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Abstract
Compute required to train deep learning models has experienced exponential
growth over the past decade. Hardware has not been able to keep up with these
demands, and as a result, training models on tens to thousands of accelerators
has become the norm.

Partitioning a workload for such a cluster is a challenging problem. Existing
approaches rely on the composition of manually specified parallel algorithms
for each supported operator, limiting generality.

In this work, we propose a system for automatic partitioning of generic array
programs. Our approach partitions workloads based on work rather than data,
enabling parallelism beyond tensor dimensions.

Given a partitioning of the workload iteration space, our system automatically
extracts communication constraints, which are then solved using one of several
communication solvers. This eliminates the need operator-specific annotations,
and enables automatic discovery of parallel algorithms. This makes it, to the
best of our knowledge, the first such system that is able to generalize to a
large class of array programs.

Our system compiles Python-based (NumPy or PyTorch) array programs to
hardware-optimized executables that communicate using MPI. We demonstrate
correctness on several workloads, including execution of a program across a cluster
of 128 machines on the Piz Daint supercomputer.
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Abstract

Compute required to train deep learning models has experienced exponential
growth over the past decade. Hardware has not been able to keep up with these
demands, and as a result, training models on tens to thousands of accelerators
has become the norm.

Partitioning a workload for such a cluster is a challenging problem. Existing
approaches rely on the composition of manually specified parallel algorithms for
each supported operator, limiting generality.

In this work, we propose a system for automatic partitioning of generic array
programs. Our approach partitions workloads based on work rather than data,
enabling parallelism beyond tensor dimensions.

Given a partitioning of the workload iteration space, our system automatically
extracts communication constraints, which are then solved using one of several
communication solvers. This eliminates the need operator-specific annotations,
and enables automatic discovery of parallel algorithms. This makes it, to the
best of our knowledge, the first such system that is able to generalize to a large
class of array programs.

Our system compiles Python-based (NumPy or PyTorch) array programs to
hardware-optimized executables that communicate using MPI. We demonstrate
correctness on several workloads, including execution of a program across a cluster
of 128 machines on the Piz Daint supercomputer.
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1
Introduction

The rise of Deep learning (DL) is one of the most significant developments of

computer science in the last decade [LeCun et al., 2015]. Unlike other computer

programs, these Deep Neural Networks (DNNs) require immense compute resources

to train during development.

One of the driving discoveries of this revolution has been the interaction between

compute and model generalization ability. Models with more parameters perform

better [Neyshabur et al., 2015; Belkin et al., 2019; Advani et al., 2020], and the

relation between compute and model performance has continued to hold in the face

of orders of magnitude of growth [Kaplan et al., 2020; Rae et al., 2021].

As a result, since 2010, the amount of compute required to train the largest

DL models has grown exponentially, doubling every 5.7 months [Sevilla et al.,

2022] (see Figure 1.1). In this era of scaling, seminal breakthroughs in various

domains—including Vision [Krizhevsky et al., 2012], Natural Language Processing

[Vaswani et al., 2017; Brown et al., 2020], Reinforcement Learning [Silver et al.,

2016]—have often been characterized by their ability to efficiently leverage large

scale compute. Efficient utilization and orchestration of compute resources has

revealed itself one of the fundamental enablers of modern AI research: the bitter

lesson [Sutton, 2019] has taught us that often, FLOPs trump theory.

1
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n = 121

Figure 1.1: Training compute required to train milestone ML systems has grown
exponentially over the past decade (Figure reproduced from Sevilla et al. [2022]).

This demand for compute was initially met by specialized hardware. Training

workloads almost always run on accelerators (GPUs, TPUs, etc.). Characterized by

their massively parallel architecture, these chips are able to execute tensor operations,

such as matrix multiplication, orders of magnitude faster than a typical CPU.

Although these chips have grown more powerful through aggressive specialization

towards deep learning workloads, their performance growth has been far keeping

up with the 5.7 doubling in compute demands. Further, the similarly exponential

growth in model parameters has also far outpaced the memory capacity of these

accelerators, with the largest models requiring thousands of chips to fit all parameters

and activations. While hardware specialization using specialized, low-bit floating

point representations [Burgess et al., 2019] helps, it is also not enough.

In the face of these constraints, research has scaled horizontally, and running

training workloads on tens to hundreds of accelerators is now commonplace.

However, mapping the workload onto an efficient execution schedule for these

clusters of resources is not a simple task. While simple techniques like data-

parallelism are popular, they quickly run into constraints with larger models,

necessitating more complex partitioning schemes. In search of higher efficiency,
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modern implementations of popular models [Shoeybi et al., 2019; Rasley et al.,

2020] now combine and interleave a large variety of techniques, including tensor

partitioning schemes (e.g., model, operator and data-parallelism), complex pipelining

schedules [Narayanan et al., 2019; Fan et al., 2021; Li and Hoefler, 2021], and even

reach into DL-specific constructs such as the gradient descent optimizer states

[Rajbhandari et al., 2020].

While manual efforts to combine these techniques have been initially successful,

developments in hardware towards more specialized systems present ever-increasing

complexity in interactions between them. Achieving high throughput requires careful

consideration of these effects [Narayanan et al., 2021], and these considerations

are often highly specific to the exact model architecture or cluster configuration.

As a result, performing research on novel massive architectures necessitates large,

highly-specialized engineering teams to navigate the search space and to produce

an efficient distributed implementation, implicitly constraining the field’s search

for novel architectures.

For these reasons, interest in improved scheduling of these training workloads

has grown, and various approaches have been proposed. We discuss and review

these in Chapter 3.

In this work, we investigate a novel approach to scheduling of deep learning

workloads. We propose, to the best of our knowledge, the first distributed training

framework that exploits a full-stack view of the workload, lowering the model from

high-level, PyTorch [Paszke et al., 2019] code, all the way to hardware optimized

GPU kernels that are distributed across nodes in a cluster. By considering the

problem from the full-stack view and analyzing operator implementations with

generic techniques, we remove the need for manual, operator-centric annotations.

This enables the exploration of a new approach to scheduling DL workloads, namely

work- rather than parameter- focussed partitioning. We perform our cost-modeling

and analysis on a data-centric intermediate representation of the workload, where

all data movement is made explicit at all granularities.
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1.1 Contributions

We make the following contributions.

• We propose a new approach to partitioning deep learning workloads based on

work rather than data (Chapter 3).

• We propose a technique for automated partitioning of generic workloads based

on symbolic data movement analysis. The approach is the first of its kind that

is able to function without operator-specific partitioning annotations, enabling

generalization beyond current sets of operators supported by other frameworks

(Chapters 4 & 5).

• We build a system for compilation of deep learning workloads for distributed

execution on clusters by extending the DaCeML framework [Rausch et al.,

2022].

• We evaluate the system by demonstrating automatic partitioning of NumPy

code on the Piz Daint supercomputer, scaling up to 128 machines (Chapter

8).
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Background

Contents
2.1 Neural Network Training . . . . . . . . . . . . . . . . . . 5
2.2 Compiler Frameworks . . . . . . . . . . . . . . . . . . . . 7

2.2.1 DaCe: Data-Centric Parallel Programming . . . . . . . 8
2.2.2 DaCeML . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Prior work on Distributed Computation with DaCe . 10
2.4 Distributed Training . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Communication . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Parallelism Schemes . . . . . . . . . . . . . . . . . . . . 12

2.5 Generic Partitioning . . . . . . . . . . . . . . . . . . . . . 14

In the following, we outline the necessary background, including an overview of

the training workloads, contemporary parallelism schemes, the distributed scheduling

problem statement and an outline of the existing compiler frameworks on which

we base our work.

2.1 Neural Network Training

We now briefly provide background on the workload of training DNNs. A Neural

Network (see Figure 2.1) is built up of basic components historically called neurons,

based on analogy to biological neural networks [Rosenblatt, 1958]. These units

aggregate contributions from their inputs, and produce an output to which an

5
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Figure 2.1: A simple, feedforward neural network with 3 inputs and 2 outputs. The
single hidden layer contains 4 neurons.

activation function σ is applied. The neurons are parameterized by a weight vector

w and a bias vector b, and given an input vector x, compute

σ(wx + b).

Critically, the use of a non-linear activation function, such as the sigmoid function,

enables NNs to approximate universal functions given enough width [Cybenko, 1989]

or depth [Yarotsky, 2017]. The weight and bias of a neuron are referred to as its

learnable parameters. In an NN, multiple neurons are grouped into layers. The most

basic layer is a fully-connected, or dense layer, where each input is connected to each

output. However, this connectivity is often relaxed; for example, the commonly used

convolutional layer only connects inputs to neurons according to spatial locality.

In modern DNNs, layers have grown diverse, and popular layers include resam-

pling layers [LeCun et al., 1989; Ronneberger et al., 2015], multi-head attention

[Vaswani et al., 2017] and various statistical normalization layers [Bridle, 1990;

Ioffe and Szegedy, 2015; Ba et al., 2016].

The goal of the training process is to find suitable values for the parameters of

the layers. To do this, one first selects a loss, or objective function, which, given

the output of the NN will produce a score that we seek to minimize.

In the common case of supervised learning, we aim to learn some unknown

function f : X → Y . We are given a set of training data

{(x1, f(x1)), . . . , (xn, f(xn))} ⊆ X × Y.
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Our objective function L : Y × Y → R takes as input a candidate output label, and

the true label, producting a scalar loss. We use this function by passing training

samples xi through the neural network to obtain outputs yi, and then compute

the loss L(yi, f(xi)), where f(xi) is known from the training set. Popular objective

functions include cross-entropy or mean squared error.

Parameter search is almost always done using variants of gradient descent, known

as optimizers. These provide an update rule that describes how the parameters

are updated given the gradients and the values from the previous iteration. Each

update of the parameters is known as a step, and many such steps are performed in

a given training run. By computing the gradients w.r.t. the loss, we can perform

weight updates that over time, decrease the loss.

Gradients are typically computed by reverse-mode automatic differentiation

[Baydin et al., 2018], where the computation can be decomposed into a forward

pass, where loss for a given input is computed, and a backward pass, where the

NN is traversed in reverse-order and partial derivatives are propagated backwards

through the graph. The backward pass typically has data dependencies on the

activation values from the forward pass.

As discussed in Chapter 1, the compute required for DNN training workloads

has grown exponentially. In terms of the workload characteristics, these increased

costs are primarily due to growth in the number of compute FLOPs and parameters

in DNNs, as well as increases in the number of training steps taken. Training

on accelerators, such as GPUs, has been a driving factor in enabling this growth

[Raina et al., 2009; Krizhevsky et al., 2012].

2.2 Compiler Frameworks

Our work builds on DaCe [Ben-Nun et al., 2019], a data-centric compiler for high

performance computing. We build directly on the DaCeML deep-learning framework

[Rausch et al., 2022] and formulate our proposed system as a set of extensions to

DaCeML. We introduce these frameworks in the following sections.
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from torch import nn
import daceml.torch

@daceml.torch.dace_module
class MyModule(nn.Module):

def __init__(self, n_in, n_out):
super().__init__()
self.linear = \

nn.Linear(n_in, n_out)
self.fanout = n_out

def forward(self, x):
x = self.linear(x)
return x / self.fanout

Gemm

input linear.weight linear.bias

ONNX_3

ONNX_6

__tmp0

[i0=0:512, i1=0:10]

out = in1 / in2

Memlets: explicit 
data movement
at all 
granularities

Maps: Parametric 
parallelism scopes

Access nodes to 
data containers

Library nodes with
domain-specific
semantics

Tasklets: 
stateless
computations

Figure 2.2: Translation of PyTorch code (left) to the SDFG IR (right) using DaCeML.

2.2.1 DaCe: Data-Centric Parallel Programming

Due to recent trends in hardware development, data movement has steadily gained

relevance as a central bottleneck in high performance numerical computing [Unat

et al., 2017]. Optimization of data movement throughout the memory hierarchy

to exploit data locality, e.g., through loop tiling or fusion, has grown in relevance,

and these data-movement-optimizing transformations typically cover the bulk of

optimization efforts. In deep learning workloads, where it is typical to process

large volumes of data on many compute nodes, often with specialized accelerators,

some of the most popular networks have been shown to be data-movement bound

[Ivanov et al., 2021].

DaCe is a compiler framework with a focus on explicitly modeling, analyzing and

optimizing data-movement in high performance computing programs. It has been

applied in scientific domains, such as Quantum Transport Simulations [Ziogas et al.,

2019] and Weather Modeling [Ben-Nun et al., 2022], and has been used as a compiler

for HPC workloads [Ziogas et al., 2021; Calotoiu et al., 2022; Ziogas et al., 2022].

In this work, the Stateful Dataflow Multigraph (SDFG) intermediate representa-

tion is used as the main and only IR. SDFGs are directed graphs representing state

machines, where the nodes in the state machine (named SDFG states) are acyclic
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data-flow graphs. In our work, the SDFGs will typically consist of few (usually only

one), large states. An example of such an SDFG is shown in Figure 2.2 (right). The

blue region is the single state in the SDFG. In an SDFG state, all data-movement

is explicit using memlets, the black edges between the state nodes. Data is read or

written from access nodes, and is moved into code nodes to perform computation.

The simplest code node is a tasklet; in the shown example, the element-wise division

by self.fanout is performed in a tasklet. In this case, the tasklet has two scalar

inputs, and a single scalar output. The tasklet is contained within a map scope.

The sub-graph within a map scope is parametrically replicated, with the symbols

denoted in the map entry (in this case i0 and i1) iterating over the given iteration

ranges. The map schedule defines how the sub-graph is executed, (e.g., in parallel

on CPU multicore systems, or GPUs, or sequentially).

To model what data needs to be moved, memlets are annotated with a (typically

symbolic) subset that they transfer. For instance, the left memlet leading to in1 in

the tasklet above has subset ONNX_3[i0, i1]. The subset of the outer memlet will

be automatically propagated using symbolic interval analysis; in this case, its subset

will be ONNX_3[0:512, 0:10]. Since all data movement is explicit and annotated

with memlets, SDFG transformations have constant time access to symbolic data-

movement information, including source, destination and volume at all granularities.

As we shall explore in Chapter 4 this makes it particularly suitable for modeling

and solving communication constraints in a distributed workload.

The final type of node we introduce is another code node, the library node.

Library nodes represent domain specific computation that can be expanded to

one of several implementations. For example, the Gemm node here represents the

ONNX [Bai et al., 2019] Gemm operator. It can be lowered to coarse-grained external

library implementations such as cuBLAS or MKL. Further, most library nodes are

equipped with pure implementations that only use SDFG elements. These pure

implementations which enables fine-grained analysis transformation and analysis.
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This concludes the brief description of the SDFG IR we will use in the remainder

of this work. For a more detailed introduction, including operational semantics,

we refer to Ben-Nun et al. [2019].

Beyond the IR, compiler and optimizing transformations, the DaCe frame-

work also provides a Python frontend that is capable of parsing Python/NumPy

code into SDFGs. We will work with, and introduce further details on this

frontend in Chapter 7.

2.2.2 DaCeML

DaCeML [Rausch et al., 2022] is an optimization framework for deep learning

models that uses the DaCe compiler to generate high performance implementations

of models. In this work, we make use of parts of DaCeML, and we now provide

a short description of the lowering process for given model.

In DaCeML, PyTorch modules can be annotated with the @dace_module

decorator. Upon the first call to the model, the execution is traced and converted to

an SDFG. The SDFG initially contains coarse-grained operator nodes for the ONNX

Operators. DaCeML includes a set of pure implementations for these nodes, which

are naive implementations parsed from DaCe’s Python frontend. Given a fully-pure

SDFG, DaCeML’s symbolic automatic differentiation can produce a backward pass

for this graph. Notably, and in contrast to engines in other frameworks—since the

engine can operate on SDFGs—the framework can perform optimizations before

automatic differentiation. This engine will be extended in Chapter 7 to computation

beyond the model’s forward and backward passes.

2.3 Prior work on Distributed Computation with
DaCe

To clearly delineate our contributions from existing work, we briefly discuss existing

facilities for distributed computing in DaCe. As mentioned above, DaCe has been

used in the past to generate MPI programs. Most of the work has been done by

manual use of MPI communication primitives.
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Recently Ziogas et al. [2021] have worked on detecting certain elementwise

computation patterns in SDFGs, and distributing these with MPI. Our approach

is far more general, and enables partitioning of patterns far more complex that

these (see Chapter 8 for examples).

Ziogas et al. [2022] have proposed a system of compiling tensor contractions

to near-IO optimal distributed programs by generating Python code that is later

parsed by the DaCe Python frontend. Again, our system more general, and is able

to parse programs far beyond tensor contractions. Our system is first approach to

partitioning and compiling generic SDFGs to distributed MPI programs.

Over the course of prior works, several abstractions for distributed computing

have been introduced in the DaCe framework, notably an abstraction for process

grids and distributed communication nodes that lower to MPI calls. While our

system used these initially, we soon developed our own communication abstractions

to fit our more complex needs (see Chapter 5).

While the DaCeML framework includes a DistDataParallel transformation for

data parallelism, this is based on naive partitioning of the first axis of every tensor

in the graph. Our proposed approach generalizes this, and many other advanced

forms of parallelism that will be introduced in the next section.

2.4 Distributed Training

Distributed training of DNNs refers to the execution of DNN training workloads on

a set more than one machine—a cluster—connected by an interconnection network

(or interconnect). It is motivated by demands to reduce the latency in training a

DNN (commonly on the order of days to months), as well as to satisfy memory

constraints of accelerators (single accelerators cards can currently store on the order

of tens of GB in local memory) in the face of ever-growing model sizes.

We note that this work focuses on the more popular regime of synchronous

distributed training, where all nodes share a consistent view of the model parameters.

While work on asynchronous distributed training exists, it is used significantly less

popular than the synchronous approach, even in the largest training runs.
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2.4.1 Communication

Communication plays a central role in distributed training. In these workloads,

communication occurs both in between accelerator cards on a single node, and

between nodes in the cluster.

Characteristics of these channels can vary heavily depending on the cluster

hardware configuration. Some accelerators, such as NVIDIA GPUs, include high-

bandwidth interconnects between nodes. In this work, we will abstract hardware

details and assume the configuration to be constant, characterizing the different

channels by metrics such as latency and bandwidth. We will make use of the MPI

library [Walker and Dongarra, 1996] to implement certain communication patterns.

2.4.2 Parallelism Schemes

In the past decade, different forms of paralleling these workloads have been applied.

There are many terms in use in different work, and it is not rarely applied consistently

beyond the simpler forms. There is a distinction between intra-operator and inter-

operator parallelism. Inter-operator parallelism are forms of parallelism where

a model graph is split into separate sub-graphs, while intra-operator parallelism

parallelizes individual layers and operators. In this work, we will not be concerned

with specific classes of parallelism, but rather attempt to treat the problem of

choosing a distribution scheme at a higher level of generality. For orientation and

background, we nevertheless describe some of the more popular schemes here.

Data Parallelism Data parallelism is the simplest form of parallelism to imple-

ment, and it involves parallelizing along the batch dimension of the input

data. As a result, each work stores a full replica of all model parameters, and

gradient updates are communicated (typically using all-reduce) after each

training step. In many networks (batch normalization can inhibit this), the

different partitions of work are fully independent, and thus no communication

is required until the end of the training step. However, the cost of replicating

the model parameters quickly becomes prohibitive with larger models. Further,



2. Background 13

the batch dimension only exposes limited parallelism as too large of a batch

size can negatively impact convergence.

Model Parallelism Model parallelism is a less specific class of parallelism. In

literature, model parallelism has been used to describe both intra-operator and

inter-operator partitioning schemes. We will use tensor parallelism to refer to

the former, and model parallelism for the latter. With this clarification, model

parallelism is the scheduling of separate subgraphs of the model onto different

devices, e.g., as in AlexNet [Krizhevsky et al., 2012] or Expert Parallelism in

mixture of experts models [Shazeer et al., 2017].

Tensor Parallelism Tensor parallelism is a recently popularized term used to

describe partitioning individual tensors, typically parameters of the model.

Doing so implies a partitioning on the work performed by the operators,

such that multiple devices compute the output of a single operator. This is

particularly popular for tensor contractions, e.g., matrix multiplications due

to their high arithmetic intensity. Different forms of tensor parallelism are

often named by the underlying dimension they partition along: e.g. Row-,

Column-, Sequence-, Channel- or Filter- parallelism.

Pipeline Parallelism Pipeline parallelism is a form of inter-operator parallelism

that partitions the model graph into a sequence of sub-graphs, and then

schedules the sub-graphs onto different devices in a pipelined fashion. It is

typically combined with a form of data-parallelism to split the batches into

micro-batches that enable deeper pipelining. The schedule used to execute

the micro-batches is a complex and well studied problem [Huang et al., 2019;

Narayanan et al., 2019; Fan et al., 2021; Li and Hoefler, 2021]. The pipeline

bubbles introduced by these schemes are source of overhead: as a result,

pipelining is not universally used in large model training.

For large language models, several recently trained milestone models such

as PaLM [Chowdhery et al., 2022], LaMDA [Thoppilan et al., 2022] and

[Du et al., 2022] have been trained without pipelining, while others, such as
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Gopher [Rae et al., 2021] and Megatron-Turing NLG [Smith et al., 2022] did

use pipelining.

Optimizer Partitioning Popular optimizers such as Adam [Kingma and Ba,

2014] maintain optimizer state, such as momentum and variances, that are

4× the size of the model parameters. Work such as ZeRO [Rajbhandari et al.,

2020] partitions these states on to separate devices. When communicating the

gradients for data parallelism, ZeRO folds the communication of the optimizer

state into the communication of the gradients to achieve identical computation

with no additional data communication volume.

Hybrid Parallelism Recently, combinations of the above forms of parallelism have

been investigated and tuned jointly to achieve higher performance [Rasley

et al., 2020; Narayanan et al., 2021].

2.5 Generic Partitioning

The main problem we tackle in this work is the problem of partitioning a workload

for execution on a compute cluster. This involves producing hardware-optimized

executables for each node, and scheduling the communication between them.

Much prior work (Schaarschmidt et al. [2021]; Zheng et al. [2022] as well as

TensorFlow’s dTensor and JAX’s @pjit) has been based on the XLA complier

[Google, 2017] and the GSPMD partitioner [Xu et al., 2021] for XLA. As we

will discuss in the next section, this, and other work leans heavily on manual

specification of parallel algorithms for each supported operator. GSPMD, in

particular, enumerates these algorithms in over 5k lines of code.

This operator-centric approach is an example of a larger trend in the machine

learning framework community to favor manual annotations and kernels over

generic solutions [Barham and Isard, 2019]. At first glance, it may seem that

generality is not important: after all, all popular workloads are well supported by

systems. We believe that this argument is flawed. As argued by Hooker [2021], the

model architectures that can be effectively evaluated and investigated are heavily
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constrained by contemporary hardware and software. This creates an effect akin

to survivorship-bias: models that maximize hardware utilization rise to the top,

and models that do not cannot be investigated further.

We aim to avoid these manual approaches to enable partitioning of workloads

beyond the set of current popular operators. As we will introduce in the following

chapters, our approach generalizes well, and is able to automatically partition

and compile high-level Python code to distributed programs that can be executed

on large clusters of machines.
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3
Schedule Representation

In the following, we outline our chosen model for representing schedules. This

is the central choices in our system; the lowering solver, cost model and search

all take a schedule as input.

3.1 Prior Approaches

Our representation differs from prior work, and we thus provide a brief survey for

context. The large majority of representations in prior work lean towards operator-

graph representations of deep learning workloads. This is a natural approach,

especially given the fact that similar representations have historically dominated

user facing frameworks. (e.g., TensorFlow [Abadi et al., 2016], MXNet [Chen et al.,

2015], ONNX [Bai et al., 2019], Theano [Bastien et al., 2012], Caffe [Jia et al.,

2014], CNTK [Seide and Agarwal, 2016]).

When using such a representation, operators are initially black-boxed. Since

specifying how to distribute an operator requires knowledge about its semantics,

most frameworks use manually annotated registries of parallel semantics. In these

representations, the only other element apart from the operator nodes are the

data nodes. These are of course natural to partition, and as such, a common

17
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theme that emerges is that schemes specify the partitioning of data rather than

partitioning of work.

Although early work often only partitioned layers (i.e., larger subgraphs of

operators), we do not make a distinction to partitioning individual operators in

this review, since the granularity of abstraction is relatively similar.

FlexFlow [Jia et al., 2019] and OptCNN [Jia et al., 2018] define a parallelization

scheme of an operator as the partitioning scheme of the output tensor of an

operator. While this covers many dimensions of parallelism, it misses dimensions

where reductions are performed in network (i.e., paralleling over a non-output

dimension). AccPar [Song et al., 2020] describes 3 distinct parallelization dimensions

and assigns one to each layer.

In Mesh-Tensorflow [Shazeer et al., 2018], Automap [Schaarschmidt et al.,

2021] and GSPMD [Xu et al., 2021] a parallelism scheme is similarly defined as

the partitioning scheme for each tensor in the graph. However, by permitting

specification of input tensor layouts, schemes can induce the selection of algorithms

that perform in-network reductions. Alpa [Zheng et al., 2022] uses a similar scheme,

but only permits two parallel dimensions per operator.

All work mentioned thus far manually enumerates, implements and/or annotates

operator kernels each supported operator, limiting generality.

Tofu [Wang et al., 2019] and Unity [Unger et al., 2022] explored automatic

extraction of parallel algorithms for operators. This was done by annotating

all supported operators in a DSL using the annotated information to extract

parallelizable dimensions.

3.2 Partitioning Work, Not Data

In this work, we explore a novel approach to specifying parallelism in deep learning

workloads, aiming to partition the work rather than the data. In this section, we

motivate this choice and briefly outline the involved tradeoffs.

Partitioning the work in a deep learning workload is to partition the compute

performed. This can be done by specifying how the parallel maps are partitioned.
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Formally, for a given n dimensional iteration space with ranges [l0, h0], . . . , [ln, hn],

we provide a list of n partition sizes [p0, . . . , pn]. These act as the dimensions of

an n dimensional process grid consisting of p0 × · · · × pn processors. As a result,

each local processor computes a subset of the global iteration space of size

h0 − l0
p0

× · · · × hn − ln
pn

.

Making this choice presents several new problems, which we will address in

this work. Firstly, this requires information about the iteration spaces that each

operator executes. Our workloads will be modeled as SDFGs, which we lower all

the way to accelerator code. Naturally, this implies that we have full knowledge

of all iteration spaces. Secondly, this scheme makes no specification on the data

partitioning. As a result, such as system needs a mechanism to derive the required

partitioning schemes from the iteration spaces, and then discover communication

routines to marshal the data into the correct locations.

The latter problems are non-trivial; while prior work has included communication

solvers to redistribute tensors from one partitioning scheme to another, these possible

schemes have always been very limited, since the tensors are always partitioned

cleanly along their axes with even block sizes. In our case, depending on the subsets

accessed by the operator, any partitioning scheme (even completely unpractical

schemes such as partitioning scalars randomly) is possible in principle.

The major advantage of the approach lies in its generality: since there is no

reliance on operators or manual annotations, arbitrary parallel programs can be

scheduled. As we shall see, in practice, the class of compilable programs will be

restricted heavily by the strength of the communication solver.

Secondly, the search space is more compact. In practice, the number of

dimensions in the iteration space will be similar to—or larger by one or two

contracting dimensions than—the largest of the operand dimensions. Partitioning

each of the (multiple) operands then presents a larger search space than partitioning

the iteration space.
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Finally, we argue that our space is more expressive. For many commonly used

operators, both approaches are equally expressive, since each data dimension is

typically iterated over independently, yielding a direct correspondence between

iteration space dimensions and data dimensions. However, looking beyond these

operators, there are many computations where the iteration space is larger than the

data. A simple example is Monte-Carlo integration, where the iteration space of

iterated sampling is not a data dimension, and as a result data-based partitioning

will fail to parallelize along this sample axis. As argued in the prior Chapter, we

believe that the set of popular operators should not guide the limits of our systems,

lest we lose out on innovative operators of the future.
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In this chapter, we describe a method for lowering an SDFG with a given

distributed schedule to a single program multiple data (SPMD) executable that

communicates using MPI. The goal to produce a program that produces equivalent

results (up to floating point inaccuracy) as the original, single-process SDFG.

This proceeds in three stages. First, the iteration spaces of the program are

tiled across the available compute nodes. Secondly, the implied communication

constraints are extracted using symbolic interval analysis. Finally, these communi-

cation constraints are solved to produce a sequence of MPI calls that satisfy the

constraints and execute the required communication.
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@dace
def program(

x: dace.int64[4, 8, 16],
y: dace.int64[8, 16]):

return x + y

(a) Annotated
Python/NumPy source
code. The lower
dimensional array y is
broadcasted up to the
dimensions of x according
to NumPy broadcasting
semantics [Harris et al.,
2020].

BinOp_5

x y

__return

[i0=0:4,  i1=0:8,  i2=0:16]

out =
 in1 + in2

in1

out

in2

y[i1, i2]

y[0:8, 0:16]x[0:4, 0:8, 0:16]

__return[i0, i1, i2]

__return[0:4, 0:8, 0:16]

x[i0, i1, i2]
ADD_MAP

(b) The resulting parsed SDFGs. Memlets have been annotated
with blue, and map names with red text.

Figure 4.1: A simple elementwise addition.

4.1 Distributed Schedules

Our goal is to partition the work of the program across the compute cluster

of p nodes available to us. We will often refer to the computation performed

in the original program as global, and the computation of the resulting process-

local SPMD programs as local.

Consider, as a running example, the program shown in Figure 4.1 (left). As can

be seen Figure 4.1 (right), the corresponding SDFG consists of a single iteration

space of size 4 × 8 × 16, which is implemented with a single parallel map, named

ADD_MAP. This is a top-level map, since it is not enclosed by any other map scope.

Definition 4.1.1 (Distributed Schedule). Given an SDFG, a distributed schedule

for the SDFG is a mapping from iteration spaces to process grid dimensions. For

each top-level n dimensional map M in the SDFG, the schedule assigns M to a

process grid of dimension n. A schedule is complete if it contains every top level

map.
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For the example above, examples of complete schedules include {ADD_MAP 7→

(2, 2, 2)} (8 processors), and {ADD_MAP 7→ (2, 2, 1)} (4 processors). The fully

sequential schedule with only 1 processor is given by {ADD_MAP 7→ (1, 1, 1)}.

4.2 Rank Tiling

Given an SDFG and a valid schedule, our method proceeds by partitioning the

iteration spaces of the SDFG according to the schedule, assigning each process

an equally sized subspace of the global iteration space. We call this rank-tiling

the SDFG. This will induce a set of communication constraints, which we will

solve in the later sections.

Definition 4.2.1 (Iteration Space). An n dimensional iteration space a set of of

n-dimensional tuples. Each map is defined by a range, given by n pairs. The i-th

pair in the range represents the lower and upper bound for the i-th dimension.

Following Python notation, we denote these pairs by representing a range from l to

h as l : h.

We call an element of an iteration space a point, and an iteration space with

bounds [l0 : h0, . . . , ln−1 : hn−1] contains the points

{(V0, ..., Vn−1) | l0 ≤ V0 < h0 ∧ · · · ∧ ln−1 ≤ Vn−1 < hn−1}.

Recall that each map in an SDFG is has an associated iteration space, and that

the subgraph within the map nodes will be instantiated in parallel once for each

point in the iteration space. In our running example, the iteration space of the

ADD_MAP is I = [0 : 4, 0 : 8, 0 : 16], and the subgraph within the map scope will be

instantiated for all points V ∈ I, e.g., i0=0, i1=0, i2=0 and i0=0, i1=0, i2=1.

We process each top-level map M in the SDFG separately. Given a map

M with iteration range

[l0 : h0, l1 : h1, . . . , ln−1 : hn−1]
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and its process grid dimensions D = [d0, d1, . . . , dn−1] assigned by the schedule,
1 the iteration will be split into d0 × d1 × · · · × dn−1 subspaces, where the sizes

along each dimension of each subspace are

b0, b1, . . . bn−1 = h0 − l0
d0

, . . . ,
hn−1 − ln−1

dn−1
.

Each process p with coordinates (p0, p1, . . . , pn−1) in the process grid will execute

one of these subsets, namely

[l0 + p0 × b0 : l0 + (p0 + 1) × b0, . . . , ln−1 + pn−1 × bn−1 : ln−1 + (pn−1 + 1) × bn−1] .

We now transform the map’s range to[
l0 : l0 + h0 − l0

d0
, . . . , ln−1 : ln−1 + hn−1 − ln−1

dn−1

]
.

Consider again the SDFG in Figure 4.1 (right). Rank tiling the SDFG with the sched-

ule

{ADD_MAP 7→ (2, 2, 1)}

results in a local rank-tiled map with iteration space I ′ = [0 : 2, 0 : 4, 0 : 16].

Notably, the new map range is offset such that each subspace begins at the same

coordinates as the original map range, enabling us to execute this same program on

all processes in SPMD fashion. This offsetting is possible because the computation

performed by the subgraph contained within the map scope is equivalent for each

point in the iteration space.2 As long as the inputs and output data of the map is

offset accordingly, the computation will be equivalent to the single-process execution.

Formally, given the tiled iteration space I ′, a process p = (p0, p1, . . . , pn−1)

and a point V ′ = (v0, . . . , vn−1) ∈ I ′, the semantically corresponding point in

the global iteration space I is

V = [l0 + p0 × b0 + v0, . . . , ln−1 + pn−1 × bn−1 + vn−1] .

1For simplicity, we do not discuss edge cases, such as when map dimensions have non-unit step
sizes, when the map range is not divisible by the process grid dimensions, or when the process
grid dimension is larger than the map dimension. Our method applies in these cases with minor
modifications.

2Of course, with the difference that the iteration variables are instantiated differently.
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In this scheme, we ensure that each ‘global’ point V ∈ I has a corresponding ‘local’

point V ′ ∈ I ′ for exactly one process p: every iteration of the global map will be

exactly once in the distributed program. We define the function fI,D such that

fI,D(V ) = (p, V ′), and its inverse f ′
I,D((p, V ′)) = V . In the following, we will omit

the parameterization I, D, which will be clear from the context.

In our example, the process at coordinates (0, 0, 0) will execute the sub-iteration

space [0 : 2, 0 : 4, 0 : 16]. Similarly, process (0, 1, 0) executes [0 : 2, 4 : 8, 0 : 16],

(1, 0, 0) executes [2 : 4, 0 : 4, 0 : 16], and process (1, 1, 0) executes [2 : 4, 4 : 8, 0 : 16].

Further, consider global point i0=3, i1=2, i2=12. The corresponding point in

the local iteration space is i0=1, i1=2, i2=12, executed by process p = (1, 0, 0).

4.3 Extracting Symbolic Communication Con-
straints

Due to the offsetting described above, each process will now only read the same,

smaller subset of the global array data. In our example, each process will only read

x[0:2, 0:4, 0:16], and y[0:4, 0:16], and only write __return[0:2, 0:4, 0:16].

To ensure that this execution remains equivalent to the execution of the global

SDFG, we will ensure that each process reads and writes a different subset of the

global data. We introduce local containers for each data container that is read

and written by rank-tiled maps, and reroute memlets such that the map reads

from the local containers instead of the global. The size of these local subsets is

smaller than or equal to the sizes of the global data.

Continuing with notation from the prior section, the subgraph within M will have

several inner memlets that read and write to the outer arrays. In our example, the

two input memlets read the subsets x[i0, i1, i2], y[i1, i2], and the output

memlet writes the subset __return[i0, i1, i2].

For a point V in the global iteration space I of the map M , consider p, V ′ = f(V ),

where p is a process with coordinates (p0, p1, . . . , pn−1) in the process grid, and V ′

is a point in the local iteration space I ′ of the rank-tiled map.
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Definition 4.3.1 (Memlet propagation). Memlet propagation (as defined in DaCe

[Ben-Nun et al., 2019]), is a procedure in which the subsets of inner memlets are

propagated through a map scope to determine the subset of the outer, global data

that is read and written.

This procedure is used within the framework to compute, for example, the

outer memlet x[0:4, 0:8, 0:16] given the inner memlet x[i0, i1, i2] and

its associated map ranges.

Let i0, . . . , in−1 be the symbolic variables associated with the map dimensions.

We now transform the map iteration space by applying the symbolic α-conversion

(effectively undoing the implicit offset that was applied when we tiled the map)

{i0 7→ l0 + r0 × b0, . . . , in−1 7→ ln−1 + rn−1 × bn−1},

where r0, . . . , rn−1 are fresh symbolic variables. Then, we apply memlet propagation

to propagate all inner memlets through this new map iteration space. The resulting

outer memlets now hold the subsets of the global data that must be read by the

process p with coordinates r0, . . . , rn−1. These subsets are exactly the communication

constraints that we need to solve to ensure computational equivalence between

the parallel and the single-process program!

We illustrate this with our example: with schedule {ADD_MAP 7→ (2, 2, 1)}, we

have b0, b1, b2 = 4−0
2 , 8−0

2 , 16−0
1 = 2, 4, 16, and the new, α-converted iteration space is

i0=r0*2:(r0+1)*2, i1=r1*4:(r1+1)*4, i2=r2*16:(r2+1)*16.

Now, when propagating outward through this new iteration space, the inner memlets

x[i0, i1, i2] and y[i1, i2] become x[2*r0:2*(r0+1), 4*r1:4*(r1+1), 0:16],

and y[4*r1:4*(r1+1), 0:16].

With this method, we thus extract symbolic expressions that represent the

communication constraints that we need to implement. If each local array contains

the process local subset given in the constraint (i.e., the constraints are satisfied), we

can guarantee that the execution will be equivalent to the single-process execution.

This is because firstly, each iteration of the global map is instantitated exactly
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dst_grid: [r0, r1, r2]

src_grid: None

dst_grid: [r0, r1, r2]

src_grid: None

dst_grid: None 

src_grid: [r0, r1, r2]

local_y[0:4, 0:16]local_x[0:2, 0:4, 0:16]

local__return[0:4, 0:8, 0:16]

local_y[i1, i2]

local__return[i0, i1, i2]

local_x[i0, i1, i2]
ADD_MAP

BinOp_7

x y

__return

local_x local_y

local___return

x[0:4, 0:8, 0:16] →
 x[2*r0:2*r0 + 2, 4*r1:4*r1 + 4, 0:16]

y[0:8, 0:16] →
 y[4*r1:4*r1 + 4, 0:16]

__return[2*r0:2*r0 + 2, 4*r1:4*r1 + 4, 0:16] → 
__return[0:4, 0:8, 0:16]

[i0=0:2,  i1=0:4,  i2=0:16]

out

in1 in2

out =
 in1 + in2

Figure 4.2: The distributed program corresponding to Figure 4.1, after lowering
with schedule {ADD_MAP 7→ (2, 2, 1)}. Selected memlets have been annotated with
blue, map names with red, and process grids with green text. The library nodes are
all DistributedMemlet nodes. The free variables r0 and r1 represent the first two
coordinates of the executing process in the process grid with dimension (2, 2, 1).

once in our distributed program, and secondly, each instantiation of an iteration

point in the distributed program reads and writes data to the same locations in

the global array as the single-process program.

4.4 Solving Communication Constraints

Next we discuss how these constraints can be implemented. We first introduce a

new library node that acts as an abstraction for these communication constraints.
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Definition 4.4.1 (Distributed Memlet). A distributed memlet is a library node

that models and implements data movement between processes. It has a single

input and a single output. For both the source and destination, the library node

has the following attributes: the process grid along which the data is distributed,

the symbolic subset (communication constraint) that must be satisfied, and a list

of symbolic variables for each process grid dimension (these variables are used as

atoms in the subset expression).

Figure 4.2 shows an example of the simple program we have been following,

distributed with schedule {ADD_MAP 7→ (2, 2, 1)}. We briefly recap and point out

the changes were made by our transformation thus far when compared to the

starting SDFG shown in Figure 4.1 (right).

• A process grid of dimensionality [2, 2, 1] has been allocated (not visible in the

figure).

• The ADD_MAP implementing the element-wise addition has been tiled, reducing

its iteration ranges from [0 : 4, 0 : 8, 0 : 16] to [0 : 2, 0 : 4, 0 : 16].

• The reads and writes to the global arrays x and y have been replaced with

reads and writes to the process-local arrays local_x and local_y.

• DistributedMemlet library nodes have been inserted to communicate the

data x→local_x and y→local_y, as well as local__return→__return.

These communication nodes ensure that each the process-local data containers

on the rank with coordinates r0, r1, 0 hold the subset of the global array

given by the communication constraint in terms of the symbolic variables r0

and r1.

Initially, distributed memlets are insert with a special source process grid shape

of None. This sentinel value is used to indicate that the value should not reside

distributed across a process grid, but rather exists only on the root process (rank 0

in MPI terms). This is useful for scattering input values at the start of a workload,

and finally gathering the output values at the end.
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To proceed with lowering, these distributed memlet library nodes can be solved

and then expanded with an implementation that satisfies the communication

constraints. A theoretically simple implementation of this node can lower to

an MPI_Alltoallv call, instantiated with appropriate parameters.3 This powerful

primitive allows processes to communicate any data from any process to any other

process. Another possible implementation, which we discuss in the next chapter,

attempts to solve the constraints using the less expressive, but more performant

MPI_Scatterv and MPI_Gatherv calls.

4.5 Fusing Distributed Communication

Initially, the rank-tiled graph will always communicate through the root process:

Inputs to a kernel first be scattered from the root process across the grid, and

gathered again to the root process after the kernel computation is complete. This

is clearly wasteful when kernels composed or called sequentially. To eliminate this

wasteful communication, a fusion transformation detects the pattern

local array → distributed memlet with dst_grid=None

→ global array

→ distributed memlet with src_grid=None → local array,

and fuses them into a single distributed memlet by combining the constraints.

This is a cleanup pass that runs directly after rank tiling. Usually, schedules with

low costs (according to the cost model) induce constraints such that this fused

distributed memlet can be solved without communicating to repartition the data.

4.6 Nested & In-place Computation

In-place computation is rare in deep learning workloads, and is typically avoided

by compilers by choosing novel variable names for each operator output, similar

to static single assignment form [Aycock and Horspool, 2000].
3A detail here is that, similar to the implementation discussed in the next chapter, overlapping

reads/writes need to be appropriately resolved using an MPI broadcast/reduction respectively.
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@dace
def program(x: dace.int64[16, 8]):

return np.add.reduce(x, axis=1)

(a) Annotated Python/NumPy source code. The x array is reduced along the last axis, resulting
in an array of shape (16, )

call_25

x

__return

[j=0:16]

out = 0

_out

_in

_out

out = 
inp

[o=0:16, i=0:8]

INIT

REDUCE

REDUCE_MAP

INIT_MAP

(b) The SDFG obtained by parsing the NumPy
code. The SDFG contains a nested SDFG
with two states. The first state (named INIT)
initializes the reduction output buffer _out.
The second state (named REDUCE) performs the
reduction. It does so using the green marked
memlets leading to the _out array. These are
write-conflicted memlets, with the write conflict
resolution set to sum.

call_25

out = 0

x

__return

local__out

local__in

local__out

local__in

local__out

__return[8*r0:(r0+1)*8] →
__return[0:16]

x[0:16, 0:8] →
 x[8*r0:(r0 + 1)*8, 4*r1:(r1+1)*4]

INIT

REDUCE

REDUCE_MAP

INIT_MAP

out = 0

[j=0:8]

out = 
inp

[o=0:8, i=0:2]

(c) The result of distributing the
SDFG with schedule {REDUCE_MAP 7→
(2, 4), INIT_MAP 7→ (2, )}. When
constructing the SDFG, the system
asserts that the communication constraints
involving _out are consistent.

Figure 4.3: Distributed Lowering of a simple reduction operation. State names are
annotated with blue, and map names with red text.
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However, since we desire to be able to distribute a wider class of programs,

including partially lowered and fused kernels, we need to be able to handle in-place

operations. A common situation is shown in Figure 4.3, where lowering a reduction

operation results in a nested SDFG with two states, where the first state initializes

the output buffer, and the second state performs the reduction.

To support these, we support scheduling top-level maps even when they are

nested. As such, the schedule used in Figure 4.3 must also contain process grid

sizes for the inner maps REDUCE_MAP and INIT_MAP.

However, in these cases, we assert additional constraints. The basic principle we

follow is that inter-process communication nodes (i.e., distributed memlet library

nodes) are kept outside any nested SDFGs. This is essential for communication

optimizations such as the described distributed memlet fusion. Further, we wish

to avoid differing communication constraints for the same local array, inducing

additional communication costs within the kernel. In the shown example, zero-

initializing a buffer on some processes and then repartitioning the zero-initialized

values is a nonsensical schedule.

Following this principle of not communicating within nested SDFGs, the lowering

process must therefore assert that the communication constraints within the nested

SDFG are consistent. This is slightly more complicated than a simple equality

check. To see why, recall that each map is assigned a process grid of dimension equal

to its iteration space. In the example of Figure 4.3, the INIT_MAP has dimension

1, and the REDUCE_MAP has dimension 2. As a result, they initially have different

variables assigned to their axes, and their communication constraints will use

different variables. Schedule consistency must thus be checked up to renaming,

defined more formally as follows.

Definition 4.6.1 (Schedule Consistency). A schedule is consistent for a set of maps

{M1, . . . , Mn} if there exists an α-renaming of the dimension variables of all maps,

such that for each array x, and its set Sx of communication constraints induced by

a read or write from a map, it holds that all constraints in Sx are equivalent after

applying the renaming.
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This can be checked through symbolic manipulation and pattern matching

on constraint expressions. We omit the details of this procedure, but refer the

interested reader to the accompanying section in the source code.4

The lowering process proceeds by rank-tiling the top-level maps as before.

Contrary to the standard case described above, we don’t introduce new buffers for

the local views of arrays, but rather resize the existing buffers in the nested SDFG

and introduce the local data container access nodes, as well as the distributed

memlet nedes, outside the nested SDFG. Given a consistent schedule, this is

possible because all local views of the global data are partitioned in the same way,

and can thus be implemented as a single distributed memlet for each read/write

before/after the kernel respectively.

4.6.1 Library Nodes

A trivial lowering of library nodes would be to expand them to their ‘pure’ SDFG

implementation. In this expansions, the node is replaced with a (typically) nested

SDFG and lowering can proceed as above.

However, we would often like to avoid lowering library nodes to allow the compiler

to choose implementations when compiling the SPMD program. A common case

here is matrix multiplication. Lowering to the pure implementation results in an

unoptimized SDFG using atomic writes, requiring further optimization: lowering

to an optimized BLAS library like MKL or cuBLAS is often preferable.

To avoid lowering, our method expands the library node to the pure imple-

mentation, but does not retain this expansion in the graph. The rank-tiling and

communication analysis proceeds as normal, and once the outer communication

constraints are derived, the distributed memlets are connected to the unexpanded

library node, and the pure expansion is discarded.

This works for the simple reason that all implementations of a library node must

be functionally equivalent. Thus, using the pure SDFG as a proxy for analysis allows

us to derive communication constraints even for opaque binary blobs like cuBLAS.
4Refer to daceml/distributed/schedule.py, function rank_tile_nested.
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procedure DistributedLowering(SDFG, schedule)
for each state in topologically ordered states do

for each node in top level nodes of state do
if node is a library node then ▷ §4.6.1

Expand node to pure impl., proceed with its nested SDFG
end if
if node is a nested SDFG then ▷ §4.6

Assert that schedule is consistent within the nested SDFG of node
RankTileNested(SDFG, state, node, schedule)

else ▷ §4.2
RankTileMap(SDFG, state, node, schedule)

end if
Initialize process_grid size according to schedule
for each global read or write to array a do ▷ §4.3

Extract communication constraints
Insert distributed memlet node between global and local a

end for
end for

end for
Fuse distributed memlets ▷ §4.5
Solve and lower distributed memlets ▷ §4.4, and next chapter

end procedure

Listing 1: A high-level overview of the process of lowering a single-process SDFG to a
SPMD distributed SDFG, with references to individual sections where the annotated part
is discussed.

4.7 Summary

This concludes the discussion of lowering single-process SDFG to SPMD distributed

programs that can be executed across a cluster of distributed nodes. The proposed

novel method is, to the best of our knowledge, the first method capable of distributing

such low-level programs given no additional annotations except for the process

grid dimensions.

Listing 1 summarizes the procedure outlined in this chapter. The implementation

of this procedure is available in the accompanying source code.5

We conclude with a brief comparison to other work. Prior work on DL workloads

(discussed in Chapter 3) has relied on data-dependent schedules and the manual

definition of parallel algorithms for each supported operator, failing to generalize to
5Refer to daceml/distributed/schedule.py.
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unseen operators. Other work, such as Ziogas et al. [2021], has further matched

specific data movement patterns such as element-wise sums or reduction and

distributed these, failing to generalize beyond these simple patterns.

By comparison, our method is capable of handling a wide range of programs (i.e.,

‘nearly’ single state SDFGs). Rank-tiling the maps is possible without restrictions,

and the only remaining constraints are the strength of the solver,6 and the discussed

constraint on schedule consistency within nested SDFGs. Even in cases where

available solvers cannot find an efficient communication schedule, the lowering can

succeed by over-approximation of the constraint subsets.

The technique thus generalizes the various forms of intra-operator parallelism

introduced in Chapter 2, and as we shall show in evaluation, can even distribute

complex fused and tiled operator kernels. In the next chapter, we discuss further

details of solving a commonly encountered classes of communication constraints.

6An MPI_Alltoallv-based solver is very expressive, and can even handle irregular accesses.
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In this chapter, we outline the functionality of one instantiation of a commu-

nication constraint solver. The grid mapped array solver solves an important

class of communication constraints that arise from affine array accesses in rank-

tiled parallel loops.

5.1 Grid Mapped Arrays

A grid mapped array is a partitioning scheme of an array that partitions an array onto

a process grid. The scheme is parameterized by: (1) the array we are partitioning,

(2) the process grid we are mapping the array on to, and (3) the axis mapping.

This maps each dimension of the process grid. For each dimension i of the

process grid, there are three possible schemes:

PARTITION(j) The j-th axis of the array is evenly partitioned along the i-th

axis of the process grid.
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REPLICATE(j) The j-th axis of the array is will be replicated along the i-th

axis of the process grid.

BROADCAST The whole array will be broadcast along this axis. This is typically

required when an array is of lower dimensionality than the process grid.

Each array axis can only be mapped to at most one dimension in the process grid,

and any array axes not mentioned in the axis mapping will be implicitly broadcasted

to permit communication of arrays of higher rank than the process grid.

As an example, consider the following array X of shape (4, 4), and process

grid of shape (2, 2):

X =


0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

 , P =
[
p00 p01
p10 p11

]
.

[REPLICATE:0, REPLICATE:1] The array is fully replicated, and each process

receives X[:, :].

[PARTITION:0, REPLICATE:1] The array is split along the first dimension (data-

parallelism). Processes p00 and p01 receive X[0 : 2, :], while processes p10 and

p11 receive X[2 : 4, :].

[PARTITION:1, REPLICATE:0] The array is split along the second dimension

(column-parallelism). Processes p00 and p01 receive X[:, 0 : 2], while processes

p10 and p11 receive X[:, 2 : 4].

[PARTITION:1, PARTITION:0] The array is fully partitioned onto the process grid,

but with swapped axes. Process p00 receives X[0 : 2, 0 : 2], while processes p01,

p10, and p11 receive X[2 : 4, 0 : 2], X[0 : 2, 2 : 4] and X[2 : 4, 2 : 4] respectively.

Broadcasting is used when the grid rank and the array rank are different. For

example, with the same process grid of size (2, 2) and a smaller array of shape (4, ),

the mapping [PARTITION:0, BROADCAST] will broadcast the array to the process

grid such that p00 and p01 receive X[0 : 2], while p10 and p11 receive X[2 : 4].
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5.1.1 Relation to Programs & Distributed Schedules

This class of partitions arises very naturally in array programs and is of central

importance to deep learning workloads. Let us elaborate on this class of programs

by discussing when each of the iterations can occur.

Consider a two-dimensional map, which can be distributed using a two- di-

mensional process grid.

A = np.random.rand(M, N)

B = np.random.rand(M)

for i, j in dace.map[M, N]:

...

Partitioned schedules arise when inner accesses index each axis with one loop

variable. For instance, A[i, j] would induce [PARTITION:0, PARTITION:1] and

A[j, i] would induce [PARTITION:1, PARTITION:0].

Accessing a lower dimension array, in this case B, induces broadcasting. For

instance, B[i] induces [PARTITION:0, BROADCAST], and B[j] induces

[BROADCAST, PARTITION:0].

Loading whole axes requires replicating the axis. For instance, reading A[i, :]

requires the mapping [PARTITION:0, REPLICATE:1].

5.1.2 Lowering to MPI

The grid mapped array abstraction is implemented as two library nodes: ScatterOntoGrid

and GatherFromGrid. Given the mapping, the nodes are lowered to at most two

MPI calls. Communication of a partitioned axis is implemented by creating an

MPI_Subarray type for the subarray (the array that is partitioned), and the offsets

for each rank are computed statically at initialization time. Computation of these

offsets correctly requires some care in handling array strides, dimensions and

implicitly broadcasted axes. The offsets are used together with MPI_Scatterv (or

MPI_Gatherv) to communicate the whole subarray.
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Replication and broadcasting is handled with a second communication call. We

construct two subgrids: one partition grid that handles the partitioned dimensions

and one replicate grid for the broadcasted and replicated dimensions. For scatter,

the array is first scattered according to all partitioned axes (using the partition

grid and MPI_Scatterv as described above). Every process in the partition grid

now has a different subset of the array. Next, these processes broadcast their

unique subset of the array as required using the replicate grid and MPI_Bcast.

Each unique subset is broadcast in parallel.

For gather, the process is reversed, and MPI_Bcast must be replaced with

MPI_Reduce according to the write conflict resolution set on the memlets. The

processes in the replica-group reduce their conflicted subsets onto the root process

for that subset, which is finally gathered onto the global root process.

5.2 Solver

The task of the Grid Mapped Array solver is, given a process grid and a communi-

cation constraint, to output, if possible, a mapping such that the communication

constraint is fulfilled.

Recall that the communication constraint is a symbolic expression with free

variables corresponding to process indices in the given process grid. The solver

observes each axis in the subset and attempts to symbolically match the axis

expression to an evenly distributed subset and a grid axis. For instance, the subset

axis [i ∗ 2 : i ∗ 2 + 2] can be matched to a grid axis with variable i and dimension

s, but only if the axis size divided by s is equal to 2. Replication can be matched

in cases where the expression covers the whole axis, i.e., [:], and in those cases,

there is no constraint on the process grid dimension.

We now construct the grid mapping scheme by assigning each matched par-

titioned axis to the matched process grid dimension. Next, we assign replicated

axes: for these we have some freedom since we can choose any remaining unmapped

dimension. Lastly, any remaining process grid dimensions are filled with broadcast.
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Framework Engineering Contributions

As is typical for systems research, the work in this thesis also includes various

contributions to the frameworks it uses, notably the DaCe compiler framework

and the DaCeML machine learning optimization framework. In the following, we

provide a brief overview of these contributions made during the work on this thesis.

6.1 DaCe

Syntactic sugar for scheduling maps in the Python Frontend This change

enables explicitly annotating the ScheduleType of a map and the StorageType

of data containers using the @ operator. For example the following code can

now be parsed:

def runs_on_gpu(a: dace.float64[20] @ StorageType.GPU_Global,

b: dace.float64[20] @ StorageType.GPU_Global):

# This map will become a GPU kernel

for i in dace.map[0:20] @ ScheduleType.GPU_Device:

b[i] = a[i] + 1.0

This bypasses the need to run the GPUTransformSDFG transformation and

enables finer-grained control over the schedule and storage in the SDFG.
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Improved support for compile-time constants in SDFG Previously, the com-

piler backend would not be aware when an input to a NestedSDFG is constant,

causing compiler errors related to const qualifiers on arguments. With this

change the evaluation of constants is front-loaded, and the information about

is propagated through into nested SDFGs before code generation.

Bug fixes relating to torch tensors This change improved support for passing

torch tensors into SDFGs, and fixed a related regression.

Improvements to InlineSDFG Previously, InlineSDFG would fail to correctly

determine the viewed array name when inlining an SDFG that had view

arguments. Also fixed errors relating to computation of subsets on unsqueezed

memlets.

Bug fixes related to ufunc reductions Fixed bugs in the NumPy frontend

relating to ufunc reductions along axis=0.

Change initialization behavior Changed SDFG initialization to only pass sym-

bol values. Previously, SDFGs would receive scalar values alongside the

symbols during initialization.

Web serving the SDFG viewer The SDFG viewer can now served on a local

port. This is useful for invoking it on a remote host (together with SSH port

forwarding).

Improved symbolic broadcasting support Broadcasting, aswell as broadcasted

assignment now performs symbolic checks when parsing broadcasted state-

ments. This means, that for example, the following data containers can be

broadcasted together:

A: dace.float32[N,]

B: dace.float[N * (j + 1) - N * j]
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6.2 DaCeML

Automatic Differentiation Engine: updated support for views The seman-

tics of viewed data containers were changed with dace versions, and this fixed

the engine in light of these changes.

Remove ONNX Runtime dependency ONNX Runtime has historically ex-

isted as a hard dependency for DaCeML, namely to execute kernels for

which no SDFG implementations exist. With increased maturity, this was

no longer necessary, and this change removed the dependency. This involved

writing a new constant folding pass that didn’t call into ONNX Runtime.

Add automated testing using ONNX framework tests The ONNX library

includes basic test cases for almost all of its operators. This change added

these test cases to the DaCeML test suite, running all tests for SDFG-based

kernels. Besides uncovering a few bugs, this also now provides reports on

what subset of operators, attributes and inputs the DaCeML implementations

support.

Improved kernel authoring interface The @python_pure_operator_implementation

decorator was improved to now support computation of AST values that are

present when the program is parsed. This enables porting operators like

ReduceMin to this interface, saving tens of lines of code:

@python_pure_op_implementation(axes=lambda node: node.axes)

def ReduceMin(data, reduced):

reduced[:] = np.min(data, axis=axes)
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Prior work on the DaCeML framework has focused on model compilation for

training. To this end, the system converted PyTorch nn.Modules to SDFGs, generat-

ing code both for the forward and backward passes of the modules. These were then

compiled as PyTorch C++ extensions that could then be called from Python code.

Notably, with intended use, the system did not capture any behavior outside of

the model, including important parts of the workload such as the loss computation,

optimizer delta computation, gradient buffer clearing and parameter updates. These

parts of the workload are natural targets for fusion due to their element-wise nature

and the excessive data movement cost that this implies.

In the context of distributed scheduling, optimizer computations and state have

recently received attention. For instance, ZeRO [Rajbhandari et al., 2020] has

proposed partitioning schemes specialized to the optimizer computation.

In chapter, we seek to extend the data-flow captured by the DaCeML system to

capture the computation of a training step fully. This will allow our cost model and
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module = torch.nn.Sequential(
torch.nn.Linear(10, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 3)

)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(module.parameters(), lr=0.01)

def train_step(x, y):
# reset gradient buffers
optimizer.zero_grad()

# compute the model forward pass
logits = module(x)
# compute the loss
loss = criterion(logits, y)

# invoke the autograd engine
loss.backward()
# perform an optimization step
optimizer.step()

return loss

Listing 2: A typical training step invoking the backward pass of a module and an
optimizer.

search strategies to transparently consider partitioning schemes for the optimizers

jointly with the scheduling of the rest of the workload.

While systems exist for performing automatic differentiation on data flow graphs,

these systems typically perform the differentiation given the complete data-flow

graph. We wish to parse PyTorch training step code (e.g., Listing 2) into the

DaCeML intermediate representation. Listing, the challenge is that the specification

that drives the differentiation engine, such as what gradients to compute, and when,

are interleaved within the control-centric PyTorch code.

In the following, we propose an approach to translate the control-centric PyTorch

API into our data-centric intermediate representation, while retaining the enough

semantics of the original API to satisfy the various use-cases.
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@dace
def unstable_softmax(X: dace.float32[8, 32]):

exponent = np.exp(input)
rowsum = np.add.reduce(exponent, axis=1, keepdims=True)
output = exponent / rowsum
return output

(a) Annotated Python/NumPy source code.
init

call_6

[__i0=0:8, __i1=0:32]
Default

__out = exp(__in1)

[__i0=0:8, __i1=0:32]
Default

X

exponent

call_7

exponent

Reduce (Sum), Axes: [1]

__tmp2

rowsum

BinOp_8

[__i0=0:8, __i1=0:32]
Default

__out = (__in1 / __in2)

[__i0=0:8, __i1=0:32]
Default

exponent rowsum

__return

(b) Control-centric parsed
SDFG.

call_6

[__i0=0:8, __i1=0:32]
Default

__out = exp(__in1)

[__i0=0:8, __i1=0:32]
Default

X

exponent

Reduce (Sum), Axes: [1]

__tmp2

rowsum

[__i0=0:8, __i1=0:32]
Default

__out = (__in1 / __in2)

[__i0=0:8, __i1=0:32]
Default

__return

(c) Resulting SDFG after data-flow coarsening
(simplification).

Figure 7.1: Parsing a naive, numerically unstable Python/NumPy softmax implementa-
tion.

7.1 The DaCe Python Parser

For context, we briefly describe the DaCe python parser [Ziogas et al., 2021],

which operates on annotated Python/NumPy programs. Figure 7.1 shows the

stages in parsing a simple program. The @dace decorator wraps the function as a

DaceProgram, which will JIT parse and compile the program when it is called.

Upon parsing, the program abstract syntax tree (AST) is traversed in python

execution order and decomposed into simpler steps. A separate SDFG state is
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inserted for each step, and similar to static single assignment form [Aycock and

Horspool, 2000], temporaries are inserted for intermediate results of sub-expressions.

Control expressions such as loops or if statements are parsed into a state machine

representation. The system parses function calls, such as np.exp, by looking for a

matching pure implementation in its extensible operator repository.

To extract a data-flow graph from this control-centric SDFG (see Figure 7.1b),

the system applies a set of data-flow coarsening (also referred to as simplification)

transformations, including inlining SDFGs, fusing states and removal of redundant

copies. The resulting SDFG (see Figure 7.1c) represents a data-centric view

of the program.

In the following, we will extend the parser by providing replacements for

the involved torch functions, notably torch.autograd.backward. However, it

is noteworthy that any replacements we provide will be called during the single,

execution-order AST traversal. This has two important implications. Firstly, the

parsed graph will only contain parser output for the AST nodes that would have

been executed in a python execution of the program. Secondly, the data-flow

graph will be in its control-centric form, and we thus cannot rely on a data-flow

graph that is fully connected.

7.2 Extracting the computation to differentiate

We now turn to the DL workloads we wish to parse. Our first task is the extraction

of the subgraph to which shall be differentiated. The subgraph is delineated by

input ‘parameter’ arrays, which require gradients to be computed, and the output

arrays for which gradients are provided by the user.

To mark parameters, we introduce a new data descriptor class, the ParameterArray.

This class is a subclass of dace.data.Array, and contains the name of a gradient

buffer to be used for the parameter. We promote regular Arrays to these during

parsing via two cases.
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Explicit Parameters The first is an explicit call to Array.requires_grad_(),

which we hook into as a method replacement in the dace parser. Since the

parser traverses the AST in python execution order, the parent arrays already

exist when parsing the method call, and we can thus promote descriptors

directly.

Torch Modules torch.nn.Modules are, as in normal DaCeML use, required to be

wrapped with the DaceModule decorator. To support parsing these modules,

we provide an implementation of the SDFGConvertible mix-in. When calling

SDFGConvertibles, the parser inserts a nested SDFG rather than a python

callback. Our implementation simply invokes the existing DaCeML PyTorch

parser, and inserts the resulting SDFGs.

The torch.nn.Module holds references to its parameter torch.Tensors.

When converting a module, we construct a closure that wraps pointers to

these arrays so that they are passed to the nested SDFG when the program

is executed. Notably, parameters that require gradients are promoted to

ParameterArrays, and gradient buffers are allocated.

When parsing a backward call, we are given the output arrays on which backward is

called. We must now determine all input arrays requiring gradients which were used

to compute the given output arrays. Notably, when the backward call is parsed, the

SDFG is still in its control-centric form. At this stage, we cannot rely on the data-

flow simplification passes. To compute this, we introduce a dependency analysis

pass that traverses the SDFG state machine, and for each array, computes which

arrays were read to produce its value. We again rely on the execution-order parsing

which ensures that when parsing the backward call, the input graph has already

been parsed. The required input arrays are then simply all ParameterArrays on

which the output arrays depend. Given the inputs parameters and outputs arrays,

the computation we must differentiate is fully determined.
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7.3 Parsing backward calls

To parse backward calls, we provide a parser replacement for the torch.autograd.backward

and torch.Tensor.backward methods. These are given the output arrays of the

subgraph to differentiate, and with the methods described above we can extract

the inputs to the subgraph.

We now introduce a new BackwardPass library node that is inserted into the

SDFG during parsing. It takes the given gradients of the output arrays as input,

and writes to the parameter array’s gradient buffers as an output. The library

node will only be expanded after parsing is complete, which allows us to delay the

invocation of the DaCeML autodiff engine until after parsing and simplification,

which is necessary since it only operates on full data-flow graphs.

To ensure that the post-parsing data-flow coarsening does not fuse too many

states of the graph, all outputs of the subgraph are initially added as inputs

to the library node, modeling conservative control dependencies. Once we have

differentiated the graph, and know what outputs are required, we remove these

conservative dependencies.

Upon expansion of this node, several tasks are performed.

Subgraph extraction & differentiation Given the input parameters and out-

puts that are arguments to the backward call, the subgraph is extracted and

differentiated using the DaCeML autodiff engine, producing a backward pass

SDFG. This SDFG is inserted as a nested SDFG node.

Forwarded Values The produced backward pass may require certain intermediate

values from the forward pass. These values are forwarded from the forward

pass to the backward pass.

Clearing Parameter Buffers According to PyTorch semantics, the backward

pass should accumulate gradients onto a parameter buffers that are initialized

to zero. After computing gradients, the PyTorch autodiff engine thus always

launches a separate accumulation kernel that adds the gradients onto the
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buffer. In our implementation, we have full view over both the forward SDFG

and the generated backward SDFG. By performing static analysis on both

SDFGs, we can determine when gradient buffers are only written by a single

backward pass, which allows us to fully elide the accumulation kernel in some

cases.

With the proposed design, we fully support functions such as those including multiple

backward calls. As an example of the output consider Figure 7.2. Upon backward

pass expansion (Figure ??), the graph is correctly connected to the forward pass,

including forwarding of the dy value. Furthermore, parts of the backward pass that

are independent of the forward pass do not exhibit any unnecessary dependencies,

allowing for independent scheduling.
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@dace.program
def step(x: dace.float32[10, 5], dy: dace.float32[10]):

x.requires_grad_()
xTy = x.T @ dy
loss = np.add.reduce(xTy)
loss.backward()
return x.grad

(a) A simple program that calls torch.autograd.backward.

call_66

x

__tmp0

_Transpose_

dy

xTy

_MatMult_

Reduce (Sum), Axes: [0]

loss

backward

one_0

__return

(b) The SDFG after parsing.
The backward pass library
node has been inserted, as
well a the data container for
the gradient of x.

call_66

x

__tmp0 dy

xTy

loss

one_0

__return

Reduce

_MatMult_gemv

gradient_xTy

gradient___tmp0

[__i0=0:10, __i1=0:5]
Default

__inp_gradient = (__out_gradient * 1)

[__i0=0:10, __i1=0:5]
Default

[__i0=0:5, __i1=0:10]
Default

__A_gradient = (__out_gradient * __x)

[__i0=0:5, __i1=0:10]
Default

[_i0=0:5]
Default

__inp_gradient = (__out_gradient * 1)

[_i0=0:5]
Default

[__i0=0:10, __i1=0:5]
Default

__out = __inp

[__i0=0:10, __i1=0:5]
Default

(c) Resulting SDFG after expanding the back-
ward pass library node.

Figure 7.2: Parsing a simple backward call.
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We evaluate the correctness of our automated distributed compiler by demon-

strating execution of various programs on a distributed cluster. We compile and

execute programs on the CSCS Piz Daint supercomputer.1 Each compute node is

a Cray XC50, with a 12-core Intel E5-2690 v3 CPU @ 2.6GHz and an NVIDIA

P100 GPU with 16GB device memory. The nodes are connected through a Cray

Aries system interconnect in a Dragonfly topology.

All results are parsed from high-level Python/NumPy code using the DaCe

Python frontend.2 The single-process SDFGs are then automatically partitioned

and lowered using the process described in Chapter 4, and all communication

1See https://www.cscs.ch/computers/piz-daint/ for more information.
2Although many workloads are deep-learning related and more concisely expressed in PyTorch,

we avoid the DaCeML frontend here to ease understanding.
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constraints are automatically solved using the grid mapped array solver described

in Chapter 5. Lowering a program with a given schedule is as simple as executing:

sdfg = program.to_sdfg() # parse to SDFG
daceml.distributed.lower(sdfg, schedule) # partition to SPMD program

After partitioning, we compile to machine code using the DaCe SDFG compiler and

GCC 9.3.0, finally linking to CUDA-aware Cray MPICH 7.7.18 for communication.

Note: in this chapter, where symbolic array sizes are used in the Python

programs (e.g., N in my_kernel(A: dace.float32[N]), these array sizes were

statically fixed at program-parse-time. Currently, our communication solvers only

have very limited support for symbolic shapes.

8.1 Lowering

We evaluate our lowering technique by using it to compile several distributed

programs, and describe the solutions obtained by the communication solver, verifying

their optimally (in terms of communication volume, given the schedule).

8.1.1 Matrix Multiplication

Matrix multiplication is a central primitive in deep learning and other HPC

applications. We begin with the follow NumPy code, yielding a three dimensional

iteration space.

@dace
def matmul(a: dace.float32[M, K], b: dace.float32[K, N]):

return a @ b

Lowering the program with a given schedule is as simple as executing:

sdfg = matmul.to_sdfg()
daceml.distributed.lower(sdfg, schedule)

The program can then be executed on a computing cluster. The compiler suc-

cessfully compiles this with all tested parallelism schemes. We test using sizes

M=4096, K=4096, N=4096. All schemes are solved successfully using the grid

mapped array solver.
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Fully replicated (1, 1, 1) The trivial schedule of full replication only ‘communi-

cates’ with the root process, since only rank zero participates in the process

grid of size 1. The communication is a simple MPI_Bcast over the size-one

process grid which can be implemented as a simple copy.

Data-Parallel (n, 1, 1) With this scheme, the a matrix is partitioned horizontally,

and the b matrix is fully replicated. Each process computes a data-parallel,

horizontal subset of the output, and the output is partitioned the same as

a. Due to the partial partitioning in a and the output, the solver emits two

stage communication (MPI_Scatterv, MPI_Bcast) for a and MPI_Gatherv

for the output.

Reduction-parallel (1, n, 1) With this scheme, a is partitioned row-, and b column-

wise, communicated in two steps as before. Each process computes a full-sized

4096 × 4096-sized output, and the output is reduced across all processes

in-network using MPI_Reduce.

Hybrid ( 3
√

n, 3
√

n, 3
√

n) The hybrid scheme is partitioned along all three dimensions,

combining the approaches explained above: the inputs are fully partitioned us-

ing MPI_Scatterv, and the output is accumulated using two stage MPI_Reduce

and MPI_Gatherv.

8.1.2 Sparse Matrix Vector Multiplication

With the rising popularity of graph neural networks (e.g., Kipf and Welling [2016];

Hamilton et al. [2017]) and growing interest in sparsification of neural networks

[Hoefler et al., 2021], sparse tensor operations are becoming increasingly important.

We evaluate lowering a sparse matrix vector multiplication (SPMV), starting

with the following NumPy code.

@dace
def spmv(A_row: dace.uint32[M + 1], A_col: dace.uint32[nnz],

A_val: dace.float64[nnz], x: dace.float64[N]):
b = np.empty([M], dtype=np.float32)
for i in dace.map[0:M]:

b[i] = 0
for j in dace.map[A_row[i]:A_row[i + 1]]:
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b[i] += A_val[j] * x[A_col[j]]
return b

When lowering with schedule (2, ), we notice that this case begins to push the limits

of our grid mapped array solver in a subtle way: the subset read from A_row is

[0:M + 1], which is one-larger than the iteration space size. The rank-tiled subsets

are correctly lowered to [0:M//2 + 1], but the grid mapped array solver does not

match the pattern correctly since it is limited to solving non-overlapping subsets.

We fall back to a more primitive Scatterv solver that computes the displacements

statically at initialization time by manually instantiating the subset expression for

each process in the process grid, and can thus handle overlapping reads without issue.

8.1.3 Warp-tiled Softmax

We now demonstrate that our method is capable of analyzing even hardware specific,

low level kernels. We begin with simple NumPy code, and we test on BERT-large

[Devlin et al., 2018] input sizes.

@dace.program
def softmax(inp: dace.float32[8, 16, 512, 512]):

rowmax = np.maximum.reduce(inp, axis=-1, keepdims=True)
exp_arr = np.exp(inp - rowmax)
rowsum = np.add.reduce(exp_arr, axis=-1, keepdims=True)
return exp_arr / rowsum

Next, we optimize the SDFG for CUDA code using warp tiling (described in

Rausch et al. [2022]). The resulting SDFG that is then passed to our lowering

procedure is highly specialized to CUDA hardware: it is fully fused, warp-tiled

along the last dimension, and contains warp-reduction instructions. Despite this,

our framework is able to automatically partition the workload along the first 3

dimensions (corresponding to data-parallelism).

Although not relevant for contemporary architectures, in theory, partitioning

along the reduction dimension is possible, which would be useful with a very large

reduction dimension. Our framework is able to lower with a schedule that partitions

that dimension, but not in the fully-fused operator. Solving that case would require

communication within the kernel, which we currently do not automatically handle.
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Figure 8.1: The attention-head parallel partitioning scheme from Megatron-LM (Figure
reproduced from [Shoeybi et al., 2019]).

8.1.4 Megatron-LM

We now demonstrate the capability to express the popular Megatron-LM tensor

parallelism scheme [Shoeybi et al., 2019]. Illustrated in Figure 8.1, the scheme

partitions the self attention computation along the head dimension. We au-

tomatically partition the following NumPy code, using sizes from BERT-large

B=8, S=512, E=1024, H=16

@dace
def projection(x: dace.float32[B, S, E],

W_Q: dace.float32[E, H, E_H],
W_K: dace.float32[E, H, E_H],
W_V: dace.float32[E, H, E_H]):

# projection bias ommitted for brevity
Q = np.einsum('bik,khj->bhij', x, W_Q)
K = np.einsum('bik,khj->bhij', x, W_K)
V = np.einsum('bik,khj->bhij', x, W_V)
return Q, K, V

# we fully fuse softmax as before
def scaled_softmax(x: dace.float32[B, H, S, S]):

scaled_x = x / SQRT_H
rowmax = np.maximum.reduce(scaled_x, axis=-1, keepdims=True)
exponent = np.exp(scaled_x - rowmax)
rowsum = np.add.reduce(exponent, axis=-1, keepdims=True)
return exponent / rowsum



56 8.2. Scalability

def self_attn(Q, K, V):
scores = np.einsum('bhik,bhjk->bhij', Q, K)
norm_scores = scaled_softmax(scores)
return np.einsum("bhik,bhkj->bhij", norm_scores, V)

The projection, softmax and self attention modules above are successfully partitioned

along the head dimension. x is replicated to all ranks, and projection matrices are

partitioned according to head. With this scheme, no inter-process communication

is necessary throughout the projection and self-attention computation.

def mhsa(x: dace.float32[B, S, E],
W_Q: dace.float32[E, H, E_H],
W_K: dace.float32[E, H, E_H],
W_V: dace.float32[E, H, E_H],
W_O: dace.float32[E, H, E_H]):

Q, K, V = projection(x, W_Q, W_K, W_V)
values = self_attn(Q, K, V)
# unpermute
values_permute = np.einsum('bhse->bshe', values)
values_reshaped = values_permute.reshape([B, S, E])
return np.einsum('bik,kj->bij', values_reshaped, W_O)

Following Megatron, we partition the output projection in data-parallel fash-

ion. As in Megatron, this requires communication, and the solver emits an

MPI_Allreduce operation for the redistribution after the self-attention and before

the output projection.

It should be noted that this is made simpler by the fact that the head dimensions

are explicit in the data and the einsums. Popular single-node implementations of

self attention often ‘fuse’ the projection matrices into a single matrix-multiplication

followed by splitting the output into Q, K and V. Our automatic partitioning fails

on those cases because the head dimension is not explicit in the iteration space.

This is similar to the constraint in data-layout-annotation systems (e.g., GSPMD

[Xu et al., 2021] and derivatives) to have the parallel dimension explicit as a tensor

axis. Extending our framework with the ability to partition the process grid in

cyclic distributions is an interesting avenue for future work that would remove this

constraint, but increase complexity in the communication solvers.
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Figure 8.2: Execution duration (seconds) of a 8192 × 8192 × 8192 matrix multiplication
with different process grid sizes. Measured durations are median of 5 runs.

8.2 Scalability

A critically important ability of a distributed execution framework is clearly to

compile and execute programs on large clusters. Our choice of MPI for communi-

cation is particularly helpful in this case for traditional HPC-style clusters such

as Piz Daint. We partition, compile and execute a 8192 × 8192 × 8192 matrix

multiplication on up to 128 nodes, demonstrating that our framework is capable of

operating at large node counts. Figure 8.2 illustrates these results. Although we

observe sub-linear scaling, this is in large part due to the fact that the measured

workload includes scattering inputs from, and gathering outputs to the root rank.
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9
Conclusion

In this work, we proposed a system for automatic partitioning of generic array

programs, including deep learning workloads. Contrary to prior work, our approach

partitions workloads based on work rather than data, enabling partitioning along

non-data dimensions that data-based approaches fail to capture.

Rather than relying on manual operator-based annotations, we propose a

system for automatic extraction of communication constraints, which are then

solved using one of several communication solvers. In this manner, the system

automatically discover parallel algorithms for the workloads, and can lower the

workload to an executable that communicates using MPI. This makes it, to the best

of our knowledge, the first such system that operates completely without operator

annotations and generalizes beyond the popular deep learning operators of today.

The parameterization exposed to the user is simple yet general: the user simply

specifies the degree of parallelism on any iteration space dimensions they would

like to tile. This generalizes various forms of parallelism, such as data-, model-,

spatial-, optimizer- and tensor-parallelism.

The transformation is a transformation over generic SDFGs, and can be freely

composed and interleaved with other transformations. As a result, we can au-

tomatically derive parallel schedules even for optimized, fused and hardware

specialized kernels.
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We implement this system as an extension to DaCeML [Rausch et al., 2022],

and we demonstrate correctness on several workloads. We also demonstrate the

system’s ability to compile and execute programs on 128 machines on the Piz

Daint supercomputer.

9.1 Future Extensions

We currently plan to extend the system in several ways. The first is GSPMD-

like heuristic propagation of partitioning annotations is an important feature for

usability. Using several simple propagation heuristics, we can greatly to reduce

the number of annotations the user needs to specify.

A holistic cost model for our system is a natural next step, since all communica-

tion and data-movement is explicitly modeled in the intermediate representation.

A cost model can be as simple as iterating over all edges in the graph and summing

their data-movement volumes. This would enable rapid feedback for more effective

performance tuning.

Finally, we plan to extend introduce fully-automated search over the schedule

space. The current system can automatically extract all parallel dimensions in

the workload, and together with a cost model and a search procedure, we can

enable fully-automatic scheduling of array programs.
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