Regular tree languages definable in FO

Michael Benedikt Luc Segoufin

Abstract

We consider regular languages of labeled trees. We givefanotieke characterization of the
regular languages over such trees that are definable irofidetr logic in the language of labeled
graphs. These languages are the analog on trees of thelylttwashold testable” languages on
strings. We show that this characterization yields a decigrocedure for determining whether
a regular tree language is first-order definable: the proeedupolynomial time in the minimal
automaton presenting the regular language. We also pravigdgorithm for deciding whether a
regular language is definable in first-order logic supplet@@mwith modular quantifiers.

Keywords. Treeautomata, Logic

1 Introduction

This paper is concerned with the relationship between etjul(acceptance by an automaton) and
definability in first-order logic and first-order logic wittbanting quantifiers. Over strings this re-
lationship is well-understood. A fundamental result innfiat language theory [Buc60] states that a
language of strings is regular — that is, equal to the languafgstrings accepted by a finite string
automaton — exactly when it is definable in monadic secodérdogic (MSO) over the vocabulary
consisting of the successor relation on strings and thddaliBy restricting to first-order logic (FO)
rather than MSO, we can obtain two proper subcollectionsheffamily of regular languages. The
languages that are definable in first-order logic over thesiteve closure of the successor relation and
the label predicates, which we denote EQ)(are exactly the star-free or, equivalently, the apedodi
languages [MP71, Sch65]. The languages that are definalfisstiorder logic over the successor
relation and the label predicates, which we denote by FQgespond to locally threshold testable
languages (see [Tho97]). Using a fundamental result ofi#hé@and Weiss [TW85], Beauquier and
Pin [BP89] gave an algebraic characterization of the FOUaggs. They are exactly the languages
for which the corresponding monoid satisfies certain idiersti Put another way, they show that the
monoids corresponding to FO-definable languages form adpseariety within the collection of all
finite monoids. Both the characterization of KQ{definability via aperiodicity and the characteri-
zation of FO-definability of Beauquier and Pin lead to efferialgorithms for checking whether a
regular language is F&() (resp. FO) definable. Straubing [Str94] provides an armisg-haracter-
ization for the logic FQ,.q that extends first-order logic with quantifiers that countdmo a given
integer. A complete overview of the string case can be foar[dho97] or in [Str94].

We now consider the situation over ranked trees — labeled tngth a fixed bound on branching.
Regularity is now defined as acceptance by a (non-deteniginég-down or deterministic bottom-
up) tree automaton, and regularity is shown to be equivatedefinability in monadic second-order
logic in the vocabulary of labeled graphs [Don70, TW68]. histcontext we use F&() to denote
first-order logic over the labels and the transitive closufréhe graph relation (that is, the descendant
relation on trees). We use FO to denote first-order logic ¢wvergraph relation and the labels, and

FO,..q to denote first-order logic with counting quantifiers (maxlah integer) over the graph relation
and labels. The notions of aperiodicity and star-freenas® Imatural extensions to the tree context,
but here FO() is strictly weaker than aperiodicity and star-freenessd®, Heu91, Pot95]. Finding a
decidable characterization of FQYwithin the regular tree languages is a longstanding opeblem;
partial results (see below) are given in [EWO03, BWO04]. Adia string case, FO definability is known
to be strictly weaker than F&() definability, but surprisingly an effective charactetina of FO-
definability was also lacking. [Wil96] gives an algebrai@dicterization and decision procedure for
the frontier testable languages, a subclass of the FO dédifeatguages. [BWO04] provides a decision
procedure for two fragments of FQJ defined using existential path quantification; none of ¢hes
fragments exactly matches the expressiveness of FO. [EWI08% a characterization of the FQY
definable languages in terms of an algebraic structure @hetactic pre-clone”) associated with the
language; this characterization is not known to be effectiVo our knowledge, the decidability of
definability in each of these logics was also unresolved trees.

In this work we give an effective characterization of defifighin FO over trees, ranked or un-
ranked. Over ranked trees FO still corresponds to the Lobeddhold Testable (LTT) languages, but
this characterization does not yield a decision procedDre.main result is an effective characteriza-
tion of FO within the regular tree languages that uses a seaif/alences that preserve membership
within the language. Unlike the string case, these equiezalg include preconditions requiring por-
tions of the tree to be similar “locally”. They are thus a notg between a definition using locally
threshold testability (which characterizes FO over rankegs, but which is not effective) and a
purely algebraic approach. We extend our characterizatioryive characterizations of FO-definable
languages over unranked tress as well.

As an application of the characterization theorems, we sthaw over strings, our results yield
a new proof of the algebraic characterization of LTT and &f tlecidability of membership in LTT
over strings presented in [BP89, Str94]. The current probthe characterization of FO in the string
case use either fundamental (and difficult) results in tee of monoids [BP89] or difficult results
within the theory of finite categories [Str94]. Neverthalesveral of the technical lemmas remain
identical in inspiration if not in notation to the earlierqofs.

We then show that our characterization theorem yields that @an decide whether a regular
language of trees is definable in FO, both over ranked andnkedatrees. We show in fact that
membership in these classes can be decided in polynomialitirthe size of a minimal automaton
accepting the regular language. Finally, we show that inrt#imked tree case our techniques and
results also yields a decision procedure for membershipedalar language in FQ,4. We also state
characterizations for FQ,,, both for the ranked case and the unranked case, in the sdriteasp
those obtained for FO. Those characterizations yields P Rlgorithm for testing membership in
FO0d-

Organization: Section 2 gives the basic notation for this article. Sec8atates and proves the
characterization theorem for FO in the case of ranked tr&estion 4 extends to prove the charac-
terization in the unranked case. Section 5 shows how thétsefsu strings follow from the tree case
and gives the decision procedures that follow from the attar&zation theorem. Section 6 provides
extensions of the results to first-order logic supplemenmt@l counting quantifiers. Section 7 gives
conclusions and open issues.

This paper is a journal version of our STACS’05 paper [BS0btontains the full proofs of the
decidability results claimed in [BS05]. The exact chardzédion claimed in [BS05], however, was
incorrect.

2 Notation

Trees We fix a finite alphabek, and consider trees with labelsih In this paper we will deal with
two settings. In theankedsetting, we fix some integerand considei-labeled trees of rank; that
is, each node has at masthildren. In this case, the children of any given nodeadered that is,
we can distinguish the first child, second child, and so fdrittheunrankedsetting there is no bound
on the number of children and we will always take the childiebeunordered Finding a decidable
characterization in the unranked ordered case remainsemauestion.

In both cases, we use standard notation for trees. Byéiseendanfresp. ancestor) relation we
mean the reflexive transitive closure of the child (resp.eise of child) relation. We usgé (%, r)
for the set of trees of rank at mostwith labels coming from alphabét, and7 (X, w) for the set of
unordered trees of any finite rank with labels frain When the setting is clear, or when we assert
something that holds in all settings, we just wrfte

For treest, t’, we say that’ is asubtreeof ¢ if the nodes oft’ are a subset of those ofand the
edge relation and labeling function tfare obtained from those ofby restricting to the nodes of.
Thus ift’ is a subtree of, ' need not contain the root ¢f and leaves of’ need not be leaves of
We say that’ is aprefixof ¢ if ¢’ is a subtree of that contains the root af

Given a treg and a node: of ¢ the subtree of rooted atr, consisting of all the nodes ofwhich
are descendants af is denoted by|,. Lett be a tree and: be a node ot, the k-spill of z is the
restriction oft|, to the set of nodes of at distance at most from z. Given a treel and a setS
of nodes oft, the minimum subtree of containingS is the smallest tree whose rootis the least
common ancestor of all nodes Sfand which contains all nodes 6fand their ancestors up to

Given two nodes andz’ occurring respectively in the treest’ we say thatr is depthk similar
to 2/ if the k-spill of z in ¢ is isomorphic to the:-spill of 2’ in ¢’. Similarly two treest and¢’ are
depth similar if their roots are deptlk-similar. When we are in the ranked case, isomorphism must
preserve the order of children, but in the unranked caseeit met.

A contextis an (ordered or unordered) tree with a designated (urddbpé&taf called itport which
acts as a hole. Given contextsandC’, their concatenatiofy’-C’ is the context formed by identifying
the root of C’ with the port ofC. Concatenation of a conte&t and a tree is defined similarly. Given
a treet and two nodes, y of ¢ such thaty is a descendant (not necessarily strictirothe context
Ctlz,y) is defined fromt; = t|, by replacingt,|, by a port.

Treeautomata Regular tree languages will be represented by finite stadtevata. Over-ranked
trees, a (deterministic bottom-up) tree automatbis defined in the usual way; it has a finite set of
states), a setF’ C @ of accepting states, and a transition functboassociating a unique state to any
pairin (Q* x ¥) fori < r.

A tree automatomd over unordered unranked trees consists of a finite set afsfhta setl’ C
of accepting states, an integer and a transition functiol associating a unique state to any pair
(TY x %) wherel,,, = {=1,> 1|1 < m}. We furthermore assume that if there are functions
f,g € T with f giving a more restrictive constraint thagron everyq € Q, thens(f,a) = 6(g,a);
that is, A is deterministic. The transition function associates @uaistate to any pair iQ° x . The
numberm is called thetolerance of A.

As usual a rum of A on a treet is a function from the set of nodes tfo Q. The notion of a valid
run for ranked trees is standard. In the case of an unrankedatrtomaton, a runis valid if for any
nodez of labela € X, there exists a functiori € I'? such that(f,a) = 7(z) and, for every; € Q,
the number of childrery of = such thatr(y) = ¢, is consistent withf (¢). Each tree has a unique
valid run. A treet is accepted byl if the valid runt of A ont is such that the image underof the

3

root of ¢ is in F'. Languages accepted by such automata are cedfpdar languages It is folklore
that this corresponds to the usual definition over rankedusmanked trees (see also [Tho97]).

An automatonA with set of states) and a context” induce a function fron@) to), sending a
stateq to the statey’ reached byA at the root ofC' assuming state at its port. For context§€’; and
Cs, we write C; ~ (s if they induce the same function. In particular, in this casehaveC, -t is
accepted by iff C - ¢ is accepted bw.

Logics Monadic Second Order Logic (MSO) and First Order Logic (F&) defined over trees in
the standard way. In the caserefanked trees, they will be defined over the signature coimtgione
unary predicateP, per lettera € X and the tree successor relatiofis. . . E,., whereE;(z,y) holds

if y is thes*" child of z. In the case of unranked trees, they are defined over thetsigneontaining
one unary predicat®, per lettera € 3, and the tree successor relation. A tree language is saiel to b
regular if it is definable in MSO or, equivalently, recognized by aetautomaton.

For any formulay € FO, its quantifier rank qtf) is defined as the nesting depth of the quantifiers
of p as usual. The elementary equivalence up to depshdenoted by=": for any two treeg,t' € 7
we say that =" t’ if ¢t andt’ satisfy exactly the same FO sentences of quantifier rankhess..

The logic FQ,,.q extends FO by allowing formulae to be built up by the rilg/) = 3%z ¢(z, 7),
wherer, ¢ are integers with- < ¢. This holds in a structuréG, ¢) iff the number ofz such that
(G, ¥,) holds is equal to modulog. If P is afinite set of integers we let EQ,p) be the extension
of FO with the constructors above, where we restyith be inP.

3 Ranked trees

3.1 Statement of the main result

In this section we fix € N and we assume that all trees areZi(®,).

Swaps Lett be atree, and, 2’ be two nodes of such that: andz’ are not related by the descendant
relationship. Thénorizontal swapof ¢ at nodesr andz’ is the treet’ constructed front by replacing
t| with t|,» and vice-versa.

Lett be a tree of root, andzx, y, 2/, ¢’ be four nodes of such thaty is a descendant af, 2’ is a
descendant of andy’ is a descendant af . Thevertical swapof ¢ between[z, y) and[z/,y') is the
treet’ constructed front as depicted in Figure 1. More formally 1€t = Cy[a,z), A1 = Ci[z,y),

Ay = Gy’ y'), A = Cily,a’), T = t|,. Then notice that = C' - Ay - A- Ay - T. The treet’ is
definedag’ =C - Ay - A-A;-T.

Guarded swaps Letk € N,t € 7 andxz,y,2’,y be nodes of. A horizontal swap is said to be
k-guardedif z andz’ are depthk similar. A vertical swap is said to be-guardedif x andx’ are
depth4 similar andy andy’ are depthk similar.

Let L be a tree language ardbe a number. We say thatis closed undek-guarded swap# for
every tree € L and every tre¢ constructed from by either a horizontal or a verticatguarded swap
thent’ is in L. Note that being closed undérguarded swaps implies being closed unkleguarded
swaps fork’ > k.

A regular tree languagé is said to be aperiodic if there exists= N such that for all contexts
C, A and every tred’, CA!T € L iff CA™'T € L. The least suchis referred to as thaperiodicity
numberof L. This just the classical notion of aperiodicity in the mahof contexts.

(o>

ES 2 ats

Figure 1: lllustration of the vertical swap

Theorem 1. Let L be a regular tree language.
Then L is definable in FO iffL is aperiodic and there exists & such thatL is closed under
k-guarded swaps.

The “only if” direction of Theorem 1 is easy. F is definable in FO , the# is aperiodic [Tho97].
It is also known that for any FO sentengehere is a numbek such that the truth of is determined
by the number ofk-neighborhoods of each isomorphism type. The least fuchreferred to as
the locality rank of ¢ [Lib04]. A k-neighborhood in a grapti is the set of nodes that are within
distancek of some point inG. Sincek-guarded swaps preserve the numbek-afeighborhoods of
every isomorphism type, it follows that if is definable by an FO sentengethen L is closed under
k-guarded swaps, whefeis the locality rank ofp.

The opposite direction follows from the following theorewhose proof will be quite involved:

Theorem 2. For any regular tree languagé which is aperiodic and closed undérguarded swaps,
there exists d such that for any,t € 7 we have: s=Xt = seL iff te L.

Before proving Theorem 2 we show how Theorem 1 follows fronfFiiom Theorem 2 we know
that if L is aperiodic and closed underguarded swaps thefis a union of equivalence classesof
for someK. Standard arguments from finite model theory (see e.g. fJighow that=" has only
finitely many equivalence classes and that each of them isal#é in FO. Thereford, is definable
in FO as a disjunction of such formulas for the correspondiagses.

3.2 Proof of Theorem 2

In this section we fix an aperiodic regular tree languageith aperiodicity numbet, a numbelk and
assume that is closed undek-guarded swaps. We also fix a deterministic bottom-up tréenaaton
A for L.

Because the trees are ranked, there are only finitely manyagzhism types of trees of depth at
mostk (by the depth of a tree, we mean the maximal length of any p&tie) denote the set of such
isomorphism types by;.. Given a tree¢ and a noder of ¢, we write T};(x) for the isomorphism type
of the k-spill of x in ¢, and denote it as the-type of x (type of x whenk is understood from the

context). A crucial observation for the rest of the papehat the(k + 1)-type of a node determines
the k-types of its children.

For eachr € 7;, and any tree¢ we denote by¢|, the number of occurrences of the typen ¢.
Given two treess, t we write s =k ¢ if for all 7 € 74, |s|; = |t|; or |s|,,|t|- > d (s andt have
the same number of occurrences of typep to thresholdi). We writes <* ¢ if for all 7 € T,
s> < |t|-, and we writes <% ¢if s =% tands <* t.Ifforall 7 € 73, |s|, = [t|, then we write
s :’;O t.

Another fact that will be used repeatedly is that if we apply-guarded swap move to a tree
there is an obvious bijection from the nodest @b the resulting tree’ that preservesk + 1)-types;
in particular, we have =++1 ¢,

This first lemma shows that if we have the hypothesis of Thad2ethen we can assume that
andt have the same number of types up to some threshold.

Lemma 1. For each numbed, there is a numbekK; such thats =%¢ ¢ implies thats :’5“ t and
thats, t are depthk + 1) similar.

Proof. ChooseK ; big enough so that we can count the number of satisfiers offanyl)-type up to
thresholdd using K ; quantifiers. O

The following lemma refines the previous one by showing tleomly can we assume thatind
t have the same number of types up to some threshold, but thatuinber is always bigger inthan
ins.

Lemma2. For each numbet’ there exists a numbeksuch thatifs =%** ¢ then there exist# such
thats <A™ ¢, andt,t’ are depthtk + 1) similar, andt’ € Liff ¢ € L.

Proof. Assumes :’3“ t for some large enough whose value will become apparent during the
proof. Lets be the number ofk + 1)-typesr such thatt|, < |s|.. We prove the lemma by induction
ong. If 8 = 0 this is clear. Otherwise let be a(k + 1)-type that occurs more times inthan int.

By hypothesisr occurs at least times int.

Given two nodeg:, y in a treet with y a strict descendant of, we write [z, y) for the number of
nodes in the contex@;[z, y) that have type-. A T-skeleton of length is a sequence; : 0 <i < n
such thatz; 1, is a strict descendant of, andr[z;,z; 1) > 1 foreach0 <i <mn — 1.

We first show that for every; there isd such that for every tree, if |u|; > d then there is a
7-skeleton of lengthi; in u. By theinterior of a pointed tree, we mean all the nodes in it other than
the port. Choosé > (r + 1)%1. Starting withz being the root of:, we will choosez; inductively
such that the interior of’,[x;—1, z;) has at least one node whose typeuiis 7 andz; has at least
(r 4+ 1)~ nodes of typer below it. Suppose that we hawg . ..z;. Letz; be a descendant af;
of type 7 having minimal depth. If there are no nodes of typi the interior ofC,,[z;, z1), then we
know that there are at leagt + 1)% % nodes of typer below z;, including z;. Hence there is some
child of z; having at leastr + 1)“~(+1) nodes of typer below it. Setz;,; to be such a child. If
there is some node of typein the interior ofC,[x;, z1), then there is some nodg strictly between
x; andz; which has more than one child having a node of tygmelow it. Takingz, to be the highest
such node, it is clear that one of the childrenzgfmust have at leagt- + 1)*~(+1) nodes of type
7 below it; chooser;, to be this node. We can verify in either case that this presetive induction
hypothesis.

We apply this to the tree, for d; to be chosen later on, gettingraskeletonz; : 0 < i < dj.
Let ¢ be one more than the product of the numbef/oft- 1)-types and the number of states in the

automaton. So given a set ...z, of nodes int, there must be:4, . with d # e wherex; andx,
have the samé: + 1)-type and such that the automaton runtaeaches the same statergtandz..
states ofA. The nodes in the interior of the context betwegrandz;,, fori < d; — g with7 =0
mod ¢ form asectionof t. We say that dk + 1)-type v is safeif [¢t|, > d'. A section issafeif it
contains only nodes having s&fle+ 1)-types. Because the number of sections is at leasly) — 1,
we can choosé; big enough so that at least one of them is safe. Given thisetaid, fix x; such
that all nodes in the interior of the context betwegrandz;,, are safe. By the choice qf there are
dande with i < d < e < i + ¢ such that the run of automatohont¢ reaches the same statergtas
atz., with z; andz, having the samék + 1)-type. Hence we can replace the cont€fx 4, x.) with
arbitrarily many copies of itself, without changing mendiep in L, without changing membership in
L. Sincez; andx, have the same type, performing this replacement does nogefthe(k + 1)-types
of any node ofCy[z;, z1,), and the type of any node ifi;[x;, x;) within ¢ is the same as the type of
each of its copies in the modified tree. Thus we only addedesopi safe types. Therefore we have
t’ :’g/“ t :’g/“ s. Now sinceC [z, zj;) contains an occurrence of by adding sufficiently many
copies of the resulting tre®, we have reduce@ by one and we can conclude by induction. [

A treet is k-pseudo-includedn a treet’ if there is an injective mapping from nodes oft to
nodes oft’, sending the root of to the root oft’, and such that: (i preserves types ifi;, and (ii)
if = is thes®” child of y in ¢ thenh(z) is a descendant of thé" child of h(y) in #'. In this case the
h-pseudo-treés the minimum prefix of’ which containgu(t).

The next step shows that we can also assumestisapseudo-included in. It requires only the
closure ofL underk-guarded swaps.

Lemma3. If s <*+! tands,t are depthk + 1) similar then there exist8 such thats is (k + 1)-
pseudo-included i/, ¢ =F+1 ¢, ¢, ' are depthtk + 1) similar, andt’ € L iff t € L.

Proof. The proof is by induction. We constru¢g - - - t,, such that:tq is t and, for all0 < i < n,
t;+1 IS obtained from; using onlyk-guarded swaps, i; is a prefix ofs maximal with respect to the
property thats; is (k + 1)-pseudo-included it;, then there exists a nodg of s that is a child of a leaf
of s;, such thatr; € s;11. Sinces; cannot keep growing forever, we must eventually haye= s.
This implies the lemma by taking = ¢,,, using the fact thak-guarded swaps preserves the number
of (k + 1)-types and the assumption thais closed undek-guarded swaps.

By hypothesis the root of and the root of have the samék + 1)-type. Thus we can initiate our
process by mapping the root eto the root oft.

Assume now that we have constructedLet s; denote a maximal prefix; of s which is(k + 1)-
pseudo-included in; by a mapping: such that:(a) = o’. If s; = s we are done. Otherwise letbe
a node ofs; such that ite*" child y is not ins;. Let s’ be a minimal prefix ok which containss; and
y. We show how to transforrty into ¢;,1 so thats’ is (k + 1)-pseudo-included it ;.

Letr =T, ,(x), v = T, (y) anda’ = h(x). By hypothesis we know that there is a nadén
t; outside ofh(s;) such thafr,igrl(y’) = v. Let 2 be thep!” child of 2. Note thatz’ cannot be in the
h-pseudo-tree.

We distinguish several possibilities depending on theixegosition ofz’ andy’. By maximality
of s; we know thaty’ is not belowz’.

Assume first that/ is outside théi-pseudo-tree. Then it is either belaor not related ta’ by
the descendant relationship. It is crucial here that) = o/, as it rules out the case wheyeoccurs
aboveh(a). Because: andz’ agree on theifk + 1)-types,z’ andy’ are depthk similar. We can apply
the k-guarded horizontal swap to these two nodes. This yieldsiésaed treeg,; 1, as we can now

extendh by settingh(y) = 3. We can verify that this yields @ + 1)-pseudo-inclusion mapping,
since the newk + 1)-type ofy’ remainsv.

Assume now thay’ is inside theh-pseudo-tree. Let; be the deepest node i) such thatr] =
h(z1) is an ancestor of’, andxzs be the highest node is; so thaty’ is an ancestor af, = h(z2).
Note that the definition of pseudo-inclusion implies thais uniquely defined. Assume thaj is the
4" child of z1 in s and letz] be thej'" child of «} in ;. Note thatz} cannot be in the image df,
since this would contradict the maximality ©f. There are two cases to consider.

The first case is when' is a descendant af, (see Figure 2). Becaugepreservegk + 1)-types,
21 andzf, are depthk similar and the same holds fgf andz’. We can thus apply thé-guarded
vertical swap betweefx],y’) and[z}, ') and obtain the desired treg ;. We can then extent by
settingh(y) = . It remains to verify that this indeed gives(a + 1)-pseudo-inclusion mapping.
This is straightforward and left to the reader.

Figure 2: This illustrates the case wheis a descendant aof,. s; ands are depicted on the left; is
depicted in the middle. After applying thieguarded vertical swap betweét{,v’) and[z), 2’), we
reacht;; depicted to the right. The node$ andz/, have the samé-types and the nodeg andz’
have the samé-types.

If 2/ is not a descendant af, we proceed as follows. As above, we know thatnd 2z’ are
depth% similar. If 2’ is a descendant of , then it would have to be a descendant:bfas well, since
all pseudo-tree elements beneathie beneath:/,. Hence we know:’ cannot be a descendantgf
and soz’ is not a descendant gf either. We can therefore apply tikeguarded horizontal swap tg
andz’, obtaining an intermediate treg In ¢/, we have that’, andz| are depthk similar and we can
apply again thé:-guarded horizontal swap to obtain the desired tfee. The mappingd: is extended
by sendingy to 3/, and it is immediate to see that this preserfes- 1)-types. O

An immediate corollary of Lemma 3 is:

Corollary 1. If s andt are trees that are depttk + 1) similar such thats =£F! ¢ thens € L iff
te L.

Proof. Apply Lemma 3 tos and¢ and notice that the treéobtained is isomorphic tevia the(k+1)-
pseudo-inclusion mapping as the hypothesis implies thiatcannot contain any extra nodes. [

At this point, we know that we can transforhinto ¢’ so thats is pseudo-included if’ by some
mappingh. Thust” is a copy ofs plus extra contexts inserted between elements(sf. We also
know, by the corollary above, that if we could get the typeg’ofo match those of exactly, we
would be done. Our next goal will be to add these contextsdne by one. We will use the crucial

8

observation that allk + 1)-types occurring outside @f(s) have strictly more occurrences fi than
in s, and hence must have many occurrences. ifio make the last step formal we will need further
notation and one extra lemma.

Let C be a context where the port is not the same as the root, anddeta function assigning a
k-type to the port of”' and a(k + 1)-type to each other node 6f (in the case wheré€' consists of
only a single node, thek will assign only ak + 1-type to this node)A is said to beconsistentf there
exists a tree such that for every non-port nodein C the (k + 1)-type ofz in C' - t matches\(x).
An abstract contexis a contextC' whose root is not equal to its port, supplemented with a ctersi
assignmenf\. We extend the basic definitions on trees to abstract caniaxithe obvious way: if
U = (C,)\) is an abstract context, we will refer to any nodeliras a node ot/, and similarly refer
to the root ofU, child relation onl, etc. Given a node of U (i.e. a node of”), we will refer to\(x)
as the(k + 1)-type ofz. Given two abstract contexts andV we say that/ is compatiblewith V' if
the (k + 1)-type of the root ofl”, when seen as ktype, is thek-type of the port ofU. If U andV
are compatible abstract contexts tiénV/, the concatenation @f andV, is also an abstract context
with the obvious consistent assignment. We can also caratemate an abstract context with a tree.
An abstract context/ and a tree are compatible if th¢k + 1)-type of the root of is the k-type of
the port ofU. In this case, the concatenatibh- ¢ will be a tree.

An abstract context/ is anabstract loopf U is compatible with/. Thus ifU is an abstract loop,
thenU™, the concatenation of copies ofU, is also an abstract context for anyc N.

Loops will play a significant role in reducingto s. Observe that if: witnesses that is (k + 1)-
pseudo-included inandy is thep' child of z in s, thenC;[z, h(y)) wherez is thep'” child of h(x),
together with the obvious assignment, is an abstract loop in

Given a treg and an abstract contelt, we say that/ is (k+1)-included in ¢ if there is a function
from C to t preserving the'” child relation for everyi < r which also preserveg: + 1)-types. We
say thatU <, t if the number of occurrences of ea¢h + 1)-type inU is strictly less that the
number of occurrences of the saifke+ 1)-type int.

We are now ready to state and prove our last technical lemrhas Very similar in spirit to
Lemma 3 and its proof follows exactly the same ideas. Howiwffers in Lemma 3 in two crucial
respects. The hypothesis on the number of types is stroag@re require strictly more typesirthan
in U. The conclusion is stronger, as we replaced pseudo-ireiusy inclusion.

Lemma4. Lett be a treek a number, and/ an abstract context.
If U <j1 t then there exist§ such that is (k + 1)-included int’, ¢/ =&+ 4 and,t’ € Liff
te L.

Proof. The proof is similar to that of Lemma 3. It is done by inductimd requires a lengthy case
analysis.

An abstract context/ is weakly (k¢ + 1)-pseudo-includedn a treet’ iff there is an injective
mappingh from nodes ofJ to nodes of’ that satisfies the requirements for pseudo-inclusion, xce
for the requirement that the root 6f is mapped to the root af. We will likewise talk about weak
(k + 1)-pseudo-inclusion mappings and we@k+ 1)-pseudo-trees. The first step is to transfafm
into t” so that there is a weal¢ + 1)-pseudo-inclusion of/ into ¢”. Note that we cannot directly
apply Lemma 3 as the hypothesis on the root types was cruciahe proof of Lemma 3 this was
reflected in the fact that i’ is not in theh-pseudo-tree then it cannot be above the image uhdér
the root ofs. Without this the proof would not go through. However withr atronger hypothesis on
the number of types, this case can now be handled.

Claim 1. If U <41 t then there exists a tre€ such thatJ is weakly(k + 1)-pseudo-included into
t", " =kl ¢ and,t” € Lifft € L.

Proof. The proof is done exactly as in the proof of Lemma 3 with théofeing differences. In the
base case, the image of the rootldbfs now an arbitrary node df= ¢; whose type matches the type
of the root ofU; an inclusion mapping does not demand preservation of thte Buring the induction
we have constructet and a prefixU; of U which is weakly(k + 1)-pseudo-included in;. Leta be
the root of U. Recall the proof of Lemma 3. We have two nodeg € s such thaty is a child ofz
and is of typev. We also have three nodes nodésy’, 2’ € ¢;, such that’ = h(x), 2’ is a child of
2/, andy’ is a node outside di(U;) of typer. We are trying to modifyt; in order to put a node of
typev belowz’. This is done by a case analysis depending on the relativiequosf =, ¢/ andz’. All
cases are handled as in Lemma 3 but we now need to considertoaease which was not possible
in Lemma 3.

Assumey’ is an ancestor of(a). By hypothesis we know that there ig/a + 3/ outside ofh(U;)
whose type is also. If we re-do the case analysis wifff playing the role ofy’ we are left again
with the case where botif andy” are ancestors df(a). Assume without loss of generality thglt
is a strict descendant gf. Notice thatz’, v/, andy” are depthk similar. We can apply thé-guarded
vertical swap tdy’,y”) and[y”, 2'). This yields the desired trefg, ; asy’ is now thep®” child of .
Notice that the presence gf was crucial for this step. O

Using Claim 1 we can assume without loss of generality that weakly (% + 1)-pseudo-included
in t.

Let A be the set of verticeg of U such that the parent of, denoted byz, is in U, and such that
h(z) andh(y) are not in a parent/child relation. Note that the nodeAido not necessarily form a
subtree. Letr = |A] andm = X,cad(y), whered(y) denotes the depth i@ of y. If n = 0 we
already have &k + 1)-inclusion mapping and we are done. If not we show that it ssfizle to modify
h and re-arrange via swaps and obtain a new wegk + 1)-pseudo-inclusion fot/ mapping with
(n',m') < (n,m), where< denotes the lexicographic ordering on pairs. By repeatimgargument
we eventually get &-inclusion mapping ot/ into some tree’.

Assume that # 0 and taker andy such thaty € A is thep'” child of =, and consider’ = h(x)
andy’ = h(y). LetT be the(k + 1)-type ofz andv be the(k + 1)-type ofy. By assumption we
know that there is another nodé€ outside of the imagé(U), such that the type of” is v. Let 2’
be thept” child of 2/. Assume first that’ = 3”. Then the type ot’ is v and we can modify: by
settingh(y) to 2’ while reducingn by 1. Otherwise we have that, v, and2’ are all distinct nodes.
Notice however that’, 4/ andy” are depthk similar. We perform a case analysis depending on the
relationship betweer’, 3/, andy”.

In the first case, we assume thdtis an ancestor of’. We apply thek-guarded vertical swap to
[y",2") and[Z’, 1), obtaining a tree¢;. This case is depicted in Figure 3. Notice thais still weakly
k-pseudo-included iny, and thaty’ is now thep!” child of 2’. Hencen has decreased by one.

In the second case, we assume {ffais a descendant af. We apply thek-guarded vertical swap
to [2/,y') and[y’, y"), with h being modified so that if before it maps some ned® a nodew’ that
is swapped, it will now magw to the image ofw’ under the swap. Via this modificatidii remains
weakly k-pseudo-included in the new tree, and in this tree ngde now thep!” child of h(z), thus
decreasing: by one.

In the third case, we assume thdtis not related ta’ andy’. We first applyk-guarded horizontal
swapping ta)” andz’ and again betweegl’ (i.e. the image of/” under the previous swap: for brevity
we omit this distinction henceforth) and We then modifyh by composing with the swap mappings,

10

Figure 3: lllustration of the first case. is depicted on the left, witl/ the solid triangle within it.¢
is in the middle, with the weak pseudo-imagelbflepicted as a solid triangle within it. The tree
resulting from the swap is shown on the right. Notice tifabecomes a child af’ and that no other
nodes of the weak pseudo-inclusion are affected.

giving a weakk-pseudo-inclusion in the obvious way. Again we have corettafz) andy’ and
decreasea by one.

In the fourth case, we assume thdtis between:’ andy’. But then we can change so that
h(y) = y" and still get a weak-pseudo-inclusion of/ into ¢’ via the newh. We then proceed as in
the second case.

The last case is wheyt’ is a descendant af but is not related tg/. If v = 7 then letz” be the
pt* child of 4/ and notice that’, ' andz" are depthk similar. We apply the:-guarded vertical swap
to [2/,y) and[y/, 2”) and the reader can verify that we are donev £ 7 then by assumption we
know that there is a node’ outside ofh(U) such that thé-type ofz” if . Letz” be thep'” child of
z”. Notice thatz”, 2/, 3/ are depthk similar. Again we have to consider several subcases.

In the first subcase” is not related ta:’. We apply thek-guarded horizontal swap td' and 2’
followed by ak-guarded horizontal swap applied 6 andy’. The reader can verify that this yields
a treet; with the desired properties)’ is now thep” child of 2’ and the weak-pseudo-inclusion
mapping is only affected there, thus decreasingy one.

In the second subcas€ is a descendant of . Then we apply thé-guarded vertical swap to
[2',y") and[y, ") and obtain a tree whereis decreased by one.

The third subcase is wheif is an ancestor of’. Then we apply thé&-guarded vertical swap to
[2",2") and[Z’,y’). The reader can verify thatis decreased by one.

The fourth subcase is whefi is below?’ but not related t@’. We apply thet-guarded horizontal
swap toz” andy/, attachingy’ to z”. We now modifyh by mappingr to z” instead ofr’. It is easy to
verify thath is still a weakk-pseudo-inclusion mapping fér. It is also easy to check that, with this
new mappingn does not increase; is no longer inA butz is now in A, with no other nodes moving
into A. We remark now that with this new mapping has decreased by one.

The last subcase is whefi is betweer:’ andy’. Thenz/, 2’ andy” are related as in the subcase
above and we proceed replacigigwith 1. O

We are now ready to complete the proof of Theorem 2.

Proof of Theorem 2:

Let @ be the set of states of, o = |Q| be the number of states df. Let 3, = |7;|. Recall that
1 is the aperiodicity number af, and thus for every” andT we haveCA!T e L iff CAYIT € L.

11

Letd = r(B**+1+ 1 1 | etd be the number required in Lemma 2 6t Let K be the numbefs;
required in Lemma 1 fod. We show that =X t impliess € Liiff ¢t € L.

Assumes =X ¢, we show thats € L iff t € L. From Lemma 1 we know that :’5“ t.
Therefore by Lemma 2 there is a tréesuch that’ € L iff t € L ands g’j/“ t’. We can now apply
Lemma 3 and obtair’ such that” € L iff ¢ € L, sis (k + 1)-pseudo-included it” via a mapping
h, andt” =K1 ¢/ :’5,“ s. Therefore it suffices to prove thate L iff ¢ € L.

By constructiont” is h(s) plus possibly some extra contexts inserted between elanoéhis).
We will consider each of these contexts one by one, with thediadding them ta. Lety be the
p'" child of some node: in s such thati(y) is not a child ofh(x). Let 2 be thep'” child of h(z). By
the definition of pseudo-inclusion, we see théy) is a descendant of andCy~ [z, h(y)), together
with the obvious assignment is an abstract loop”’inLet V; - - - V;, be the set of abstract loops that
are obtained by this process fratf\ h(s). For eachV; and eachk + 1)-type r, we let|V;|, denote
the number of nodes ii; that have type- in ¢”. We will “pump” s until the number of occurrences
of each(k + 1)-type exactly matches the numbertih To achieve this, by induction, we construct
0 - -+ 8y SUch that: (i)sg is s, (i) forall n > i > 0, forall 7 € Tp.11, |si|- = |s|- + |Vi|- +- -+ |Vi| -,
(III) si €L iff s;_1 € L.

The base case is immediate. Assume the resull fori < n, and consideV = V1.

Let fi be the transition function on states associated to the xoViteThe first step is toninimize
the size ofl/: find an abstract conteXt’ such that the function associated to the underlying context
of V'is fy, V' uses the samg: + 1)-types asV/, and the size 0¥/’ is bounded by-?+*"“+1, This
is a pumping argument. To find suchld, label each node of V' with the pair(f,) wherer is
the (k + 1)-type ofz in V and f is the transition function associated with the context ioleté from
the underlying context oV by removing all nodes that are not descendants @f the port of V' is
not belowz, this will be a constant function). Now, whenever there iganbh in} which contains
the same label twice, we prune the section from (and inc)dine top node to (and excluding) the
bottom one, without affectingy. This yields an abstract contekt’ whose depth is bounded by
Br * . As the rank ofi’”’ is bounded by, the total size of/’ is bounded by-?*7“+1,

Now setU = V’'. BecauseV’ is an abstract loopl/ is well-defined as an abstract context.
Moreover its size is bounded by’+*“+1)* — @’ — 1. Recall the crucial observation that &l + 1)-
types occurring outside d@f(s) have strictly more occurrencesifithan ins; they thus appear at least
d' times ins, and therefore irs;. In particular, this is true of eactk + 1)-type of U, hence by the
choice ofd’ we can apply Lemma 4 to' ands; and obtains; = A; - U - A, for some context\; and
tree/Ao, suchthas) € Liff s; € L, ands] =k s;. We can now use the aperiodicity bfand without
affecting membership iti, obtain a trees” = A - V' - V' - Ay Now sets; 1 = A; - V' -V - Ay,
Since fy, was the same af,», moving froms! to s;;1 does not affect membership ih We can
easily see that for every + 1)-typer, |si+1|- = |si|- + |Vi|-, and thus we have all the other desired
properties.

This last step is depicted in Figure 4.

Lets’ = s,. By construction we have’ =* " ands’ € Liff s € L. Theorem 2 now follows
from Corollary 1.

4 Unranked trees

In this section we consider unranked trees. Each node mayhaweran arbitrary number of children.
As mentioned in Section 2 we assume no order among the chitifra node; in particular we cannot
speak of the first child of a node. As usual we denotédogsta set of trees.

12

h(x)

Figure 4: This figure depicts the last step of the proof. Tipeledt tree iss, which is pseudo-included
in ¢ depicted at the bottom. The extra partt8fL(s) is depicted in dark grey and is the abstract
contextV. The second tree in the top row represesitafter applying Lemma 4, the dark grey parts
representing’ = V. Aperiodicity adds one more copy &f and yields the third tree in the top row.
But this tree is essentially the initial one withadded betweem andy, as depicted by the top right
tree.

The new difficulty of the unranked case, compared with th&edrcase, is that the number of
isomorphism types of &-spill of a node is infinite. We therefore need to relax thearoof similarity.
For any numbern we define an equivalence relatiesf. on trees of depttk by induction onk as
follows. Lett andt’ be two trees of depth. Letr andr’ their respective roots. In the cage= 0,

t ~0 ¢ if r andr’ agree on their label. Otherwige~* ¢ if, for each clasg of ~*~1, the number of
children ofr in ¢ must agree with the number of childrendfin ¢ or both numbers must be bigger
thann. Itis immediate to see that, for eaehk, the equivalence relation’ is of finite index. For
each noder of a treet, the ~*-equivalence class of its-spill is called the(n, k)-typeof z. Whenn
andk are understood from the context we simply say e of x. Let U7, ;, be the (finite) set of
(n, k)-types. If the(n, k)-type of noder in treet is i, we WriteUT;;k(a:) = p. Foreachr € U7, ;,

we extend the notatioft|,, =" ,and <" in the obvious way.

Two nodesr, y are said to bén, k)-similar if they have the sam@, k)-type. Note tha(n, k)-
similar implies(n’, ¥")-similar for all n’ < n andk’ < k. Two trees are said to b, k)-similar if
their roots argn, k)-similar.

The(n, k)-guarded swaps are defined as in the ranked case, replagtigidsimilar with (n, k)-
similar. Note that ifL is closed unde(n, k)-guarded swaps then it is closed undet, £’)-guarded
swaps for alln’ > n andk’ > k.

We first focus on proving the following result, from which amain theorem, Theorem 5 below,
will follow easily:

Theorem 3. Let L be a regular language over unranked trees.
ThenL is definable in FO iffL is aperiodic and there exists, £ € N such thatL is closed under
(n, k)-guarded swaps.

As with the proof of Theorem 1, one direction is easy and tleiofollows from the following
theorem.

13

Theorem 4. For any regular tree languagé. which is aperiodic and closed undén, k)-guarded
swaps, there exists & such that for any,t € 7 we have: s=5Xt = seL iff te L.

The proof of Theorem 4 will follow along the same lines as theop of Theorem 2, but differs in
the technical details.

We fix an aperiodic regular tree languagenumberst andn and assume thdt is closed under
(n, k)-guarded swaps. We also fix a deterministic bottom-up uredrtee automatorl for L. Let
m be the tolerance ofl. Without loss of generality we can assume that m.

The following is an extension to the unranked setting of aisage of lemmas that we used in the
ranked case. The first one is again immediate from the IgcafliEO.

n' k+1

=Ran' timpliess =/ t

Lemmab. For each pair of numbeis n/, there existd, ,,» such that
ands, t are(n/, k + 1)-similar.

Lemma 6. For each numbet!’ and each number’ > n there exists a numbetf such that if
n' k+1

s :Z”k“ t then there exists such thats <), t', t andt’ are(n’, k 4 1)-similar, andt’ € L iff
te L.
Proof. Assumes :Z"“l t for some large enougti whose value will become apparent during the

proof. Letg be the number ofn’, k + 1)-typest such thatit|; < |s|,. We prove the lemma by
induction ong. If 8 = 0 this is clear. Otherwise let be a(n’, k + 1)-type that occurs more times
in s than int. By hypothesig- occurs at least times int. We say that dn/, k + 1)-type v is safeif
|t|, > d’. A subtree in a treeis safe if all the nodes in it have safe types within

First, letd; be big enough so that whenever we haledistinct trees then we can find of
them and a state of A such that all the selected subtrees are safesanelches state at the root
of each. Let#(A) be the number of states i, and letd, be big enough so that whenever one has
(do/(#(A)+1))—1 contexts there is at least one that is safe. Suthemdds can be easily computed
from the size of4, ', »’, andk. We now claim that anyi bigger than(d; + 1)d2 will suffice.

A 1-skeleton of lengthl is defined as in the ranked case. We have two cases to considae
first case, every node ihhas at most/; children which have a descendant of typeln this case,
since we have more thaa; + 1)d2 nodes of typer, we can use the same proof as in the ranked case
to construct ar-skeleton of lengthi in ¢. As in the ranked case, the context betwegandz; 4 4)
in the 7-skeleton oft, including the top node and excluding the bottom one, isedadisectionof ¢.
Using the same argument as in the ranked case and the defiofti, we can pump a portion of
somer-section in the skeleton as much as we need to get the numberdet satisfying type in
t to be larger than the number in This pumping will not change the type of any prior node, so in
particular will not impact the type of the root; thus the rtisg tree is(n’, k + 1)-similar tot¢.

In the second case, there is some nodie ¢ that has more thad; children which have a descen-
dant of typer. By the choice ofl; we can find a state along withy, - - - , y,,» children ofx so that
for eachy;, t|,, is safe,t|,, contains a node of type, and the automatod when run or¢ reaches
q aty;. Because’ > n > m, the tolerance of4, it is possible to add an arbitrary number of extra
copies of any ot|,, without affecting membership ih. Each copy adds at least one node of type
and we do this until we have enough nodes of typéAgain it is easy to check that pre-existing types
are preserved, so the resulting treéns$, k£ + 1)-similar tot. O

We adapt the notion of pseudo-inclusion to the unranked.casteet is (n,k + 1)-pseudo-
includedin a treet’ if there is an injective mapping from nodes of to nodes of’, sending the root
of ¢ to the root oft/, and such that: (ij preservesn, k + 1)-types, (i) if y is a child ofz in ¢ then
h(y) is a descendant of a child of h(x) in ¢’ such that’ andy have the samé, k)-type (notice the

14

switch fromk + 1 to k£ here), and (iii) ify; andy» are distinct children ot in ¢ then the least common
ancestor ofi(y1) andh(y9) in ¢’ is h(x) (the children ofh(z) associated tg; andys are distinct).
The h-pseudo-treés the minimum subtree df which containgu(t).

The following lemma takes care of the pseudo-inclusion.step

Lemma7. For all d’ there exists:)’ such that ifs SZ,"’““ t ands, t are(n’, k + 1)-similar then there

existst’ such thats is (n, k + 1)-pseudo-included ir, ¢/ :Z;k“ t,andt € Liff t € L.

Proof. We say that a type € U7, ;- is safeit it occurs more than!’ times int. A subtree oft
is safe if it contains only safe types. Letbe computed from’, n, kK andm so that whenever one
considers a collection of’ pairwise-disjoint subtrees of some tree, then there eaistate; of A and
at leastm of the subtrees which are safe and for which the automatahesastate at the root.

As in the ranked case, the proof is done by induction. We coctst; - - - £, such that:tg is ¢,
forall 0 < i < o, t;y1 € Liff t; € L, if s; is a maximal prefix ofs such thats; is (n', k + 1)-
pseudo-included in; then there exists a nodeof s that is a child of a leaf of;, such that: € s; 1,
tiv1 :Z;’“rl t; andt; gg,"k“ t;+1. Sinces; cannot keep growing forever, we must eventually have
s, = s. This implies the lemma by taking = ¢,

By hypothesis the root of and the root of have the samé’, k + 1)-type. Thus we can initiate
our process by mapping the root ©fo the root oft.

Assume now that we have constructgdand lets; be a maximal prefix of (n, k + 1)-pseudo-
included int; by the mapping:. If s; = s we are done. Otherwise letbe a node o&; which has a
child y that is not ins;. Let s’ be the prefix ofs which containss; andy. We show how to transform
t; into t; 11 so thats’ is pseudo-included in ;.

Let7 = UT; .y (), v = UT} ;1 (y) anda’ = h(z). By hypothesis we know that there is a

nodey’ in t; outside ofh(s;) such thai'Ty: , ., (y') = v.

Let C be the set of children of that have an image undér(in particular,y is not inC). Let
C’ be the set of children of’ having a descendant i(C'). We distinguish two cases depending on
whether there exists a child of 2/ which is (n’, k)-similar toy’ and which is not irC".

If such a2’ exists then we are in a situation similar to the ranked casecan again use a case
analysis depending on the relative position0éndy’ provide a sequence of swaps placifidelow
2" without affecting the current mappirig

Unlike in the ranked case, suchramight not exist. In this case we show that we can expand the
number of children of:’, without affecting membership ih and violating the induction hypothesis,
introducing a node’ (n/, k)-similar toy'.

Lety = UT?, .(y) (note that we move fromk + 1 to k, thereforer implies 1 but not conversely).
Sincex andz’ have the samén’, k + 1)-type, the number of children of with (»/, k)-type 1 must
agree with the number of children of of (n’, k)-type 1« or both numbers must be bigger thah Let
C, be the subset of' consisting of children of of type .. Let C/Q be the subset of of children
of 2’ of type .. By definition of (n’, k + 1)-pseudo-inclusion we have thit,,| = |C},|. Becausey
is also of typeu andy ¢ C,,, the total number of children of of type x is strictly bigger than the
total number of children of’ of type 1. and therefore both numbers are bigger thanBy the choice
of n/, this implies that we can finch children ofz’ of (n’, k)-type . such that their subtrees are safe
and such that the automatahreaches the same stat®n all their subtrees. By the choice of we
can arbitrarily duplicate each of these subtrees withoigicihg membership inL. Because of the

safety assumption the resulting tréds such that; :Z;'€+1 t;. Because we have only introduced
new nodes it/ it is clear thatt; <***1 ¢/. This has introduced a new nodeof type x in t; and we
can proceed as in the first case. O

15

This is where the unranked case departs in organization fhemranked one. Indeed the proof
of Lemma 7 used pumping arguments, while the correspondimna in the ranked case used only
swaps. Therefore we cannot infer an unranked variant of @oyol. Nevertheless, the remainder
of the proof will proceed in the same spirit of the ranked priocthat extra nodes left over ihfrom
the image ofs under a pseudo-inclusion will be removed. Since we cannoéado Corollary 1 as a
stopping condition, we will have to preserve the pseudddsion as we perform this removal.

We extend the notion of abstract context to the unranked dasasider a context’ whose root
is not equal to its port and a functionassigning dn, k)-type to the port of”' and a(n, k + 1)-type
to each other node af'. We say) is consistentif there exists a a treesuch that inC - ¢, for every
non-port noder in C, the (n, k + 1)-type ofz in C - t matches\(z), and the(n, k)-type of the port
z in C - t also matches\(z). An abstract(n, k 4+ 1)-contextis a contextC supplemented with a
consistent assignment We will drop (n, k + 1) when it is clear from context, referring simply to an
abstract context.

The notions ofcompatibility andloop are extended to unranked abstract contexts in the obvious
way. Given a tree and an abstract contekt, the notion ofU being(n, k)-included in ¢ is defined as
expected, as a mapping which not only preservegith&)-types but also the child relation.

As in the ranked case we will need lemmas that allow us toljigithbed an abstract context into
a given tree, so that we can apply aperiodicity to remove th&mndo this embedding we need the
following technical lemmas.

Given an(n, k)-typer, a noder satisfyingr in a forestU is said to ben, k)-thin if its £-spill can
be embedded into the-spill of all nodes of typer. We have that for each € U7, ;, there is a tree
whose root satisfies and is(n, k)-thin: choose the:-spill of the root such that when we calculate
the (n, k)-type, we never go beyond when counting the number of occurrences at each depth. A
non-port node: in an abstract context of typeis said to bgn, k)-thin if for any nodex’ of a treet
with typer and(n, k)-type p, the number of children of assigned te is no greater than the number
of children ofz’a satisfyingp.

Lemma8. LetU be an abstract context. If <,, ;41 t and each node € U, is (n, k + 1)-thin, then
there exists’ such that is (n, k + 1)-included int, ¢' =%**! ¢tand,t’ € Liff t € L.

Proof. As was the case for the ranked variant of this lemma, Lemmhbaedfitst step in the proof is
a weak pseudo-inclusion éf in ¢, which is obtained by a refinement of Lemma 7. Recall that weak
pseudo-inclusion is a pseudo inclusion that do not reqghaéthe root is mapped to the root.

Claim 2. If U <4 t and every node € U is (n, k + 1)-thin, then there exists a tre¢é such that/
is weakly(n, k + 1)-pseudo-included in’, ¢’ =kl 4 and,t” € Lifft € L.

Proof. The proof is done exactly as in the proof of Lemma 7 with somalkdifferences. See also
how Claim 1 was proved using a modification of the proof of Lear3nLeta be the root ofU. In the
base case, the image of the rootldis now an arbitrary node df = ¢; whose type agrees with the
type ofa; an inclusion mapping does not demand preservation of thie uring the induction we
have constructed, and a prefixJ; of U which is weakly(k + 1)-pseudo-included it.

Recall the proof of Lemma 7. We have two nodeg < s such thaty is a child ofz and is of type
v. We also have two nodes node'sy’ € ¢;, such thatt’ = h(z) andy’ is a node outside di(U;) of
typer. We are trying to modifyt; in order to put a node of type belowz’.

In the proof of Lemma 7, we distinguished two cases dependmghether there exists a child
2z’ of 2’ which is (n, k)-similar toy’ and which is not im(U;). As we now have that is thin, 2’ has
at least as many children asfor each type, and therefore such’aalways exists. We are therefore

16

in a situation similar to the ranked case and we can perforasa analysis depending on the relative
position ofz’, 4" andz’ in order to place a node of typebelow 2’ using only swaps. As no pumping
is necessary, we will eventually also have :&g"”“ t.

The case analysis is done as in the proof of Lemma 7 and, asg iprttof of Claim 1, one extra

case needs to be considered wheéis aboveh(a). This case is treated as in the proof of Claim L

The rest of the proof proceeds exactly as in the ranked cageiproof of Lemma 4. We show
that the weak pseudo-inclusignobtained in Claim 2 can be transformed into a real inclusi@p s
by step. Consider,y € U such thaty is a child ofx and assume that = h(y) is not a child of
2’ = h(x). We also know by assumption that there is a ngéleutside ofh(U) which has the same
type asy’.

Again, the fact thatr is thin implies that there is a child’ of 2’ which is (n, k)-similar toy’.

We are therefore in a situation similar to the ranked casevandan perform the same case analysis
depending on the relative position of, v, y” andz’ in order to replace’ by y’ using only swaps
and without modifying the rest of the pseudo-inclusion mag. The reader is now referred to the
proof of Lemma 4. O

We also need a version of this lemma for forests.

Given atreg and a forest/, the notion ofU being(n, k)-included in ¢ is defined by the existence
of an injective mapping which preserves, k)-types and the child relation. For a fordstand a tree
t, we say thal <,, ;, t if every (n, k)-type occurring inU occurs strictly more often in

The same argument as Lemma 8 shows:

Lemma9. LetU be aforest. U <,, ;+1 t and each node € U is (n, k + 1)-thin, then there exists
¢ such thatU is (n, k + 1)-included int/, ¢’ =% tand,t' € Liff t € L.

We are now ready for:
Proof of Theorem 4. Let m be the tolerance ofi. Letd’ = (m + 1) * « + 1 wherea is spelled out
in the proof below. Let’ be the number required in Lemma 7 frath) n andk, andd be the number
required in Lemma 6 frond’ andn'. Let K be the numbe¥, ,,» required in Lemma 5 fod.

We show thats =X ¢ impliess € L iff t € L. Assumes =X t. From Lemma 5 we know that

s :Z"k“ t and thats andt are (n/, k + 1)-similar. By the choice ofl we can apply Lemma 6 and

constructt’ such that’ € Liff t € L, ¢ gg,/’k“ s, ands andt’ are(n/, k + 1)-similar. Now we can

apply Lemma 7 and obtaitf such that” € Liff ¢ € L, sis (n,k + 1)-pseudo-included i#’, and
g =ttty =k s We show that € Liff ¢ € L.

As in the ranked case we observe that by definitioh,of” is h(s) plus abstract loopsnserted
between nodes di(s) and extrabranchesbranching off theh-pseudo-tree. The crucial observation
is again that al(n, k + 1)-types which occur outside @f(s) have strictly more occurrencesfithan
in s and therefore appear at leabttimes ins. The rest of the proof transfornt§ without affecting
membership in_ in order to remove all the extra material.

We first show how to remove an extra branch. izebe a node of(s) andy’ be a child ofz” such
thatV = t"|,/ is disjoint from~h(s). Lett; be the tree constructed frotfl by removingV". We show
thatt; € L iff ¢ € L, thus we can proceed with replacingt”. By repeating this argument we can
assume that’ does not contain any extra branch.

We now prove that; € Liff t € L. Letr be the(n, k)-type ofy’ and letC; be the set of children
of 2’ of typer in the h-pseudo-tree. Becauaepreservesn, k + 1)-types,C; is of cardinality at least
n. As in the ranked case, using simple pumping arguments, weagthout affecting membership in
L, replaceV by a treeV’ having the following properties: (Y’ andV evaluate to the same state of

17

A, (i) V' has exactly the same, k + 1)-types ad/, (iii) V' has all its nodeén, k + 1)-thin, and (iv)
the number of nodes df is bounded by a constanteasily computable from, k£ and A. LetU be
the forest consisting af: copies ofV’. Notice that all types occurring i’ occur more frequently
in " than ins, hence occur at leagt times ins and thus ini(s). Sincet; still containsh(s), we
have that all the types iti occur at least!’ times int¢;. By the choice of/’, which is strictly greater
than|U|, we havell <,, ;41 t1. Thus we can apply Lemma 9 @ andt;, obtaining a treé, with m
copies ofl’’ (n, k + 1)-included in it as children of a node By Lemma 9 we have, € Liff t; € L.
Ast” ist; plusV, each operation which transformedinto ¢, can be applied t¢” yielding a treets
such that is t5 plusV hanging from node:’. Moreover we haves € L iff t” € L. It remains to
show thatts € L iff t3 € L. Recall now thak > m and therefore there exist siblings of V' of type
7. We can then perfornin, k)-guarded swaps ity in order to place then copies ofl’ as siblings
of V. We thus haven + 1 siblings evaluating to the same state beldvand thusl” can be removed
without affecting membership if. From the tree we just obtained we getoy reversing the lash
swaps, showing the desired property.

We now show how to remove an abstract loopimsing a similar technique. L&t be an abstract
loop int”. Lett; be the tree constructed frotff by removingV. We show that, € L iff t” € L,
thus we can proceed with replacingt”. By repeating this argument we eventually derive tHat s
showing that” € L iff s € L. LetV’ be an abstract loop obtained frovhsatisfying the properties
(ii),(iv) listed in the branch case above together withi’)(very non-port node ign, k + 1)-thin,
and (i") V andV" induce the same transition function fdr this abstract loop can be found as in the
ranked case. Apply Lemma 8 for the abstract coniéxt (V’)! andt,; yielding a treet,. Again as
t" is t; plusV, the same operations that transforntednto ¢, can be applied in order to transform
t" into t3. It remains to show that, € L iff 3 € L. Fromts, an extra swap appends after the
sequence of copies ofV’ and thereford/ can be removed without affecting membershipLirby
applying aperiodicity, yieldings. O

The k-guarded swaps are defined as in the ranked case, but regisiomorphism of the-spill.
We will now show the main result:

Theorem 5. Let L be a regular language over unranked trees. THeis definable in FO iffL is
aperiodic and there exists € N such thatl is closed undek-guarded swaps.

The theorem will follow immediately from Theorem 3 and théidaing proposition:

Proposition 1. For every regular languagé and everyk there is a number. such that ifZ is closed
underk-guarded swaps, then it is closed undet k)-guarded swaps.

Proof. To prove the proposition, we first show the following claim:

Claim 3. For every regular languagé. there is a numben such that for every: if tree ¢, is (n, k)-
similar to treets, then there are trees, t/, with ¢} depth4 similar ¢, such thatA reaches the same
state onv as ont;, fori =1, 2.

Proof of the claim.Let m be the tolerance afl, andn = m|Q|. Notice thatn is defined so that
if there aren nodes, at least: of them will have the automaton reach the same state. We show by
induction onk thatn suffices. Fok = 0 it is clear. To prove this fok + 1, consider(n, k + 1)-similar
treest;, to. Let.S be the set ofn, k)-types of the children of the root of and the children of the root
of to. For eachr € S, lett;(7) be the number of children of the root of that satisfyr andts(7)
be the number of children of the root 6f that satisfyr. If for every r we havety(7) = t1(7). then
we can lett) = ti, t}, = to and we are done. For eaetfor which this is not the case, we know that

18

to(7) > n andt;(7) > n. Assume without loss of generality that7) > ¢ (7). By the definition of
m, there are at least children of the root of; satisfyingr for which the automaton reaches the same
state. Pick one of these nodesand addi»(7) — ¢1(7) many copies of the subtree ofas children

of the root oft;. Sincem is the tolerance of, this does not affect the state of the runsft the
root of ¢;. Applying induction, we can change andt; without affecting the state at the root so that
all the children of the root of; which satisfyr are depthk similar to one another, and each of these
are depthk similar to the children of the root af; which satisfyr. Doing this for eachr € S, we
end up with treeg) andt/, with the property that: for every € S all the children of the root of;
with type 7 are depthk similar to one another, they are all degitsimilar to every child of the root
of ¢}, with type T and the number of such children is the samé iandt,. It is clear that andt/, are
depth{k + 1) similar. O

Given the above claim, we show how Proposition 1 follows. figeL is closed undek-guarded
horizontal swaps. We show théatis closed unde(n, k)-guarded horizontal swaps fergiven by the
claim. Givent; (n, k)-similarts , let¢}, ¢, be as in the claim above. We know that:

T[tl,tg] €L« T[tll,té] €L~ T[té,tll] €L~ T[tg,tl] el
The first and third equivalences follow becau$eand¢; are equivalent in the automaton, and the
middle equivalence is from closure undeguarded swaps.

The proof for vertical swapping is similar; instead of thaiol above, we show that. For every
regular languagé. there is a numben such that for every: if contextC is (n, k)-similar to context
Cs, then there are contexts;, C with C depth% similar C% such thatC} induces the same state
function asC; fori = 1, 2.

Here two contexts arén, k)-similar if they are(n, k)-similar as trees. The extension of the in-
ductive argument for this is left to the reader. O

5 Decidability

We first show that the characterizations of Theorem 1 and fEme® are generalizations of the string
case. Then we show that they lead to decision proceduresdorh@rship in FO and FQ,,.

5.1 Thestring case

We view a string as a tree in which every node has at most oné. cfihe child corresponds to
the successor of a node in a string. With this kind of treey ¢hé vertical swap can be applied.
Theorems 1 and 5 imply that a regular language is definabl®iiifft is aperiodic and closed under
k-guarded swaps for sonie

In the string case a similar characterization of FO saysahagular language is definable in FO
iff it is aperiodic and closed undédempotent-guarded swap$his result was proved by Beauquier
and Pin [BP89]. We will show how this can be derived from oueretcterization.

We define the notion aflempotent-guarded swapBix a regular (string) language and a min-
imal deterministic automatod recognizingL. Recall that a functiory is idempotenif fo f = f.
A string e is said to badempotenif the transition function it induces is idempotent. A regustring
languageL is closed under idempotent-guarded swaipfor any string of the formues fves’ fw,
wheree and f are idempotents and different from the empty string, we have

ues fves' fw € L iff ues’ fvesfw € L.

We show that the two notions of guarded swaps are equivalemtstrings.

19

Theorem 6. A regular languagel over strings is closed under idempotent-guarded swaps if i
closed undek-guarded swaps for somiec N.

Proof. One direction is simple: if. is closed undekt-guarded swaps then it is closed under idempotent-
guarded swaps. Consider a string of the faras fves’ fw, wheree and f and non-empty idempo-
tents. Then we have:

uesfves fw e L iff uersffvels frw.

Notice now that the two positions right afterand right after, are depthk similar, and the same
holds for the two positions right aftarand right afters’. We can then appl¥-guarded swaps and get

uesfves fw e L iff uels frveFsfFw iff ues fvesfw € L.

We now turn to the other direction. Assunieis regular, letd be a deterministic automaton for
L, and assumé is closed under idempotent-guarded swaps.d.be the number of states df and
takek = a® 4+ 1. We show that.. is closed undek-guarded swaps. Recall that a strimgnduces a
transition functionf/! on the states aft such thatf(¢q) = ¢’ if, when started in state, ¢’ is the state
reached byA at the end ofv. Two stringsw andw’ areequivalent relative td. if f2 = ij‘,.

Consider a stringv of length greater thak. Fori < k let v; be the firsti letters ofw. By the
choice ofk there must bé < j < k such thatf;j} = f;‘;. Let u be the string such that; = v;u.
Becausefj} = f{g‘_ we have for every positive integet, v;u® and v; are equivalent relative td.
Notice now that for all strings: there exists? such thatu” is idempotent. Hence in any string of
length at leask there is an idempotenrtthat can be inserted without affecting membershig in

Now consider a stringyw and positionse, y, 2/, 3y’ such thatr < y < 2/ < ¢/ andz, 2’ are depth-
k similar, andy, 1y’ are depthk similar. First, consider the case in whighis not in thek-spill of
x, ' is not in thek-spill of y, andy’ is not in thek-spill of /. Thusw can be decomposed into
wy - sv - s'wy - sv’ - s'wg wheres ands’ are thek-spill s of z andy and the “dots” mark the position
of x,y,2',y.

We can now apply the technique mentioned in the paragrapteatiod insert an idempoteat
into s and an idempotent into s’ without affecting membership ih. Thus we have

we L iff wy-siesov- 8| fshws - syesov’ - 8| fshws € L.

We now use the closure @f under idempotent-guarded swaps and obtain (the “dots” ndwate the
sections that are swapped):

w187 - eswsif . S/Q’LU281 . 6821)/8/1f . 8/211)3 e L iff wysy- 6821)/8/1f . 8/211)281 . eszvsllf . 8/211)3 e L.

But the latter is preciselw, - sv’ - s'ws - sv - s'wsz as required fok-guarded swapping.

The other cases are handled similarly. We consider the caseew is in the k-spill s of z,
2’ is not in thek-spill s’ of y, andy’ is not in thek-spill of 2/. Thusw can be decomposed into
wy - 81 - S'wy - sV’ - s'ws With s = 5953 ands = s;s9.

By the argument above, we know that there is an idempgténat can be inserted intd without
impacting membership ih. We have two subcases to consider depending whetffedts in s, or in
s3. If f can be inserted iny then we writes, ast; - to, wheret, fto is equivalent relative td. with
t1to. We thus have a decompositionwfasw, - sq - t1tassws - s1t1tav’ - t1taszws.

Using the fact thaf can be inserted, we see that:

we L iff wisity - ftosswosityf - ftgvltlf - ftossws € L.

20

Applying idempotent-guarded swapping to the blocks betwepies off we get:

we L iff wisity - ftgvltlf - ftosswasity f - ftassws € L.

Removingf and regrouping we get:

we L iff w1 - 81751752’1), s t1tosswsg - 81 - t1lossws € L.

This shows that guarded swapping holds.

In the subcase whergcan be inserted intes, we know there is another idempotenthat can be
inserted intas = s1s5 prior to the place wher¢ is inserted. We now writev aswy - tyetots ftaws -
tietov’ - t3 ftaws, and again the a swap gives the desired result.

The rest of the cases are treated similarly. O

Note that Theorem 6 does not generalize to trees. In the &®e itis still true that any-spill,
for a sufficiently largek, will contain an idempotent, but which idempotent this id arhere it can be
inserted can no longer be computed by looking only atttspill.

5.2 Decision Procedure

Let L be a regular tree languagd, be a deterministic bottom-up automaton (ranked or unranked
recognizingL, and let@) be the set of states of. In this subsection we will consider the problem of
deciding whethel is in FO. The input of the problem i4, and thus the complexity is relative to the
size of A. Without loss of generalityAd can be taken to be minimal, since a number that is polynomial
in the size of a minimal automaton is clearly polynomial ie #ize of any automaton.

In the string case deciding whether a regular languagmn be defined in FO is RWE in the
size of such am [Pin05]. Note that this is not immediate, as checking aplicity alone is PBACE
complete [CH91]. It turns out that ideas similar to [PinOBpw that membership in FO can actually
be checked in PIME also in the tree setting. We will show this only for the rankade; the unranked
case is proved along the same lines.

We will first show that the aperiodicity condition in Theorehcan be replaced by one that is
easier to check. Following the approach of [Pin96]: we replaperiodicity by the conditiofi)!:
there existg such that for any contexts x, y, any context that generates an idempotent function on
states of the minimal automaton, and any teeve have

Leex-e-s €L.

s-(e-x-e-y-e)l-s el iff s-(e-x-e-y-e)
In [Pin05] it is shown that for a regular string language tisatlosed under idempotent-guarded
swaps, aperiodicity is equivalent {9)l. More precisely, [Pin05] shows that in any finite monoid
satisfyinge -u - f-s'-e-v-f=e-v-f-s-e-u- fforidempotents, f and arbitrary monoid
elementsu, ', v, we have the following are equivalent: a) theré ®ich that the identity)! = u/*!
holds and b) there issuch that

(e.x.e.y.e)l:(e.x.e.y.e)l.e.x.e
holds (where agaim, f range over idempotents andy, u, v, s’ range over monoid elements). We
apply these results to the monoid of contexts. Observe tlegitoof of Theorem 6 shows that if a tree
language is closed undkrguarded vertical swaps, then it is closed under idempajeatded vertical
swaps (the converse holds for string languages but notderltmguages). Applying this observation,

21

Theorem 1, and the result of [Pin05] cited above, we see thegualar tree language is definable in
FO iff there existst such that it is closed undérguarded swapping and there exis®uch that(1)/
holds.

We will now show that one can decide in RIE whether or not a regular tree language satisfies
(t)I. Our argument will rely on the notion of graph pattern matchiwhich we review here. For the
purposes of this section,@atternis a graph whose edges are labeled by variables which rarege ov
elements of™* for some finite alphabef. In addition a pattern comes with side conditions stating
which nodes of the pattern should be interpreted as distiodes. Let be a graph whose edges
are labeled i". Such a graplz matchesa pattern if there is a mappinf) taking each variable in
the pattern to a string i and each node of the pattern to a nodeGbfuch that for each side
constraintp; # po, f(p1) # f(p2), and such that whenever there is an edge fggnto p; in the
pattern labeled withy, there is a path fronf(p;) to f(p2) in G whose labels yield the stringj(v).

In [CPP93] it is noted that for every fixed pattern, the prablef determining given a graph, whether
the graph matches the pattern, is inIRE. This result was used to show that FO-definability is in
PTIME in the string case. From a minimal automatémecognizingl one constructs an edge-labeled
graphG 4 = (V4, E4) as follows. The vertex sdty of G 4 is the set of states ol. The transitions
E4 CVy x 3 x Vy are labeled with letters of the alphabeof I and correspond to the transitions
of A.

X
(D@

Let P be the pattern depicted above together with the condiiost ¢». It has been shown that
[CPPO3]L verifies (1)l for some | iff G4 does not matckP. Minimality of A is used in the left to
right direction.

This result extends to trees as follows. From an automatalefineG 4 = (V4, E4) as follows.
The set of vertice¥s is Q. The set of edgeB’4 is included inV4 x A x Vs whereA = X xJ, ., Q! x
{1...r} wherer is the rank. We connect a nogeto a nodep’ via an edgea,)\, j), where\ is a
sequence of (at most)states, iff(\, a) = p’ where thej!”" state of) is p. That is, an edge represents
the inverse of a transition of the automaton. The same pa®fs [Pin05, CPP93] show that:

Lemma10. L verifies(T)l for somel iff G 4 does not matctP.
Therefore we have:

Proposition 2. One can decide iR TIME (in the size of a deterministic bottom-up automaton) wirethe
or not a regular languagd. satisfies(t)! for some/.

We now show that it is decidable in BME whether there exists such thatl is closed under
k-guarded swaps. We first show thatlifis closed undek-guarded swaps then it is closed under
k’-guarded swaps wheté is computable fromA.

Lemma 11. Let L be a regular language. Latbe the number of states of an automaton fcand
k' = o® + 1. ThenL is closed undek-guarded swaps for somieiff it is closed underk’-guarded
swaps.

Proof. We show that ifZ is closed undek-guarded horizontal swaps for akythen it is closed under
k’-guarded horizontal swaps. The proof for vertical swapsnslar and is left to the reader.

22

Let ¢t be a tree and:, y two nodes oft that are depth similar. We first show that we can
transformt by pumping in new subtrees so thaty becomek-similar in the new tree, without affecting
membership inL. Lett; = t|, andty = t|,. Let f(¢,z,y) be the lex-minimum of pairs of integers
(n,m) such that there is a leaf noden the common prefix of; and¢, such that its level is and its
position ism among nodes of level: we know thatn is no smaller thak’. We will transformt by
pumping so thaf (¢, x, y) increases.

Let P be the common prefix of; andts, w be a leaf node iP witnessingf (¢, z,y). Consider a
runr of A ont. The run assigns a stajeo each node o when running up botky andt,. We assign
to each node oP the pair of state$q, ¢') such thay is the state of at the corresponding node in
while ¢’ is the state of at the corresponding node . By the choice of’, on the path from the root
to w, there must be a pair of states that repeat. Land 2’ be two such nodes. Consider the context
C; between the copy of and 2z’ within ¢, including 2 and replacing’ by a port. Without affecting
membership in., we can duplicat€’; in ¢; as many times as we wish. Considering the conféxt
between the copy of and 2’ within ¢, we can perform the same duplication within Performing
both these duplications, we have now increased the depihtofbe above: without removing any
nodes fromP, thus increasing (¢, x, y).

Performing this repeatedly, we arrive at a ttéebtained from by adding new sections such that
f(t',z,y) = (k,1) for a givenk. We can now apply:-guarded swapping to switch the subtrees under
x andy in ¢’. We can now remove the extra sections, resulting in a treaddrfrom the original tree
t by swapping the subtrees undeandy, as required. O

From the above it is already clear that one can decide whétlgeclosed undek-guarded swaps
for somek, since one needs to check only thais closed undek’-guarded swaps, and for a fixéd
checking closure under swaps is easily seen to be deciddelew we will show a stronger result:

Theorem 7. There is aPTIME algorithm that decides, given a deterministic automatarafeegular
languageL and a positive integek, whether or notl is closed undek-guarded swaps.

We will now prove Theorem 7. We first show that deciding clesunder horizontal swapping is
in PTIME.
We first note that:

Claim 4. There is aPTIME algorithm that, given a deterministic bottom-up automatbnpositive
integerk, and stateg, ¢, of A, determines whether or not there exissimilar treest,, t such that
whenA isrunont; : i = 1,2 it leads to statey; at the root oft;. We writeq; ~;, g when this occurs.

Proof. The algorithm is simple induction, singe ~ ¢ iff there is an alphabet symbal number
r’ <randstateg; ...p,q1 ...q- With p; ~._1 ¢; for eachi < 7’ such thatA transitions oru from
p1...p~topandfromg;...q t0g. O

From Claim 4, we can derive our first result:

Lemma12. Verifying that the language of trees given by a determioiatitomator is closed under
k-guarded horizontal swapping is in RME in |A| andk.

Proof. It suffices to show this for a minimal automaton. We prove thithe case of binary trees. The
extension to arbitrary ranked trees and to unranked tree#t it the reader.

A 2-context is a tree with two distinguished leaves calledgp0An automatord and a 2-context
A induce a functiom 4 from @Q x @ to @ simulating a bottom-up evaluation.

23

By minimality and determinism ofl, we need to check that for all states ¢, if ¢1 ~x ¢ then
for every 2-contextA we haveA 4(q1,q2) = Aa(qge2, q1)-

From Claim 4 the lemma follows assuming that we have showrergiwo stateg; andg, such
thatq; ~x g2, we can check in PIME that a given 2-contexA satisfiesA 4(q1,¢2) = Aa(g2, q1).

Consider the seZ consisting of the sextuples of states pi, p2, g, q1,q2) such that for some
contextA, p = Au(p1,p2) andqg = Aa(q1,q2). Z can be computed easily by a fixpoint algo-
rithm. To check the property above, we need only determinetindr there is a state such that
(p,q1,92,P,q1,q2) is in Z: this can be done by a single iteration over Hence the whole process
can be done in PIME. O

We now turn to deciding closure under vertical swaps, whicthiecked using similar ideas.

We need the following two relations among statesdofWe say thatRy(r, p1, g1, p2, ¢2) holds
whenever there exists a contektand a treg such thatA andt¢ agree up to deptk, A4(p1) = ¢1,
A 4(p2) = ¢2 andr is the state reached by on¢. We say thatSi(p1, q1, p2, g2, P}, Py, 4}, ¢5) holds
whenever there exist two contexdsand A’ such thatA andA’ agree up to depth, andA 4(p;) = ¢;
andA’y(p}) =g, fori=1,2.

Claim 5. For eachk € N, both R, and S, are computable ilP TIME.

Proof. This is done as in Claim 4, with the extra reachability caaists being verifiable in PIME.
O

We are now ready to show:

Lemma 13. There is an algorithm deciding whether or not a language-@&nked trees given by
automatonA is closed undek-guarded vertical swapping which takes polynomial timé inA|.

Proof. Immediate from Claim 5k-guarded vertical swapping fails if we can fiqd p1, q1, p2, ¢2) €
Ry and(r,p1,q2,8,q1,8,7,p2) € Si with s # s’. This can be checked in PME onceS; and Ry,
are computed. O

From Lemma 12, Lemma 13, we have Theorem 7.
From Lemma 11, Theorem 7, and Proposition 2, we concludedileing:

Theorem 8. There is aP TIME algorithm that takes a deterministic automaton for a reglgeguage
of ranked trees and decides whether or not it is definable in FO

The theorem also applies to unranked trees, via easy eatensi Lemma 11, Theorem 7, and
Proposition 2.

6 Modulo counting

In this section we extend the previous results to,59 We prove that whether a regular language
is definable in FQ,,4 is decidable, using Corollary 1 and an idea from [BO7]. We afeention a
characterization that can be used to give aNRTalgorithm for a decision procedure. We deal here
only with the case of trees of fixed rankalthough the results can be extended to the unrankedgsettin

In [Stro4] (See VII1.3.1), the result of [BP89] is extendedat@haracterization of FQ,;p) on
strings, by simply replacing the aperiodicity biwith a periodicity condition - that is, that the monoid
associated with. is g-periodic. When we apply this to the monoid of contexts gatest by a lan-
guage, we get that a regular tree languége g-periodic if:

24

(¢-periodicity) 37 such thatvs, u contexts, and/t tree,s - u! -t € L iff s-u!t?.-t € L.

Fix P C N finite and letg be the least common multiple of all numbers occurring’inWe show
that membership in FQ,; p) is decidable.

We start with giving the notion of locality relevant to Eg);. For numbers: andg, and treess
andt, we says =y, , t if for every k-typer, |s|; = |t|; modq and|s|,. = |t|, if either |s|, < n or
t]- < n.

It is well-known that an FQ,; sentence on bounded-degree structures can only count tiigenu
of local neighborhoods up to some modulus and threshold {se@xample, [NOO] Theorem 3.4).
Applying this within ranked trees, one easily obtains tH®ing:

Proposition 3. For any fixed rank- and anyFO,, .4 p) sentencep, there are numbers andn com-
putable fromg andr such thatp cannot distinguish twe-ranked trees andt with s =, ,, t.

Lemma 14. Let L be a regular tree language overanked trees definable in FQ;p). ThenL is
g-periodic and there existsfasuch thatl is closed undek-guarded swaps.

Proof. Fixing k£ as in Proposition 3, one sees thats closed undek-guarded swaps, since these
preserve the number éftypes.

The proof thaiy-periodicity is necessary is done as in [Str94]: one showsthyctural induction
that all FQ,,,q(p) formula areq-periodic where free variables are treated as sentencepiadaict
alphabet. The base case of atomic formulas follows fromeékalt for FO, while the inductive cases
are already shown in the proof of VI1.3.1 of [Str94]. O

We are now ready for the main result:

Theorem 9. There is a computable function which takes as input a reglalaguageL of r-ranked
trees (presented effectively, for example by a tree autmmyand determines whether or nétis
definable inFO,,,q(p).-

Proof. Let L be a regular tree language. Our decision procedure workellasvs. We first check
that L is ¢g-periodic and also whether there ig&uch thatl. is closed undek-guarded swaps. Since
g-periodicity requires only checking an identity on eaclsslaf a computable finite monoid, the first
property is decidable. By Theorem 7 and Lemma 11 the secodddislable as well. If this check
fails we know from Lemma 14 that is not definable in FQ,q(p).

Becausel is closed undek-guarded swaps, we know from Corollary 1 that membership in
depends only on the number @f + 1)-types present in the tree. Letbe the number ofk + 1)-types
and fix a linear ordery, - - - , 7,, among thek + 1)-types. Given a treg letéy(t) € N™ be then-tuple
(i1,--- ,in) Wherei; = |t|,,, the number of occurrences of in ¢. Note that wherk = 0, {y(¢) is
simply the number of occurrences of each label. Restatirmgllaoy 1, we have that for all tregsand
t', &k(t) = & (') impliest € Liff ¢’ € L.

Given a regular tree languagel/, we denote by, (M) the set{¢x(t),t € L}. A vector set
X C N" s calledsemi-linearif it is a finite union of sets of the form:

{:Z’—l—ili’l-i-"'—l-ilfl|i1,---il€N}

for somezq,---x; € N™.
A simple extension of Parikh’'s theorem shows that for anylagtree languagé/, &,(M) is
semi-linear and can be computed frdv

Lemma15. For any regular tree languadé andk € N, ¢,(M) is a semi-linear set, whose represen-
tation as a union of constraints is computable frbm

25

Proof. Let T}, be the set ofk + 1)-types. Given a treewith labels inX we define[t];, with labels in
T}, as the relabeling of replacing for any node of ¢ its label by is(k + 1)-type.

Let My, = {[t]x | t € M }. As(k+ 1)-types can be computed by a tree automaidp,is a regular
tree language. Given a non-deterministic top-down tréeraaton A, we can create a context free-
grammarG 4 whose words are in one-to-one correspondence with the tfeds with occurrences
of letters in a word matching the occurrences of labels incttreesponding treeG 4 will have non-
terminals for each state of. Each transitiony —, ¢i ...q. of A will correspond to a production
q — aq - .. q- Of G4, while each final state of A will generate a production — e.

We apply this to the automaton fdr,, generating a context-free grammar. By Parikh’s Theorem
[Par66], we conclude that the tuple of word counts for wordaegated by the grammar, which is
exactlyéy(My), is semi-linear, with a set of linear constraints repreisgnit being computable from
the grammar. O

Let 7,y € N". Ford € N, we denote byr Ng the fact that for each component, either
Z.m = y.m or bothZ.m andy.m are abovel andz.m = 3.m modulog.

Using Lemma 15, we compute = &, (L) andS = & (L), whereL is the complement of. The
key point for getting decidability is the following lemma:

Lemma 16. Let L beg-periodic and closed undérswaps. Therd is in FO,,.4p) iff there existsd
such that for all vectors, 7 such that ~¢ 7 we don't haveZ € S andy € S.

Proof. If Lisin FQ,,.4p), the property holds because, by Proposition 3, a formuladyf) only
counts local neighborhoods up to some threshold or mogulo

Now suppose thal satisfies the property above. Using the consequence ofl@grélmentioned
before, we see that membershiplironly depends on the count éftypes up to some constant and
the modulog class of each such count. This is easy to express iR O O

To conclude the proof of the theorem, notice that the prgpsteted in Lemma 16 can be expressed
in Presburger Arithmetic, onag S andS are given. Hence, by decidability of Presburger Arithmetic
[Pres], one can decide whether or not this property holds. O

From Theorem 9, the result for EQ, easily follows:

Corallary 2. There is a computable function which takes as input a reglalaguagel of r-ranked
trees (presented effectively, for example by a tree autmmand determines whether or nbtis
definable inFO,,,,4.

Proof. Given the prior theorem, it suffices to decide whether a laggusg-periodic for some fixed.
But this is just checking-periodicity in a finite monoid, which is known to be decidalpbtro4]. O

The algorithm we have just described relies on a decisiooguhore for Presburger arithmetic, and
this is not optimal. We can actually show a more precise aerization of FQ,,qp) which yields a
PTiME decision procedure. We only state the result below. Thefgadlows along the same lines as
the characterizations in the previous sections, with tttitimthal technical difficulty that only pieces
of size0 modulog can be added or removed.

Theorem 10. Let L be a regular tree language.
ThenL is definable irFO,, .4 p) iff L is g-periodic and there exists/asuch thatl. is closed under
k-guarded swaps.

26

We have the following corollary, which follows from the wddhown fact that every finite monoid
is g-periodic for somey:

Coroallary 3. Let L be a regular tree language.
ThenL is definable iFO,,,q iff there exists & such thatl is closed undek-guarded swaps,

The approach using the finer characterization above wosgsialthe unranked case. The simpler
approach we used above to get decidability in the ranked dasg not extend in an obvious way to
the unranked setting, since it relied on Corollary 1.

7 Conclusions

The main result presented here is the decidability of FOrdéflity in ranked trees and unordered
unranked trees. The question of characterizing FO-defibain ordered unranked trees is open.
Our decidability results for unordered unranked treesrakteasily to languages given by sentences
of Monadic Second Order Logic with counting modulo quant#i€CMSO). These languages can
be presented by a bottom-up tree automaton whose trarssiti@mm count the number of children in
a given state modulp. Again, one can get a decision procedure that is polynomi#hé size of a
deterministic automaton.

We believe that our characterization (and the decidakiéigults that follow) extends to-trees.
In addition to giving a decision procedure, the charac#itn here has been useful for demonstrating
that certain queries are first-order; for example, it is hesrbused to prove that order-invariant first-
order queries over trees are first-order expressible.

The class LT of languages is defined as for LTT but without kineshold. That is, one can check
the occurrence or absence of a pattern in a string but canmgetaount the number of occurrences.
We are considering how to modify our axioms to characterize L

Acknowledgment: We wish to thank Jean-Eric Pin for many fruitful discussiam the word case
and Mikotaj Bojahzyk for his help on an earlier draft of tipiaper.

References

[BP89] D. Beauquier and J-E. Pin. Factors of wordsAltomata, Languages and Programming
pages 63—-79, 1989.

[BSO5] M. Benedikt and L. Segoufin. Regular languages defénal-O. InSTACSpages 327-
339, 2005.

[BWO04] M. Bojanczyk and I. Walukiewicz. Characterizing BRd EX tree logics.Theoretical
Computer Scien¢e58:255-272, 2006.

[BO7] M. Bojanczyk. A new algorithm for testing if a regulanguage is locally threshold testable.
To appear irinformation Processing Letter2007

[Buc60] J. Buchi. Weak second-order logic and finite autam&. Math. Logik Giindlagen Math.
6:66—92, 1960.

[CH91] S. Cho and D T. Huynh. Finite-automaton aperiodicity? SPACE-complete. Theoretical
Computer Scien¢eé8(1):99-116, 1991.

27

[Cou90] B. Courcelle. The monadic second order logic of ggaprecognizable sets of tinite traphs.
Information and Computatiqrg5:12—75, 1990.

[CPP93] J. Cohen, D. Perrin, and J-E. Pin. On the expressiwveipof temporal logic for finite words.
Journal of Computer and Science Systed®41993):271-294, 1993.

[Don70] J. Doner. Tree acceptors and some of their apptinatiJournal of Computer and System
Sciences4:406-451, 1970.

[EW03] Z. Esik and P. Weil. On logically defined recognizable tree leawes. IFFSTTCSpages
195-207, 2003.

[Heu9l] U. Heuter. First-order properties of trees, staefexpressions, and aperiodicitpforma-
tique Tteorique et Applications25:125-146, 1991.

[LibO4] L. Libkin. Elements of Finite Model Theargpringer, 2004.
[MP71] R.McNaughton and S. Pape@ounter-free AutomataMIT Press, 1971.

[NOO] J. Nurmonen. Counting modulo quantifiers on finite stinwes. Information and Compu-
tation, 160(1-2):62-87 2000.

[Par66] R. Parikh. On context-free languagdsurnal of the ACML3(4), pages 570-581, 1966.

[Pin96] J-E. Pin. The expressive power of existential firstep sentences of Bichi’'s sequential
calculus. InProc. of Intl. Coll. on Automata, Languages and Programmpages 300-311,
1996.

[Pin05] J-E. Pin. The expressive power of existential fingten sentences of Buchi's sequential
calculus.Discrete Mathematig291, pages 155-174, 2005.

[Pot95] A. Potthoff. First-order logic on finite trees. Tieory and Practice of Software Develop-
ment (TAPSOFTpages 125-139, 1995.

[PT93] A. Potthoff and W. Thomas. Regular tree languagehawit unary symbols are star-free.
In Fundamentals of Computation Theory (FCpages 396—-405, 1993.

[Pres] M. PresburgerUber die Vollstandingkeit eines gewissen Systems dethAtétic ganzer
Zahlen, in welchem die Addition als einzige Operation heritb Comptes Rendus du |
congres de Matkmaticiens des Pays Slaygages 92—-101, 1929.

[Sch65] M. P. Schitzenberger. On finite monoids having daryal subgroups. Information and
Control, 8:190-194, 1965.

[Str94] H. StraubingFinite Automata, Formal Logic, and Circuit Complexitgirkhauser, 1994.
[Tho97] W. ThomasHandbook of Formal Languagegolume 3, chapter 7. Springer, 1997.

[TW68] J.W. Thatcher and J.B. Wright. Generalized finiteomuéta with an application to a decision
problem of second order logidlath. Syst. Theory2:57-82, 1968.

[TW85] D. Thérien and A. Weiss. Graph congruences and Wrpadducts. J. Pure and Applied
Algebrg 36:205-215, 1985.

[wil96] T. Wilke. An algebraic characterization of frontiéestable tree languageslheoretical
Computer Scien¢el54(1):85-106, 1996.

28

8 Appendix: proofsof the modulo characterization theorems

Here we will give the proofs of the characterizations of fwstler logic with counting quantifiers. As
before we start with the ranked case, to illustrate the ntea, and then we move to unranked trees.

Fix P C N finite and letg be the lcm of all numbers occurring iA. The goal of this section is to
show that replacing aperiodicity wititperiodicity in the theorems faf'O gives a characterization of

FOpod(p)-

8.1 Ranked treesand modulo counting

We start with the ranked tree case, fixing the rank &&= the whole section. Note first that for ranked
trees, FQ,oq(p) is included in MSO (this is no longer the case for unrankedsye This is because
over ranked trees, a linear order can be defined in MSO aneéftrercounting quantifiers can be
simulated using this order. Thus EQy p) defines only regular languages. We recall the statement of
Theorem 10:

Let L be a regular tree language.

ThenL is definable irFO,,,.4p) iff L is g-periodic and there exists/asuch thatl. is closed under
k-guarded swaps.

The proof thaiy-periodicity is necessary is done as in [Str94]: one showsthyctural induction
that all FQ,,,q(p) formula areq-periodic where free variables are treated as sentencepiiadact
alphabet. The base case of atomic formulas follows fromeékalt for FO, while the inductive cases
are already shown in the proof of VII.3.1 of [Str94].

For the converse, we denote byzf t' the fact thatt and¢’ agree on all sentences of EQy p
with at mostK (first-order or modular) quantifiers. As in the case withowtdulo quantifiers, Theo-
rem 10 will follow immediately from:

Theorem 11. For any regular languagd. which isg¢-periodic and closed undét-guarded swaps,
there exists & such that for any, ¢ € 7 we have: t _K ' = tel iff t'elL.

We will thus work towards the proof of Theorem 11. We follovetlines of the proof of Theo-
rem 2. FixL andg, k such thatl is ¢g-periodic and closed undérguarded swaps. Fix a deterministic
automatonA for L.

The notion ofk-spill and depthk similar is as in the ranked case for FO. Given two tregswe
denote bys :g’k t the fact that for allr € 7y, |s|, = |t|; or, |s|-, |t|- > d and|s|; = |t|; modulog.

If in addition for all 7 € 7y, |s|; < |t|- then we writes gg’k t. If for all 7 € 7y, |s|; = |t|- then we
write s =% ¢.

The flrst two lemmas are easy adaptations of Lemma 1 and Lentah@ modulo counting case.

Lemma 17. For each numbed, there exists a constafif; such thats = Kd ¢ implies thats =% Rty

ands, t are depthtk + 1) similar.

The lemma follows because the count modutaf occurrences of a givekr-spill within a tree can
be expressed via an FQ; p) sentence.

k+1
S_Q-l—

Lemma 18. For each numbet’ there exists a numbet such that if then there existy'

such thats <%**' ¢/, andt, ' are depthtk + 1) similar, andt’ ¢ L iff ¢ € L.

29

Proof. This is proved by making a slight modification of the proof erama 2. Again we proceed
by induction on the number of typesthat are not sufficiently well-representedtin In the inductive
step, we fix ak + 1)-type 7. The proof of Lemma 2 shows that we can find a pair of nodes:,
with z9 a strict descendant of; such thatC; [z, z2) (that is, the set of nodes that are below or equal
to x1 and not belowe,) contains at least one node of typebothz; andz, have the same type, all
nodes inCy[z1,x2) have a type that is safe (i.e. occurs at lefigimes), and the automatot for L
reaches the same statezgfas onz;. If we now replace’; [z, x2) by « - p copies of itself, for large
enougha, then we will have preserved the counting modalof occurences of each type, have not
disturbed any unsafe type, and will have made the number@fraences of- in ¢’ greater than the
number int. O

Lemma 3 and Lemma 4 are proven using only swapping movesghsitbout modifying the
occurrences ofk + 1)-types. Therefore we can make use of them in the modulo cuyicise. The
same holds for Corollary 1. It therefore remains to revisd tast part of the proof of Theorem 2 and
adapt it to the modulo counting case.

We are now ready to begin the proof of Theorem 11. Qebe the set of states of, a = |Q|
be the number of states of. Let 5, = |7,.1|. Let! be theg-periodicity number ofL. Letd =
rBexr®+1+l 4 1 | etd be the number required in Lemma 18 8r Let K be the numbef; required
in Lemma 17 ford. We show that =X ¢ impliess € L iff t € L.

Assumes =X ¢, we show thats € L iff t € L. From Lemma 17 we know tha;’t:g”‘”rl t.

Therefore by Lemma 18 there is a tiésuch that’ € L iff t € L ands gg;k’“ t'. We can now apply
Lemma 3 and obtair’ such that” € Liff ¢ € L, sis (k + 1)-pseudo-included it” via a mapping
h, andt” =41 ¢ =2+ 5 Therefore it suffices to prove thate L iff ¢/ € L.

Once more following the proof of Theorem 2, we have by comsion thatt” is h(s) plus loops
(of size larger than 1) inserted between nodefs(ef. As before, allk+1)-types which occur outside
of h(s) have strictly more occurrences ifi than ins and therefore appear at leabttimes ins (and
in t). Notice also that for eactk + 1)-type 7 the total number of occurrencesobutside ofh(s) is
zero modulag. LetV; - - -V, be the sequence (in arbitrary order) of loop$'ihk(s) and letV be the
forest(J, <, ,, Vi. From the remark above we have € 7, |V |, = 0 modulog.

Before continuing we need some additional definitions. FEonberj, a j-contextis a tree with;
designated leaves, which we call (generalizing the naidtio contexts) ports. Given gcontextC,
an ordering of its ports agi, ..., p;, and treeg; ...t; we letC[ty,. .., t;] denote the tree obtained
by plugging in eaclt; into p,. An “abstractj-context” is aj-contextC' in which the root is different
from each port, supplemented with an assignmenf (k + 1)-types (wherek is the number fixed
above) to each non-port node anél-type to each port node such that the assignmentsarsistent
there are; . .. t; such that for every nodein C, the type assigned toin C[t, . .., t;] matches\(z).
Note that this notion of consistency extends that given istract contexts in the FO case.

Lemma 19. There existsn’ and abstract loop#; - - - U/, with eachU; having cardinality greater
than1, such that iU = (J, .., U; we havevr € Ty 11,4 - |U|; = |V

Proof. For each’k + 1)-typer and eaclk-typev let o (v) be 1 ifv is induced byr, O otherwise. For
any multisetB of (k + 1)-types and any:-typev, letag(v) be ¥, ez, ., |B(7)|ar(v), where| B(7)|
is the number of occurrences ofin B. For 7, v as above lef3-(v) be the number of children of
k-type v that a node ofk + 1)-type 7 must have, and extend this to a multiset(bf+ 1)-types B
by B(v) = Ere7i,, | B(7)|B-(v). Soap measures how often a givéntype occurs in a multiset of
(k + 1)-types, and?p measures how oftenfatype occurs as a child in a given set(éf+ 1)-types.
Finally, letys(v) beagp(v) — Bp(v).

30

Let B be the multiset of al{k + 1)-types occurring irfl’. Becausé’ contains only abstract loops,
we have that for each € 7, yp(r) = 0: the occurrence of a type in the interior of one of the loops
is counted once in botly and 3, thus contributing to ~, while the occurrence of a type in the root
(and hence in the port) is counteddn but is balanced by the occurrence of that type as a pgst in
Let B’ be B where the multiplicity of each type has been dividedsbyB’ is well-defined because all
multiplicities in B are multiples of;. Since for eaclv € 7, the multiplicity of each(k + 1)-type that
induces it and the multiplicity of eadlt + 1)-type that had it as a child are both divided i going
from B to B’, yp/(v) = 0. We will construct abstract loogs; - - - U,,» such that the multiset formed
with the (k + 1)-types of nodes dfJ, ., U; is B'.

Assume we have already constructedabstract loopd/; - - - U,,,, and a “partially constructed
loop” — either an abstragt-context.X which we hope to extend into an abstract loop, or the “empty
abstract context” (whose underlying context has no nodesf) B, be the multiset of & + 1)-types
assigned to non-port nodes &fU |, ., ,,, Ui. We will assume inductively thaB, is a sub-multiset
of the types inB’. Let B, = B’ — By, where difference of multisets is defined in the usual way.

If X is empty andB; = B’ (i.e. By is empty), then we are done, sin€g...U,, are the
required abstract loops. Otherwise we will extend the cotibn while decreasing the sum of the
multiplicities of types inB,.

SupposeX is empty andB; # B’. ThenB, must contain at least or{& + 1)-type with positive
multiplicity. Let 7 be such gk + 1)-type, and let, ..., v; be the sequence of inducéetypes of
the children of a node aft + 1)-typer. We setX to be an abstraci-context containing a root node
assigned tqk + 1)-type 7 with j children, all of which are ports, with thé" child assigned:-type
v;. The definition of the sequencg, - - - , v; implies that this is a consistent assignment.

If X is not empty and is an abstract loop, then welggt,; = X and continue as above. X is
not empty and has no ports, thep, (v) > 0 for v the k-type of the root ofX. Sincey(B’)(v) =0,
we havey(Bz)(v) < 0 and hence there is sone + 1)-type r in B, that requires’ as theit” child.
We add this type as a new root &f, appending the ol as thei’” subtree while making any other
required children into ports. Again, the multiplicity efin Bs is decreased.

SupposeX is not empty and is not an abstract loop. kdie the(k + 1)-type assigned to the root
of X andr’ be thek-type induced by-. SinceX is not an abstract loop, eithéf has a port whose
assigned:-type isv # 7/, or X has more than one port of typé.

In the first case, fix such a pagstand typer. Thenv(B;)(v) > 0, and sincey(B’)(v) = 0 this
impliesy(B2)(v) < 0. So there is somg: + 1)-type p with positive multiplicity in By consistent with
v. Letn; ...ns be thek-types of children required by. Replace porp with a noder of (k + 1)-type
p, wherex will have childrenp; . .. ps that are ports of types; ..., respectively. The size of the
multiplicities of types inB, has decreased hy and we continue the induction.

In the second case(B;)(7’) > 0, and this impliesy(Bz)(7’) < 0. Hence there is & + 1)-type
p in By consistent withr’. Replace one of the ports of typéwith a noder of type p, which is again
given the port children of the types required fayand continue inductively.

LetU = J,<;<, Ui. By construction we haver € 7j11,q.|U|; = ¢.|B'|; = |B|; = |V]: as
required. o O

FixU = {U; --- U, } asin Lemma 19. By induction we construgt: - - s,,» such that: (i)so is s,
(i) vr € Tkt |SZ‘|7— = |8|7— + q.|U1|7— + - 'q.|Ui|7—, (iii) s; € Liff s;_1 € L.

The base case isimmediate. The induction is done as in tloé gridheorem 2, first/; is reduced
to W;, whose size is strictly bounded k¥/!, and thenWZ.l is inserted tas; 1 using Lemma 4. We
can now usey-periodicity of L to insertq extra copies oV, (and thereford/;) as required. All this
is done without affecting membership in

31

Lets’ = s,. By construction we havér € T;.1,|s'|: = |s|- +¢.|U|r = |s|- + |V |- = |¢"|; and
s’ € Liff s € L. Theorem 11 now follows from Corollary 1. O

Theorem 10 immediately implies the following complexityunal:

Corallary 4. There is aPTIME algorithm that, given a deterministic bottom-up rankectteaitoma-
ton, checks whether the corresponding tree language isad#énnFO,,,.;.

Proof. By our prior results, and the fact that every regular languag-periodic for somey, it suffices
to check in PTME that a language is closed undeiguarded swapping for sonie But this was
already shown in Theorem 7. O

We can also show the analogous result for,EQp):

Theorem 12. There is aP TIME algorithm that, given a minimal deterministic bottom-umkad tree
automaton, checks whether the corresponding tree langisagefinable inFO,,,,q(p)-

Proof. By Theorem 10, we need only show that for languages thathgdtiguarded swapping;-
periodicity can be checked in PME. We use an argument modeled tightly on the string case, from
[Pin96]. The following claim was proven far= 1 in [Pin96]:

Claim 6. For a monoid satisfying-u-f-s'-e-v-f=e-v-f-s -e-u- f we haveu! = vt holds
for some/ iff

(c-z-ey-efi=(caey-e)fi-lexe (irq)

holds for some: (where, againg, f range over idempotents andy, u, v, s’ range over monoid
elements).

Proof. The proof of the claim is a simple generalization of the argatrforqg = 1 in [Pin96]. In one
direction, we assumgfx, ¢), and proveg-periodicity by choosingv such that for alk:, u* is idem-
potent, and substituting = u,y = e = u*. This yields the identity,(4«t1r = o (4wt (2wtl)g
which impliesu“ ™" = y“*+T4 ysing idempotence af*. Sinceu was arbitrary, this shows that
periodicity holds withl = w + k. In the other direction, we assumeperiodicity and prove i, q).
We use the observation, proved in [Pin96], that our adddlidrypothesis on the monoid implies that
for any idempotent and any monoid elemenis y we have

ereye = eyexe (xx)

From (**) and idempotence of we can deriveexzeye)' (exe)? = (exe)F9(eye)!, by repeatedly
applying (x#) to rewrite occurrences efyeze to exeye, and collapsing:? into e.
Now usingg-periodicity we havéeze)!*?(eye) = (exe)!(eye)!, and using (**) and idempotence
of e we have(exe)! (eye)! = (exeye)!. Thus(exeye)! (exe)? = (exeye)’ as required foy-periodicity.
[l

One can decide whethéf, ¢) holds using a patter*? obtained fromP by addingg — 1 addi-
tional nodes, which witlg, form a chain of lengtly, with edges from one element of the chain to the
next labeled withz. Each element of the chain has a self-loop labeled wittssociated with it, and
the last element in the chain is constrained to be distimechfy;. The notion of a graph formed from
an automaton which is to be matched against paf®éris the same as the notion férin the FO case
for ranked trees. O

32

8.2 Unranked trees and modulo counting

In the unranked case, the main difference is that,Fr) is no longer included in MSO but in
CMSO. From Courcelle [Cou90] we know that the following f&rof automata has exactly the same
expressive power as CMSO. The automaton is defined as fonkedarees, but each transition, in
addition to counting the number of states, up to some thtdshg reached for its children nodes,
also counts their occurrences modulo some congtavie call themmodulog counting automataA
language that is defined by a modul@ounting automaton for somg or equivalently definable in
CMSO, is calledextended-regular

As in the unranked FO case, the difficulty is that the humbédsaforphism types of trees of
depthk is no longer finite, so we need to reason via approximation.eféend the notion of* to
~%4 in the obvious way by requiring that we count the, £ — 1)-types of the children of a node
modulog when above threshold. We refer to those af;, n, k)-types. The notion of similarity and
guards are then extended as expected.

Again, the heart of the proof is the following intermediatsult:

Theorem 13. Let L be ag-periodic extended-regular tree language.
ThenL is definable in FO iff there exists, k such thatL is closed undefq, n, k)-guarded swaps.

Proof. (sketch) The proof is a combination of the ideas in the prdafteeorem 10 and Theorem 3.
We only give an overview here. That the conditions are necgss proved as in Theorem 10. We
now fix ¢, n, k and an extended-regular tree langudgevhich is g-periodic (with! for the number
from the periodicity condition) and closed under n, k)-swaps. We fix an automatof recognizing
L andm very big relative tg A|, in particular above the threshold for whichcan count number of
types exactly. Again we can assumés abovem.

The next result follows from the fact thég, n, k)-types can be expressed in FQ:
Lemma 20. For all numbersd and all numbers:/, there existsK; such thats zfd t implies
s :g’"/’kﬂ tands,t (n,q, k + 1)-similar.

With the obvious intended meaning for the notatios?™"*!
Lemma 6 we have:

t, and using the same tools as in

Lemma 21. For each numbed’ and eachw’ > n there exists a numbef such that ifs :g’”""”“ t
then there existg such thats gg;”/’k“ ', andt,t’ (n',q, k + 1)-similar, andt’ € L iff t € L.

Proof. The proof follows the structure of Lemma 6. Safen, k)-types are those that occur at least
d' times int.

We again have two cases to consider. In the first case, evely ima has at small (below;,
as defined in Lemma 6) number of children which have a descemdaype . In this case, we can
construct a long-skeleton int. Just as in that proof, by having sections of the skeletaelanough,
we can guarantee a portion can be pumped without changingithef the automaton, adding unsafe
types, or changing the existing type structure. By pumpingudtiple of ¢ times, we will preserve the
modulogq class of every type, so the resulting tre€ns, ¢, k + 1)-similar tot.

In the second case, there is some noda ¢ that has a large number of children which have a
descendant of type. Then can find a large (above) number of children with a descendant of type
7 which are safe and where the automatbmeaches the same state. It is now possible to duplicate
any of the subtrees of these children without affecting mensitip inZ, changing the type af, or
adding unsafe types. So in particular we can add a large preuthf ¢ copies of some child, resulting
in a tree that ign/, ¢, k + 1)-similar tot. O

33

Pseudo-inclusion is defined as in the unranked case forofiggr logic. We have the obvious
extension of the pseudo-inclusion lemma:

Lemma 22. For all d’,n’ there exists: such that ifs gg;"’k“ t ands,t (n,q, k + 1)-similar then
there existg’ such thats is (¢, n’, k + 1)-pseudo-included in/, ¢’ :3;”“’“*1 t,andt’ € Liff t € L.

Proof. The proof follows the argument in Lemma 7. In that proof wegidared several cases. In
most of these cases, no pumping is necessary and thus orgpisiganoves are used to get the desired
result. As swapping does not affect the numbefqh, k& + 1)-types at all (and hence does not effect
their counts modulo any number), these cases also work Wénen a noder of (¢, n, k + 1)-typer
needs to be expanded, we did so by adding a large number &scopihe subtree of a given child of
x. Using the same argument in that proof, we see that a chiktsethiat has many siblings for which
the automaton reaches the same state and such that theesaftitre child has only safe types (that is
all types have abové occurences). We choose such a child and then add a largelawfi; copies

of the child. O

For an abstract contexXt and treet, U <, r+1 t means that{q,n,k + 1)-types ofU occur
strictly more frequently irt. The notion of inclusion and thinness is extended in the mksiway to
(q,n,k + 1)-types.

Lemma 23. LetU be an abstract context. If <, ,, 11 t and each node € U is (¢, n, k + 1)-thin,
then there exist§ such that’ is (¢, n, k + 1)-included in¢/, ¢’ =&™* ™ ¢ and,t' € Liff t € L.

Proof. With the extension of the definitions in place, this followsrh the same argument as in the
unranked case for FO. Note that only swapping moves wereaegpil the proof of Lemma 8, so the
exact number of each type (in particular, the number modubtypes) is preserved. O

Similarly, we have the version for forests, which againdals by the same set of swapping moves
as in the FO case for unranked trees:

Lemma 24. LetU be a forest. IfU <, 1+1 t and each node € U is (n, k + 1)-thin, then there
existst’ such that is (¢, n, k + 1)-included int’, ¢/ =kl yandt € Liff t € L.

Proof of Theorem 14 for unranked trees (sketch). As usual we set all the numbers to be big enough
in order to be able to apply all the previous lemmas. Stastii two treess andt such thats Ef t,

we end up with two trees andt” such thats is (¢, n, k + 1)-pseudo-included i, t" € Liff t € [,
andt” =%"**! 5. We wish to show that € L iff t" € L.

By constructiont” is h(s) plusloopsinserted between nodes bfs) and extrabranchesbranch-
ing off the h-pseudo-tree. As before, eah n, k + 1)-type which occurs outside &f(s) must occur
strictly more often withint” than ins and therefore must appear at ledstimes ins (and int”). Fur-
thermore for eaclig, n, k + 1)-type 7 the total number of occurrences obutside ofh(s), including
both the branches and the loops, is zero moguloet V1 be the forest of loops occurring iff outside
of h(s) andV'b the forest of branches occurring iti outside ofh(s).

As in the FO unranked case, we reduce the siZélaind Vb without affecting either membership
in L or the cardinality modulg of each type. We can further assume that all typeqare, k& + 1)-
thin. LetV1; --- V1, be the set of loops it"\h(s) andV'b; - - - Vb be the set of extra branches in
t"\h(s). From the remark above we have € 7, 11, |[V'|- = 0 modulog.

The main difference from the ranked case lies in the follghemma, replacing Lemma 19. Its
proof will be obtained by induction ol using the same ideas as in Lemma 19.

34

Lemma 25. There existsy’ abstract loopd/l; ... Ul, andg’ branched/b; ... Ubg such that ifU]
is the multiset of(¢, n, k + 1)-types occurring in all of thé/l; andUb is the same for thé/b;, then
we havevr € 7y, i41,¢ - (Ul + [Ubl) = [Vb],.

Proof. The functionsx andap are defined as in the ranked case for,£Q py. The functions,(v) is
defined as the minimum number of nodes of typat r requires — note that this is the same as the
number of nodes of type that will occur in a thin realization of. v is a — (as in the ranked case.

Again, let B be the multiset of al{k + 1)-types occurring i/l or Vb, and letB’ be the multiset
resulting from dividing all multiplicities inB by ¢q. One significant difference is that noyg (v) > 0
for manyv € 7, since each branch will have the type of its root contrilmitio o more often then
to 8 within that branch. Our goal is to construct abstract loopd branches such that the multiset
formed with their(k + 1)-types is exactlyB’.

Let C(v) = vp/(v) for eachr € 7;,. Assume we have already constructedabstract loops
Ul ...Ul,, andn; branchesUb; ...Ub,,, along with an abstracf-context X (possibly empty)
which we hope to extend into either an abstract loop or brardgt Comp be be the multiset of
(k+1)-types assigned to non-port nodes ¢f_, ., Ul;UU;<;<,,, Ub;, and letPart be the multiset
of (k + 1)-types assigned to non-port nodesXof Let B; be the union (as a multiset) 6formp and
Part,andBy; = B’ — B;. We will assume inductively tha®, is a sub-multiset of the types 8/, and
also thatycomy (1) is at mostC'(v) for eachr € 7. This second condition is equivalent to demanding
that for everyk-typev, v occurs as the root of some completed branctién . . . Ub,, no more often
thanC(v). Note that this condition will ensure thag, pa:(v) > 0 for eachr € 7.

If X is empty andB; = B’ then we are done. [X is an abstract loop anB; # B’, then we set
Ulm,+1 = X and continue. IfX is empty andB; # B’, then we proceed as in the ranked case: set
X by choosing an arbitrary type occurring with positive mulitity in Bs, and give it the ports that
the type requires as children. Since we do not chatige:p, we do not violate the second inductive
invariant above.

SupposeX is not empty, is not an abstract loop, and has at least one pbrK has a sin-
gle port whosek-type v does not match the inducédtype of the root, thenp,,+(v) < 0. Since
vBouPart(v) > 0 by the inductive invariant, we knowsg, (v) > 0, which allows us to proceed as
in the ranked case, choosing a type fré that induces/, and expandingl accordingly. The case
whereX has more than one port is handled similarly.

The last case is wheX is not empty and has no ports. Letbe thek-type induced by the
(k + 1)-type of the root ofX. If ycomp(v) < C(v), then we can ad&” asUb,,, + 1 and continue. If
Yoomp(v) = C(v), thenX has no ports to expand on, but cannot be added as a new cotniptateh
without destroying the inductive invariant. In this cage, . p,(v) = 0, andvyp,+(v) = 1, so there
is some(k + 1)-type T in By that requires at least one child of typeExtendX by adding a new root
of typer, attaching the formeKX as one child and making the remaining required childrenspdrhe
multiplicity of 7 in Bs is reduced, and we can continue the induction. O

We can now transforns by induction in order to inserd copies ofU!; for eachi, and likewise
transformt to removey copies of eaclt/b;. This is done as in the proof of Theorem 10 for loops, and
as in the unranked case of Theorem 2 for branches, workingguitups of size. The details are left
to the reader. O

From Theorem 13 we can now show:

Theorem 14. Let L be an extended-regular tree language.

35

Then L is definable in FO iff it isg-periodic and there exists such thatl is closed undek-
guarded swaps.

Proof. Clearly, itis enough to show that closure unéleguarded swaps implies closure undgrn, k)-
guarded swaps for sufficiently large This is proved as in the unranked case without modulo quan-
tifiers (Theorem 5). O

A polynomial time algorithm follows for immediately for FQ, using the same techniques as in
Theorem 8.

36

