher Backend 128B 256B 512B 1024B
AES-128-GCM-SHA256 OpenSSL 25 23.7 24.5 24.4
AES-128-GCM-SHA256 wolfSSL 24.5 23.4 25.5 25.8
AES-256-GCM-SHA368 OpenSSL 23 21.8 23.6 24
AES-256-GCM-SHA368 wolfSSL 24.4 25.8 24.1 26

CHACHA20-POLY1305-SHA256 OpenSSL 23 22.8 22.7 22.4

Table 4.2: QUIC write times for different TLS ciphers and backends. Times are in
microseconds and there are four payload sizes shown.

Cipher Backend 128B 256B 512B 1024B
AES-128-GCM-SHA256 OpenSSL 42.5 41 42 41.4
AES-128-GCM-SHA256 wolfSSL 41.1 44.3 43.5 43.5
AES-256-GCM-SHA368 OpenSSL 40 42.1 40.3 41.3
AES-256-GCM-SHA368 wolfSSL 41.2 40.6 42.4 43.5

CHACHA20-POLY1305-SHA256 OpenSSL 41 37 40 41

obvious conclusion is that the encryption operation takes longer than decryption,

and that writing a QUIC packet takes significantly more time than ingesting one.

These observations match what we have seen in the SDLS case.

Considering the 1024 byte payload, the total time spent on applying SDLS

security was around 19 microseconds. For the same size, our QUIC implementation

with OpenSSL and the same AES-256-GCM cipher spent about 41 microseconds

applying TLS security and performing protocol specific tasks. In the case of packet

ingest, just under 16 microseconds were spent processing SDLS security, and under

24 microseconds ingesting the QUIC packet. This means that once a session is

established, compared to SDLS, only 1.5x more time is spent on processing incoming

QUIC packets, and about 2.15x more time is spent creating outgoing packets.

4.2.1 Testing different ciphers and TLS backends

To quantify the performance difference between the less secure and more secure

ciphers available in TLS 1.3, we decided to test three of them. Moreover, we tested

both the OpenSSL and the wolfSSL implementation of these ciphers to discover

if there is any significant speed difference.
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Figure 4.3: The payload encryption and decryption times in microseconds of two different
ciphers with wolfSSL as the TLS backend.

Table 4.1 and Table 4.2 show the times we obtained for the complete QUIC

reading and writing operations, which include the cryptographic parts. We tested

the four sizes about which we previously discussed in this chapter, and both TLS

backends where possible. In the case of the CHACHA20-POLY1305-SHA256 cipher,

we only tested OpenSSL, as the wolfSSL development version we used did not

behave correctly with this cipher.

Although we collected 20 different times and took the mean, the findings are

still quite noisy. As such, it is not clear if wolfSSL is faster than OpenSSL or

the other way around. Moreover, it does not seem that the cipher used has any

significant impact on the overall QUIC ingest or output performance with these

relatively small packet sizes.

When looking only at encryption and decryption timings, which exclude the

QUIC logic, it is once again unclear which one of the two TLS libraries is faster.

Figure 4.3 shows the times obtained by the two AES variants with wolfSSL as a

backend. Although it is easy to see that times increase with payload size, it remains

uncertain whether or not one of the two ciphers we tested is faster than the other.

4.3 Handshake performance

As previously mentioned, the handshake part of the TLS protocol is the most

computationally costly operation performed in the lifetime of a session. We measured
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Table 4.3: QUIC handshake times from a client and server perspective. Times are in
microseconds.

Curve Client Server Total
Curve25519 463 732 1195

P-256 512 779 1219
P-384 2204 2526 4730
P-512 4550 4794 9344

the total compute time spent on the handshake part of the QUIC protocol from both

a client and a server perspective. These measurements include the key exchange

operations performed as part of the TLS 1.3 protocol.

Table 4.3 shows the client, server and total compute time spent performing the

QUIC handshake. We tested the four curves supported in the TLS 1.3 standard.

All the curves are used to perform the same Elliptic-curve Diffie–Hellman protocol.

We used OpenSSL as a TLS backend, as we expect wolfSSL performance to be

similar, as it was in the symmetric case. We performed each measurement 10

times and took the mean.

Using Curve25519, which offers 128 bits of security with 256 bit keys, resulted in

the fastest handshakes, with the P-256 configurations being the second fastest. The

P-384 and P-512 configurations were much slower but they offer more bits of security.

Looking again at Curve25519, which is also the default choice in the OpenSSL

implementation we used, the compute time spent from a client perspective is

equivalent to sending about 12 messages with payloads of size 1024. In the same case,

the compute time required by a QUIC server to perform a full handshake is similar

to that required to send 18 messages over a previously established TLS session.

4.4 Memory usage

We measured the memory usage of the entire cFS process in four different con-

figurations in order to be able to assess how much memory overhead SDLS and

QUIC produce over the baseline version without any security. We used Heaptrack

[34] to record the peak heap and the resident set size (RSS) memory usage of
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Table 4.4: Memory usage of the whole cFS system in different security configurations,
as recorded by Heaptrack.

Configuration Peak heap usage Peak RSS usage
No security 84.5 KB 6.7 MB

SDLS security 89.5 KB 8.3 MB
QUIC with OpenSSL 583.3 KB 13.3 MB
QUIC with wolfSSL 344.8 KB 9.5 MB

the process. RSS represents the amount of memory a process that is in RAM is

currently using. Although the heap memory usage metric is exact, the RSS usage

reported by Heaptrack includes an overhead resulting from the measurement tool.

Table 4.4 presents the data we collected. The absolute value in the RSS column

might not be relevant, but we can look at the relative increase over the no security

configuration to get a better idea of the memory cost of SDLS and QUIC. As

such, the libraries used by SDLS only use 5KB more memory on the heap, but

consume 1.6 more megabytes when looking at RSS.

The QUIC configuration that uses OpenSSL as a TLS backend uses the most

memory by far, with about 500KB more heap memory usage and 6.6MB more total

usage when compared to the baseline. Although not tuned for low memory usage,

the wolfSSL library still uses significantly less memory than OpenSSL, with a total

memory usage only 1.2MB more than in the SDLS configuration. Heap memory

usage is also much lower with wolfSSL than with OpenSSL, and can be avoided

altogether by configuring the library to only use static buffers.

4.5 Behaviour under packet loss and high latency

We used the NetEm [35] Linux tool in order to introduce artificial randomised

latency and packet loss on a local network interface. We configured the packet loss

at 15% and latency at 200ms ± 25ms. Although packet loss this high is unusual

even in satellite networks, it resulted in a good stress test for our system.

We recorded all UDP traffic using WireShark [36]. Although WireShark is not

able to inspect the contents of QUIC packets by default, we also configured our QUIC
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Table 4.5: Part of a QUIC conversation in high latency and packet loss conditions.
Client is cFS and server is the Benchmark Tool. Time is seconds elapsed since first entry.

Time Sender Pkt. Num. Packet Content
0 client 47 Stream data offset 5328

0.21 server 37 ACK
0.48 client 49 Stream data offset 5184
0.49 client 48 Stream data offset 5472
0.68 server 38 ACK
0.71 server 39 ACK
1.52 client 50 Stream data offset 5616
1.71 server 40 ACK + PING
2.00 client 51 ACK
2.50 client 52 Stream data offset 5760

server to dump TLS session secrets to a file, which we loaded in WireShark. As

such, we were able to inspect the packets in detail and see exactly what data

they contained.

After configuring our test system to continuously send small payloads to the

external Benchmark Tool, we inspected the packet conversation and found an

instance which shows how QUIC handles packet loss and packet inversion. We

show a part of this conversation in Table 4.5. The data in the Packet Number

column is taken directly from the QUIC frame as decoded by WireShark. The

packets we show contained stream data, acknowledge frames and a ping frame.

As mentioned in a previous section, the QUIC protocol reasons about the data

sent in a stream using offsets. As such, the first packet from the table has offset

5328. The packets used in this test have a total size of 144 bytes, making this the

5328/144 + 1 = 38th payload from this particular session.

There are two interesting behaviours of the protocol that are present in this

data. The first one is a packet inversion that can be seen by looking at the 3rd and

4th entry of the table. Both these entries represent packets going from the client to

the server, and both of them contain stream data. By looking at the Packet Number

data, it becomes clear that these two payloads were delivered out of order: the 3rd

packet has a QUIC sequence number of 49, while the 4th packet has a sequence
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number of 48. Although these packets were delivered out of order by the network

stack, the QUIC protocol was designed to handle this situation without errors.

The more relevant but also more subtle behaviour that can be observed in this

data is packet loss. More specifically, the first packet in the table, with sequence

number 47, contains 144 bytes of stream data starting from offset 5328. The server

receives this packet and sends an ACK which is received after 210ms. This ACK

packet indicates to the client that the server does not yet have the payload identified

by offset 5184. As such, the client resends this payload in the 3rd packet of this

table, with sequence number 49. By reordering the packets sent by the client (by

the Packet Number), we get the sequence of offsets 5328, 5472, 5184 and 5616.

Clearly, the payload identified by offset 5184 was thus resent because it was lost.

4.6 Overview

The experiments we carried out help us compare the computational impact of the

TLS protocol relative to the SDLS protocol. As such, for symmetric encryption,

SDLS takes about 20 microseconds to process a 1024 byte payload, and performing

the required QUIC logic takes around 40 microseconds. For symmetric decryption,

SDLS needs around 15 microseconds while QUIC can process an incoming packet

in around 22 microseconds.

Although the ciphers we tested all performed similarly, using Curve25519 as

part of the key exchange algorithm was the fastest. More specifically, we found that

the QUIC client was able to perform the handshake using this curve in less than

500 microseconds, while a server needed around 750 microseconds. Expressing these

times in relative terms based on the SDLS timings we gathered, a client handshake

is equivalent to sending about 25 SDLS secured 1024-byte payloads. Using the same

metric, a server handshake is equivalent to sending around 37 messages using SDLS.

While we showed that QUIC performs satisfactorily under space link conditions,

the SDLS protocol does not have the same inherent property when it comes

to packet loss, and its symmetric cryptographic performance is not significantly

faster than that of QUIC.
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Conclusion

As more and more independent satellites are launched into orbit, the need for a

well adopted space security standard that uses the latest available cryptographic

techniques becomes evident. Starting from the premise that hardware that is

sent into space has progressed enough to be able to handle the notoriously costly

TLS handshake, but also taking into account the fact that space links might

be subject to high latency and packet loss, we proposed the use of the QUIC

protocol to secure space links.

To demonstrate the viability of using this protocol in a realistic flight scenario,

we integrated it into the cFS software stack that is currently being used in space

missions deployed by NASA. We compared the compute time required by various

aspects of the QUIC protocol to the widely used SDLS protocol in order to further

asses the viability of using this protocol on typically compute-constrained space

hardware. We tested an embedded TLS library named wolfSSL and showed that is

consumed significantly less memory while preserving compute performance when

compared to the widely used OpenSSL library. Finally, we tested an untuned

version of the QUIC protocol under very harsh conditions that included significant

packet loss and high latency, and found that it handled these conditions well.

We believe that the results we showed in the previous chapter are indicative

of the fact that TLS is viable and can be used successfully in a space context.

53
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Although indeed much costlier than simply encrypting payloads using AES, the

TLS handshake compute time was shown to be equivalent to sending 12 messages

containing 1024 byte payloads from a client perspective. As such, at least under the

assumption that once established, TLS sessions are used for reasonable amounts

of time, the cost of establishing the session itself becomes less significant.

Moreover, using the QUIC protocol with an untuned version of the wolfSSL

embedded TLS library only results in 1.2MB more RSS usage than using SDLS

provided security. Not only does QUIC bring the advantage of forward secrecy

through session specific keys, but it also offers a way to handle unreliable space

connections at the application layer.

Both the QUIC protocol and the embedded TLS library we used have not

been tuned in any way to behave more appropriately for this context. We believe

there is significant potential in adjusting the QUIC protocol parameters in order

to minimise packet size and optimise the behaviour of the protocol for the specific

space link it is ran on. As mentioned, QUIC supports multiple congestion control

algorithms, some more suitable for space links than others [21]. The fact that QUIC

handles packet loss at the application layer means that it is also easy to adjust it

after deployment, perhaps even to generate multiple configurations depending on

the satellite position in orbit or other conditions. As for the wolfSSL library, we

believe that memory usage can be decreased by restricting the available ciphers

and groups using compilation flags. Moreover, the library can also be configured

to use different versions of the necessary cryptographic algorithms that use less

memory at a small performance penalty.

Although more optimisations can be performed, we believe that the QUIC

protocol would be a good fit for securing space communications, as it provides

asymmetric security using the latest TLS 1.3 standard while not consuming

exaggerated amounts of resources and handling harsh network conditions well.
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