
Decidable Logics via Automata

Michael Benedikt, revised from joint notes with Michael Vanden Boom

1 Introduction
These notes will deal with reasoning problems on logical formulas. Given a
sentence ϕ in some logical language L, the goal is to determine whether there is
some structure in which ϕ holds (the satisfiability problem for L). For the logics
we consider, an algorithm for the satisfiability problem can easily be converted
into an algorithm to determine whether a sentence ϕ holds in all structures (the
validity problem for L).

Results from the first-half of the 20th century show that the satisfiability
problem for many well-known logics, such as first-order predicate logic and fix-
point logic, are undecidable. But there are many restrictions of these logics
that have a decidable satisfiability problem. These notes will overview one of
the main techniques for showing decidability, via the use of automata.

We will apply the approach to several logics. The basic idea is to start
with a result saying that one can decide whether certain logical sentences in the
vocabulary of labelled graphs hold in a tree. This tree satisfiability procedure is
due to Rabin.

These notes will overview a well-known method that “bootstraps” Rabin’s
result to get a procedure that determines whether a formula in a logic L is
satisfiable. The technique proceeds by showing:

• L has the tree-like model property : every satisfiable sentence has a tree-like
model. What this means formally will depend on the logic, but informally
it means a model that can be “coded” as a tree.

• For each sentence ϕ of L, one can find another sentence ϕ∗ such that ϕ
holds on a tree-like structure if and only if ϕ∗ holds on the associated
tree-code.

Applying these two steps we have reduced checking satisfiability of ϕ over
any structure to checking satisfiability of ϕ∗ over trees, which we can decide
using the tree satisfiability procedure.

After executing this two-step procedure for a logic L, we will then “optimize”
the process. Underlying the tree satisfiability procedure is another translation:
one that takes a logical sentence ϕ∗ and produces a tree automaton A∗ that cap-
tures the behavior of ϕ∗ over trees. A tree automaton is a device for computing
over trees. It is (relatively) easy to tell whether ϕ∗ is satisfiable by looking at
A∗. Our optimized procedure will take ϕ and directly produce a tree automaton

1

A∗, without going through a logic-to-automaton translation hidden in the tree
satisfiability theorem.

Note. These are draft notes, and may contain mistakes. Please do report
errors to the author.

1.1 Bibliographic remarks and suggestions for further read-
ing

The basic approach outlined in these notes is overviewed in Vardi’s article [Vardi,
1998]. This is a good place to start for readers looking for a longer introduction.
A later follow-up article is Grädel’s [Grädel, 1999c].

A reader looking for more background may also want to do some preliminary
reading about bisimulations and unravellings, since these play a large role in
these notes. The use of bisimulations in analyzing logics is well-established in
the literature. Some previous expositions include Grädel’s [Grädel, 2002, 1999a]
and Grädel and Otto’s [Grädel and Otto, 2014].

2

2 Logic basics
In these notes we will deal with first-order logic without function symbols. To
describe the syntax of this language, we need to specify the “non-logical symbols”
that can be used. A signature for function-free first-order logic consists of:

• A finite collection of relation names (or simply relations or predicates
henceforward), with each relation R associated with an arity, denoted
arity(R).

• A finite collection of constants (“Smith”, 3, . . .).

For short, we will refer to this as just a signature or vocabulary.

Example 1. Our signature might consist of only a relation symbol G of arity 2,
two unary relations U and V of arity 1, and no constants. This is an appropriate
vocabulary for talking about certain labelled graphs or labelled directed graphs:
G represents the edges of the graph, while U and V represent node labels.

Syntax of first-order logic. We now review the syntax of function-free first-
order logic. We will be using standard terminology to describe formulas, the no-
tion of free variable, quantifiers, and connectives [Abiteboul et al., 1995, Ebbing-
haus and Flum, 1999, Libkin, 2004].

First-order logic is built up from atomic formulas, which can be either:

• relational atoms of the form R(~t), where R is a relation symbol and each
ti in ~t is either a constant or a variable;

• equality atoms of the form ti = tj , with ti, tj either a constant or a variable.

Formulas include atomic formulas and are closed under boolean operations, with
formation rules ϕ1∧ϕ2, ϕ1∨ϕ2, and ¬ϕ. They are also closed under existential
and universal quantifiers, allowing the inductive formation of formulas ∀x ϕ and
∃x ϕ.

An occurrence of a variable x in a formula ϕ is said to be free if it is not in
the scope of some quantifier ∃x or ∀x. Otherwise it is said to be bound. The
free variables of a formula are those with some free occurrence. We write ϕ(~x)
to indicate that the free variables are among ~x, and write Free(ϕ) to denote the
actual free variables of ϕ. A formula with no free variables is a sentence.

A formula ϕ whose relations and constants all come from a given signature
Sig is said to be a formula over Sig. When we want to emphasize the signature,
we write FO(Sig), denoting the set of first-order logic formulas over the signature
Sig.

The equality-free first-order formulas are built up as above but without equal-
ity atoms. Note that the equality atom x = x expresses the formula True that is
always true, while the equality formula ¬x = x expresses the formula False that
is always false. In equality-free first-order logic, we still want to express these,

3

so we allow the special atomic formulas False and True to be in equality-free
first-order logic as well.

If ϕ is a formula whose free variables include ~x, while ~t is a sequence of
constants and variables whose length matches ~x, then ϕ[~x := ~t] denotes the
formula obtained by simultaneously substituting each xi with ti. When the
mapping of the free variables xi to constants or variables ti is either clear from
context or unimportant, we denote this as ϕ(~t).

Example 2. Consider the vocabulary with a binary predicate G. Then the
following are formulas of first-order logic:

ϕ1 = G(y, y)

ϕ2 = ∃y G(x, y) ∧G(y, y)

ϕ3 = ∀x ∃y G(x, y) ∧G(y, y)

ϕ4 = ∃y1 y2 y3 G(y1, y2) ∧G(y2, y3) ∧G(y3, y1)

Informally, the first is a formula specifying elements in a directed graph
that have a self-loop. The second is a formula specifying elements that have an
edge to a node with a self-loop. The third specifies directed graphs in which each
element is adjacent to a self-loop, while the fourth specifies directed graphs which
contain a three-clique. The last two are sentences.

Structures. A structure for a signature consists of a set called the domain of
the structure, interpretations for each relation as sets of tuples with values in
the domain, and an interpretation for each constant as a single element of the
domain. For a structure M , domain(M) denotes its domain, and for a relation
symbol G, M(G) denotes the interpretation of G in M .

Example 3. We return to the signature of Example 1. One possible structure
for the signature is M1:

domain(M1) = {1, 2, 3}
M1(G) = {(1, 2), (2, 3), (3, 1)}

M1(U) = {1, 3}
M1(V) = ∅

Another structure M2 is specified as:

domain(M2) = N, the natural numbers
M2(G) = {(i, j) : i < j}

M2(U) = {1}
M2(V) = {17}

Semantics. We now explain the meaning of a first-order logic formula. The
function Eval takes as argument a formula ϕ, a structure M , and a variable

4

binding for ϕ in M : a mapping σ taking each free variable of ϕ to an element
of the domain of M . The function is defined by induction on the structure of
the formula ϕ.

• Eval(x = y,M, σ) is true iff σ(x) = σ(y)

• Eval(R(x1 . . . xn),M, σ) is true iff the tuple 〈σ(x1) . . . σ(xn)〉 is in M(R),
where M(R) denotes the interpretation of R in structure M

• Eval(ϕ1∧ϕ2,M, σ) is true iff both Eval(ϕ1,M, σ) is true and Eval(ϕ2,M, σ)
is true

• Eval(¬ϕ,M, σ) is true iff Eval(ϕ,M, σ) is false

• Eval(∃x ϕ,M, σ) is true iff there is some value c in domain(M) such that:
letting σ′ = σ + x 7→ c, we have Eval(ϕ,M, σ′) is true (if x is already
bound in σ, then σ′ overwrites this binding with c).

Example 4. Consider the sentence ϕ3 from Example 2:

∀x ∃y G(x, y) ∧G(y, y)

Consider the structure M1 from Example 3. Intuitively, the sentence is false in
M1, since there are no self-loops. We can make this precise using the semantics.

There is clearly no binding σ such that M1, σ |= G(y, y), since there is no
pair of the form (y0, y0) ∈ M1(G). Using the inductive definitions for ∧ and
∃, we see that there is no binding σ such that M1, σ |= G(x, y) ∧ G(y, y), and
thus no binding such that M1, σ |= ∃y G(x, y) ∧ G(y, y). But the inductive
semantics of ∀x requires that for every x0 ∈ domain(M1), the formula ϕ2 =
∃y G(x, y)∧G(y, y) holds in M1 with the binding mapping x to x0. In particular,
this must hold for the binding σ1 mapping x to 1, which is a contradiction.

We will often use “turnstile notation” for the semantics. That is, instead
of “Eval(ϕ,M, σ) is true”, we write M,σ |= ϕ. Again, when the ordering of
variables in a valuation σ obvious, we often write the valuation as just a list of
values. In particular, if the free variables are x1 . . . xn in a formula ϕ(x1 . . . xn),
and c1 . . . cn are values, then we will use “turnstile notation” combined with
this ordering convention: we write M, c1 . . . cn |= ϕ, or M, c1 . . . cn satisfies
ϕ, instead of writing that Eval(ϕ,M, x1 7→ c1 . . . xn 7→ cn) = True. We will
also sometimes write “ϕ(c1, . . . cn) holds in M ” (again using the fact that the
mapping of variables to constants is obvious).

A fact consists of a relation R and a tuple ~t whose arity is the arity of R.
We write such a fact as R(~t). A fact is said to be true in a structure if ~t is in
the interpretation of R in the structure.

The semantics of a first-order logic formulas depends in general on both the
interpretations of the symbols and the domain. However, some formulas are
domain-independent : their truth or falsity does not depend on the domain, but
only on the interpretations.

5

Example 5. The sentence ∃x A(x) is domain-independent: its truth depends
only on the interpretation of the relation A.

The sentence ∀x A(x) is not domain-independent: knowing the interpreta-
tion of A alone will not allow us to know if the sentence is true.

Special kinds of FO formulas. Formulas that are built up as above but
disallowing ¬ or ∀ will be called positive existential formulas, or ∃+ formulas
for short.

A subset of the ∃+ formulas are the conjunctive queries (CQs), which are of
the form

ϕ(~x) = ∃~y (A1 ∧ · · · ∧An)

where Ai is a relational atom with arguments that are either variables from ~x
and ~y or constants. A normalization argument shows that any logical formula
built up using ∧ and ∃ can be expressed as a CQ. For a conjunctive query Q, a
variable binding that witnesses that Q holds in an instance I will also be called
a homomorphism of Q in I.

A unions of conjunctive queries (UCQ), is a disjunctions of CQs in which
every CQ has the same free variables. Another simple normalization argument
shows that any ∃+ sentence can be converted to a UCQ.

Example 6. Consider a schema that includes the relation UEmployee contain-
ing ids of each university employee, along with relations Researcher containing
the same information but only about researchers, and a relation Lecturer con-
taining the same information about lecturers. The sentence stating that there is
either a researcher or a lecturer can be written as a UCQ: (∃x Researcher(x))∨
(∃x Lecturer(x)).

A formula identifying the researchers that are also lecturers can be expressed
as a CQ:

Researcher(x) ∧ Lecturer(x)

∃+ formulas are closely connected to the notion of a homomorphism. A
homomorphism between structures I and I ′ is a function h from the domain
of I to the domain of I ′ such that for any relation R of arity n and any tuple
c1 . . . cn:

I |= R(c1 . . . cn) implies that I ′ |= R(h(c1) . . . h(cn))

Informally a homomorphism is a function that preserves facts. An easy
observation is that homomorphisms preserve ∃+ formulas. That is, if h is a
homomorphism from I to I ′ and ϕ is ∃+ formula, then I |= ϕ(c1 . . . cn) implies
that I ′ |= ϕ(h(c1) . . . h(cn)).

We can extend the notion of homomorphism to take as input a CQ. If ϕ is
a CQ with atoms A1 . . . Ak and I is a structure, a homomorphism of ϕ in I is
a function mapping variables of ϕ into I, such that A1(x1 . . . xk) ∈ ϕ implies
that I |= A(h(x1) . . . h(xk)). One can rephrase satisfaction of a CQ in terms of
homomorphisms: a conjunctive query ϕ(~x) holds of ~c in I exactly when there
is a homomorphism of ϕ to I mapping each xi to ci.

6

Second-Order Logic. A much more expressive language for describing struc-
tures is Second-Order Logic (SO) over a vocabulary. We now have relations
and constants in the signature, and an infinite collection of first-order variables
(x1 . . .) and for every number k an infinite collection of second-order variables
(X1 . . .) of arity k. Atomic formulas are the same as for first-order logic except
we also have an atomic formula S(t1 . . . tk) where t is a constant or first-order
variable, and S is a second-order variable of arity k.

Formulas are built up inductively from atomic formulas via ∧,∨,¬, first-
order quantifiers ∃x and ∀x as before, and the quantifications ∃S ϕ, ∀S ϕ,
where S is a second-order variable.

The semantics extend that of first-order logic. The semantic function now
takes as argument a formula ϕ, model M , and variable binding σ, but σ also
maps each second-order variable X of ϕ of arity k to a subset of domain(M)k.
The induction cases for the new quantifiers are:

• Eval(∃S ϕ,M, σ) for S of arity k is true iff there is some subset S of
domain(M)k such that letting σ′ = σ +X 7→ S, we have Eval(ϕ,M, σ′) is
true.

• Eval(∀S ϕ,M, σ) for S of arity k is true iff for each subset S of domain(M)k,
letting σ′ = σ +X 7→ S, we have Eval(ϕ,M, σ′).

Example 7. Consider the vocabulary from Example 1 again, and the following
second-order sentence, where S is a second-order variable of arity 1:

∃x0 x1U(x0) ∧ V (x1) ∧ ∃S
S(x0) ∧ S(y1)∧

[∀x y((S(x) ∧G(x, y))→ S(y))]∧
¬∃S2 (S2(x0) ∧ ∃z S(z) ∧ negS2(z)) ∧ (∀x y((S(x) ∧G(x, y))→ S(y)))

That is, G contains a set with a U element x0, a V element x1 in it, and
there is a certain subset S containing x0 and x1. S is closed under G-successors,
and any proper subset of S containing x0 can not be closed under G-successors.
Thus S can only be the closure of x0 under G-successor. Thus this sentence
holds exactly when there is a path from a node labelled U to a node labelled V .

In the structure M2 of Example 3, the sentence is true: a witness for y is 1,
for z is 17, and a witness for S consists of all numbers between 1 and 17.

Consider the following sentence in which R, B and W are second-order
variables of arity 1:

∃R B W

∀x y [G(x, y)→ (R(x) ∨B(x) ∨W (x))]∧
∀x y [G(x, y)→ G(y, x)]∧

∀x ¬[(R(x) ∧B(x)) ∨ (W (x) ∧B(x)) ∨ (W (x) ∧R(x))]∧
∀x y [R(x) ∧G(x, y)→ ¬R(y)]∧
∀x y [B(x) ∧G(x, y)→ ¬B(y)]∧
∀x y [W (x) ∧G(x, y)→ ¬W (y)]

7

This holds exactly if graph G has a 3-coloring.

Note that the above example gives one common use of second-order logic:
to express properties involving recursive definitions. Recursive definition can
actually be captured in a subset of second-order logic, Least fixpoint logic (LFP).

Least Fixpoint Logic. LFP extends first-order logic with second-order vari-
ables. But instead of allowing second-order quantification to bind second-order
variables, LFP adds a fixpoint operator :

Suppose ϕ ∈ LFP and ϕ contains second-order variables ~Y and also a distin-
guished second-order variable X of arity k along with k first-order variables ~x.
Suppose further that X only occurs positively in ϕ: that is, it appears in the
scope of an even number of negations. Then:

[µX,~x.ϕ(~x,X, , ~Y)](~t)

is a formula of LFP. Note that the formula ϕ may have first-order variables ~v
in addition to the variables ~x that are in the scope of the fixpoint.

We define the semantics of this fixpoint operator now. The fact that X oc-
curs positively implies that ϕ(~x,X, , ~Y) is monotone in X. That is, ϕ induces a
monotone operator U 7→ OM,~v,~V

ϕ (U) :=
{
~u : M,~u, U, ~V |= ϕ(~x,X, ~Y

}
on every

structure M with valuations ~v and ~V for the remaining second-order variables
~Y of ϕ. If the domain of the structure is finite, it is clear that if we iterate
this operator the resulting sets must reach a fixpoint, since they can not keep
increasing. The same holds for infinite structures, by a basic result concern-
ing monotone set functions, the Knaster-Tarski fixpoint theorem. Given some
ordinal β, the fixpoint approximant ϕβ(M, ~V) of ϕ on M, ~V is defined such that

ϕ0(M, ~V) := ∅

ϕβ+1(M, ~V) := OM,~V
ϕ (ϕβ(M, ~V))

ϕβ(M, ~V) :=
⋃
β′<β

ϕβ
′
(M, ~V) where β is a limit ordinal.

We let ϕ∞(M, ~V) :=
⋃
β ϕ

β(M, ~V) denote the least fixpoint based on this oper-
ation, and the least ordinal β such that ϕβ(M, ~V) = ϕβ+1(M, ~V) = ϕ∞(M, ~V)

is called the closure ordinal. Thus, [µX,~x.ϕ(~x,X, ~Y)] defines a new predicate
namedX of arity k for every valuation for ~Y , andM,~u, , ~V |= [µX,~x.ϕ(~x,X, ~Y)](~z)

iff ~u ∈ ϕ∞(M, ~V). If ~V is empty or understood in context, we just write ϕ∞(M).

Example 8. Consider the first property from Example 7. We claim that this
can be expressed as an LFP formula:

∃z
(
V (z) ∧ [µS,y.U(y) ∨ ∃x(G(x, y) ∧ S(x))](z)

)
.

To see this, consider the subformula with the fixpoint in it, ϕ(z) = [µS,y.U(y)∨
∃x(G(x, y) ∧ S(x))](z). We will explain why this formula holds of elements z

8

that are G-reachable from a node labelled U . The initial approximant of ϕ, ϕ0,
is formed by setting S to be empty. This gets us just the elements that are in
U . The next approximant ϕ1 is formed by setting S to be ϕ0: this gives us all
the elements that are in U or reach an element of U in 1 step. Reasoning in
inductively, we see that ϕi is the set of elements that reach U in i steps. ϕω is
the union of these sets, thus the set of elements that are reachable from U . We
can check that ϕω is a fixpoint, and thus the least fixpoint is either ϕω or some
ϕn. In either case, we can conclude that the least fixpoint is the set of elements
reachable from U .

Satisfiability and validity problems. The main computational problem we
consider in these notes is the satisfiability problem. A formula ϕ(~x) is satisfiable
if there is a structure M and binding σ for the variables ~x such that M,σ |= ϕ.

The satisfiability problem for a logic L takes as input an L-formula and
outputs yes if the formula is satisfiable.

The satisfiability problem is related to the validity problem: a formula is
valid if for every structure M and binding σ for the variables ~x, M,σ |= ϕ. The
validity problem for a logic is the task of determining whether a formula in the
logic is valid. For logics that are closed under negation, one can reduce validity
to satisfiability, since ϕ is valid if and only if ¬ϕ is not satisfiable.

Example 9. Consider the formulas:

ϕ1 = ∀x U(x) ∨ ¬U(x)

ϕ2 = ∀x W (x)→ ∃y (R(x, y) ∧ ¬R(x, y))

ϕ3 = (∀x y U(x, y)→ ¬U(y, x)) ∧ (∃z U(z, z))

ϕ3 is not satisfiable, since the second conjunct implies there is z0 is such
that U(z0, z0), and letting x and y bind to z0 in the first conjunct we get a
contradiction.

ϕ1 is valid (and thus satisfiable).
ϕ2 is satisfiable: we can take a structure where W is always false. It is not

valid since we can take a structure where W holds of some x0, but R holds of
no pairs of elements.

In the satisfiability problem, we looked at whether there is any model M
where the formula holds, without restricting M to be finite. If we restrict to
witness structuresM that are finite we have the finite satisfiability problem, and
there is a corresponding finite validity problem. We will not discuss finite satis-
fiability or validity in detail in these notes, but for many of the logics discussed
here they will agree with the general satisfiability and validity problems.

A fundamental result is that these problems are undecidable for first-order
logic:

Theorem 1. The satisfiability and validity problems for first-order logic are
undecidable. The same is true for the finite variants. That is, there cannot be
a decision procedure for these problems.

9

Thus in looking for decision procedures, we will need to look for restricted
subsets of the logics.

Quantifier rank and games. The quantifier-rank of a first-order formula ϕ,
written QR(ϕ) is the number of nested quantifications. That is, a formula with
no quantifiers has quantifier-rank 0, while the inductive definition is:

QR(¬ϕ) = QR(ϕ)

QR(ϕ1 ∧ ϕ2) = QR(ϕ1 ∨ ϕ2) = max(QR(ϕ1),QR(ϕ2))

QR(∃x ϕ) = QR(∀x ϕ) = QR(ϕ) + 1

So a formula with quantifier-rank 0 has no quantifiers at all. If a formula has
quantifier rank 1, in any quantified subformula ∃xϕ of the formula, ϕ must have
no quantifiers at all.

Example 10. Returning to Example 2 the formula ϕ1 = G(y, y) had no quanti-
fiers, so its quantifier rank is 0. The formula ϕ2 = ∃y G(x, y)∧G(y, y) had a sin-
gle quantifier, and thus had quantifier rank 1, while ϕ3 = ∀x ∃y G(x, y)∧G(y, y)
has quantifier rank 2. If we consider

ϕ5 = ∀x (∃y G(x, y) ∧ ∃z H(x, z))

we see it has 3 quantified variables, but has quantifier-rank 2, since there is only
one level of nesting.

In various points in the text we will be interested in showing that two struc-
tures M and M ′ agree on all formulas in a logic. Of course, if we have two
specific structures, and the logic had only finitely many formulas in it, we could
just check that this “language equivalence” holds wheneverM ′ is generated from
M by brute-force, checking equivalence for every formula. But suppose we have
to check that M and M ′ agree on an infinite collection of formulas; for example
all formulas in some sublogic of first-order logic. To do this we will use a game
technique. We define a two-player game that involves annotating elements in
M and M ′. The game will have two players, called Spoiler and Duplicator.
Spoiler makes moves in one of the two structures, by annotating an element e
with an identifier p. Normally p is referred to as a “pebble” and this move is
called “placing pebble p on element e ”. Duplicator needs to somehow “mimic”
the moves of Spoiler in the other structure, by annotating an element in the
other structure, say e′, with the same identifier p. Duplicator wants to ensure
that the elements that are pebbled in M look “similar to” the elements on the
corresponding pebbles in M ′. The details of the game will depend on the logic.
For some logics Spoiler can make his move in whichever structure he likes, while
in others he must always play in the same structure. How similar e must be
to e′ can also vary depending on the logic. The rules of the game are arranged
so that whenever Duplicator has a way to win, the two structures agree in the
logic.

10

We give a simple example of how one can capture equivalence of a logic
with a game, by giving a game that works for first-order logic formulas with
a fixed quantifier rank j. That is, suppose we are interested in showing that
two structures M and M ′ agree on all first-order formulas of quantifier-rank j.
This can be demonstrated using the j-round pebble game on M,M ′. A position
in this game is given by a sequence ~p of elements from M , and a sequence ~p ′
of the same length as ~p from M ′. We can think of the ith element pi in the
sequence being pebbled by the identifier i. There are two players, Spoiler and
Duplicator, and a round of the game at position (~p, ~p ′) proceeds by Spoiler
choosing one of the structures (e.g. M) and appending an element from that
structure to the corresponding sequence (e.g. appending an element from the
domain ofM to ~p). Duplicator must respond by appending an element from the
other structure to other sequence (e.g. appending an element from the domain
of M ′ to ~p ′). A j-round play of the game is a sequence of j moves as above.
Duplicator wins the game if the sequences represent a partial isomorphism:
pi = pj if and only if p′i = p′j and for any relation R, R(pm1

. . . pmj) ∈ I if
and only if R(p′m1

. . . p′mj) ∈ I
′. A strategy for Duplicator is a response to each

move of Spoiler. Such a strategy is winning from a given position ~p, ~p ′ if every
j-round play emerging from following the strategy, starting at these positions,
is not winning for Spoiler. The following result states that the game “captures”
agreement of the structures on formulas of quantifier-rank j.

Proposition 1. If there a winning strategy for Duplicator in the j-round pebble
game on M,M ′ starting at ~p, ~p ′, then for every formula ϕ of quantifier-rank at
most j satisfied by ~p in M , ϕ is also satisfied by ~p ′ in M ′.

Proof. The proof is a simple induction on j. In the induction step we as-
sume Duplicator wins the j + 1 round pebble game, and we look at formulas
of quantifier-rank j + 1. For such formulas we proceed by structural induction.
The interesting cases are the induction step for quantifiers. For example, if we
consider a formula ϕ = ∃x ϕ0 of quantifier rank j+ 1, then ϕ0 must have quan-
tifier rank j. We assume M with valuation ~p for its variables satisfies ϕ, and
we have to show that M ′, ~p′ satisfy ϕ. Because M, ~p |= ϕ there is pj+1 ∈ M
such that M, ~p, pj+1 |= ϕ0. Since Duplicator has a winning strategy on ~p, ~p′ in
the j + 1 game, there is p′j+1 that Duplicator can play in M ′ such that ~p, pj+1

and ~p′p′j+1 is a winning position in the j-round game. Now M, ~p′, p′j+1 |= ϕ0 by
induction, and thereforeM, ~p′ |= ϕ as required. The case of universal quantifiers
is similar.

Example 11. Consider a vocabulary consisting of a binary relation G(x, y)
and two structures M16 and M17 for it. M16 is a chain with 16 elements while
M17 is a chain with 17 elements. Clearly M16 and M17 can be distinguished in
first-order logic by a long sentence: the sentence stating that there is a chain of
length 17 holds in M17 but not in M16. Unsurprisingly, these structures agree
on sentences that have quantifier-rank at most 3. We can show this by giving a
strategy for the Duplicator in the 3-round game.

11

Consider the first round of the game, when Spoiler picks one of the two struc-
tures Mi and placing a “pebble” on one of the elements e1 within it. Duplicator
measures the distance of this element from both the beginning and the end of the
chain, and tries to approximately mimic it in the other structure. If e1 is “near
the beginning” of Mi — within j < 8 of the initial element of the structure, then
Duplicator responds with an element f1 that is exactly j edges from the initial
element in the other structure. If e1 is “near the end” of Mi – within j < 8
of the final element – then Duplicator plays in the other structure to match the
distance to final element. Otherwise — e1 is “far from both ends” — Duplicator
responds with an element f1 that is far from both ends in the other structure.
In the second round, Spoiler picks a structure and marks another element in it,
say f2. Duplicator now measures the distance of f2 new element from both the
ends of the chain and from f1, and chooses an element e2 in the other structure
to mimic this distance. Since the number of rounds has gone down, Duplicator
now just mimics one of these distances exactly if it is j < 4; e.g. if e2 is 3
ahead of e1, Duplicator choose f2 that is 3 ahead of f1. If all the distances are
4 or greater, then Duplicator chooses any element where the distances are 4 or
greater. Round 3 is done the same way, except Duplicator defines “far” to be
above 2 rather than above 4. Since the two structures are both large enough, one
can see that Duplicator can always carry out this strategy.

2.1 Bibliographic remarks and suggestions for further read-
ing

Our treatment of first-order logic can be found in any undergraduate text.
Fixpoint logic is described in textbooks on finite model theory [Libkin, 2004,
Ebbinghaus and Flum, 1999] and descriptive complexity theory [Immerman,
1999]. These notes will not present the proofs of any undecidability results for
the satisfiability problem. The reader interested in seeing techniques for prov-
ing undecidability for fragments of first-order logic may want to look at [Börger
et al., 1997]. The games for first-order logic presented here are discussed at
length in [Libkin, 2004, Ebbinghaus and Flum, 1999].

12

Red

Red Red

Blue

Red Green,Blue Red

Blue

Figure 1: A simple tree

3 Tree and automata preliminaries
Fix a set Σ of unary relations U1 . . . Un and a binary relation E. A structure
(V0, E0, . . .) for such a vocabulary is a labelled tree over Σ if (V0, E0) forms a
tree in the usual sense with labels from P(Σ). Figure 1 shows a finite labeled
tree over the labels Red, Blue, Green.

The outdegree (also known as the rank) of a node in a tree is the number of
children. A node with outdegree 0 is a leaf. A tree in which every node with
non-zero outdegree has the same outdegree is said to be complete. A tree in
which every node has outdegree 0 or 2 is a complete binary tree.

Trees as defined above can have any cardinality. In these notes it will suffice
to look only at trees where nodes have at most countably many children. A
structure is a labelled ω-tree over Σ if it is a labelled tree and each node has
only countably children and only finitely many ancestors. We sometimes refer
to labelled ω-trees over Σ as Σ-trees for brevity, to emphasize that the labels
are subsets of Σ.

A common logic for describing properties of such trees is Monadic Second-
Order Logic MSO over Σ. It is a special case of Second-Order logic, but where
only second-order variables of arity 1 are permitted. Example 7 already gave
an example of an MSO formula.

The starting point for this work is the following fundamental decidability
result about MSO, which is a variant of a result of Rabin [Rabin, 1969]:

Theorem 2. There is a computable function that takes as input an MSO sen-
tence ϕ over Σ and decides whether ϕ holds in some labelled ω-tree.

We will not need to understand the proof of this result. But the main
idea of the proof is to proceed in two steps. The first, more difficult step, is
to effectively translate an MSO sentence ϕ into a tree automaton Tϕ: a tree
automaton is a machine described using a finite set of control states Q, and a

13

transition function δ; it computes on an infinite tree by associating nodes to
states q ∈ Q; the transition function δ restricts how the state assignment of a
child relates to the state assignment of a parent. In the end it computes a single
value, true or false, as its final output on each tree, depending on properties
of the states assigned to each node of the tree during a computation. There
are many variants of tree automata, and the details of these will be discussed
later in the text. The tree automaton Tϕ should be equivalent to ϕ, in that a
tree is accepted by Tϕ if and only if it satisfies ϕ. Thus the first step reduces
satisfiability of ϕ to checking whether Tϕ accepts some tree—the emptiness
problem for Tϕ.

The second step is an algorithm to decide the emptiness problem. For general
MSO sentences, the process in the first step is very expensive. Specifically, the
complexity is non-elementary — bigger than any tower of exponentials. And
it can be shown that for general MSO sentences, one can not do better than
this. When we make use of decision procedures on trees in these notes, we will
be able to create the automaton Tϕ directly, without going through MSO. This
will allow us to get more decision procedures which are “elementary” (bounded
by a fixed tower of exponentials).

There are a number of variations of Theorem 2. In particular, we will also
consider ordered trees, where the children of a node are linear ordered by a
sibling relation. A variant of Rabin’s theorem holds for ordered ω-trees.

The outdegree or rank of a node is its number of children. If we fix the
maximal rank r, then ordered trees of rank r can be considered as labelled
trees, where the label of a node includes its sibling order within its parent.
When we are dealing with trees of fixed rank, we often assume they are ordered
(thus saying “binary trees”, rather than “ordered binary trees”).

3.1 Tree automata
A key tool in this will be automata over trees. These are restricted computing
devices that define functions from trees to true or false.

One of the simplest kinds of tree automaton is a nondeterministic automaton
over finite complete binary trees, or NTAFinBinary. In this subsection, we will
always be dealing with finite complete binary trees, so we abbreviate these to
“trees” below.

Let Σ be {A1, . . . , An}. An NTAFinBinary A is specified by (Q,Σ, I, F, δ),
where

• Q is a finite set of states

• Σ is a finite label set

• δ ⊆ Q2 × Σ×Q is the transition relation

• I is a subset of Σ×Q, the initial leaf conditions

• F ⊆ Q are the accepting (root) conditions.

14

Informally, this describes a machine that processes a tree by assigning states
to it. The set F restricts assignments of states to the root, while I restricts
assignments of states to the leaves, based on their labels. The transition relation
gives a “local restriction” on the state assignment: restricting the state assigned
to the parent, the label of the parent, and the state assigned to each of its
children. By referring to the leaf restriction I as “initial” and the root restriction
F as “accepting”, we give the impression of a machine assigning first to the
leaves and then proceeding “bottom-up”, arriving at a state for the root. But
the computation could be equally thought of as top-down or as assigning states
nondeterministically to all nodes in parallel.

Formally, an accepting run of the automaton on a (finite complete binary
tree) t is an assignment of each node of the tree to a state q ∈ Q such that:

• each leaf with label τ is assigned q such that (τ, q) ∈ I;

• if a non-leaf node with label τ is assigned to state q, and the children of
the node are assigned to q1, q2, then

((q1, q2), τ, q) ∈ δ;

• the root node is assigned some q ∈ F .

A tree t is accepted by an automaton A if there is an accepting run.
The language L(A) of an automaton A is the set of trees that are accepted

by A.
Notice that in defining a tree automaton, we fixed a set of labels Σ, and

dealt with trees in which each node has exactly one label from Σ. We will often
apply this in the case where we have a finite set of unary predicates P1 . . . Pk,
and deal with trees in which each node can be labelled with a subset of the
unary predicates. We can model this in the setting above by setting Σ to be
the powerset of P1 . . . Pk: then each node has one label, and it makes sense to
run a Σ tree automaton over it.

Example 12. Consider a tree automaton over predicates A,B with states qA, qB,
with qA the only accepting state. The initial labelled leaf states are I = {({A}, qA), ({B}, qB)}
and the transition relation is δ = {(qA, qB), {A}, qA)}

The automaton accepts exactly those trees consisting of a leftward chain of
nodes labelled with {A}, with each node but the last having a right child labelled
with {B}. Figure 12 shows an example of an accepted tree.

The basic computation we need on an automaton is to decide whether it
accepts some tree. In the case of nondeterministic automata over finite trees,
this is done via a very simple reachability construction [Thatcher and Wright,
1968]:

Proposition 2. There is a polynomial time algorithm that takes as input an
NTAFinBinary A and outputs true exactly when L(A) 6= ∅.

15

{A}

{A}

{A}

{A} {B}

{B}

{B}

Figure 2: A tree accepted by the example automaton

Proof. We inductively determine the set ReachState of reachable states: the
states q in Q such that there is a tree and a run of the automaton as above, but
with the root labelled by q. ReachState is initialized with each q with (τ, q) ∈ I.
In the inductive step, we loop over each transition ((q1 . . . qr), τ, q) ∈ δ, and if
each q1 . . . qr is in ReachState then q is added. This process is monotone and
will thus terminate in a number of steps that is at most the size of Q. At the
end of it we check if F overlaps with ReachState.

Another attractive computational property of tree automata are their closure
properties.

Proposition 3. Given tree automata A1 and A2, there is a polynomial time
algorithm that produces an automaton A which accepts a tree exactly when it is
accepted by both A1 and A2. That is L(A) = L(A1) ∩ L(A2).

Similarly, we can efficiently form an automaton that accepts L(A1)∪L(A2).
Given automaton A1, we can effectively construct an automaton A that ac-

cepts all the trees that are not accepted by A1: the complement of L(A1). This
last operation can be done in exponential time, but not in polynomial time.

We have now discussed automata over complete finite binary trees. There is
a simple extension to general finite binary trees, and also an obvious extension
to finite trees of any outdegree. Since the definitions are similar but a bit more
verbose, we omit them here.

In the text we will also make use of automata over infinite trees. The precise
notions will be introduced later. The main thing the reader has to understand at
this point is that the basic results listed above, like decidability of non-emptiness,
will still hold for automata over infinite trees, albeit with higher complexity.

16

3.2 Bibliographic remarks and suggestions for further read-
ing

A good introduction to automata on infinite trees is [Grädel et al., 2002]. The
reader without familiarity with automata may want to read about finite au-
tomata on words first (e.g. see [Sipser, 1996]). The non-elementary complexity
of MSO on trees was first proven in [Stockmeyer and Meyer, 1973].

17

4 Brief Review of Complexity

4.1 Brief Complexity Background
The text does not require extensive background in complexity theory. The main
focus is to show that certain computational problems — e.g. satisfiability for for-
mulas in some logic – are decidable. And to demonstrate decidability it suffices
to exhibiting an algorithm for solving the problem that could be programmed
on a computing device; these demonstrations will not be completely formal.

But in some cases we will need to argue there is a decision procedure with a
certain running time. For example, for some of our logics, the decision procedure
runs in “doubly-exponential time” or 2EXPTIME. The reader can think of these
informally as well – there is some program in a standard programming language
that solves the problem in time doubly exponential in its input. But we give a
brief overview of some of the formal background here, along with some pointers
to more detail.

A Deterministic Turing Machine over binary alphabet consists of:

• a finite set of states Q,

• an initial state q0 ∈ Q

• a set of accepting states A ⊆ Q and rejecting states R ⊆ Q

• a transition function δ : 2×Q→ (Q× Dir× 2) where Dir = {Left,Right}.

A configuration of a Deterministic Turing Machine consists of a finite binary
sequence s1 . . . sn representing the tape content, a state q ∈ Q, and a head
position hi ≤ n. A run of a Turing Machine on an input string x0 is a sequence
of configurations c1 . . . with several properties described below.

• The state associated with configuration c1 is q0, the head position is 1 and
the tape content of c1 is x0

• For each index i of the sequence ci, ci+1 satisfies the transition function,
in the following sense:

Let hi be the head position of ci, HeadVali the value at index hi in the tape
content, and qi the state in ci. Let hi+1, qi+1 be defined similarly for ci+1,
and let HeadVali+1 be the value underneath hi in the tape of ci+1. The
tape values of ci+1 are the same as those of ci for cell positions other than
hi. For the cell position hi, if δ(HeadVali, qi) = (qi+1,Dir,HeadVali+1),
then the cell position at hi is HeadVali+1.

The head position hi+1 must satisfy the following:

If δ(HeadVali, qi) = (qi+1,Right,HeadVali+1) then hi+1 = hi+ 1.
If δ(HeadVali, qi) = (qi+1, Left,HeadVali+1) and hi+1 = hi− 1

An accepting run is one which reaches a state in A, while a run that reaches a
rejecting state is a rejecting run.

18

The time taken by such a run is simply the number of configurations in the
sequence, while the space is the maximal number of cells in any configuration.

A decision problem is just a function from strings over some alphabet to
{True,False}. For a function F (n) a decision problem P is said to be in DTIME(F)
if there is a Deterministic Turing Machine that gives the correct answer to P ,
where for each input w, the time of the run is bounded by F (|w|). The notion
of a problem being in DSPACE(F) is defined similarly. The main example of
this we will refer to is the class of problems that can be decided with polynomial
space: PSPACE, for short.

A problem is in polynomial time (PTIME) if it is in DTIME(F) for some
polynomial F . It is in exponential time (EXPTIME) if is in DTIME(2F) for some
polynomial F , and similarly for double-exponential time (2EXPTIME).

In this book we will sometimes deal with computational problems that have
extremely high complexity. Let EXPTOWER(k, n) be defined by induction:
EXPTOWER(1, n) := n EXPTOWER(k + 1, n) = 2EXPTOWER(k,n). A problem
is elementary if there is a k such that it is in DTIME(EXPTOWER(k, n)). That
is, its complexity is bounded by a tower of k exponentials. A problem is non-
elementary if it is non-elementary. Thus non-elementary problems are very hard
indeed.

A Non-Deterministic Turing Machine is defined similarly to a deterministic
one, but instead of the transition function we have a transition relation: δ ⊆
2×Q×Q×Dir× 2). A run is defined as with a deterministic machine, but now
we will replace statements like

δ(HeadVali, qi) = (qi+1,Right,HeadVali+1)

with a statement:

(HeadVali, qi, qi+1,Right,HeadVali+1) ∈ δ

Given an input string, a Deterministic Turing Machine has exactly one max-
imal run, while a non-deterministic machine can have no runs or many runs.

A Non-Deterministic Turing Machine M decides a problem P if:

• every run of M is accepting or rejecting,

• on every x with P (x) = True, there is some accepting run of M on x,

• for every x with P (x) = False every run of M on x is non-accepting.

For a function F (n) a decision problem P is said to be in NTIME(F) if there is
a Non-Deterministic machine M that decides P , where on every input x of size
n, each run is of size at most F (n).

A problem is in non-deterministic polynomial time (NP) if it is in NTIME(F)
for some polynomial F . A fundamental problem related to logic that is in
NP is the propositional satisfiability problem: given a formula ϕ built up from
0-ary relations (propositions) using the connectives ∧,∨,¬, determine if ϕ is
satisfiable. The NP algorithm just guesses an assignment of True,False to each
propositions and then checks whether it makes the sentence true.

19

In some places, we will mention that a problem is not just in a class C, but
is “complete” for the class C. For example, we will say that the modal logic
satisfiability problem is complete for the class PSPACE. Informally, this means
that the problem really requires the full power of PSPACE: we cannot do better.
We now formalize this.

A polynomial time many-one reduction from problem P to problem Q is a
function R from inputs to problem P to inputs of problem Q such that:

For each x, P (x) = True if and only if Q(R(x)) = True.

A problem P0 is hard for a complexity class C (PSPACE, 2EXPTIME, etc.)
under polynomial time many-one reductions if for any problem P in C, there is
a polynomial time many-one reduction from P to P0. A problem P0 is complete
for a complexity class C if it is in C and complete for C.

Thus we say a problem is NP-complete if it is complete for the class NP.
Above we have talked about problems whose inputs are binary strings. One

can deal with problems that have as input more complex structures, by coding
them as strings. For example, a first-order formula ϕ can be coded easily as a
binary string. First we would pick some string to represent each of the symbols
∀,∃,∧,∨,¬ and then representing each variable x by a unique binary string
differing from each string representing a symbol. The binary representation of
a formula would then just be the concatenation of the representations of its
symbols, with a special separator string in between each.

Theorem 3. Propositional satisfiability is NP-complete

A number can be represented as a string in two ways: the binary encoding,
where a string of n 1’s represents 2n, and the unary where a string of n 1’s
represents n.

4.2 Bibliographic remarks and further reading
The material in this section can be found in many textbooks, such as [Papadim-
itriou, 1994]. For a focus on NP-completeness and its connection to problems
like propositional satisfiability, check [Garey and Johnson, 1979]

20

5 Modal Logic
We begin with the decidability of basic modal logic, which will set the template
for our decidability arguments throughout these notes.

5.1 Modal logic basics
Basic modal logic is a logic restricted to vocabularies consisting of finitely many
unary relations U1 . . . Un and a single binary relation R. A structure for this
kind of vocabulary is a Kripke Structure.

Every formula will have at most one free variable, which we will denote as
x. Thus we can ask whether a formula is true in a given Kripke Structure and
a given node of the structure.

The left side of Figure 3 shows a Kripke Structure with 4 nodes. There are
predicates Orange, Green and Blue, with Green being true of two nodes, Orange
and Blue holding of one node each. The binary relation between nodes is shown
via the red arrows. If we want to determine whether a formula is true in this
structure, we need to pick a distinguished node, such as the node highlighted
with red border on the left.

The basic formulas are True, False, and atomic unary formulas Ui(x).
Formulas are defined inductively by:

• if ϕ1 and ϕ2 are formulas, then ϕ1 ∧ ϕ2, ¬ϕ1, and ϕ1 ∨ ϕ2 are formulas.

• if ϕ is a formula then ∃y R(x, y) ∧ ϕ(x := y) is a formula.

• if ϕ is a formula then ∀y R(x, y)→ ϕ(x := y) is a formula.

where ϕ(x := y) is the formula obtained from ϕ by substituting y for x.
In this work, we consider modal logic as a fragment of first-order logic. This

is not the standard syntax for modal logic. Modal logic formulas always have
one free variable, so it is possible to use a succinct notation in which the variable
is omitted. The usual notation is as follows:

• A formula Ui(x) is usually just written as Ui.

• if ϕ is a formula then ϕ is a formula (with the meaning ∃y R(x, y) ∧
ϕ(x := y)).

• if ϕ is a formula then ϕ is a formula (with the meaning ∀y R(x, y) →
ϕ(x := y))

Example 13. Blue ∧Orange is a modal formula that holds on a node that is
labeled with Blue and which links to a node labelled with Orange. The highlighted
node in the Kripke Structure in the left side of Figure 3 satisfies this formula.
False is a formula that holds of nodes that have no R-successors. There

are no nodes in the Kripke Structure on the left side of Figure 3 that satisfy this
formula.

21

5.2 Decidability via the tree model property
A formula ϕ(x) is satisfiable if the sentence ∃x ϕ(x) is satisfiable in the usual
sense.

Our aim is to show:

Theorem 4. Satisfiability of a modal logic formula ϕ(x) is decidable.

In the case of modal logic, the notion that every satisfiable formula has a
“tree-shaped” model has a particularly straightforward formulation.

We say that a model of a modal logic signature is a tree structure if the
relation R forms a tree – an acyclic connected graph such that the following
hold:

• for every element v′ there is at most one v such that R(v, v′)

• there is exactly one element v′ for which there is no such v as above; and
we refer to such an element as the root element of the structure.

Since modal logic is a fragment of MSO, Theorem 4 follows easily from
Theorem 2 and:

Theorem 5. If a formula ϕ(x) of modal logic is satisfiable, then there is a tree
structure M satisfying ϕ(x).

We prove this using an unravelling construction. The informal idea of the
unravelling of a structure M at an element x0 is that we make a copy x′0 of
x0, giving x′0 the same unary relations true at x0; we then take every element
c directly connected to x0 (the “children” of x0) and make a fresh copy c′ of c,
connecting them to x′0; we then continue recursively on all these c′s. Formally,
the elements of the unravelling of M at x0, denoted ModalUnravel(M,x0) are
finite paths through M starting from x0, where a path is just (as usual) a
sequence s of elements x0 . . . xn in M where for i ≤ n − 1 R(xi, xi+1) holds in
M . The relation R(s, s′) holds for two such paths if s′ is obtained from path
s by adding one additional element. Clearly this is a tree. A unary relation U
holds of a sequence s = x0 . . . xn in ModalUnravel(M,x0) exactly when U(xn)
holds in M .

Figure 3 shows a simple Kripke structure and the first few levels of its un-
ravelling.

Notice that each element of x ∈M is associated with certain copies in the un-
ravelling; namely, all paths s that end in x, which are labelled inModalUnravel(M,x0)
exactly as x is labelled in M .

We want to show that the modal formulas that x0 satisfies in M are the
same as those satisfied by x0 in ModalUnravel(M,x0). As a step towards this
we define an equivalence relation between Kripke Structures.

Given Kripke structures M,M ′ and elements x0 ∈ M,x′0 ∈ M ′, a bisimu-
lation relation between x0 and x′0 is a binary relation B ⊆ M ×M ′ such that
B(x0, x

′
0) and whenever B(x, x′) holds

22

...

...

Figure 3: A structure and its unravelling

• unary predicates are preserved: M |= Ui(x)↔M ′ |= Ui(x
′)

• (Forth) for each x1 ∈ M with M |= R(x, x1) there is x′1 ∈ M ′ with
B(x1, x

′
1) such that M ′ |= R(x′, x′1).

• (Back) for each x′1 ∈ M ′ with M |= R(x′, x′1) there is x1 ∈ M with
B(x1, x

′
1) such that M |= R(x, x1).

(M,x) and (M ′, x′) are bisimilar if there is a bisimulation relation between
them.

One way to think of bisimulation that will be useful later on is as a game
between two players, Spoiler (who wants to show that the structures are not
bisimilar) and Duplicator (who wants to show that they are bisimilar). At any
point in the game the play consists of a pair (x, x′) with x ∈M and x′ ∈M ′. If x
and x′ do not satisfy the same atomic formulas, then Spoiler immediately wins.
Otherwise, a round of the game proceeds by Spoiler choosing one structure, say
M , and then picking x1 ∈ M with M |= R(x, x1). Duplicator must respond
in the other structure with x′1 such that M ′ |= R(x′, x′1), and then the game
continues at position (x1, x

′
1). If Spoiler gets stuck or Duplicator is able to

continue playing forever, then Duplicator wins.
It is easy to see that (M,x) and (M ′, x′) are bisimilar exactly when Dupli-

cator can win the game starting at position (x, x′). Formally, a strategy for the
Duplicator is a function λ that inputs a position and a choice of Spoiler, and
returns a valid response for Duplicator. A play of the game abides by the strat-
egy λ if Duplicator always responds using λ. Given a position (M,x), (M ′, x) a
strategy λ is winning starting at the position if every play of the game starting
at this position and abiding by λ is winning for Duplicator. Thus the formal
statement of the observation above is:

(M,x) and (M ′, x′) are bisimilar exactly when Duplicator has a winning
strategy for the game starting at position (x, x′).

Consider the correspondence between elements in a structure and the cor-
responding elements in the unravelling. The correspondence is depicted in Fig-

23

...

...

Figure 4: Relation between elements in a structure and elements in the unrav-
elling

ure 4.
It is easy to check that this correspondence is a bisimulation:

Proposition 4. The mapping B relating any x ∈M to each corresponding copy
in the unravelling is a bisimulation relation.

Further, we can show that any bisimulation preserves modal logic formulas:

Proposition 5. If (M,x) and (M ′, x′) are bisimilar, then the modal formulas
satisfied by x in M are the same as those satisfied by x′ in M ′.

Proof. The proof will have some similarity to the proof of Proposition 1, which
also showed that whenever there was a winning strategy in a certain game, a
class of logical formulas was preserved.

In this case, we need to show that:

if M, c is bisimilar to M ′, c′ and M, c |= ϕ, then M ′, c′ |= ϕ.

We can proceed by induction on the way ϕ is built up from the grammar of
modal logic.

The base case is where ϕ is just a unary symbol U(x). But the first property
of a bisimulation is that the unary symbols are preserved, so this case follows.

The first inductive cases are for connectives, and these will be simple, pro-
ceeding exactly as in Proposition 1. Suppose ϕ is of the form ϕ1∧ϕ2, M, c |= ϕ,
and M,C is bisimilar to M ′, c′. Then M, c |= ϕ1 and M, c |= ϕ2. The induction
hypothesis applies to ϕ1 and ϕ2, and thus M ′, c′ |= ϕ1 and M ′, c′ |= ϕ2. Thus
M ′, c′ |= ϕ1 ∧ ϕ2 as required. The cases for ∨,¬ are similar.

Consider the case of ϕ built up from the existential or “diamond” quantifi-
cation.

ϕ = ∃y R(x, y) ∧ ϕ′

If M, c |= ϕ, then there is d such that R(c, d) holds in M and M,d |= ϕ′.

24

By the (Forth) property of bisimulation there is d′ such that R(c′, d′) and
M,d is bisimilar to M ′, d′. By induction (M ′, d′) |= ϕ′, since ϕ′ is of lower
complexity. Thus

M ′, c′ |= ∃y R(x, y) ∧ ϕ′

as required.
The case of universal quantification is similar, but using the (Back) property.

Theorem 5 follows immediately from the previous propositions.
We are now ready to prove Theorem 4. Given a modal logic formula ϕ, from

Theorem 5 we know that it suffices to check whether ϕ is satisfied in a tree.
This in turn is decidable via Theorem 2.

5.3 Automata for modal logic
Our next goal will be to get a better decision procedure using automata. For
the case of modal logic, the kind of automata we need are nondeterministic
automata over finite ordered trees of bounded outdegree, or NRTAFinRanked, which
generalize the binary tree case explained earlier.

We fix a maximal outdegree (or rank) of the trees r, and a set of node
predicates A1 . . . An for such trees. Let Σ be {A1, . . . , An}. An NRTAFinRanked

A is specified by (Q,Σ, I, F, δ), where

• Q is a finite set of states

• Σ is a finite set of labels

• δ ⊆
⋃

1≤i≤r Q
i × P(Σ)×Q is the transition relation

• I is a subset of P(Σ)×Q, the initial labelled leaf states

• F ⊆ Q are the accepting states.

As with binary trees, this describes a machine that processes a tree by assigning
states to it. The set F restricts assignments of states assigned to the root,
while I restricts assignments of states to the leaves, and the transition relation
restricts the state assigned to internal nodes.

An accepting run of the automaton on a tree t is an assignment of each node
of the tree to a state q ∈ Q such that:

• each leaf with label τ is assigned q such that (τ, q) ∈ I;

• if a non-leaf node with label τ is assigned to state q, and the children of
the node are assigned to q1 . . . qr, then

((q1 . . . qr), τ, q) ∈ δ;

• the root node is assigned some q ∈ F .

25

A tree t is accepted by an automaton A if there is an accepting run, and the
language L(A) of an automaton A is the set of trees that are accepted by A.

As with binary trees, non-emptiness can be tested by a very simple reacha-
bility construction [Thatcher and Wright, 1968]:

Proposition 6. There is a polynomial time algorithm that takes as input an
NRTAFinRanked A and outputs true exactly when L(A) 6= ∅.

5.4 Optimized decidability via translation to an automa-
ton

Given a modal formula ϕ, we now construct a tree automaton Aϕ that runs
over a tree-shaped Kripke structure and checks that ϕ holds. We define an
automaton Aϕ that expects a ranked, ordered labelled tree, and thus one can
distinguish one child from another. Aϕ implementing ϕ will mean that for any
ordered tree t<, ϕ is satisfied in the underlying Kripke structure of t< if and
only if Aϕ accepts t<. Note that since ϕ does not make use of the order, Aϕ
will in fact give the same result on any two ordered trees that have the same
underlying labelled tree structure.

Because the tree structure is finite with degree d, we use an NRTAFinRanked.
The use of finite tree automata requires us to deal with finite trees. We thus
need a variant of Theorem 5. The modal depth of a formula is the number of
nestings of modalities.

Theorem 6. Consider a formula ϕ(x) of modal logic of modal depth d. If ϕ
is satisfiable, then there is a model M which is a tree structure of depth d and
where the maximal number of children of each node (i.e. the degree) is bounded
by a number polynomial in the size of ϕ.

For the depth bound, we can truncate the unravelling at depth d, and see
that the formulas of modal depth d satisfied at the root are unaffected.

For the degree bound, we need only a bit more work. First, we should
normalize the formula. A formula is in negation normal form (NNF) if negation
only occurs on atoms. A formula can be converted into NNF in polynomial
time, just by using the De Morgan rules, repeatedly replacing ¬∀x ϕ by ∃x ¬ϕ
and ¬∃x ϕ by ∀x ¬ϕ. Thus we will assume our formula is in NNF. We can
now trim the number of children of each node starting at the parents of leaf
nodes. The idea is that a node that is i steps from the leaf level needs only
one representative of satisfiability for existential subformulas of modal depth
at most i. More precisely, suppose we have a Kripke structure M in which
node v satisfies ϕ. ϕ is a Boolean combination of existential (or “diamond”)
subformulas ϕ1 . . . ϕn. For each ϕj satisfied by v, we can choose a child of v,
vj that witnesses this. Now eliminate from M all the other children of v along
with their subtrees. We claim that all the subformulas of ϕ satisfied by v before
performing this transformation are still true afterwards. For atomic formulas
and their negations, this is true because the labels of v were not changed. The
existential formulas satisfied by v are not impacted, since there is already a

26

witness. The universal formulas satisfied by v are also not impacted, since
we are now quantifying over fewer nodes. The induction step for ∧ and ∨ is
straightforward, and there is no induction step for negation, since the formula
was in NNF. Repeating this “trimming operation” gives a degree bound that is
polynomial in the formula.

Now that we know that it is enough to deal with finite trees of some fixed
branching degree g, we can begin to translate formulas to automata that run
over (ordered versions of) such trees.

We again assume that our modal formula ϕ is in NNF. Let S be a collection
of subformulas of ϕ with some fresh c substituted for any free variables. We say
S is consistent if:

• it does not contain both U(c) and ¬U(c) for some atomic formula U(c);

• whenever S contains ϕ1 ∨ ϕ2 it contains ϕ1 or ϕ2 (or both);

• whenever S contains ϕ1 ∧ ϕ2 it contains both ϕ1 and ϕ2.

The automaton Aϕ for our modal logic formula ϕ will have states for every
consistent subset S of the subformulas of ϕ (with c substituted for free variables),
together with a special non-accepting sink state. The automaton will satisfy the
property that if there is a run that reaches state S at some node n whose subtree
has height h, then the formulas in S of modal depth at most h will hold at n
within t.

The accepting states are all consistent sets containing ϕ. The initial labelled
leaf states are all pairs (τ, S) where S is a consistent set that “does not contra-
dict the predicates in τ ”: that is, {U(c) : U ∈ τ} ∪ {¬U(c) : U ∈ Σ \ τ} ∪ S is
consistent.

The transition relation δϕ describes the possible g-tuples (S1 . . . Sg) of states
for the children of a node with state S = {ψ1 . . . ψn} and label τ .

If {U(c) : U ∈ τ} ∪ {¬U(c) : U ∈ Σ \ τ} ∪ S is inconsistent, then S1, . . . , Sg
must be the special non-accepting sink state. Otherwise, the transition must
satisfy:

• if S contains ϕ0 of the form ∀y R(c, y)→ ϕ1 then each Si should contain
ϕ1(c).

• if S contains ϕ0 of the form ∃y R(c, y) ∧ ϕ1 then some Si should contain
ϕ1(c).

We can verify that the states of the automaton correctly represent the truth
of formulas:

Lemma 1. For any tree t of height at most h, the automaton Aϕ has a valid
run on t where the root is associated with state S if and only if all formulas in
S of modal depth at most h holds at the root of t.

The lemma is proven by induction on h. The base case is where the tree
consists only of the root, and we are dealing with formulas of modal depth 0,

27

which are Boolean combinations of atomic formulas. This is true by definition
of the initial state. The inductive step for modalities follows easily from the
transition function and the semantics of modalities.

To see that this lemma implies that the automaton has the properties we
desire, let h be the modal depth of ϕ. Applying the lemma to h we see that the
automaton reaches an accepting state on a tree of height at most h if and only
if the root of the tree satisfies ϕ. The lemma is proven by induction

Recall that the language L(Aϕ) of automatonAϕ consists of all trees that are
accepted by Aϕ starting from the root. By the previous lemma, this corresponds
to exactly the trees where ϕ holds at the root. This means we have reduced
satisfiability testing to a non-emptiness test for the language.

Since the size of Aϕ is exponential in the size of the original modal formula
ϕ, this gives an EXPTIME upper bound to satisfiability testing for modal logic.
In fact, it is possible to do better, staying within PSPACE, as we show next.

5.5 Tight complexity bounds on modal logic satisfiability
The translation from a modal formula ϕ to an automaton Aϕ we proposed here
for deciding modal logic is still not optimal. The nondeterministic automaton
has exponentially many states, since it has states for collections of subformulas
of the modal formula. Hence we cannot construct the automaton explicitly
without taking exponential time.

We now deal with this problem. We use two properties of the automaton:

• States and alphabet symbols can be represented with polynomially many
bits. Further, one can verify that a transition is in the automaton in
polynomial time, and similarly can verify that a state is accepting or is an
initial state.

• The automaton can accept trees only of depth bounded by d, where d is
the modal depth.

We now argue that there is a PSPACE decision procedure. We give a non-
deterministic PSPACE algorithm, which suffices by Savitch’s theorem [Savitch,
1970]. At any point the algorithm has a state S of the automaton and a depth
d, with the goal of checking for satisfiability of the formulas of S in a node with
a label τ in a tree of depth d, with a stack of subgoals for the parent nodes. The
algorithm guesses an outdegree k ≤ |ϕ|, states S1 . . . Sg and labels τ1 . . . τg for
each of the children. It then verifies the transition from parent to child is valid,
and then descends into each child in turn to verify satisfiability of Si at a tree
of depth d− 1 with label τi, with the stack of subgoals modified accordingly.

It turns out that PSPACE is the best possible bound, since the problem is
PSPACE-hard [Ladner, 1977].

5.6 Bibliographic remarks
Early results on the complexity of modal logic can be found in [Ladner, 1977].
A discussion of the complexity of modal logics with restrictions on the kinds

28

of Kripke structures considered can be found in [Hemaspaandra and Schnoor,
2008]. Modal logic is an extremely rich topic, which can be approached both
proof-theoretically or model-theoretically, with many variations. See [Blackburn
et al., 2001] for one introduction.

The outline of our decidability discussion follows the exposition in Section 4
of [Vardi, 1997].

29

6 The Guarded Fragment
Basic modal logic restricts the signature to have a single binary predicate. We
now present an extension to an arbitrary relational signature, the guarded frag-
ment GF.

6.1 Guarded Fragment basics
The atomic formulas of GF are True, False, any relational atom, and equality
atoms.

Formulas are defined inductively by:

• If ϕ1 and ϕ2 are GF formulas, then ϕ1∧ϕ2, ¬ϕ1, and ϕ1∨ϕ2 are formulas.

• If ϕ is a formula of GF then ∃~y R(~c, ~x, ~y)∧ϕ is a formula of GF where the
free variables of ϕ are required to be contained in ~x∪ ~y. We call R(~c, ~x, ~y)
the “guard atom” or “guard” of the quantification.

• If ϕ is a formula of GF then ∀~y R(~c, ~x, ~y) → ϕ is a formula of GF, where
as above all free variables of ϕ must be used in the “guard atom” R(~x, ~y).

Above we have written R(~c, ~x, ~y) to emphasize that R can contain constants
~c in addition to the quantified variables ~y and free variables ~x. But in the future
we will sometimes drop the constants ~c in writing guards for brevity.

It is easy to see that all modal logic formulas are actually GF formulas.
However, GF allows us to go beyond modal logic in several respects:

Example 14. The most obvious feature of GF compared to modal logic is that
it allows us to talk about arbitrary arity relations.

Suppose we have a ternary relation S(x, y, z). Then

∀xyz S(x, y, z)→ ∃uv S(z, u, v)

is a GF sentence.
But even in a signature with binary relations, GF allows us to do some things

that basic modal logic cannot do. It allows us to talk about multiple binary
relations:

∀xy R(x, y)→ S(x, y)

It allows us to universally quantify over elements of a unary relation:

∀x U(x)→ ∃y R(x, y) ∧ V (y)

It allows us to make assertions about self-edges:

∀x U(x)→ ∃y R(x, y) ∧R(y, y)

And it allows us to talk about a binary relation in both directions:

∀x U(x)→ ∃y[R(x, y) ∧ (∃z R(z, y) ∧ V (z))]

An important parameter of a GF formula ϕ is the width, the maximal arity
of a relation in ϕ. We write width(ϕ) for the width of ϕ.

30

6.2 Decidability of GF via the tree model property
Our aim is to show:

Theorem 7. Satisfiability of a GF sentence is decidable.

We will do this by proving the tree-model property, applying a variation of
the unravelling construction used for modal logic. Prior to defining the unrav-
elling itself, we will have to define what “tree-like” means, since it will no longer
mean that the model is literally a tree (as it did with modal logic).

For a number k and relational signature σ, the k tree-code signature for
σ consists of a binary relation E, unary relation symbols F for every fact F
that uses relations in σ and arguments in {1 . . . k}, and also symbols Eq(i, j)
for i, j ≤ k and Cardi for i ≤ k. Informally, an element of this code structure
represents a tuple of at most k elements in a structure over the signature σ;
the unary relations F on codes tell which relations hold of the corresponding
tuple, while for two code elements connected by E, if Eq(i, j) holds at v then
the i-th element in v is equal to the j-th element in the parent of v. Cardi
asserts that the number of elements in the tuple is exactly i. Given elements
v, v′ in a structure for this signature, along with i, j ≤ k we say that (v, i) and
(v′, j) are directly equivalent in the structure if E(v′, v)∧ Eq(i, j)(v) hold in the
structure. We call the transitive and reflexive closure of this relation annotated
node equivalence in the structure. Omitting the dependence on the underlying
structure, we let [v, i] denote the equivalence class of the pair (v, i).

Example 15. Figure 5 shows a tree code in the coding signature for k = 3,
over a base alphabet consisting of three unary predicates (the colors orange,
green, and pink in the picture along with three binary relations (the red, green,
and blue) edges. L1, L2, and L3 are three substructures over a domain of size
3 in this language. The root node is “labelled as representing a copy of L1”:
more precisely, it is labelled with node predicates for each of the facts in L1: e.g.
Orange(2) and Red(3, 2). The left child of the root is “labelled as representing
a copy of L3”. In addition, it is labelled with the relation Eq(2, 3), indicating
that node 2 in the child structure is to be identified with node 3 in its parent.
The right child of the root is similarly labelled as representing a copy of L2, with
element 2 identified with element 3 in its parent.

The structure that the tree codes is shown on the right side of the figure. Note
that the structure can be formed from taking copies of the structures L1, L2, L3

and identifying nodes according to the additional Eq labels.

A structure for this alphabet (V,E, . . .) is a valid k tree code if

• (V,E) is a tree

• for any i at most one of Eq(i, j) and at most one of Eq(j, i) can hold at a
node

• exactly one of Cardm can hold at a node, and if Cardm holds then any coded
facts must be over {1, . . . ,m} and we cannot have Eq(i, j) for i > m.

31

L1

L2, #2=#3

3

2

1

2

3

1

2

1

L1
L2

L3

L3,
#2=#3

3

2

1

3

1

1

Figure 5: A tree and the structure that it codes

32

For a valid tree code t, the decoding decode(t) is the structure whose elements are
annotated node equivalence classes and where R([v, i1], . . . [v, in]) holds exactly
when v satisfies R(i1 . . . in) in V .

A structure is codable with width k if it is the decoding of some valid k tree
code. We can now make precise the tree-like model property for GF:

Alternative definition of tree-codable structure. Above we have defined
k-tree codes, and explained what the decoding is of a code. That is, we have
defined the structure M being coded from the tree that codes it. It is more
standard to give a direct definition of what it means for a structure M to have
a tree coding. A tree decomposition of a structure M is a tree (V,E) and a
function λ assigning to each vertex v ∈ V with a subset λ(v) of elements in the
domain of M , so that the following hold:

• For each fact R(c1 . . . cn) ∈ M , there is a v such that λ(v) includes each
element of c1 . . . cn.

• For each domain element e ∈M , the set of nodes

{v ∈ V |e ∈ λ(v)}

is a connected subset of the tree. For any two vertices v1, v2 in the set,
there is a path in the tree connecting them.

The width of a decomposition is the maximum size of λ(v) over any element
v ∈ V . The subsets of M of the form λ(v) are called bags of the decomposition.
It is easy to see that:

a model M is isomorphic to a decoding of a k-tree code exactly when it has
a tree decomposition of width at most k.

From the tree decomposition we can define a code by labelling a tree node
v according to the facts holding on λ(v). Conversely, from a tree code for M
we can form a tree decomposition of M by defining λ to associate a node in the
tree with the set of elements it codes.

The tree-like model property for GF is now captured by the following result:

Theorem 8. Any GF sentence ϕ that is satisfiable has a satisfying model which
is codable with width k, where k is the width of ϕ.

We now turn to the notion of bisimulation that will be used to show the
tree-like model property. A tuple of elements ~t in a structure M is guarded if
there is a single fact that contains every ti ∈ ~t. We similarly talking about a
guarded set of a structure: a set whose elements co-occur in some fact.

Given arbitrary structuresM,M ′ for the same signature and guarded tuples
~x0 ∈M,~x′0 ∈M ′ a guarded bisimulation relation between (M,~x0) and (M ′, ~x′0)
is a binary relation B(~x, ~x′) between guarded tuples ~x ∈ M and ~x′ ∈ M ′ such
that whenever B(~x, ~x′) holds:

33

• (Partial isomorphism) All predicates (including equalities) on the distin-
guished elements are preserved: M |= S(xj1 . . . xjm)↔M ′ |= S(x′j1 . . . x

′
jm

).

• (Forth) For each guarded tuple ~y ∈ M there is guarded tuple ~y′ ∈ M ′

with B(~y, ~y′) such that yi = xj implies y′i = x′j .

• (Back) For each guarded tuple ~y′ ∈ M ′ there is a guarded tuple ~y ∈ M
with B(~y, ~y′) such that y′i = x′j implies yi = xj .

(M,~x) and (M ′, ~x′) are guarded bisimilar if there is a guarded bisimulation
relation between them. We extend this notation to two models M and M ′

without any tuples: we say they are guarded bisimilar if (M, ∅) is guarded
bisimilar to (M ′, ∅), where ∅ denotes the empty tuple.

As we did with modal logic, we can rephrase guarded bisimulation in terms
of a game between two players Spoiler and Duplicator. A position of the game is
a pair of guarded tuples ~x0 ∈M and ~x′0 ∈M ′. Spoiler can decide to pick one of
the structures, say M , and replace ~x0 with a guarded ~y0 that may overlap with
~x0. Duplicator must then respond with ~y′0 that satisfies the same predicates as ~y0
and overlaps with ~x′0 whenever ~y0 overlaps with ~x0. Spoiler wins if Duplicator
cannot make a play. An infinite sequence in which Spoiler never wins is a
winning play for Duplicator.

Proposition 7. Duplicator has a winning strategy in the guarded bisimulation
game starting from initial position ~x ∈ M and ~x′ ∈ M ′ if and only if (M,~x)
and (M ′, ~x′) are guarded bisimilar.

We now argue that if (M,~x) and (M ′, ~x′) are guarded bisimilar, then they
agree on GF formulas.

Proposition 8. If (M,~x) and (M ′, ~x′) are guarded bisimilar, then the GF for-
mulas satisfied by ~x in M are the same as those satisfied by ~x′ in M ′.

Proof. Spelling out the statement as:

if M,~c is guarded bisimilar to M ′,~c′ and M,~c |= ϕ, then M ′,~c′ |= ϕ.

We can proceed by induction on the way ϕ is built up from the GF grammar.
The base case is ϕ atomic, and this holds using the partial isomorphism

property. The connectives ∧,∨,¬ are straightforward.
Consider the case of ϕ built up from existential quantification.

ϕ = ∃y1 . . . ym R(xj1 . . . xjn , y1 . . . ym) ∧ ϕ′

By adding equalities into ϕ′, we can assume that xj1 . . . xjn and yd1 . . . y are
are sequences of variables, possibly with repetition. If M,~c |= ϕ then there are
d1 . . . dm such thatR(cj1 . . . cjn , d1 . . . dm) holds inM andM, cj1 . . . cjn , d1 . . . dm |=
ϕ′. Thus cj1 . . . cjn , d1 . . . dm is a guarded tuple.

By the (Forth) property of guarded bisimulation there is d′1 . . . d′m such that
c′j1 . . . c

′
jn
, d′1 . . . d

′
m is guarded bisimilar to cj1 . . . cjn , d1 . . . dm. By induction

M ′, c′j1 . . . c
′
jn
, d′1 . . . d

′
m |= ϕ′, since ϕ′ is of lower complexity. Thus

M ′, c′j1 . . . cjn |= ∃y1 . . . ymR(xj1 . . . xjn , y1 . . . ym) ∧ ϕ′

34

as required.
The case of guarded universal quantification is similar, but using the (Back)

property.

We now define the guarded unravelling of a structure M . We will do this by
defining a k tree coding of a structure, denoted GUnravelTree(M), where k is the
maximal arity of a relation. The guarded unravelling is the structure that this
codes (and thus the unravelling is tree-like). The vertices V of GUnravelTree(M)
are sequences of distinct tuples that are guarded, and the edges E order them
by prefix. That is, the root might be a guarded tuple ~t0, one of its children
in the tree would be a sequence ~t0,~t1, one of its grandchildren would be a
sequence ~t0,~t1,~t2. We refer to this tree (V,E) as the guarded traversal tree of
M . Although each vertex v in the tree is a sequence of guarded tuples, we say
that the vertex is associated with the guarded tuple ~t that is the last one in the
sequence, and we write GTuple(v) for that tuple. There can be many sequences
that end with the same tuple ~t. Thus the same ~t will be GTuple(v) for infinitely
many vertices v.

To obtain GUnravelTree(M), we label the guarded traversal tree with labels
from the k-tree code signature. For a vertex v with associated guarded tuple
t1 . . . tm, and each relation R in the signature ofM , we label v with R(j1 . . . jm)
exactly when R(t1 . . . tm) holds in M . We let the label Eq(i, j) hold of a vertex
v′ that is the child of another vertex v if and only if:

• the guarded tuple of v is c1 . . . cr

• the guarded tuple of v′ is d1 . . . ds

• dj = ci.

That is, the equality labels of adjacent nodes reflect the overlap between the
associated guarded tuples.

Proposition 9. The labelled tree GUnravelTree(M) above is a valid k-tree code,
where k is the maximal arity of a relation in the vocabulary.

We can define GUnravel(M) to be the structure coded by the labelled tree
GUnravelTree(M). Recall that each vertex v is associated with a subset of the
domain elements of the structure being coded, and thus each v is associated
with a substructure GUnravel(M)v of GUnravel(M). If ~t = GTuple(v), then the
labelling of the tree guarantees that:

GUnravel(M)v is isomorphic to M~t, the substructure of M associated with ~t.

Note that in the tree GUnravelTree(M), each each vertex v has children
corresponding to every guarded tuple ~t ∈ M . Thus we have the following
extension property of the unravelling:

For a vertex v of the tree GUnravelTree(M), with associated guarded tuple
~t = GTuple(v) ∈M , for each guarded tuple ~t′ ∈M , there is a child v′ of v with

35

GTuple(v′) = ~t′. and GUnravel(M)v′ overlaps with GUnravel(M)v exactly as ~t′
overlaps with ~t.

Note also that every element e′ of GUnravel(M) corresponds to some element
e of M , since it lies in GUnravel(M)v for some v = GTuple(~t) with ~t ∈ M .
Further, all guarded sets in GUnravel(M)v arise as copies of guarded sets in M ,
a property we call guarded coverage property:

Every guarded tuple u1 . . . ur in GUnravel(M) is contained in GUnravel(M)v
for some vertex v in the guarded traversal tree.

In particular, as with the bisimulation-based unravelling for modal logic,
each element in the unravelling of M is a copy of some element u ∈ M , and
there are many copies of each element.

Proposition 10. There is a guarded bisimulation between GUnravel(M) and
M .

Proof. To prove the proposition, we give a strategy for Duplicator in the guarded
bisimulation game. We will enforce the following invariant:

If ~t ∈ M,~u ∈ GUnravel(M) are positions achieved by playing our strategy,
then there is a vertex v in GUnravelTree(M) with GTuple(v) = ~t, and ~u is in
GUnravel(M)v with each ui being the copy of ti in GUnravel(M)v.

Assuming that we achieve this invariant, we have satisfied the partial iso-
morphism property required of a guarded bisimulation, since GUnravel(M)v is
isomorphic to M~t.

We need to show that we can maintain the invariant in response to plays
of Spoiler. If Spoiler plays a guarded tuple ~t′ in M , we know by the extension
property that v has a child v′ with Mv′ where GTuple(v′) = ~t′ and the overlap
of Mv and Mv′ is exactly as ~t overlaps with ~t′. Taking the copies of ~t′ in Mv′

gives us a response of Duplicator in GUnravel(M).
If Spoiler plays a guarded tuple u′1 . . . u′r in GUnravel(M), by the guarded

coverage property this must be in a GUnravel(M)v, and v corresponds to a
guarded tuple of M that has a subtuple that can be ordered as t′1 . . . t′r with the
mapping taking t′i to u′i a partial isomorphism of M to GUnravel(M). We play
this ~t′ in M . The overlaps of ~t′ with ~t may not exactly match those of ~u′ with
~u: indeed ~u′ may be a copy of the same ~t that is disjoint from ~u. However, it
is still the case that if u′i = uj , then t′i = tj , as required. One can check that
the invariant is preserved by this choice, which completes the argument that
Duplicator can win the game.

The previous propositions together prove Theorem 8.
Note that we can say a bit more.

Theorem 9. Any GF sentence ϕ that is satisfiable has a satisfying model that
is codable by a countable tree with width k = width(ϕ).

Proof. If ϕ has a modelM , then the model can be taken to be countable, by the
Lowenheim-Skolem theorem in classical logic [Chang and Keisler, 1990]. The
unravelling of M is then countable.

36

Using Theorem 9, we see that to decide satisfiability of a GF formula ϕ, it
suffices to decide whether there is a model that is codable by a tree. But to apply
our tree decidability results, we need to reduce to decidability of a logic over
trees, not models that are tree-like. This “gap” is bridged by a forward mapping
theorem, which states that we can reduce reasoning about tree-like models to
reasoning about their codes.

The forward mapping holds for a very powerful logic, which we introduce
here.

Guarded Second-Order logic (GSO) extends first-order logic in a similar way
as Second-Order logic, but with a semantic restriction on second-order quan-
tification. The syntax is the same as SO, but the semantics of second-order
quantifiers is different. If S is a second-order quantifier of arity n, then

∃S ϕ

holds in a structure M under a valuation exactly when: there is a set S0 of
n-tuples such that ϕ holds with the valuation extended by S0, and for each
n-tuple t1 . . . tn ∈ S0 there is a fact in M containing each ti. The semantics of
∀S ϕ in GSO is defined analogously.

GSO formulas can be thought of as a syntactic restriction of SO. That is, one
can think of ∃S ϕ in GSO as a “shorthand” for ∃S[∀~x (S(~x)→

∨
i ∃~yiRi(~yi, ~x))∧

ϕ]. The translation adds an additional conjunct (the first conjunct above) that
restricts S to be guarded.

Example 16. All first order formulas are in GSO, since GSO only restricts
second order quantification.

Recall the first example of second order logic formulas from Example 7:

∃x0 x1U(x0) ∧ V (x1) ∧ ∃S
S(x0) ∧ S(y1)∧

[∀x y((S(x) ∧G(x, y))→ S(y))]∧
¬∃S2 (S2(x0) ∧ ∃z S(z) ∧ ¬S2(z)) ∧ (∀x y((S(x) ∧G(x, y))→ S(y)))

The sentence holds exactly when there is a path from a node labelled U to a node
labelled V .

This property can be expressed in GSO, since it is enough to look for a set S
that is contained in the set of nodes.

A similar observation shows that the sentence from Example 7 expressing
that a graph G has a 3-coloring is expressible in GSO. Another example would
be a sentence asserting that a bi-partite graph has a matching. This could be
expressed in GSO, since the matching is a selection of the edges in the original
graph.

For an example of a property not in GSO, consider a signature with unary
relations U, V , and the following formula with a binary second-order variable

37

B(x, y).

∃B
[∀xy B(x, y)→ U(x) ∧ V (y)] ∧ [∀x U(x)→ ∃y B(x, y)]∧

[∀y V (y)→ ∃x B(x, y)] ∧ [∀x¬∃y1 y2 (y1 6= y2 ∧B(x, y1) ∧B(x, y2))]∧
[∀y¬∃x1 x2 (x1 6= x2 ∧B(x, y1) ∧B(x, y2))]

The sentence asserts that there is a bijection from U to V . The elements of the
bijection clearly will not be guarded, since there are no relations of arity above
1 to guard it.

The following result, due to Courcelle [Courcelle, 1990], states that evalua-
tion of a GSO sentence over a tree-like structure reduces to evaluating an MSO
sentence over the corresponding tree code:

Theorem 10. For every GSO sentence ϕ and number k, we can construct in
polynomial time an MSO sentence ϕ′ in the language of k-codes such that for
any model M that has a k-tree code t,

M |= ϕ↔ t |= ϕ′

The forward mapping that proves the theorem is a simple induction. Recall
that nodes in a code represent at most k elements in the coded structure. The
idea is that an element e of a model M can be represented by some element ve
of its code. For example, consider a formula

ϕ = R(x, y) ∧ T (y, z)

For a code to satisfy this, there must be a node v1 representing the fact R(x, y)
and another node v2 representing the fact T (y, z). In node v1, the value y will
correspond to some index h ≤ k. While in node v2, y will correspond to some
index i ≤ k possibly different from h. Further there must be a path between v1
and v2 whose pattern of equality facts carries along the index i to the index h.
We can express this as a formula:

∃v1 v2
∨

g,h≤k

∨
i,j≤k

R(g, h)(v1) ∧ T (i, j)(v2)

∧∃P1 . . . Pk [Path(P1 . . . Pk) ∧ Ph(v1) ∧ Pi(v2)] ∧

(
∧
a,b≤k

∀v v′ Pa(v) ∧ E(v, v′) ∧ Eq(a, b)(v′)→ Pb(v
′))

where Path(P1 . . . Pk) is a formula expressing that the union of P1 . . . Pk is a
path in the tree.

Figure 6 gives an illustration of how a simple formula translates into an
assertion about paths in a tree code.

Although the forward mapping result holds for GSO, we discuss it in more
detail for a first-order formula. Our mapping will take as input a first-order

38

9 x y z A(x,y)Æ B(y,z)

#2=#2

L3
#3=#2

L5

#2=#2

#2=#2

#2=#2

#2=#2

...

L3 contains A(1,3)

L5 contains B(2,3)

Figure 6: A formula and a path in the tree code witnessing that it holds in the
tree code.

formula ϕ and a mapping µ taking each free variable xi of ϕ to a local name.
Our translation ForMap will produce a Monadic Second Order ϕ′ with free
variables Xx1

. . . Xxk .

• For an atomic formula ϕ = R(v1 . . . vj),

ForMap(µ, ϕ) = ∃w
∧
i

Xvi(w) ∧R(µ(v1), . . . µ(vj))(w)

• Boolean operators are pushed through the translation. E.g. ForMap(µ,¬ψ) =
¬ForMap(µ, ψ).

• For ϕ = ∃xn+1 ψ(~x, xn+1)

ForMap(µ, ϕ) =
∨
j

∃Xxn+1
MaxConnected(Xxn+1

, j)∧ForMap(µ;xn+1 7→ j, ψ)

where MaxConnected(Z, j) expresses that Z is a connected subset of the
tree such that each node in the set contains local name j in its domain,
and Z is maximal with respect to this property. We can easily describe
this formula in MSO, using the predicates InDomaink.

• Universal quantification can be reduced to negation and existential quan-
tification.

We now state the correctness criterion for this mapping:

39

Lemma 2. Let M be a structure that has a tree code tm. Then each c ∈M cor-
responds to a connected subset subtree(c) of tM and a local name localname(c).
Fix a binding µ of free variables ~x of a formula ϕ to local names, and consider
tuple ~c of elements of M such that localname(ci) = µ(xi). Let σ be a variable
binding for ϕ taking xi to ci, and σ′ the corresponding binding for ForMap(µ, ϕ)
taking variable Xxi to subtree(ci). Then

M,σ |= ϕ if and only if tM , σ′ |= ForMap(µ, ϕ)

The lemma is proven by structural induction. We sketch here only the atomic
case. Suppose M,σ |= R(v1 . . . vj), and let σ(vi) = ci for each i. Then there
is a vertex w in the tree code that is labelled with R(µ(v1), . . . µ(vj)), and we
can use this as a witness for ForMap(µ, ϕ). Conversely, suppose there is a w
satisfying

∧
i Xvi(w) ∧R(µ(v1), . . . µ(vj))(w) in the tree code of M . Using the

fact that Xvi is bound to subtree(ci) in σ and localname(ci) = µ(vi) in the tree
code, the definition of tree code tells us that R(c1, . . . , cj) must hold in M .

Note that GF is a subset of first-order logic. Hence we can decide if ϕ ∈ GF
is satisfiable as follows:

• Applying Theorem 8, it suffices to determine if ϕ has a k tree-like model,
where k is the width of ϕ.

• We can construct ϕ′ as in Theorem 10, reducing to determining whether ϕ′
is satisfied in a tree. This in turn can be decided using the tree satisfiability
procedure of Theorem 2.

This completes the argument for the decidability of GF satisfiability, Theo-
rem 7.

6.3 Automata for GF

In the previous subsection, we proved GF satisfiability is decidable by reducing
to tree satisfiability. As with our initial approach for modal logic, this approach
does not give an elementary bound on complexity, since it goes via Rabin’s
theorem. We will now look at a more efficient decidability technique using
automata, mimicking what we did for modal logic.

For the case of GF, we need a more powerful automaton model. Since the tree
models guaranteed by Theorem 8 are infinite trees, we need automata that can
process such trees. In inductively translating the boolean operators from logic it
will also be convenient to deal with automata that have not just nondeterminism
(an analog of ∨), but some dual notion which is an analog of ∧. Finally, since
GF formulas can move backwards and forwards in a structure, it will be useful
to have an automaton that can move up and down as it processes the tree.

We will define two-way alternating automata over infinite trees, again fixing
the outdegree of nodes r and a set of node predicates A1 . . . An for such trees.
Let Σ be {A1 . . . An}. Let Directionr be the set of (movement) actions: Stay,
Downi for i ≤ r, and Up.

40

For any set J , let B+(J) be the set of positive boolean combinations of
propositions in J . Given a set I of elements from J and a formula ϕ ∈ B+(J),
the notion of ϕ holding in I (I |= ϕ) is defined as usual in propositional logic:
a single element j ∈ J holds in I if j ∈ I, a disjunction holds in I if one of
its disjuncts holds, while a conjunction holds if all of its conjuncts hold. We
will be interested in positive boolean combinations over Directionr × Q; these
formulas will be used to describe possible moves of the automaton. We will
describe such a formula by talking about choices of two different players: Eve
controls the nondeterministic choices (“existential” player), and Adam controls
the universal choices (“for all” player). The nondeterministic choices by Eve
correspond to disjunctions in the formula, and the universal choices by Adam
correspond to conjunctions in the formula. For instance, we will describe a
formula like (Stay, q′) ∨ ((Down1, q) ∧ (Down2, q)) as saying that Eve chooses
between staying in the current node and switching to q′, or moving downward;
if she decides to move downward, then Adam chooses whether to move downward
on the left child or right child, and then switches to state q.

A two-way alternating automata over infinite trees is specified as (Q,Σ, q0, δ,Ω),
where

• Q is a finite set of states

• Σ is a finite label set.

• q0 ∈ Q is the initial state

• δ ∈ Q× Σ→ B+(Directionr ×Q) is the transition relation

• Ω is an acceptance condition, which we discuss below.

The automaton can be run starting at the root of the tree, but it can also be run
from some interior vertex of the tree. We thus define a run of the automaton on
a vertex v in a tree t. This is another tree t′ whose labelling function λt′ labels
nodes n of t′ with a vertex vn of t and a state qn ∈ Q. We now describe further
properties that are required for the run to be accepting.

First we require that the root of t′ is assigned to v and state q0. That is, the
computation starts at the initial state and the initial vertex.

Second, we require that the relationship between parent and children labels
in t′ be consistent with the transition function δ. Suppose a vertex n of t′ is
associated by λt′ to a vertex vn of t with label σn, and also to a state qn, and
let Cn be the children of n in t′. Then we require that λt′ associate each c′ ∈ Cn
with a vertex of t that is either vn, a parent of vn, or a child of vn.

Given the above requirement we can associate each child c′i ∈ Cn with a
direction d′i ∈ Directionr as well as a state q′i ∈ Q. Let Pn be the set of pairs
(d′i, q

′
i) associated with some child of n. We require that Pn |= δ(q, σn).

Finally, we require that every path of t′ obey the acceptance condition Ω.
There are a number of different acceptance conditions defined for automata over
infinite trees. For GF we will need only the Büchi acceptance condition, which
is specified by a subset F of Q. The corresponding requirement is that along

41

each path of a run t′, there are infinitely many nodes that are associated with
states in F .

We say that an automaton A accepts a tree t if there is an accepting run
of A starting from the root of t. We let 2ABTω denote the class of two-way
alternating automata over infinite trees with the Büchi condition. Note that a 1-
way nondeterministic Büchi automaton, denoted 1NBTω, is just a 2ABTω where
every transition function formula is of the form

∨
i(Down1, q1)∧· · ·∧(Downr, qr).

As with other automata, we can apply this to trees with finitely many pred-
icates by considering the label alphabet as a powerset.

The main computation we will need on these automata is a non-emptiness
test:

Proposition 11 ([Vardi, 1998]). There is an algorithm for testing non-emptiness
of a 2ABTω A that runs in exponential time. More specifically, if A has size n
and s states, the running time is bounded by f(n)f(s) where f is a polynomial.

6.4 Optimized decidability of GF via translation to an au-
tomaton

As a warm-up, let us first return to the case of modal logic, and consider how
we could construct an alternating automaton Aϕ for a modal logic formula ϕ.

Let ϕ be a formula in modal logic. Assume ϕ is in negation normal form, so
negations are pushed inside as far as possible. Then we define the automaton
Aϕ for ϕ as follows:

• The state set is the set of all subformulas of ϕ with a fresh c substituted
for any free variable, together with {True,False}.

• The initial state is ϕ itself.

• The set of accepting states is {True}.

• The transition function δ is defined as follows:

δ(P (c), τ) :=

{
(Stay,True) if P (c) ∈ τ
(Stay,False) if P (c) /∈ τ

δ(¬P (c), τ) :=

{
(Stay,True) if P (c) /∈ τ
(Stay,False) if P (c) ∈ τ

δ(True, τ) := (Stay,True)

δ(False, τ) := (Stay,False)

δ(ψ1 ∨ ψ2, τ) := (Stay, ψ1) ∨ (Stay, ψ2)

δ(ψ1 ∧ ψ2, τ) := (Stay, ψ1) ∧ (Stay, ψ2)

δ(∃y R(c, y) ∧ ψ(y), τ) :=
∨

1≤i≤r(Downi, ψ(c))

δ(∀y R(c, y)→ ψ(y), τ) :=
∧

1≤i≤r(Downi, ψ(c))

42

L1

L2

3

2

1 3

4

5
3

4
L1 L2

L3

L3

3

2

1

4

5

4

Figure 7: Implicit coding

The idea is that if the automaton is in state ψ at node v in the input tree t, then
the existential player Eve is trying to show that ψ holds at v, and the universal
player Adam is trying to show otherwise. Note that the number of states of
this automaton is only polynomial in the size of the input ϕ; however, we pay
an exponential price to test for non-emptiness of a 2ABTω like this, so we get
an EXPTIME upper bound on satisfiability testing for modal logic, as we did in
our previous procedure.

The automaton for a GF sentence ϕ is a generalization of this. As before,
we assume that ϕ is in negation normal form. For ease of exposition, we also
assume that there is no use of equality.

It is convenient to code relational structures by trees in a slightly different
way. We will still have a node in a tree code represent k elements in a structure,
for some fixed k. Recall that previously we labelled nodes of a tree code with
special predicates to say how the k elements associated to that node relate to
the k elements associated to the parent of the node. We call this explicit equality
coding. An alternative is implicit equality coding ; we associate each node with
at most k numbers within the set Nk = {1, . . . , 2 · k}; the local names of the
node. We write names(v) for the local names used in node v in a tree code. We
label the node with relations mentioning those local names. If a node and its
parents overlap on their local names, this means the two elements are the same.

Figure 7 gives an example of implicit coding. We have k = 3, so each of L1,
L2, and L3 is describing a structure with 3 elements, and each of these elements
is described using a number from 1 to 6. The tree at the right codes a structure.
To figure out what structure is being coded by this tree (the structure on the
bottom right), we glue the structures Li for adjacent nodes together, using the
common numbers as gluing points.

Note that if we choose a node in a tree code and a local name, we have
described exactly one element of the coded structure. The corresponding tree
code signature for implicit coding is similar to the one for explicit coding, in
that we have unary predicates for each fact over the local names. We do not

43

L0

L2 L1 … Ln

L0

L2

L1 L0

L0

Ln L0

L0

Figure 8: Conversion to binary trees

have equalities any more, and we will need to have unary predicates InDomaink
for k a local name InDomaink(v) indicates that local name k is in the domain of
v. This predicate will be use to determine which local names are identified in
the decoding.

Tree codes can generally have unbounded (possibly infinite) degree. More
precisely, Theorem 9 showed that a code can have at most countably many
children. For technical reasons, it is more convenient to use binary trees for our
encodings. Any tree code where each node has at most countably many children
can be converted to a binary tree code in the following way: starting from the
root, replace each node u with children v1, v2, . . . with the subtree consisting of
v1, v2, . . . and new nodes u1, u2, . . . such that the label at each ui is the same
as the label at u, the left child of ui is vi and the right child of ui is ui+1.

We can also make the code into a full binary tree by adding extra copies of
what was previously a leaf node.

After doing this, each node in a binary tree can be identified with a finite
string over {1, 2}, with ε identifying the root, and u1 and u2 identifying the left
child and right child of u.

Figure 8 illustrates the conversion to binary tree codes.
We write Σcode

σ,k for the signature of these tree codes, and write Σcode
σ,k -tree to

mean a labelled binary tree over this signature.
We are now ready to describe the automaton construction for a GF sen-

tence ϕ.Let cl(ϕ,Nk) be the set of subformulas of ϕ with names from Nk substi-
tuted in for any free variables, together with True and False. The automaton
Aϕ for ϕ is defined as follows:

• The state set is cl(ϕ,Nk).

• The initial state is ϕ.

• The transition function δ is defined below.

44

• The set of accepting states consists of all states of the form True, ¬R(~a),
or ∀~y R(~a, ~y)→ ψ(~a, ~y).

We now describe the transition function.

δ(R(~a), τ) :=

(Stay,False) if ~a not represented in τ
(Stay,True) if R(~a) ∈ τ∨
d∈Dir(d,R(~a)) otherwise

δ(¬R(~a), τ) :=

(Stay,True) if ~a not represented in τ
(Stay,False) if R(~a) ∈ τ∧
d∈Dir(d,¬R(~a)) otherwise

δ(True, τ) := (Stay,True)

δ(False, τ) := (Stay,False)

δ(ψ1 ∨ ψ2, τ) := (Stay, ψ1) ∨ (Stay, ψ2)

δ(ψ1 ∧ ψ2, τ) := (Stay, ψ1) ∧ (Stay, ψ2)

δ(∃~y R(~a, ~y) ∧ ψ(~a, ~y), τ) :=

(Stay,False) if ~a not represented in τ∨
R(~a,~b)∈τ (Stay, ψ(~a,~b))∨∨
d∈Dir(d,∃~y R(~a, ~y) ∧ ψ(~a, ~y)) otherwise

δ(∀~y R(~a, ~y)→ ψ(~a, ~y), τ) :=

(Stay,True) if ~a not represented in τ∧
R(~a,~b)∈τ (Stay, ψ(~a,~b))∧∧
d∈Dir(d,∀~y R(~a, ~y)→ ψ(~a, ~y)) otherwise

For the case of a positive atomic formula, notice that Eve is given the ability
to search for a node in the tree code that witnesses the desired fact. Like-
wise, for guarded existential quantification formulas, Eve tries to find a witness
satisfying the body of the quantified formula. This witness can come from ele-
ments that are represented in the current node, or elements that are represented
elsewhere in the tree. This leads to the disjuncts in

∨
R(~a,~b)∈τ (Stay, ψ(~a,~b)) ∨∨

d∈Dir(d,∃~y R(~a, ~y)∧ψ(~a, ~y)). While searching, she is in a non-accepting state,
so she cannot cheat and forever defer her choice of witness. Likewise, if she
moves into part of the tree where ~a is not represented, then she immediately
loses (she must move to a non-accepting sink state False).

Negated atomic formulas or guarded universal quantification can be seen as
the dual of this, with Adam controlling the search for a counterexample.

This completes the construction. The automaton satisfies the following prop-
erty:

Lemma 3. Consider any ρ ∈ cl(ϕ,Nk), any consistent tree code t which codes
model M , and any node v ∈ t containing the names in ρ. Let l1 . . . li be the
local names in ρ and e1 . . . ei the corresponding elements of M . Then ρ holds
of e1 . . . ei in M if and only if Aϕ accepts t when run starting from v in using
ρ as the initial state.

45

In particular if ϕ is a sentence of GF. then for all consistent trees t the
2ABTω automaton Aϕ accepts t from the root starting at state ϕ iff decode(t) |=
ϕ.

The lemma is proven using induction.
Combining Lemma 3 with Theorem 8 we see that:

A guarded fragment sentence ϕ is satisfiable if and only if there is a tree that
is a valid k-code of a structure which is accepted by the automaton Aϕ referred
to in the lemma.

We can easily write an automaton Aconsistent that accepts a tree exactly
when it is the code of some structure: Thus combining with the above, we
obtain that satisfiability testing for GF sentences ϕ reduces to a non-emptiness
test of L(Aϕ ∩ Aconsistent). Since the intersection of two automata can be
converted to a single automaton, we have reduced satisfiability to automaton
non-emptiness.

What is the cost for testing satisfiability using this automaton approach?
The number of node label predicates in the code alphabet will be exponential
when the arity of the relations is not fixed. Recalling that the transition relation
of these automata work over P(Σ) we can see that the transition relation will
be doubly-exponential. Thus the size of the automata is doubly exponential
in the size of ϕ, since the alphabet is already of doubly exponential size. This
would suggest that when we apply the non-emptiness test of Proposition 11, we
would get a triply exponential upper bound. However, recall from Proposition
11 that the emptiness test for 2ABTω is actually exponential only in the number
of states. The automaton Aϕ has only exponentially many states. Specifically,
there are at most f(|ϕ|) · 2f(width(ϕ)) states for f some polynomial function
independent of ϕ. Hence, satisfiability is in 2EXPTIME (and can be even be
shown to be 2EXPTIME-complete).

When we fix the maximum arity of relations, the number of node label
predicates becomes polynomials, and the size of the automaton drops to this
drops to singly-exponential. Since the number of states of this automaton is
polynomial under this restriction, we can use Proposition 11 to get a single-
exponential bound.

Theorem 11. Satisfiability for GF is 2EXPTIME-complete in general, and EXPTIME-
complete when the maximum arity of relations is fixed.

6.5 Bibliographic remarks
GF was introduced in a series of articles by Andréka, van Benthem, and Németi,
leading to [Andréka et al., 1998]. The complexity of satisfiability was isolated
by Grädel in [Grädel, 1999b]. Our exposition roughly follows [Grädel, 1999a].

Guarded bisimulations and the corresponding unravellings are discussed in
[Grädel, 1999a] and [Grädel and Otto, 2014].

46

A good introduction to alternating automata on infinite trees can be found
in [Löding, 2011]. More background on automata and logic connections can also
be found in [Thomas, 1997a].

Grädel proved that the guarded fragment has the finite model property :
whenever a sentence is satisfiable, it is satisfied by a finite structure [Grädel,
1999b]. It follows from this that finite satisfiability of GF is decidable. The proof
of the finite model property for GF requires techniques beyond the automata-
to-logic connection, and we will not discuss it here.

47

7 The Guarded Negation Fragment

7.1 GNF basics
We will now extend the argument for GF to a richer fragment called the guarded
negation fragment GNF.

The atomic formulas of GNF are True, False, relational atoms, and equality
atoms.

Formulas are defined inductively by:

• if ϕ1 and ϕ2 are formulas of GNF, then ϕ1 ∧ ϕ2, and ϕ1 ∨ ϕ2, and ∃x ϕ
are formulas of GNF;

• if ϕ is a formula then R(~x) ∧ ¬ϕ is a formula, where the free variables of
ϕ are required to be contained in the variables ~x of the atom R(~x). R is
the guard of the negated formula;

• if ϕ is a formula with at most one free variable then ¬ϕ is a formula.

The last item is sometimes phrased as a special case of the second item, using
trivial guards: True∧¬ϕ for a sentence ϕ, and “an equality guard” x = x∧¬ϕ(x)
for a formula ϕ with one free variable x.

Syntactically, GNF does not extend GF, since it does not allow universal
quantification. However, every GF sentence can be easily rewritten in GNF:

Proposition 12. Every GF sentence is equivalent to a GNF sentence.

Consider the first example GF sentence presented in the previous section:

∀xyz S(x, y, z)→ ∃uv S(z, u, v)

We would express this in GNF as:

¬∃xyz [S(x, y, z) ∧ ¬∃uv S(z, u, v)]

We have translated universal quantification and implication into existential
quantification, conjunction, and negation in the usual way. The outermost nega-
tion is vacuously guarded, since there are no free variables. The inner negation
has the atom S(x, y, z) that guards the free variables of the negated formula.

The proof of Proposition 12 is an inductive algorithm. For every GF formula
ϕ(~x) and every guard R(~x, ~y) of the free variables of ϕ it produces a GNF formula
ϕ′(~x, ~y) that is equivalent to R(~x, ~y) ∧ ϕ(~x).

Unsurprisingly, GNF allows one to express many things that are not express-
ible in GF.

Example 17. Every positive existential formula (one built up using only ∨,∧,∃)
is expressible in GNF. For example, the formula

∃x1 x2 x3 R(x1, x2) ∧R(x2, x3) ∧R(x3, x1)

48

is in GNF but is not expressible in GF.
Since GNF is closed under boolean combinations of sentences, it can also

express that one positive existential formula follows from another using a set of
GF axioms. For example, the sentence:

∃x1 x2 x3 (R(x1, x2) ∧R(x2, x3) ∧R(x3, x1))∧
∀xy (R(x, y)→ S(x, y))∧

¬∃x1 x2 x3 (S(x1, x2) ∧ S(x2, x3) ∧ S(x3, x1))

is in GNF. It is unsatisfiable if and only if the positive existential sentence
∃x1 x2 x3 S(x1, x2) ∧ S(x2, x3) ∧ S(x3, x1) follows from the positive existential
sentence ∃x1 x2 x3 R(x1, x2) ∧R(x2, x3) ∧R(x3, x1) assuming the GF sentence
∀xy (R(x, y)→ S(x, y)).

Generalizing the last example, consider a set of GF sentences Σ and two
positive existential sentences ϕ1, ϕ2. Consider the problem of deciding whether
Σ ∧ ϕ1 → ϕ2 is valid. This is sometimes expressed by saying: ϕ1 implies ϕ2

relative to Σ. Σ ∧ ϕ1 → ϕ2 is valid exactly when Σ ∧ ϕ1 ∧ ¬ϕ2 is unsatisfiable,
and thus this problems reduces to satisfiability of a GNF sentence.

Recall from Section 2 that positive existential formulas of the form ∃~x ψ(~x, ~y)
where ψ(~x) is a conjunction of atoms are known as conjunctive queries, or CQs.
Unions of conjunctive queries (UCQs) are disjunctions of formulas like this.
UCQs are expressible in GNF, but are not in general expressible in GF.

It is often helpful to consider the formulas of GNF in a certain normal form
that comes from nesting UCQs using guarded negation. The normal form for
GNF over a signature σ can be defined recursively to be formulas of the form
δ[Y1 := α1 ∧ ¬ϕ1, . . . , Yn := αn ∧ ¬ϕn] where

• δ is a UCQ over σ ∪ {Y1, . . . , Yn} for some fresh relations Y1, . . . , Yn,

• ϕ1, . . . , ϕn are in normal form GNF,

• α1, . . . , αn are guards for the free variables in ϕ1, . . . , ϕn such that the
number of free variables in each αi ∧ ¬ϕi matches the arity of Yi, and

• δ[Z := ψ] is the result of replacing every occurrence of Z(~x) in δ with
ψ(~x).

Note that the base case of this recursive definition is a UCQ over σ (take n = 0
above).

Every GNF formula can be converted into this form in a canonical way with
an exponential blow-up in size.

We refer to formulas built up like this as UCQ-shaped formulas. Likewise,
we say a formula is a CQ-shaped formula if it is of the form δ[Y1 := α1 ∧
¬ϕ1, . . . , Yn := αn ∧ ¬ϕn] for δ a CQ, and αi and ϕi as above.

As with GF, we will need a notion of the width of a GNF formula, which will
relate to the notion of tree-like model that is appropriate. The width of a GNF
formula ϕ in the normal form above is the maximum number of free variables in

49

any subformula, and we extend this to non-normal form formulas via converting
to normal form: that is, we denote by GNFk the set of GNF-formulas that are
of width k when they are brought into this normal form.

We will also keep track of two other parameters, CQ-rank and negation
depth.

The CQ-rank of a formula ϕ in normal form is the maximum number of
conjuncts in any CQ-shaped subformula of ϕ that begins with an existential
quantifier.

Let us consider the distinction between width and CQ-rank. We note first
that a formula may have low CQ-rank but still have high width. This clearly can
happen if the maximal arity of the relations in the schema is not fixed, since CQ-
rank counts only the number of conjuncts, not the number of variables. But even
for a schema where relations all have arity 2, the width can be much higher than
the CQ-rank, since the formula may have UCQ-shaped formulas that have many
variables, but where every CQ has a small number of conjuncts. Conversely,
if we do not fix the schema, a formula may have low width but still have high
CQ-rank. For example, the formula

U1(x) ∧ U2(x) ∧ . . . Un(x)

has width only 1, since we have only one variable. But its CQ-rank is n. In
GF, we saw the width of a formula has an impact on the size of the “bags” in
a tree-like model of the formula. Through this, the width impacts the size of
the alphabet in a tree automaton accepting tree-like models of the formula. The
same will hold for GNF. We will see in Section 7.4 and Section 7.5 that the
CQ-rank has an important impact on the number of states of the automata for
a GNF formula.

The negation depth is the maximal nesting depth of negations in the syntax
tree of ϕ. This parameter will simply be useful for doing inductions within
proof.

7.2 Decidability of GNF via the tree model property
Our aim is to show:

Theorem 12. Satisfiability of a GNF sentence is decidable.

We will proceed similarly to GF, by showing the tree-like model property.
Let us first talk about what kind of trees we will need. As for GF, we will
look at trees that code structures; a node in the tree will code several elements
in the structure. As with GF some tree nodes code the behavior of a guarded
set. But we will also need tree nodes that code the existence of a witness
to a positive existential sentence. Such nodes may need to be big enough to
contain witnesses for the existential quantifiers in formulas of the form ϕ in the
normal form grammar above. This is related to the width of a formula, defined
previously.

We can now state the tree-model property for GNF:

50

Theorem 13. Any GNFk sentence ϕ that is satisfiable has a satisfying model
which is codable with width k, where k is the maximal number of free variables
in any subformula of ϕ.

In order to define the notion of bisimulation that is relevant for GNF, we
will use a game. Each position in the game is a partial homomorphism h from
M to M ′, or vice versa, where the domain of h has size at most k. The active
structure in position h is the structure containing the domain of h. The GNFk-
game starts from the empty partial map from M to M ′. In each round of the
game, Spoiler chooses between one of the following moves:

• Modify up to k: Spoiler can delete an element of the domain of the active
structure, resulting in a mapping h′ with a smaller domain. In this case
Duplicator need do nothing. Spoiler can also add an element to the domain
of the active structure, as long as the size of the resulting domain of the
is no more than k; if Spoiler makes such a move, Duplicator must extend
to a homomorphism h′ that includes the new element. Duplicator loses if
this is not possible. Otherwise, the game proceeds from the position h′.

• Guarded Switch: If domain(h) is guarded, then Spoiler can choose to switch
active structure. If h is not a partial isomorphism, then Duplicator loses.
Otherwise, the game proceeds from the position h−1.

Duplicator wins if she can continue to play indefinitely.
We say that (M,~x) and (M ′, ~x′) are GNFk-bisimilar if Duplicator can win

the GNFk-game starting from a position where the partial homomorphism maps
xi to x′i, and the active structure is M . Note that in the case ~x is guarded,
then Duplicator can win from position where the active structure is M and the
partial homomorphism maps xi to x′i if and only if Duplicator wins from the
position where the active structure is M ′ and the partial homomorphism maps
x′i to xi. That is, for guarded tuples this notion of bisimilarity is an equivalence
relation.

Proposition 13. If (M,~x) and (M ′, ~x′) are GNFk-bisimilar and ~x is guarded,
then the GNF formulas of width k satisfied by ~x in M are the same as those
satisfied by ~x′ in M ′.

Proof. To prove the proposition, we show a more general statement:

If there is a winning strategy for Duplicator on a position of GNFk game
on (M,~c) and (M ′,~c′) with active structure M , then every GNFk formula ϕ(~x)
holding at M,~c holds at M ′, ~x.

Notice that this is a “uni-directional” statement, stating only that formulas
are preserved fromM toM ′. But it implies Proposition 13, since if the positions
are guarded then Spoiler is free to switch structures, so if Duplicator can win
from M she can also win from M ′.

The statement is proven by a simple structural induction on GNFk formulas.
As usual, the atomic cases follow from the Partial Isomorphism requirement in
the game, and the cases for ∨ and ∧ follow straightforwardly from the definitions.

51

Consider the inductive case of a UCQ-shaped subformula ϕ that holds in
(M, ~m) and we want to show holds in (M ′, ~m′). There is an extension of ~m to
~n that has at most k elements that witnesses the satisfaction of the formula.
We can consider a set of Modify moves of Spoiler that add these additional
elements. By GNFk-bisimilarity there is a response of Duplicator ~n′. For any
guarded subset ~n0 of ~n, we know by induction that the corresponding set ~n0
will satisfy the same subformulas of our formula. Using this we can see that ~n′
witnesses that ϕ holds in (M ′, ~m′).

Consider the inductive case for a guarded negation formula R(~x) ∧ ¬ϕ(~x)
holding of ~c inM . Then R(~c) must hold inM , and thus by Partial Isomorphism
(or induction) R(~c′) must hold in M ′. Assume by way of contradiction that ϕ
did not hold of ~c′ inM ′. Since ~c is guarded, Spoiler could switch structures, and
by induction we would know that ϕ(~x) must hold of ~c in M , a contradiction.

This completes the argument for Proposition 13.

We will now define an unravelling based on this notion of GNFk-bisimulation.
As before, we will do this by defining a k tree coding of a structure, denoted
GNUnravelk. The GNFk-unravelling is the decoding of this structure. Recall that
our goal is to create a tree-like structure GNFk-bisimilar to M . The intuition
will be that we anticipate possible plays of the Spoiler within M , and we create
the unravelling so that there is a response to these plays.

Given a structureM , the underlying tree of our tree code will have vertices V
that are sequences of tuples where each tuple is of size at most k. Observe that
these are exactly what we get by looking at plays in the game and restricting
to the sequences in M . The tree will be ordered by an edge relation E that is
just the prefix ordering. We refer to (V,E) as the k-tuple traversal of M . Note
that each vertex v ∈ V is associated to a tuple GTuple(v) of size at most k, the
final tuple in the sequence.

We label the tree just as in the case of the guarded traversal. That is, Eq(i, j)
holds of a child s′ of a node s if and only if:

• s ends with tuple c1 . . . cr

• s′ extends s with a single tuple d1 . . . ds

• dj = ci.

R(m1, . . . ,mj) holds at a sequence s if and only if the final tuple of s is ~c and
R(cm1 , . . . , cmj) holds in M .

Proposition 14. GNUnravelTreek(M) is a valid k tree code.

Again analogously to what we did for GF, we can define GNUnravelk(M) to
be the structure coded by the labelled tree GNUnravelTreek(M). Again we have
each vertex v is associated with a tuple ~t = GTuple(v) of domain elements of
M . The substructure GNUnravelk(M)v of GNUnravelk(M) is isomorphic to the
substructure of M over ~t, M~t. GTuple(v) is no longer a guarded tuple, but its
size is bounded by k.

52

As in the guarded unravelling, we have the following extension property:

For a vertex v of the tree GNUnravelTreek(M), with associated tuple ~t =
GTuple(v) ∈ M , for each tuple ~t′ ∈ M of size at most k, there is a child v′ of
v with GTuple(v′) = ~t′. and GNUnravelk(M)v′ overlaps with GNUnravelk(M)v
exactly as ~t′ overlaps with ~t.

We still have the guarded coverage property:

Every guarded tuple u1 . . . ur in GNUnravelk(M) is contained in GNUnravelk(M)v
for some vertex v in the guarded traversal tree.

Using these properties we can show that GNUnravelk(M) is GNFk-bisimilar
to M :

Proposition 15. GNUnravelk(M) and M are GNFk-bisimilar.

Proof. To prove the proposition, we give a strategy for Duplicator in the GNFk-
bisimulation game. We will enforce a weakening invariant as in the GF case:

If ~t ∈M,~u ∈ GNUnravelk(M) are positions achieved by playing our strategy,
then

• each ui is a copy of ti; that is, ui is in GNUnravelk(M)v where ~w =
GTuple(v) contains ti, and the isomorphism of M~w to GNUnravelk(M)v
takes ti to ui.

• if ~u is guarded, or if the active structure is M , then there is a vertex v
in GNUnravelTreek(M) with GTuple(v) = ~t, and ~u is in GNUnravelk(M)v
with each ui being the copy of ti in GNUnravelk(M)v.

We need to show that we can maintain the invariant in response to plays of
Spoiler.

If the active structure is M , Spoiler can modify the k-tuple in M to get
another k-tuple ~t′ in M . We know by induction that the second invariant holds
of the position before Spoiler’s move, and thus there is v such that Duplica-
tor’s position ~u is contained in GNUnravelk(M)v. By the extension property, v
has a child v′ where GTuple(v′) = ~t′ and the overlap of GNUnravelk(M)v and
GNUnravelk(M)v′ is exactly as ~t overlaps with ~t′. Taking the copies of ~t′ in
GNUnravelk(M)v′ gives us a response of Duplicator in GNUnravelk(M).

If the active structure is GNUnravelk(M), Spoiler modifies ~u to get a tuple
u′1 . . . u

′
r in GNUnravelk(M). Each u′1 . . . u

′
r is a copy of some t′1 . . . t′r in M ,

and Duplicator responds by playing ~t′. Clearly the first invariant is preserved.
Further, the guarded coverage property implies that the second invariant is
preserved.

Spoiler can also move to switch structures. If the active structure is M , this
move does not impact the invariant. If the active structure is GNUnravelk(M),
we need to be sure that the second invariant holds. But the rules of the game
say that Spoiler can only switch when the positions are guarded, and hence the
second invariant is preserved. This completes the argument that Duplicator can
win the game.

53

The previous propositions together prove Theorem 13.
Now we note that GNF is also a subset of GSO, thus the forward mapping

result, Theorem 10 applies to GNF sentences. Hence we can decide satisfiability
for ϕ ∈ GNF using the same technique as Theorem 7: apply a forward mapping
on ϕ to get a ϕ′ on tree codes, and check satisfiability of ϕ′ using Rabin’s
theorem. This completes the proof of the decidability of GNF, Theorem 12.

7.3 Automata for GNF

As before, we have shown decidability of GNF via the tree model property
and tree satisfiability. Now we will look for a more efficient procedure using
automata. We will need some additional machinery from automata theory to
help with our construction of an automaton from a GNF sentence, which we
explain here.

First, we will make use of another common acceptance condition called a
parity condition. This is specified by a mapping Ω that assigns a priority (natural
number) to each state. The requirement is that along each path of a run, the
maximum priority occurring infinitely often is even. This is a generalization of
the Büchi condition seen earlier: a Büchi condition based on some set of states
F can be converted to a priority mapping Ω that assigns priority 2 to states in
F and priority 1 to everything else. Let 2APTω denote 2-way alternating tree
automata equipped with this parity acceptance condition. Similarly, let 1NPTω

denote 1-way nondeterministic parity tree automata.
Our construction will proceed in a more general and modular way, taking

advantage of closure properties of 2APTω automata:

Proposition 16. 2APTω automata are closed under union, intersection, and
complementation. The constructions can be done in time polynomial in the size
of the input, and the number of priorities is linear in the number of priorities
in the original.

Another important closure property is closure under projection. Let Σ′ :=
Σ ∪ {U1, . . . , Uj}, and let L′ be a language of Σ′-trees. The projection of L′
to Σ is the language L consisting of trees t over Σ such that there is some
t′ ∈ L′ that agrees exactly with t on Σ (i.e. there is some annotation of t with
relations in Σ′ \ Σ that is in L′). Projection is easy starting with a 1-way
nondeterministic automaton A′ for L′ — the automaton A for the projected
language L just nondeterministically guesses the missing information in Σ′ \ Σ
while simulating A. This straightforward construction does not work directly
for alternating automata. However, it turns out that we can always convert
between 2-way alternating and 1-way nondeterministic versions of the automata,
and then do the projection. In particular, [Vardi, 1998] showed that any 2APTω

automaton can be converted to an equivalent 1-way nondeterministic version,
with an exponential blow-up:

Theorem 14 ([Vardi, 1998]). Let A be a 2APTω. We can construct in EXPTIME
a 1NPTω A′ such that L(A) = L(A′). The number of states of A′ is exponential

54

in the number of states of A, and the number of priorities of A′ is linear in the
number of states and priorities of A.

One reason this result is interesting is that we can test for non-emptiness of
a 1NPTω:

Proposition 17. [Kupferman and Vardi, 1998] There is an algorithm that tests
for emptiness of a 1NPTω in time O(poly(s)2poly(p)), where s is the size of the
automaton and p is the number of priorities.

Given an automaton A over trees whose nodes are labeled with unary pred-
icates S0 . . . Sn, accepting language LA. The projection of LA by predicate S0

is the set of trees t labeled with S1 . . . Sn such that for some expansion t′ of t
with an interpretation for S0, t′ is in LA. We say a class of automata is “closed
under projection” if given an automaton A in the class as above and a predicate
S0, there is another automaton in the class accepting the projection of LA by
S0. The notion of a class being closed under complement, intersection, union,
is similar. By combining this conversion to a nondeterministic automaton with
the straightforward closure of nondeterministic automata under projection, we
get closure of 2APTω under projection.

Proposition 18. 2APTω automata are closed under projection. The construc-
tion can be done in EXPTIME and results in an automaton for the projection
language where the number of states is exponential in the original number of
states, and the number of priorities is linear in the original number of states
and priorities.

Thus alternating automata with the parity condition are closed under all
the operations used not only in first-order logic but in Monadic Second Order
Logic. Given 2APTω automata A1 representing ϕ1 and A2 representing ϕ2, we
can construct an automaton representing ϕ1 ∧ ϕ2: just create a new start state
which has transition function that conjoins the transitions out of the start states
of A1 and A2. Similarly for ϕ1∨ϕ2. If we have an automaton A for ϕ(S0 . . .), we
can construct an automaton for ∃S ϕ by just projecting A by S0. These closure
properties can thus be used to convert any MSOL sentence over trees into a
1NPTω, which can be tested for non-emptiness using Proposition 17, giving a
proof of decidability of MSO over trees, Theorem 2.

Example 18. We form an automaton checking whether the formula ∃x C(x)∧
D(x) holds on a tree using the method above. We first form an automaton AC
checking the formula C(x). This will be an automaton over trees with labels C,D
and Isx, where Isx represents the node x. AC will be the “conjunction” of two
automata. The first automaton searches the tree for a node with labels A and Isx,
while the second checks that there is exactly one node labelled Isx. By conjunction
here we mean that we use the closure of conjunction of alternating automata,
described above. The automaton for AD is defined analogously. We then form
an automaton AC(x)∧D(x) checking the formula C(x)∧D(x) by applying closure
under conjunction again. The final automaton we want is formed by projecting

55

the automaton AC(x)∧D(x) under the predicate Isx, which we can do while staying
within alternating automata by Proposition 18.

However, iteratively applying Theorem 14 leads to a tower of exponential
blow-up. Thus if we want to get a better bound for a logic like GNF, we will
need to do something better than just applying these operations naïvely.

We need one final conversion, going in this case in the other direction, from
1-way nondeterministic to 2-way alternating automata. We call this localization.
This process takes a 1-way nondeterministic automaton A that runs on trees
with extra information about some predicate (annotated on the tree), and con-
verts it to an equivalent 2-way alternating automaton A′ (the “locally-launched
automaton” for A) that operates on trees without these annotations, but is
launched from an interior node v. The automaton A′ launched at v should ver-
ify that A accepts on the tree in which only v is annotated with the additional
predicate.

Theorem 15. Let Σ′ := Σ∪{U1, . . . , Uj}. Let A′ be a 1NPTω on Σ′-trees. We
can construct a 2APTω A on Σ-trees such that for all Σ-trees t and nodes v in
the domain of t,

A′ accepts t′ from the root iff A accepts t from v

where t′ is the Σ′-tree obtained from t by setting U1, . . . , Uj to hold at v (and
only at v).

The number of states of A is linear in the number of states of A′, the number
of priorities of A is linear in the number of priorities of A′, and the overall size
of A is linear in the size of A′.

Proof sketch. The subtlety is that the automaton A is reading a tree without
the singleton valuations for U1, . . . , Uj so once the automaton leaves node v, if
it were to cross this node again, it would be unable to correctly simulate A′. To
deal with this, A simulates A′ by concurrently doing two things:

• guessing the state A′ would reach at the launch node v, and simulating
what A′ does moving downward from v

• guessing in a backwards fashion an initial part of a run of A′ on the path
from v to the root and then processing "the rest of the tree" – the part
outside of the path from the root to v and the subtree of v, in a normal
downwards fashion. When the automaton moves upward it can remember
which child it came from, so as to avoid going down this path again.

It can shown that this localization process even preserves monotonicity. This
is not important at the moment, but will play a role later. For now, just note
that an automaton A is monotonic with respect to Σ′′ if for all states q in the
state set of A and for all τ ′ ⊆ {P : P ∈ Σ′′}, δ(q, τ) entails δ(q, τ ∪ τ ′). In other

56

words, monotonicity says that if the automaton is able to do something without
τ ′ in the label, then it should be able to do it with τ ′ in the label.

It can be checked that if A is monotonic with respect to Σ′′, then its local-
ization A′ is also monotonic with respect to Σ′′; this follows from the fact that
the transition function of A′ is designed to imitate a run of A.

7.4 Inductive translation of GNF to an automaton
One approach to translating GNF to automata is to work inductively, getting
an automaton for each subformula, and using closure properties of automata in
building up the automata bottom-up. In the previous subsection, we mentioned
that this is the approach used to show decidability of full MSO over trees,
but using this method (on arbitrary MSO) gives a non-elementary algorithm,
since with every quantifier alternation we will need to apply some automaton
operation that induces an exponential blow-up.

Outline of an approach via Scott Normal Form. One way to approach
this is by rewriting the GNF formulas to reduce quantifier alternation. This is
the approach taken in the original GNF paper [Bárány et al., 2011]. The idea is
to introduce new relation symbols for intermediate formulas, an approach that
is often called “Scott Normal Form”, after its usage in earlier decidable logics by
Dana Scott [Scott, 1962].

The Scott Normal Form of a GNF formula in normal form will be constructed
as the conjunction of two formulas, the “skeleton” and the conjunction of another
set of formulas, the “definitions”, both created by induction. The skeleton will
always be a UCQ, while the definitions will be a formula with one quantifier
alternation. For atomic formulas the skeleton is the formula itself, and the
definitions are empty. For positive boolean operations the skeletons are just
take the corresponding combination of the inductively-defined formulas, and
the definitions are just the definitions that we get by induction.

Suppose we have a UCQ-shaped formula χ = δ[Y1 := α1 ∧ ¬ψ1, . . . , Ys :=
αs∧¬ψs] where δ is a UCQ, then the skeleton of χ is just δ. Let ψ′i be the skeleton
of ψi formed by induction. Then the definitions of χ are all the definitions of
the ψi, along with the definitions:

∀~x Yi(~x)→ (αi(~x) ∧ ¬ ψ′i)
∀~x αi(~x) ∧ ¬ ψ′(~x)→ Yi(~x)

Note that the skeleton and each definition formed by this conversion is a GNF
formula, and thus the conjunction of the skeleton and each definition is in GNF.

Example 19. Let path3(x1, x2) be the formula

∃y1 y2 y3R(x1, y1) ∧R(y1, y2) ∧R(y2, y3) ∧R(y3, x2)

So path3 says there is a path with 3 intermediate nodes leading from x1 to x2.

57

Consider the formula

∃x1 x2 x3 x4(S(x1, x2) ∧ ¬path3(x1, x2)) ∧ (T (x2, x3) ∧ ¬path3(x2, x3))

Then the Scott Normal Form of the formula is:

(∃x1 x2 x3 x4(G1(x1, x2) ∧G2(x2, x3))∧
(∀x1 x2 G1(x1, x2)← S(x1, x2) ∧ path3(x1, x2))∧
(∀x1 x2 S(x1, x2) ∧ path3(x1, x2)→ G1(x1, x2))∧
(∀x1 x2 G2(x1, x2)← T (x1, x2) ∧ path3(x1, x2))∧

(∀x1 x2 T (x1, x2) ∧ path3(x1, x2)→ G2(x1, x2))

The key point about the Scott normal form is that the quantifier alternation
is bounded: if put in prenex normal form, the formula we be a conjunction of
∀~x ∃y γ where γ is quantifier-free. When we translate these formulas to codes,
we will then get a restricted quantifier alternation within MSO. And after that,
a standard algorithm for converting MSO formulas to automata will give us an
elementary blow-up.

Inductive construction without Scott normal form. Above we sketched
an approach that went first into the normal form of GNF, to simplify the gram-
mar, and then into Scott Normal Form, to get rid of quantifier alternation. We
now give another inductive construction, which does not explicitly go through
Scott Normal Form, but uses the same idea of breaking up a GNF formula into
UCQs and GF formulas. The idea will be that the only expensive operation in
alternating automata is projection, and projection only occurs only in dealing
with UCQ-shaped formulas. There is an exponential blow up in converting a
UCQ-shaped formula to an automaton. But this blow-up is only in terms of the
“UCQ-skeleton” (described below): there is no blow-up in terms of the size of
the automata for the lower-level guarded negation formulas that are embedded
in the UCQ-shaped formula. Hence if we have many levels of nesting of UCQ-
shaped subformulas, we only get a single exponential blow-up, not a tower of
exponentials. We make this more precise below.

Recall that in translating from GF to automata, we only had to deal with
answer-guarded subformulas: formulas ϕ that are logically equivalent to R(~x)∧ϕ
where R(~x) is a guard for the free variables in ϕ. Since every subformula ϕ(~x)
is only used within a guard for ~x, we only needed to care about answer-guarded
subformulas. This meant that we could restrict our attention to bindings of the
free variables that lie within a single node of the tree. The ability to deal only
with “local properties” was crucial to the construction, since it meant we could
inductively create automata that run from an interior node in the tree that has
all the bound values in it. In contrast, GNF is built up from formulas that may
not be guarded, and we have to decide how to deal with these.

To get around the need to worry about free variable assignments that are not
local, we can make use of the normal form for GNF. We take advantage of the
fact that the nesting of UCQs allowed in GNF is restricted: the free variables in

58

a nested UCQ-shaped formula can be assumed to be guarded, and hence must
be represented locally in a single node in the tree code.

Recall that a UCQ-shaped formula in GNF with negation depth greater than
0 is of the form δ[Y1 := α1∧¬ψ1, . . . , Ys := αs∧¬ψs] where δ is a UCQ over the
extended signature σ′ obtained from σ by adding fresh relations Y1, . . . , Ys, each
ψi is a UCQ-shaped formula in GNF, and each αi is a guard in σ for the free
variables of ψi. We proceed by first constructing an automaton for the UCQ
“skeleton” δ, over the extended signature σ′. The automaton for δ[Y1 := α1 ∧
¬ψ1, . . . , Ys := αs∧¬ψs] can then be obtained by “plugging in” the complement
of the inductively-defined automata for each ψi into the automaton for δ. The
closure properties of parity automata are used to perform the complementation
efficiently.

Less formally this construction amounts to simulating the automaton for δ
while allowing Eve to guess the valuations for each Yi (i.e. valuations for each
subformula αi ∧ ¬ψi). In order to prevent Eve from cheating and just guess-
ing that every tuple satisfies these subformulas, Adam is allowed to challenge
her on these guesses by launching an inductively defined automaton for these
subformulas.

The only remaining issue is how to efficiently create an automaton for the
UCQ skeleton. That is, we need to say how to get an automaton for a UCQ δ
with guarded free variables. Formally, a local assignment ~a/~x for ~a = a1 . . . an ∈
Nn
k and ~x = x1 . . . xn is a mapping such that xi 7→ ai. A node v in a valid tree

code t with ~a ⊆ names(v) and a local assignment ~a/~x describes a valuation for
~x. We want an automaton Aδ whose states include, as one component in a
product, a local assignment σ. The correctness condition is that Aδ runs on t
from a state that is associated with σ accepts if and only if δ holds in decode(t) on
the valuation associated with σ. This is basically the same correctness condition
as we used for translating GF to automata. But the automata we created for
GF did not need the additional “local assignment” to be explicitly a separate
component of the state, since for GF our states were formulas of the closure,
and these local assignments were already baked into the closure.

Returning to how to construct Aδ: Intuitively we can just “program the
automaton for Aδ directly”. We create an automaton that starts at an interior
node with an initial state telling how the free variables of δ map to local names
of the node. We then search the tree, guessing witnesses to the existential
quantifiers and verify each atomic fact.

One way to formalize this is to explicitly describe the states of the automata.
The states will have to encode information about which variables we currently
have in scope and which subformula of the UCQ we are currently trying to
verify. In the next subsection we will define a notion called “specialization” that
will help us describe these states.

An alternative to explicitly writing out the states of Aδ will be to make use of
localization. The idea is to first write a 1-way non-deterministic automaton for
δ that assumes that all the variables are marked on the tree. This can be done
for a UCQ by induction, using the closure properties of 1-way non-deterministic
automata. We can apply Theorem 15 to convert this 1-way automaton over the

59

extended signature with free variable markings to the 2-way automaton that
we need in order to do the “plugging operation” above. Note that Theorem 15
applies to a UCQ, since such formulas are monotone. This idea of starting with
an automaton that runs on trees with free variables and then localizing it when
we are able to get to an answer-guarded formula will be useful in dealing with
more powerful logics in Section 11 later on.

Using our construction for UCQ-shaped formula we can create the desired
automaton for GNF by induction on the negation depth of the formula.

Lemma 4. Given a normal form formula ψ(~x) in GNF of width at most k over
signature σ, we can construct a 2APTω Aψ such that for all valid k tree codes
t, for all local assignments ~a/~x, and for all nodes v in t with ~a ⊆ names(v),

A~a/~xψ accepts t starting from v iff decode(T) satisfies ψ([v,~a]).

Further, there is a polynomial function f independent of ψ such that the
number of states of Aψ is at most Nψ := f(mψ) · 2f(krψ) and the number of
priorities is at most f(kmψ) where mψ = |ψ|, rψ is the CQ-rank of ψ. The
overall size of the automaton and the running time of the construction is at
most exponential in |σ| ·Nψ.

By combining this with an automaton that checks that the input tree is a
valid k tree code, we can test satisfiability of sentences from GNF in 2EXPTIME.

Theorem 16. There is a 2EXPTIME procedure that decides satisfiability of GNF
formulas.

With a little more effort, we could even show that we can construct a 2ABTω

for ψ in GNF rather than a parity automaton, but this is not important for
achieving the 2EXPTIME bound on satisfiability.

7.5 “Holistic” translation from GNF to automata
Recall that in the GF automaton construction, we can explicitly say what the
states of the automaton are: they correspond to formulas in the subformula
closure. The same was true in the earlier µ-calculus approach. This “holistic
approach” is different from the inductive approach that we just overviewed for
GNF, which applies automata operations to get the final automaton.

We can also extend the holistic approach to GNF, giving an alternative trans-
lation. In doing so we need to include more than just the usual subformula
closure in order to be able to correctly handle the CQ-shaped formulas. Below
we will explain this, focusing only on GNF without equality.

Before we define the relevant closure, we need to think more carefully about
CQ-shaped formulas, and how they can be satisfied in a tree-like structure.
This fine-grained analysis of how these formulas can be satisfied could be used
as an alternative way to get automata for UCQ-skeletons, as in the approach
in the previous section, but we will use it here as a way of describing the entire
automata for a GNF sentence directly. Our analysis of how CQ-shaped formula

60

can be satisfied revolves around the notion of specialization, which we describe
next.

Consider a CQ-shaped normal form GNF formula

ρ(~x) = ∃~y
∧

j∈{1,...,r}

ψj(~x, ~y).

A specialization of ρ is a formula ρ′ obtained from ρ by the following operations:

• select a subset ~y0 of ~y (call variables from ~x ∪ ~y0 the inside variables and
variables from ~y \ ~y0 the outside variables);

• select a partition ~y1, . . . , ~ys of the outside variables, with the property
that for every ψj , either ψj has no outside variables or all of its outside
variables are contained in the partition element ~yj ;

• let χ0 be the conjunction of the ψj whose free variables are among ~x and
the inside variables ~y0, and let χi for i ∈ {1, . . . , s} be the conjunction of
the ψj using outside variables and satisfying Free(ψj) ⊆ ~x ∪ ~y0 ∪ ~yi;

• set ρ′(~x, ~y0) to be

χ0(~x, ~y0) ∧
∧

i∈{1,...,s}

∃~yi χi(~x, ~y0, ~yi).

Roughly speaking, each specialization of ρ describes a different way that a
CQ-shaped formula could be satisfied by elements ~x occurring in a bag of a
tree-like structure. The inside variables represent witnesses for the existential
quantifiers that are found in the bag itself. The partition of the outside variables
represent the different directions from the bag where the additional non-local
witnesses are to be found: moving either to an ancestor or to one of the children.
Since each atom of the CQ shape formula must be realized in a single bag, the
atoms must be “homogeneous” with respect to the partition, as captured in the
second item above.

It is easy to see that if a specialization is realized, then so is the original
formula, since the realization of the specialization gives witnesses for all the
existential quantifiers:

Lemma 5. Let ρ(~x) ∈ GNF be a CQ-shaped formula ∃~y
∧
j ψj(~x, ~y). For all

structures M and for all specializations ρ′(~x, ~y0) of ρ, if M |= ρ′(~a,~b), then
M |= ρ(~a).

Since a formula is vacuously a specialization of itself, the converse direction
is vacuously true. What is more useful is that whenever a formula is realized,
it is realized by a specialization that is “simpler” than the original formula it
specializes. We say a specialization is non-trivial if either χ0 is non-empty or
the partition of the outside variables is non-trivial (s > 1). The following result
captures the idea that in realizing a formula we need to realize some simpler
specialization:

61

Lemma 6. Let ρ(~x) ∈ GNF be a CQ-shaped formula ∃~y
∧
j ψj(~x, ~y). Given a

structure M and its tree code t, if there exists a node v that includes names ~a
and M |= ρ([v,~a]), then there is a non-trivial specialization ρ′(~x, ~y0) of ρ and a
node w with ~a and additional names ~b0 in its domain such that [w,~a] = [v,~a]

and M |= ρ′([w,~a], [w,~b0]).

The idea behind the lemma is that if the formula holds at a bag with cer-
tain witnesses for the free variables, we can traverse the bags of the tree code,
traversing only nodes that preserve all those witnesses, until we arrive at a bag
B where either some of the witnesses are found locally in B or the witnesses
are found in different directions from B. In the first case we have realized a
specialization in which χ0 is non-empty, and in the second case we have realized
a specialization in which the partition of the outside variables is non-trivial.

We will write Spec(∃~y η(~a, ~y), A) for the set of all specializations of ∃~y η(~a, ~y)
with names from A substituted for any new inside variables. For convenience in
the construction below, each specialization S ∈ Spec(∃~y

∧
j ψj(~x, ~y), A) will be

represented as a set: that is, the specialization χ0(~a,~b0)∧
∧
i∈{1,...,s} ∃~yi χi(~a,~b0, ~yi)

of ∃~y
∧
j∈{1,...,r} ψj(~a, ~y) is represented as the set:

{ψj(~a,~b0) : j ∈ {1, . . . , r} , ψj(~a,~b0) in χ0} ∪ {∃~yi χi(~a,~b0, ~yi) : i ∈ {1, . . . , s}}.

Again, each formula in the set describes how a piece of the CQ-shaped formula
is satisfied.

Fix some GNF sentence ϕ in normal form that we are interested in testing
satisfiability for. The closure clGN(ϕ,Nk) that is relevant for the GNF automaton
construction consists of the subformulas of ϕ along with specializations of any
CQ-shaped formulas. Formally, elements of clGN(ϕ) will be of the form 〈ψ, p〉
where ψ is a formula and p ∈ {+,−} is a polarity to indicate whether ψ comes
from a positive or negative part of ϕ.

Let clGN(ϕ,Nk) be the smallest set C of formulas containing 〈ϕ,+〉, 〈True,+〉,
〈True,−〉, 〈False,+〉, 〈False,−〉 and satisfying the following closure conditions:

• if 〈α ∧ ¬ψ,+〉 ∈ C, then 〈α,+〉, 〈ψ,−〉 ∈ C;

• if 〈α ∧ ¬ψ,−〉 ∈ C, then 〈α,−〉, 〈ψ,+〉 ∈ C;

• if 〈
∨
i ψi,+〉 ∈ C, then 〈ψi,+〉 ∈ C for all i;

• if 〈
∨
i ψi,−〉 ∈ C, then 〈ψi,−〉 ∈ C for all i;

• if 〈∃~y η(~a, ~y),+〉 ∈ C, then 〈ψ′,+〉 ∈ C for all ψ′ ∈ Spec(∃~y η(~a, ~y), Nk);

• if 〈∃~y η(~a, ~y),−〉 ∈ C, then 〈ψ′,−〉 ∈ C for all ψ′ ∈ Spec(∃~y η(~a, ~y), Nk).

We are now ready to describe the 2ABTω automaton construction for a GNF
sentence ϕ. The automaton Aϕ for ϕ is defined as follows:

• The state set is clGN(ϕ,Nk).

62

• The initial state is 〈ϕ,+〉.

• The transition function δ is defined below.

• The set of accepting states consists of all states of the form 〈True,+〉,
〈False,−〉, 〈R(~a),−〉, or 〈∃~y η(~a, ~y),−〉.

We now describe the transition function. Below we use Dir to abbreviate
the set Direction2 of movement actions in a binary tree. That is, Dir consists of
Stay, Down1,Down2, and Up.

δ(〈R(~a),+〉, τ) :=

(Stay, 〈False,+〉) if ~a not represented in τ
(Stay, 〈True,+〉) if R(~a) ∈ τ∨
d∈Dir(d, 〈R(~a),+〉) otherwise

δ(〈R(~a),−〉, τ) :=

(Stay, 〈True,+〉) if ~a not represented in τ
(Stay, 〈False,+〉) if R(~a) ∈ τ∧
d∈Dir(d, 〈R(~a),−〉) otherwise

δ(〈True,+〉, τ) := (Stay, 〈True,+〉)
δ(〈False,−〉, τ) := (Stay, 〈False,−〉)
δ(〈True,−〉, τ) := (Stay, 〈True,−〉)
δ(〈False,+〉, τ) := (Stay, 〈False,+〉)
δ(〈
∨
i ψi,+〉, τ) :=

∨
i(Stay, 〈ψi,+〉)

δ(〈
∨
i ψi,−〉, τ) :=

∧
i(Stay, 〈ψi,−〉)

δ(〈α ∧ ¬ψ,+〉, τ) := (Stay, 〈α,+〉) ∧ (Stay, 〈ψ,−〉)
δ(〈α ∧ ¬ψ,−〉, τ) := (Stay, 〈α,−〉) ∨ (Stay, 〈ψ,+〉)

δ(〈∃~y η(~a, ~y),+〉, τ) :=

(Stay, 〈False,+〉) if ~a not represented in τ∨
S∈Spec(∃~y η(~a,~y),names(τ))

∧
ψ∈S(Stay, 〈ψ,+〉) ∨∨

d∈Dir(d, 〈∃~y η(~a, ~y),+〉) otherwise

δ(〈∃~y η(~a, ~y),−〉, τ) :=

(Stay, 〈True,+〉) if ~a not represented in τ∧
S∈Spec(∃~y η(~a,~y),names(τ))

∨
ψ∈S(Stay, 〈ψ,−〉) ∧∧

d∈Dir(d, 〈∃~y η(~a, ~y),−〉) otherwise

We can show that:

A formula ϕ(~x) holds in a tree code t at node v with names ~a if and
only if the automaton above accepts when launched at t from v with
initial state 〈ϕ(~a),+〉.

This is proven by induction, and Lemma 6 is utilized in the inductive case
for CQ-shaped formulas.

It is useful to compare this to the GF construction on page 44. There is
an obvious difference here in that we are carrying around the polarity in the
state, whereas with GF we were working with formulas in NNF. Ignoring this

63

minor technical difference, the construction here is the same as for GF except
for the quantifier case. For GF, we could always find the witnesses for the
quantified variables in a single node (because the quantification was guarded).
For GNF, the witnesses for a CQ-shaped formula might not be in a single node.
Hence, Eve guesses some specialization, which is a declaration of the how to
find witnesses—some of these witnesses might be in the current node, but some
of the witnesses might be in different parts of the tree, and require breaking-
up the CQ into pieces that are satisfied in these different directions. Once she
declares this specialization, Adam can then challenge her on any part of this
specialization. Notice that any state 〈∃~y η(~a, ~y),+〉 is not accepting, to ensure
that Eve cannot forever avoid finding the witnesses.

Because the number of specializations is exponential in the size of the formula
(in fact polynomial in the size of the signature, and exponential in the width
and CQ-rank), the number of states is still singly-exponential as before. Hence,
this still leads to a 2EXPTIME satisfiability testing algorithm for GNF.

7.6 Bibliographic remarks and suggestions for further read-
ing

The Guarded Negation Fragment was introduced in [Bárány et al., 2011], which
also presented the main decidability and complexity results about the logic. The
best reference for the language is probably [Bárány et al., 2015], although the
syntax we used has some minor distinctions from that presented in [Bárány et al.,
2015]. Follow-up papers studying further properties of the logic are [Bárány
et al., 2012, Bárány et al., 2013]. The decidability argument for GNF given
in [Bárány et al., 2015] proceeds differently than the direct automata-theoretic
approaches given here. They first eliminate nesting of CQ-shaped formulas by
introducing new relations. This simplification reduces to the case of a boolean
combination of GF sentences and UCQs: essentially, the Open World Query
Answering problem for GF sentences. This special case can be solved by a more
straightforward automata-theoretic translation [Bárány et al., 2010].

An important result about GNF is that it has the finite model property:
whenever a sentence is satisfiable, there is a finite structure that satisfies it.
This result, due to Bárány, Gottlob, and Otto [Bárány et al., 2010], makes use
of automata-theoretic techniques, but uses other ideas for avoiding the use of
infinite structures.

Frontier-guarded TGDs were studied in [Baget et al., 2011b], and the results
on open world query answering for these TGDs were derived in [Baget et al.,
2011b].

64

8 Applications to Open World Query Answering
We have seen that the Guarded Negation Fragment contains allows us to com-
bine GF statements with positive existential sentences in a decidable logic. In
this section, we give an application of GNF decidability to the open world query
answering problem, a problem coming from databases and knowledge represen-
tation. For this problem the ability to express positive existential sentences is
crucial.

Open World Query answering will also introduce us to two ways of refining
the technique of tree-like models. We will look at situations where we can come
up with a single “most general” tree-like model. Open World Query Answering
also gives us a more refined complexity analysis for GNF, by splitting the input
up into two parts.

8.1 Open World Query Answering Basics
Recall from Section 2 that first-order logic formulas are evaluated over a struc-
ture M , consisting of a domain and interpretations of each relation. But if we
are interested in formulas ϕ that are domain-independent, we need not concern
ourselves with the domain, and can consider the structuresM to be defined just
by the interpretations of the relations.

In some situations we have a set of information, but it is incomplete. For
example, we may have a ternary relation MarriotHotels(id, address, phone) and
a relation Hotels(address, phone). We know about some information concerning
it; for example, we may know MarriotHotels(2456, 123 Main Street, 222− 2222)
holds, and we know some logical rules satisfied by the data, such as:

∀xyz MarriotHotels(x, y, z)→ Hotels(y, z)

But additional facts may hold as well. Given a finite structure M0, and a set of
sentences Σ in some logic, the possible worlds for M0,Σ are the set of structures
M such that M satisfies Σ and the interpretation of each relation R in M
contains the interpretation in M0. We say “M contains the facts of M0” below.
We can considerM0 and Σ as a way of representing the infinitely many possible
worlds.

Given another sentence ϕ, we want to know if it holds in all possible worlds
for M0,Σ. In the example above, Hotels(123 Main Street, 222 − 2222) holds in
all possible worlds.

Formally, the Open World Query Answering Problem (OWQ) is the problem
that takes as input a finite structureM0, sentences Σ, a sentence ϕ, and outputs
yes exactly when ϕ holds in all possible worlds forM0,Σ. We writeM0∧Σ |= ϕ
for short.

8.2 Decidability of Open World Query Answering
An easy corollary of our results on GNF is that the OpenWorld Query Answering
Problem is decidable for Σ in GF and ϕ a UCQ.

65

Corollary 1. Open World Query Answering is decidable in 2EXPTIME as M0

varies over finite structures, Σ over GNF, ϕ over UCQs.

Proof. The negation of OWQ is the satisfiability of
∧
F∈M0

F ∧Σ∧¬ϕ, where F
ranges over quantifier-free atomic formulas R(c1 . . . cn) that hold in M0. This
is in GNF, and thus we can decide it using Theorem 16.

8.3 Open World Query Answering and Canonical tree-like
models

The OWQ problem has most often been studied in the case where the sentences
Σ are Tuple-Generating Dependencies (TGDs), sentences of the form:

∀x1 . . . xj
∧
m≤q

Am →

∃y1 . . . yk
∧
n≤r

Bn

where A1 . . . Aq and B1 . . . Br are relational atoms. The conjunction of Am is
referred to as the body of the TGD while the conjunction of the Bn is referred
to as the head. The variables xi that also occur in some Bn are the exported
variables of the TGD.

Corollary 1 tells us that OWQ is decidable when ϕ is a UCQ and the TGDs
are in GNF. A TGD is Guarded if there is an atom Ag in the body that contains
all the variables of the body. A TGD is Frontier-Guarded if there is an atom Ag
in the body that contains all the exported variables. We claim that Frontier-
Guarded TGDs can be rewritten in GNF. This can be seen by rewriting universal
quantification and implication using negation and existential quantification in
the usual way:

¬[∃x1 . . . xj
∧
m≤q

Am∧

¬∃y1 . . . yk
∧
n≤r

Bn]

and then observing that the outer negation is vacuously guarded (since there
are no free variables), while the distinguished atom Ag serves as a guard for
the inner negation. Thus OWQ is decidable for Frontier-Guarded TGDs. Note
that Guarded TGDs can be rewritten in GF. However, applying the reduction of
Corollary 1, we see that OWQ for Guarded TGDs reduces to a GNF satisfiability
problem (not a GF satisfiability problem): this is because OWQ involves the
CQs, which are not generally in GF. However, what we can say using the same
reduction as in Corollary 1 is that OWQ for an atomic CQ and Guarded TGDs
reduces to satisfiability of GF.

It follows that if Σ consists of Frontier-Guarded TGDs, M0 is a finite struc-
ture, Q is a CQ, andM0∧Σ∧¬Q is satisfiable, then there is anM that witnesses

66

this that has a k-tree code: that is, an M that has a k-tree code that preserves
all the facts of M0, satisfies Σ and fails to satisfy Q.

In fact, for any set of TGDs Σ, there is a “canonical choice” for such an M ,
and the same choice of M works for every CQ Q such that M0 ∧ Σ ∧ ¬Q is
satisfiable. We can build such a structure as the union of structures M i with
M0 = M0 an M i+1 built from M i by “firing each rule in M i+1”.

Formally, for each TGD σ ∈ Σ

∀x1 . . . xj
∧
m≤q

Am →

∃y1 . . . yk
∧
n≤r

Bn

A trigger for σ is a substitution c1 . . . cj such that M i, c1 . . . cj |=
∧
mAm.

“Firing a rule on this trigger” (often called “performing a chase step with this
trigger”) means generating new elements d1 . . . dk and adding facts Bn(d1 . . . dk)
for n ≤ r to M i+1. The structure M i+1 is formed from M i by performing chase
steps for each trigger in M i.

The structure constructed by unioning the structures Mi define above is
often referred to as the chase of M0 under Σ, denoted ChaseΣ(M0). 1

Example 20. Consider Σ consisting of the following two TGDs:

∀x y [R(x, y) ∧ U(y)→ ∃z R(y, z) ∧ U(z) ∧ V (y)]

∀x y [R(x, y) ∧ V (y)→ ∃z R(z, x) ∧ V (x)]

and the initial structure M0 in which the only ground atoms holding are R(x0, y0)
and U(y0) for some elements x0, y0.

In the first “chase step” we would fire the first rule with the “trigger” x =
x0, y = y0. This creates a new element z0 and the additional facts

R(y0, z0), U(z0), V (y0)

After this step, another chase step could fire on the second rule, with trigger
x = x0, y = y0. This step creates a new element z1 and adds facts

R(z1, x0), V (x0)

At this point, we have fired every chase step in M0, giving us a new structure
M1. We should now fire every chase step in M1. For example, rule 1 can then
fire on x = y0, y = z0, and rule 2 can fire on x = z1 y = x0.

The process will go on for an infinite number of rounds, leading to an infinite
structure, the union of the structures M i formed in each round, in which the
sentences in Σ are satisfied.

1There are several variations of the chase [Fagin et al., 2005, Onet, 2013], but the other
variations will not be relevant here.

67

M ′ clearly satisfies Σ and is thus a possible world for M0. Further we claim
that:

Proposition 19. For any boolean conjunctive query Q with constants from M0,
M0 ∧ Σ |= Q exactly when Q holds in the chase of M0 under Σ.

Proof. It is easy to see that ChaseΣ(M0) contains M0 and satisfies Σ. That is,
ChaseΣ(M0) is a possible world for M0,Σ. Thus if M0 ∧ Σ |= Q, then Q holds
in ChaseΣ(M0). In the other direction, suppose Q holds in ChaseΣ(M0), and
consider an arbitrary possible world M . We will show that Q holds in M . To
do this we will build a homomorphism h from ChaseΣ(M0) to M . We build h
inductively, as the union of homomorphisms hi on each M i. For elements of
M0 it is the identity The new element of M i+1 are generated from a chase step
using some trigger τ in M i for some TGD. That is there is a TGD

∀x1 . . . xj
∧
m≤q

Am → ∃y1 . . . yk
∧
n≤r

Bn

in Σ, and a c1 . . . cj ∈ M i satisfying the left hand side of the TGD, with new
elements m1 . . .mk generated as witnesses for y1 . . . yk in the head. The homo-
morphism hi maps c1 . . . cj to some trigger inM . But sinceM satisfies Σ, there
must be some witnesses d1 . . . dk for y1 . . . yk in M . We set h(mi) = di for each
i. If we do this for each fresh elements generated in M i+1 we can check that
this is a homomorphism.

Example 21. An illustration of the proof of Proposition 19 can be found in
Figure 9. The figure shows the first few levels of ChaseΣ(M0) on the left, and
then an arbitrary possible world M on the right. The colors represent unary
relations and the edges a binary relation. The figure highlights the difference
between ChaseΣ(M0) and an arbitrary possible world: in the chase the witnesses
needed for some constraint are fresh elements. In M we must still have such a
witness, but it may not be a fresh element. The homomorphism just maps the
fresh elements in ChaseΣ(M0) to an arbitrary witness in M .

A structure M that satisfies the conclusion of Proposition 19 is called a
universal model for Σ and M0. The relationship between an arbitrary possible
world M for M0 and ChaseΣ(M0) has some resemblance to the relationship
between an arbitrary structure M and its unravelling (see Figure 3). In both
cases, there is a relationship between M and the other structure that can map
a single element of M to many elements in the other structure. But the chase
is defined for TGDs, which are incomparable in expressiveness with guarded
logics. And for arbitrary TGDs that are not guarded or Frontier-Guarded, the
resulting structure may not be tree-like. However, regardless of tree-likeness,
for any collection of TGDs Σ, the chase is always a “canonical counterexample”
for the OWQ problem. This is what Proposition 19 says.

We claim that if Σ consists of Frontier-Guarded TGDs, then for any finite
M0, the chase of M0 is tree-like: that is, it has a k-code, where k is bounded by
the size ofM0 plus the size of Σ. The root vertex is associated with all elements

68

…

ChaseS(M0) M

Figure 9: The chase, an arbitrary possible worldM , and a homomorphism from
the chase to M

69

of M0. The other vertices are associated with a rule firing f in the formation
of M ′. If vf is the vertex corresponding to f , then λ(v) associates v to every
element that is generated in firing f . Each rule firing f is associated to some
fact R(e1 . . . ek) that guards the mapping to the rule body, and there is a rule
firing f ′ that generated this fact; we make vf the child of v′f . We need to check
that:

• For every fact F = R(c1 . . . ck) in M , the set of arguments {c1 . . . ck} is
contained in λ(v) for some v

• For every element e ∈ M , the set of vertices v associated with e is con-
nected.

For the first, note that the arguments for a fact F of M0 are contained in the
root. The arguments for a fact generated by a firing f are contained in the
corresponding vertex vf .

Example 22. Recall the TGDs Σ of Example 20, and the initial structure M0 in
which the only ground atoms holding are R(x0, y0) and U(y0) for some elements
x0, y0.

Figure 10 shows the firing of rules on the initial structure M0, and the group-
ing of the resulting structure into a tree code. Note that the root consists of the
facts in M0 itself. All other nodes represent structures with at most w elements,
where w is the width of Σ. In fact, since these are Guarded TGDs, we obtain
that all non-root nodes are guarded.

For the second item, it suffices to show that if e is not present in λ(v) for
a vertex v, it is not present in λ(v′) for any descendant v′ of v. But the only
elements that are introduced in a descendant of v are elements generated freshly
by rule firings, and these can not be in v since they are fresh.

Note that gives an alternative proof that counterexamples to OWQ for Frontier-
Guarded TGDs can be made tree-like, without going through Theorem 13, the
tree-like model result for GNF. This gives a direct argument for decidability of
OWQ for Frontier-Guarded TGDs.

In fact, one can go further and devise a 2EXPTIME algorithm to conclude
decidability of OWQ for Guarded TGDs directly, without referring to automata
at all. This is what is accomplished in [Calì et al., 2008, 2012]. The idea is
that one can truncate the chase process any time a chase step produces a bag
that is “similar” to an ancestor bag. We explain the idea for the simple case of
OWQ(M0,Σ, Q) where Σ consists of guarded TGDs and Q consists of a single
ground fact G(). Let M be the chase of M0 under Σ, with n, n′ nodes in the
tree-like representation. A local homomorphism from n to n′ is a mapping from
the values occurring in n to the values occurring in n′ that preserves all facts
of n. We say that a node n is ancestor-blocked if it has some strict ancestor
n′ where there is a local homomorphism from n to n′. Let M− by a finite
partial chase under Σ whose tree representation has the property that every
leaf node is ancestor-blocked. That is, from each leaf node n of M− there is a
homomorphism of n to some strict ancestor n′ of n in M−.

70

R(x0,y0), U(x0)

R(y0, z0) U(z0) V(x0)

R(x0,y0), U(x0), V(x0)

R(y0, z0) U(z0) V(x0)

R(x0,y0), U(x0), V(x0)

R(z1, x0) V(x0)

R(y0, z0) U(z0) V(x0)

R(x0,y0), U(x0), V(x0)

R(z1, x0) V(x0)

R(z0, z2) U(z2) V(z0)

1 2

3

4

Figure 10: The chase process with guarded TGDs, with each step creating a
tree-like structure

71

We claim that such an M− is already universal for atomic queries. That is,
if a boolean atomic query G() does not hold in M−, then it cannot hold in M ,
and hence we cannot have M0 ∧ Σ |= G(). The reason is simple: if G() held in
M , this would be witnessed in some node m of M . Taking such a node m of
minimal depth, it would have an ancestor in M−, say n. But letting p be the
path from n to m in M , a homomorphic image of p must exist going from n′ to
some node m′ satisfying G() in M , since every trigger that can fire from n, its
homomorphic image will fire from n′. Thus we have contradicted the minimality
of m.

Now we note that there is a double-exponential function f ofM0 and Σ such
that: any path of size at least f has a node that is ancestor-blocked. Thus
within M there is an M− of depth at most doubly-exponential. Using this fact,
it is not difficult to obtain a doubly-exponential complexity bound for OWQ
for atomic queries under Guarded TGDs. The same technique generalizes to
arbitrary conjunctive queries [Calì et al., 2012, 2008], and to Frontier-Guarded
TGDs [Baget et al., 2011b].

Although this direct method can be seen as alternative presentations without
automata, the notions of “similar bag” could be seen as just special cases of state
repetition in automata.

8.4 Refining the complexity of open world query answer-
ing using tree-like models

Recall that open world query answering problem has 3 inputs: an initial struc-
ture M0, a set of sentences Σ and a sentence Q. If Q is a conjunctive query and
Σ is in GNF, our satisfiabiilty procedures based on tree-like models give us a
way of deciding OWQ. But tree-like models also give us information about how
the complexity behaves when Σ and Q are fixed and only M0 varies. This is the
“data complexity of OWQ” and it is significant because one expects Σ and Q to
be small (e.g. a set of sentences that a person could write down) while M may
be a very large dataset.

Theorem 17. For any fixed set of GNF sentences Σ and UCQ Q, there is a
CoNP algorithm that takes a finite structure M0 and decides OWQ(M0,Σ, Q).

A counterexample to OWQ(M0,Σ, Q) is a possible world M ′ for M0 and
Σ that satisfies ¬Q. Clearly OWQ(M0,Σ, Q) holds exactly when there is no
counterexample. To prove the theorem, we need a refinement of the unravel-
ling process that unravels a counterexample M ′ but leaves M0 in tact. For a
finite structure M0 an M0, k-rooted structure is one which is M0 unioned with
a structure T~c for ~c ∈ domain(M0)k where the domain of T~c overlaps with the
domain of M only in ~c, and for two k-tuples ~c and ~c ′, the domain of T~c overlaps
with the domain of T~c ′ only within ~c ∩ ~c ′.

One can picture such a set as a squid, with M at the root and the T~c
hanging off as tentacles. See Figure 8.4. We can show that if there is a witness
to satisfiability of a GNF sentence in a structure that contains the facts of M0,
then there is such a structure that forms an M0, k-rooted structure.

72

ᵩ1 ,ᵩ2

ᵩ1 ,ᵩ3

ᵩ2 ,ᵩ3

ᵩ2
ᵩ3

ᵩ1,ᵩ2 ,ᵩ3

Figure 11: A structure M0 (left top), an M0, 2-rooted structure (right top) ,
and the abstraction of the extension (bottom)

73

Proposition 20. For any finite structure M0, if a GNF sentence Σ is satisfiable
by a structure in which the interpretation of each relation R contains the inter-
pretation of R in M0, then Σ is satisfied in a structure which has an M0, k-rooted
structure, where k is at most |Σ|.

Proof. One proof of Proposition 20 proceeds by taking a counterexample M
and modifying the unravelling of M for GNF to preserve M0. That is, we define
the unravelling as before, but we make an exception for the root, making the
root M0. Recall that this procedure produces a tree-like structure where the
bags correspond to k-tuples from M , for k the width of Σ. Thus the modified
unravelling procedure will produce a structure that is structured in a tree, where
the root isM0 and all other nodes correspond to k-tuples. The distinct subtrees
of the root would form the structures T~c.

There is also a simpler construction that gives anM0, k-rooted counterexam-
ple, without invoking the unravelling construction. For each guarded set ~c ofM ,
let T~c be a copy ofM where all elements are fresh except for ~c. LetM ′ =

⋃
~c T~c.

Clearly T~c and T~c ′ only overlap within ~c ∩ ~c ′. We claim that Duplicator has a
winning strategy in the GNFk game between M and M ′, for any k. This will
imply that M ′ is still a counterexample to OWQ. Note that every element v
of M ′ is associated with an element ρ(v) of M In our strategy for Duplicator
will ensure that if the active structure is M ′, then the homomorphism h will
just be ρ. If the active structure is M , the homomorphism h will just be the
identity. One can easily check that this determines a successful strategy for
Duplicator.

Proposition 20 shows that it suffices to examine witnesses consisting of a
root that is a copy ofM0 and a collection of tentacles indexed by k-tuples of the
domain of the root. We have control over the size of the root, and also over the
index set. But the size of the tree-like tentacles is unbounded. We now show a
decomposition result stating that to know what happens in a tree-like set, we
will not need to care about the details of the tentacles, but only a small amount
of information concerning the sentences that the tentacle satisfies in isolation.

Recall that FO(σ) denotes first-order logic over the signature σ with equality.
Let FO(σ∪{d1 . . . dk}) denote first-order logic over the signature σ with equality
and k constants, which will be used to represent the overlap elements.

Recall that the quantifier-rank of a formula is the maximal number of nested
quantifiers. For any fixed signature ρ, if we fix the quantifier-rank j, we also
fix the number of variables that may occur in a formula, and thus there are
only finitely many sentences up to logical equivalence. Thus we can let FOj(ρ)
denote a finite set containing a sentence equivalent to each sentence of quantifier-
rank at most j. Given an M0, k-rooted structure M , and number j, the j-
abstraction of M is the expansion of M0 with relations Pτ (x1 . . . xk) for each
τ ∈ FOj(σ∪{d1 . . . dk}). We interpret Pτ (x1 . . . xk) by the set of k-tuples ~c such
that T~c satisfies τ .

That is, a j-abstraction of an M0, k-rooted structure M is an annotation
of each k-tuple ~c in M0 with some formulas summarizing the structure of the

74

tentacle T~c of M . The bottom of Figure 8.4 gives the idea of a j-abstraction
of the M0, 2-rooted structure M shown in the top right. Each 2-tuple of the
rooted structure M is annotated by the formulas ϕ1, ϕ2, ϕ3 . . . that hold in the
corresponding tentacle of M .

We let σj,k be the signature of the j-abstraction of such structures. We now
present a lemma capturing the idea that we can reduce reasoning about M0, k
rooted structures M to reasoning about the j-abstractions of such extensions.

Lemma 7. For any sentence ϕ of FO(σ) and any k ∈ N, there is a j ∈ N having
the following property:

Let N1 be an M1, k-rooted structure for some σ-structure M1. Let N2 be an
M2, k-rooted structure for some σ-structure M2. If the j-abstractions of N1 and
N2 agree on all FO(σj,k) sentences of quantifier-rank at most j, then N1 and
N2 agree on ϕ.

Proof. To prove this we need to make use of some results on games for first-order
logic.

Let jϕ be the quantifier-rank of ϕ. We choose j ··= jϕ · k. We will show that
N1 and N2 agree on all formulas of quantifier-rank jϕ. Recall now Proposition
1 in Section 2: to show that N1 and N2 agree on these formulas, it is sufficient
to give a strategy for Duplicator in the jϕ-round standard pebble game for
FO(σ) over N1 and N2. With i moves left to play, we will ensure the following
invariants on a game position consisting of a sequence ~p1 ∈ N1 and ~p2 ∈ N2:

• Let ~p1′ be the subsequence of ~p1 that comes fromM1 and let ~p2′ be defined
similarly for ~p2 and M2. Then ~p1

′ and ~p2
′ should form a winning position

for Duplicator in the (i · k)-round FO(σj,k) game on the j-abstractions.

• Fix any k-tuple ~c1 ∈ M1 and let P 1
~c1

be the subsequence of ~p1 that lies
in T~c1 within N1. Then if P 1

~c is non-empty, ~c1 also lies in ~p1. Further,
letting ~c2 be the corresponding k-tuple to ~c1 in ~p2, and letting P 2

~c2
be the

subsequence of ~p2 that lies in T~c2 within N2, then P 1
~c1

and P 2
~c2

form a
winning position in the i-round pebble game on T~c1 and T~c2 .
The analogous property holds for any k-tuple ~c2 ∈M2.

We now explain the strategy of Duplicator, focusing for simplicity on moves of
Spoiler within N1, with the strategy on N2 being similar. If Spoiler plays within
M1, Duplicator responds using her strategy for the games on the j-abstractions
of M1 and M2. It is easy to see that the invariant is preserved.

If Spoiler plays an element within a substructure T~c1 within N1 that is al-
ready inhabited, then by the inductive invariant, ~c1 is pebbled and there is
a corresponding ~c2 in N2 with substructure T~c2 of N2 such that the pebbles
within T~c2 are winning positions in the game on T~c1 and T~c2 with i moves left to
play. Thus Duplicator can respond using the strategy in this game from those
positions.

Now suppose Spoiler plays an element e1 within a substructure T~c1 within
N1 that is not already inhabited. We first use ~c1 as a sequence of plays for

75

Spoiler in the game on the j-abstractions of N1 and N2, extending the positions
given by ~p1

′ and ~p2
′. By the inductive invariant, responses of Duplicator exist,

and we collect them to get a tuple ~c2. Since a winning strategy in a game
preserves atoms, and we have a fact in the j-abstraction corresponding to the
j-type of ~c1 in T~c1 , we know that ~c2 must satisfy the same j-type in T~c2 that ~c1
does in T~c1 . Therefore ~c1 must satisfy the same FO(σ ∪{d1 . . . dk}) sentences of
quantifier-rank at most j in T~c1 as ~c2 does in T~c2 . Thus Duplicator can use the
corresponding strategy to respond to e1 with an e2 in T~c2 such that {e1} and
{e2} are a winning position in the (i− 1)-round pebble game on T~c1 and T~c2 .

Since the response of Duplicator corresponds to k moves in the game within
the j-abstractions, one can verify that the invariant is preserved.

We must verify that this strategy gives a partial isomorphism. Consider a
fact F that holds of a tuple ~t1 within N1, and let ~t2 be the tuple obtained using
this strategy in N2.

• If ~t1 lies completely within some T~c1 , then the last invariant guarantees
that ~t2 lies in some T~c2 . The last invariant also guarantees that σ-facts of
N1 are preserved since such facts must lie in T~c1 , and the corresponding
positions are winning in the game between T~c1 and T~c2 .

• If ~t1 lies completely within M1, then the first invariant guarantees that
the fact is preserved.

By the definition of a rooted structure, the above two cases are exhaustive.

From Lemma 7 we easily obtain:

Corollary 2. For any sentence ϕ and k ∈ N, there is j ∈ N and a sentence
ϕ′ in the language σj,k of j-abstractions over σ such that for all sets of σ-facts
M0, an M0, k-rooted structure satisfies ϕ iff its j-abstraction satisfies ϕ′.

Recall that by Proposition 20, we know it suffices to check for a counterex-
ample to entailment that is an M0, k-rooted structure. Corollary 2 allows us
to do this by guessing an abstraction and checking a first-order property of it.
This allows us to finish the proof of Theorem 17.

Proof of Theorem 17. Fixing Q and Σ, we give an NP algorithm for the comple-
ment. Let ϕ = Σ ∧ ¬Q, and k = |ϕ|. Let j and ϕ′ be the number and formula
guaranteed for ϕ by Corollary 2.

Recall that FO(σ ∪ {d1 . . . dk}) denotes first-order logic over the signature σ
of Σ∧¬Q with equality and with k constants, and FOj(σ ∪ {d1 . . . dk}) denotes
a finite set containing a sentence equivalent to each sentence of quantifier-rank
at most j. Let Typesj be the collection of subsets τ of FOj(σ ∪ {d1 . . . dk})
sentences such that the conjunction of sentences in τ is satisfiable. Note that
for any fixed j, the size of FOj(σ ∪ {d1 . . . dk}) is finite, hence the size of Typesj
is finite. An element of Typesj can be thought of as a description of a tentacle,
telling us everything we need to know for the purposes of the j-abstraction.

GivenM0, guess a function f mapping each k-tuple overM0 to a ρ ∈ Typesj .
We then check whether for two overlapping k-tuples ~c and ~c ′, the types f(~c) and

76

f(~c ′) are consistent on the atomic formulas that hold on overlapping elements,
and whether the atomic formulas of f(~c) contain each fact over ~c inM0. Finally,
for each τ ∈ FO(σ ∪ {d1 . . . dk}) of quantifier-rank at most j, we form the
expansion I by interpreting Pτ by the set of tuples ~c such that τ ∈ f(~c), and
we check whether the expansion satisfies ϕ′ with these interpretations, and if so
return true.

We argue for correctness. If the algorithm returns true with I as the witness,
then create an M0, k-rooted structure N by picking for each ~c a structure satis-
fying the sentences in f(~c) with distinguished elements interpreted by ~c. Such a
structure exists by satisfiability of f(~c). It assigns atomic formulas consistently
on overlapping tuples, by hypothesis, and the atomic formulas it assigns contain
each fact of M0. We let the remaining domain elements be disjoint from the
domain of M0. Note that by construction, N has M as its j-abstraction. By
the choice of j and ϕ′, and the observation above, N satisfies Σ ∧ ¬Q. Thus N
witnesses that OWQ(M0,Σ, Q) is false.

On the other hand, if OWQ(M0,Σ, Q) is false, then by Proposition 20 we
have an M0, k-rooted structure N that satisfies Σ∧¬Q. By the choice of j and
ϕ′, the j-abstraction of N satisfies ϕ′. For each tuple ~c from M0, the set of
formulas of quantifier-rank holding of ~c in the tentacle of ~c must be in Typesj .
Hence we can guess f that assigns ~c to this set, and with this f as a witness the
algorithm returns true.

8.5 Variations of OWQ decidable via Guarded Logics
A variation of the OWQ problem is the hybrid open and closed world query
answering problem, which we denote as HOCWQ. Here the inputs are a finite
structure M0, a set of sentences Σ, a formula Q, and additionally a subset C
of the signature of the relations used in Σ: the closed relations. Recall that in
OWQ we consider as possible worlds for M0 and Σ structures in which every
relation is interpreted by a superset of the interpretation in M0. In hybrid open
and closed world query answering, we consider only extensions in which the
closed relations are interpreted exactly as in M0.

The possible worlds for M0,Σ, C are the set of structures M such that M
satisfies Σ, the interpretation of each relation R in M contains the interpre-
tation in M0 and for each relation R ∈ C, the interpretation of R in M is
the same as the interpretation of R in M0> Given a sentence ϕ, we say that
HOCWQ(M0,Σ, C, ϕ) is true exactly when ϕ holds in all possible worlds.

Example 23. Consider the following sentences Σ:

∀x y U(x)→ ∃y T (x, y)

∀x y T (x, y)→ U(y)

Consider a structure M0 with only a single fact, U(0). Suppose that we are
interested in the query Q = ∃x T (x, x).

77

The possible worlds for Open World Querying are any structures M where
U(0) holds and Σ holds. There are many such worlds where Q fails: for example
we could have M containing U(0), T (0, 1). Thus OWQ(M0,Σ, Q) is false.

On the other hand, suppose we consider hybrid open and closed world query-
ing, with U a closed relation. Then in any possible world M we must have U
containing only 0. By the first sentence in Σ, M must contain T (0, y0) for some
y0. But by the second constraint and the closedness of U , we must have y0 = 0.
Thus we can see that HOCWQ(M0,Σ, Q) is true.

Analogously to what we did with OWQ, We can see that HOCWQ is decidable
when the constraints are in GNF.

Theorem 18. We can decide HOCWQ(M0,Σ, Q,C) where Σ ranges over GNF
sentences and Q over boolean conjunctive queries.

Proof. HOCWQ(M0,Σ, Q,C) can be restated as unsatisfiability of the following
sentence ψM0,Σ,Q,C∧

F∈M0

F ∧ Σ ∧ ¬Q ∧
∧
U∈C
∀~x [U(~x)→

∨
~c∈M0(U)

~x = ~c]

If U is a relation of arity n and ~x,~c are n-tuples of variables and constants,
respectively, then ~x = ~c is an abbreviation for a conjunction

∧
i≤n xi = ci

We claim that for any M0, Σ, Q, and C, with Σ in GNF and Q a boolean
CQ, ψM0,Σ,Q,C is expressible in GNF.

∧
F∈M0

∧Σ ∧ ¬Q is clearly in GNF, since
Σ is in GNF, all ground sentences and boolean conjunctive queries are in GNF,
and GNF is closed under conjunction. The final conjunct is a conjunction over
all U ∈ C. Fix a closed relation U , let n be the arity of U , and consider the
formula:

∀x1 . . . xn [U(x1 . . . xn)→
∨

c1...cn∈M0(U)

∧
i≤n

xi = ci]

We can rewrite this as ψ′M0,Σ,Q,C

¬∃x1 . . . xn [U(x1 . . . xn) ∧ ¬
∧

c1...cn∈M0(U)

∨
i≤n

¬xi = ci]

Each formula ¬xi = ci is in GNF, since it has only one free variable xi. Thus
the formula ∧

c1...cn∈M0(U)

∨
i≤n

¬xi = ci]

is in GNF, since GNF is closed under disjunction and conjunction. We can then
conclude that:

U(x1 . . . xn) ∧ ¬
∧

c1...cn∈M0(U)

∨
i≤n

¬xi = ci]

is in GNF, since the negation is guarded by U(x1 . . . xn). Finally we can conclude
that ψ′M0,Σ,Q,C

is in GNF, since GNF is closed under existential quantification

78

and negation of sentences. Since ψ′M0,Σ,Q,C
is equivalent to ψM0,Σ,Q,C , this

completes the argument.
Thus we can check satisfiability of ψM0,Σ,Q,C in 2EXPTIME using the GNF

satisfiability procedure of Theorem 16.

8.6 Further reading and bibliographic remarks
Open world query answering appears under many names. In database theory it
is often referred to as the “certain answer problem” [Fagin et al., 2005]. Work in
database theory has focused on the case of TGDs. There are decidability results
for special classes of TGDs based on “acyclicity conditions” in [Fagin et al.,
2005]. Decidability for guarded TGDs was shown in [Calì et al., 2008, 2012],
and for frontier-guarded TGDs in [Baget et al., 2011b]. The direct argument
for decidability of OWQ for Guarded TGDs using the tree-like structure of the
chase is given in [Calì et al., 2008]. The papers [Calì et al., 2008, 2012] analyze
the complexity of OWQ for Guarded TGDs and several related classes, using
the analysis of repetitions in the chase, rather than automata. The chase can
be seen as a special case of the tableau proof systems that are heavily studied in
classical proof theory [D’Agostino et al., 2001] and in Description Logics [Baader
and Sattler, 2001]. The idea of “cutting off a proof when it repeats” described
for the chase is closely related to the idea of blocking used in tableau algorithms
for Description logics [Baader and Sattler, 2001].

The application of GNF to OWQ was outlined in the papers where GNF
was introduced [Bárány et al., 2011, Bárány et al., 2015]. The application was
extended in [Bárány et al., 2012], which introduces other connections between
GNF and database query languages. For example [Bárány et al., 2012] gives a
fragment of the database language Relational Algebra that is equivalent in ex-
pressiveness to GNF. The analysis of the data complexity of OWQ for GNF given
in this section derives from [Bárány et al., 2012] as well. The data complexity
analysis is closely-related to the “composition method” for analyzing logics over
trees [Thomas, 1997b, Rabinovich, 2005]. The extension to Hybrid Open and
Closed World Query Answering is based on [Benedikt et al., 2016a].

79

9 Fixpoint Logics
Our prior examples of decidable logics have all remained within first-order logic.
We now consider extensions with fixpoints, a feature beyond first-order logic.

9.1 GNFP basics
Recall that least fixpoint logic, LFP, extends first-order logic by having:

• additional atomic formulas, X(t1 . . . tk) whereX is a second-order variable
of arity k

• a new way to form formulas inductively, using a least fixpoint operator

Recall also that a formula defined using a fixpoint is true exactly when one of
its approximants is true.

Example 24. Let our vocabulary consist of a graph relation G(x, y) and unary
relation U(x). We can consider the following LFP formula ϕ(x):

µX,x.U(x) ∨ ∃y(G(x, y) ∧X(y))](z)

This defines all the elements that can reach an element in U using a path of
G-edges.

Let us look at the set of approximations to the fixpoint in this formula. The
initial approximation, denoted ϕ0 is formed by setting X = ∅ in the body of the
fixpoint. This gives the set of elements in U itself.

The next approximation ϕ1 is formed by setting X = ϕ0: this gives the set
of elements that reach U in one step.

Similarly we can see that the nth approximation is the set of elements reach-
ing U in n-steps. ϕ represents the union of all these approximations.

The least fixpoint operator thus represents a kind of infinite disjunction. We
can use it to derive a corresponding infinitary conjunction. We can add to LFP
the new formation rule:

If ϕ ∈ LFP and ϕ contains a second-order variable X of arity k along with
k first-order variables ~x, and X only occurs positively in ϕ then:

[νX,~x.ϕ(~x,X, ~Y)](~t)

is a formula of LFP.
To evaluate a greatest fixpoint on a structure M , we start with X being

all tuples from M , and then iterate until a fixpoint is reached. That is we can
define a decreasing sequence of approximations: start with ϕ0 being all tuples
from M , form ϕα+1 by setting X to be ϕα, and then intersect at limit ordinals.

The greatest fixpoint operator does not add any expressiveness to LFP; it
can be seen as an abbreviation for

¬[µX,~x.ϕ(~x,¬X, , ~Y)](~t)

80

Example 25. We give an example of what can be expressed by alternating
greatest and least fixpoints.

Let ReachesU(z) be the formula from Example 24 specifying that z reaches
a U element. Consider the formula

[νY,x.ReachesU(x) ∧ (∀y G(x, y)→ Y (y))](x)

To understand its meaning, consider the first approximation of it. That is, what
happens if Y is all values. Then the second conjunct is always true, and thus the
approximation specifies elements that reach an element in U via a G path. In
the second approximation, we set Y to be the first approximation, and obtain the
elements that reach a U element, and all their G-successors reach a U element.
Iterating this reasoning, we see that the nth approximation represents elements
e such that: every element e′ reachable in n steps from them has a path to a
U element. Since a greatest fixpoint is a conjunction of its approximants, the
formula represents elements e such that every element e′ reachable from e has
a path to a U element.

A natural example of LFP formulas comes from Datalog, a fixpoint logic in
which formulas are written as a collection of rules. In Datalog, relation symbols
are divided up into extensional and intensional relations, and a rule is of the
form:

R(~x) := ϕ

where R(~x) is an atom using an intensional relation R, ϕ is a conjunction of
atoms using either intensional or extensional atoms, and every variable in R(~x)
occurs in ϕ. A Datalog program is a finite collection of rules, and a Datalog
query is a program along with a distinguished intensional relation, called the goal
relation. Datalog programs can be considered as “shorthand” for LFP formulas
over the extensional relations. The intensional relations are fixpoint variables:
they are originally assigned to the empty set, and then the rules are iteratively
fired to increase the intensional relations until a fixpoint is reached.

Example 26. Consider the following Datalog program with intensional relation
Reach and extensional relations U(x) and R(x, y):

Reach(x) := U(x)

Reach(x) := R(y, x) ∧Reach(y)

This computes the set of elements that are reachable by a collection of R edges
from the elements satisfying U .

Datalog is a subset of LFP. For example, the set of elements z satisfying
the fixpoint formula [µX,x.U(x) ∨ ∃y(R(y, x) ∧X(y))](z) is the same as the set
computed by the Datalog program above.

Note that in the Datalog rule

Reach(x) := R(y, x) ∧Reach(y)

81

the variable y is implicitly existentially quantified. Another notational shorthand
often used in Datalog is to replace the ∧ by a comma. Thus in the usual syntax,
the rule above would be written:

Reach(x) := R(y, x), Reach(y)

Guarded Negation Fixpoint Logic (denoted GNFP) and Guarded Fixpoint
Logic (denoted GFP) over a signature σ can be defined as the extensions of GNF
and GF, respectively, with formulas

[µX,~x.α(~x) ∧ ϕ](~y)

where (i) α is a guard from σ for the free first-order variables of ϕ, (ii) X only
appears positively in ϕ, and (iii) second-order variables like X cannot be used
as guards.

This is a subset of LFP. We have the restrictions on negation or quantifi-
cation inherited from GNF or GF. Additionally, we note two restrictions on the
use of fixpoint operators in GNFP. First, the fixpoint variables are guarded,
and thus in building up fixpoints, we are only adding guarded elements. Fur-
ther, there are no additional first-order variables other than those used in the
fixpoint.

Consider the following example, adapted from [Bárány et al., 2015].

Example 27. Let ϕ be the GNF formula

∃y1y2[(R1(x1, y1) ∧R2(x2, y2) ∧X(y1, y2)) ∨ (R1(x1, x1) ∧R2(x2, x2))]

where R1 and R2 are two binary relations, and X is a fixpoint variable. Then
[µX,x1,x2

.S(x1, x2)∧ϕ](z1, z2) is in GNFP and expresses the existence of a “lad-
der” consisting of R1 and R2 paths of the same length starting from z1 and z2,
ending in self-loops, and such that the pair of elements on each rung are guarded
by S.

Guarded Datalog allows allows the use of intensional predicates with unre-
stricted arities, but for each rule R(x1 . . . xn) := ψ(~x, ~y), the variables ~x ∪ ~y in
the body ψ of the rule must appear in a single atom over an extensional rela-
tion within ψ. Frontier-guarded Datalog relaxes this by requiring only that the
variables x1 . . . xn in the head of the rule, must appear in a single EDB atom
appearing in the body ψ. This subsumes monadic Datalog, since the single head
variable in the monadic Datalog rules can be trivially guarded.

Frontier-guarded Datalog, and hence Guarded Datalog and Monadic Dat-
alog, can be expressed in GNFP. We explain this on an example of a generic
Frontier-guarded Datalog program with single intensional predicate goal

goal(~x) := ϕ1(~x, ~y1)

goal(~x) := ϕ2(~x, ~y2)

. . .

goal(~x) := ϕn(~x, ~yn)

82

This can be expressed in fixpoint logic as:

[µgoal,~x.
∨
i

∃~yi ϕi(~x, ~yi)](~t)

Since each ϕi is guarded, and GNF is closed under existential quantification and
disjunction, the disjunction is in GNF. Since the fixpoint variables are guarded,
the fixpoint is also in GNFP.

Example 28. Recall the property discussed in Example 7 and Example 8. The
fixpoint logic description of this property from Example 8 required a subformula
representing elements that are G-reachable from a node labelled U . Previously
we wrote this in fixpoint logic as:

[µS,y.U(y) ∨ ∃x(G(x, y) ∧ S(x))](z).

But the formula can be expressed in Guarded Datalog:

goal(x) := U(x)

goal(x) := G(y, x) ∧ goal(y)

Note that in defining GNFP, we have restricted the use of negation as in GNF,
but also restricted the use of the fixpoint operator, requiring it to be guarded.
We can explain the need for this second restriction using Datalog.

Given a Datalog program P1 and instance I for the extensional relations,
the output of P1 on I, denoted P1(I), is the set of tuples for the goal relation
of P1 in the fixpoint. If we translate P1 into an LFP formula ϕ(x1 . . . xn), then
the output is simply the evaluation of ϕ in I.

A Datalog program P1 is contained in a Datalog program P2 having the same
extensional relations, if for every input instance I for the extensional relations,
P1(I) ⊆ P2(I). P1 and P2 are equivalent if they are mutually contained; put
another way, P1 and P2 are equivalent if they are logically equivalent as LFP
formulas.

Even though Datalog is a simple fragment of LFP, without any negation,
equivalence of Datalog programs is not decidable:

Theorem 19. [Shmueli, 1993] The problem of determining whether two Datalog
programs are equivalent is undecidable, even if we restrict to programs with 0-ary
Goal predicates (i.e. sentences).

However, Datalog programs P1 and P2 are equivalent if both P1 ∧ ¬P2 and
P2 ∧ ¬P1 are not satisfiable. Thus Theorem 19 implies that if we drop the
requirement that fixpoints are guarded in GNFP, the satisfiability problem be-
comes undecidable.

On the other hand, reasoning problems about Monadic Datalog, such as
determining whether two Monadic Datalog queries are equivalent, are reducible
to GNFP satisfiability. Thus from our decidability results for GNFP it will follow
that equivalence and containment of Monadic Datalog programs is decidable.

83

The µ-calculus. Recall from Section 5 that the basic modal logic defined
there considers only unary relations U1 . . . Un and a single binary relation R.
We can add fixpoints to basic modal logic. That is, we allow atoms X(x) where
X is a second order unary variable, and we have a new formation rule saying
that if ϕ(x,X . . .) is a formula and X is positive in ϕ, then µX,x ϕ is a formula.
This language is called the µ-calculus.

If we take Example 24 and consider G as the distinguished binary relation,
we see that the formula ϕ is actually in the µ-calculus.

Recall also that in basic modal logic, we allow formulas to be built up using
the “box modality”

∃y R(x, y) ∧ ϕ(y)

and the “diamond modality”

∀y R(x, y)→ ϕ(y)

We can consider a variant of basic modal logic where we allow the role of the
bound and free variables to be reversed. That is, we have a “backward box
modality”:

∃y R(y, x) ∧ ϕ(y)

as well as a “backwards diamond modality”

∀y R(y, x)→ ϕ(y)

If we take this bi-directional variant of modal logic and add fixpoints, we get
the two-way µ-calculus.

Both the µ-calculus and the two-way µ-calculus are contained in GNFP, since
every formula is monadic.

Normal forms. The normal form for GNF can be extended naturally to
GNFP. The normal form for GNFP over a signature σ can be defined recur-
sively as formulas of the form

δ[Y1 := ψ1, . . . , Yn := ψn] or [µX,~x.ψ](~x)

where

• δ is a UCQ over σ ∪ {X1, . . . , Xm, Y1, . . . , Yn} for some second-order vari-
ables X1, . . . , Xm and fresh relations Y1, . . . , Yn,

• each ψi is of the form αi ∧ ¬ϕi or αi ∧ ϕi such that ϕ1, . . . , ϕn are in
normal form GNFP, α1, . . . , αn are guards from σ for the free first-order
variables in ϕ1, . . . , ϕn, and the number of free first-order variables in each
ψi matches the arity of Yi,

• ψ is of the form α(~x)∧ϕ such that ϕ is in normal form GNFP, ϕ uses the
second-order variable X only positively, and α is a guard from σ for the
free first-order variables in ϕ.

84

As before, the base case for this definition is a UCQ over σ (take n = 0).
In other words, we can see normal form GNFP formulas as being built up

from atomic formulas using guarded negation, unions of conjunctive queries,
and guarded fixpoint operators.

9.2 Decidability via the tree model property
A GNFP formula is associated with a width just as with GNF: the width is the
largest number of first-order variables in any subformula, after being converted
to normal form.

As with GNF, we will related the width of a GNFP formula to the kind of
tree-like structures that we will need to look for in seeking a satisfying model.
Recall the notion of a k-code of a structure from the earlier sections: we have
trees whose nodes code at most k elements in a structure.

Our first goal will be to show the following result:

Theorem 20 ([Bárány et al., 2015]). GNFP has the tree-like model property: if
ϕ is satisfiable, then ϕ is satisfiable in a structure that has a k-code, where k is
the width of ϕ.

Recall the GNFk-game, and the corresponding notion of unravelling from
Section 7. Given a satisfying model M of a GNFP sentence ϕ, we can consider
its k-unravelling U as before. We want to claim that U also satisfies ϕ. For
this it suffices to show that GNFP sentences are preserved when we pass from a
structure to its unravelling. More generally, it suffices to show:

Proposition 21. Suppose there is a winning strategy for Duplicator in the
GNFk-game between M and M ′ starting from the empty partial homomorphism.
Then for any GNFP sentence ϕ of width at most k, M |= ϕ if and only if
M ′ |= ϕ.

Notice that the proposition above easily implies Theorem 20: given a GNFP
sentence ϕ of width k, if it is satisfiable in a structure M , then we take the
GNFk unravelling of M , GNUnravelk(M). By Proposition 15, GNUnravelk(M) is
GNFk-bisimilar to M . Applying Proposition 21, we infer that GNUnravelk(M)
satisfies ϕ.

The proof of Proposition 21 is straightforward:

Proof. Let κ be the maximal cardinality of M and M ′ (which may be infinite).
For structures of bounded cardinality like this, the closure ordinals for fixpoints
is also bounded. Hence, we can translate from GNFP each fixpoint subformula
into an infinite disjunction of formulas that describe the possible fixpoint ap-
proximants.

Formally, this translation is from GNFP to κ-infinitary GNF, which is defined
the same as GNF except that we also allow the infinitary connectives:∧

i∈S
R(~x) ∧ ϕi(~x),

∨
i∈S

R(~x) ∧ ϕi(~x)

85

for any index set S of size at most κ, provided each ϕi(~x) is in κ-infinitary GNF.
It thus suffices to prove the result for κ-infinitary GNF. The induction is no

more difficult than for GNF, because if each ϕi(~x) is preserved by the game so
is their conjunction, while if some ϕi is preserved then so is the disjunction.

Now we can observe that GNFP is a subset of GSO:

Proposition 22. There is a linear translation of GNFP formulas to GSO for-
mulas.

Proof. The translation is inductive. For the fixpoint case:

[µX,~x.R(~x) ∧ ϕ(~x,X)](~t)

can be translated to

∃X ⊆ R
X(~t)∧

[∀~x ϕ′(~x,X)→ X(~x)]∧
∀Y ⊆ R ([∀~x ϕ′(~x, Y)→ Y (~x)]→ ∀~z X(~z)→ Y (~z))

where ϕ′ is the inductive translation of R(~x) ∧ ϕ(~x,X).
The second conjunct expresses that X is a “superset of a fixpoint”: closed

under the operator associated to R(~x)∧ϕ(~x,X); the third states states that X
is contained in any other superset of a fixpoint. It is easy to check that this
guarantees X is the least fixpoint.

Thus the forward mapping theorem, Theorem 10, applies to GNFP, reducing
the existence of a tree-like model to the existence of a tree model. As before, we
can apply Rabin’s theorem to decide whether a tree-like model of the formula
exists. Thus we have shown:

Theorem 21. Satisfiability of a GNFP sentence is decidable.

9.3 Optimized decidability of GNFP via translation to an
automaton

Recall that for GNF we discussed several ways of converting a formula to an
automaton. One approach was the inductive construction of Subsection 7.4 in
which we convert each subformula to an automaton, with inductive steps for
each construct of the grammar for a formula in normal form. Note that it is
not clear how to get a useful “Scott Normal Form” in the presence of fixpoints,
since we need to deal with the presence of free second order variables. Thus we
will proceed by extending the approach from Subsection 7.4 that does not rely
on this further normalization.

Recall that in the “direct inductive translation” for GNF, the inductive step
for UCQ-shaped formula was handled in a special way, by converting the au-
tomata for nested formulas to localized automata and then “plugging” them into
an automaton for the outer UCQ. We can extend this construction to GNFP.

86

In order to do this, we need an inductive step for the fixpoint operator, and
we will perform this directly on localized automata. For this step, it is helpful
to view testing whether a tuple is in the fixpoint as a game.

Testing whether some tuple ~t is in the least fixpoint [µY,~y . ϕ] in some struc-
ture M can be viewed as a game. Positions in this game consist of the current
tuple ~y being tested in the fixpoint, with the initial position being ~t. In general,
in position ~y, one round of the game consists of the following:

• Eve chooses some valuation for Y such that ϕ(~y, Y) holds (if it is not
possible, she loses), then

• Adam chooses tuple ~y′ ∈ Y (if it is not possible, he loses), and the game
proceeds to the next round in position ~y′.

Adam wins if the game continues forever.
The idea is that if ~t really is in the least fixpoint, then it must be added in

some fixpoint approximant. This gives Eve a strategy for choosing Y at each
stage in the game, in such a way that after finitely many challenges by Adam,
she should be able to guess the empty valuation.

When the fixpoint can consist of only guarded tuples, like in GNFP, there is
a version of this game on a tree code t of a structure, that can be implemented
using tree automata. We start with an automaton Aϕ for the body ϕ of the
fixpoint. In fact, we start with a localized automaton for ϕ because we need to
launch different versions based on Adam’s challenges. Initially, Eve navigates
to a node in t carrying ~t, and launches the appropriate localized Aϕ from there.
In general, the game proceeds as follows:

• Eve and Adam simulate some localized version of Aϕ. During the sim-
ulation Eve can guess a valuation for Y (recall that Aϕ runs on trees
with an annotation describing the valuation for the second-order variable
Y , and that information is missing from t). Because Y can only contain
guarded tuples, this amounts to guessing an annotation of the tree with
this valuation.

• When Eve guesses some ~y′ ∈ Y , Adam can either continue the simulation,
or challenge her on this assertion. A challenge corresponds to launching a
new localized copy of Aϕ from the node carrying ~y′ (again, we know that
~y′ must be present locally in a node, since any tuple in the fixpoint must
be guarded).

After each challenge, the game continues as before (with the new copy of Aϕ
being simulated, Eve guessing a new valuation for Y , etc.). Adam wins if he
challenges infinitely often, or if the game stabilizes in some simulation of Aϕ
where he wins.

Assuming we have a localized automaton for ϕ, we can implement this game
using a 2-way alternating parity automaton. We assign a large odd priority
(larger than the priorities in Aϕ) to the states where Adam challenges, so that
he wins if he is able to challenge infinitely many times; the other priorities are
just inherited from Aϕ.

This construction is summarized in the following lemma (see page 56 for the
definition of monotonicity for an automaton).

87

Lemma 8. Let η(~y) be in GNF over σ ∪ {Y } that is positive in Y and where
the number of free variables of η matches the arity of Y . Let Aη be a localized
2APTω for η over Σcode

σ∪{Y },k-trees that is monotonic with respect to Y .
Then we can construct a localized 2APTω Aψ over Σcode

σ,k for

ψ := [µY,~y . R(~y) ∧ η(~y)](~z)

in linear time such that the number of states is the same as in Aη, and the
number of priorities is increased by 1.

The monotonicity property ofAη is important for the correctness of Lemma 8.
Normally, it would be problematic to guess the missing information about Y
while simulating an alternating automaton like Aη, since the automaton might
not consistently declare that a certain tuple is in the fixpoint approximant.
However, for an automaton that is monotonic in Y , this makes no difference.

We can define the CQ-rank of a GNFP formula exactly as we did for GNF:
the maximum number of atoms in a CQ-shaped formula when normalized. As
with GNF, we will end up with an automaton having states representing that
track the CQ-shaped subformulas that are satisfied, and thus the CQ-rank will
impact the number of states in an automaton.

With Lemma 8 in place, we can now adapt Lemma 4 to inductively define
an automaton for any GNFP sentence ϕ. The induction is based on the nesting
depth of both UCQ-shaped formulas and fixpoints.

Lemma 9. Given a normal form formula ψ(~x) in GNFP of width at most k over
signature σ, we can construct a 2APTω Aψ such that for all valid k tree codes
t, for all local assignments ~a/~x, and for all nodes v in t with ~a ⊆ names(v),

A~a/~xψ accepts t starting from v iff decode(T) satisfies ψ([v,~a]).

Further, there is a polynomial function f independent of ψ such that the
number of states of Aψ is at most Nψ := f(mψ) · 2f(krψ) and the number of
priorities is at most f(kmψ) where mψ = |ψ|, rψ is the CQ-rank of ψ. The
overall size of the automaton and the running time of the construction is at
most exponential in |σ| ·Nψ.

This means that despite the increased expressivity of GNFP over GNF, sat-
isfiability testing can still be done in 2EXPTIME.

9.4 Fixpoint logics and open world query answering
Recall from Subsection 9.1 that Datalog programs represent a special kind of
LFP formula, one in which there is no negation. Datalog programs are written
in a special syntax, consisting of rules relating intensional relations to each
other and to extensional relations. Rules are a kind of short-hand for fixpoints,
where the intensional relations represent fixpoint variables while the extensional
relations are ordinary relations that are part of the input signature. We have also
mentioned one subset of Datalog that is contained in GNFP: Monadic Datalog,

88

in which the intensional relations are all unary, as well as Guarded Datalog, in
which each rule is of the form:

R(~x) := A(~x, ~y) ∧ ϕ(~x, ~y)

where A(~x, ~y) is an atom using an extensional relation A, containing all variables
of the rule. Finally we defined Frontier-guarded Datalog, in which rules are of
the form

R(~x) := A(~x) ∧ ϕ(~x, ~y)

where A(~x, ~y) is an atom using an extensional relation, which contains all vari-
ables in the head of the rule.

We showed that all of these are expressible in GNFP.
Now let us return to the Open World Query Answering problem, OWQ.

Recall from Section 8 that the input to this problem is a sentence ϕ, a finite
structure M0, and a background theory Σ. The output is yes exactly when

M0 ∧ Σ |= ϕ

We say ϕ is entailed by Σ on M0 when this holds. Typically ϕ is a conjunctive
query or union of conjunctive queries. For simplicity, we will restrict to the case
where ϕ is a conjunctive query below.

Recall also that a frontier-guarded TGD is a sentence of the form:

∀x1 . . . xj
∧
m≤q

Am →

∃y1 . . . yk
∧
n≤r

Bn

where A1 . . . Aq and B1 . . . Br are relational atoms and there is one atom Ai that
contains all the variables in ~x that occur in some Bn (a guard for the exported
variables). A Guarded TGD is a sentence as above, in which there is a guard
Ai for all variables in ~x. We showed that frontier-guarded TGDs are expressible
in GNF, and hence the same is true for guarded TGDs.

In Section 8 we showed that for Σ consisting of frontier-guarded TGDs,
the Open World Query Answering problem is decidable: this followed via a
reduction to GNF satisfiability. This gives a 2EXPTIME algorithm, and one can
show that this is optimal. We also showed that the “data complexity” is in
CoNP. That is, when we fix Σ and ϕ, there is an algorithm that runs in CoNP
in the size ofM0. However, one could hope for an algorithm that has even lower
data complexity. One way to achieve this aim is to reduce Open World Query
Answering to standard evaluation of a formula. Given a conjunctive query Q
and a theory Σ, a rewriting of Q with respect to Σ is a formula QΣ such that:

For any finite structure M0, QΣ holds in M0 exactly when M0 ∧ Σ |= ϕ

Thus if we can rewrite Q to QΣ, we have reduced the open world query
answering problem for Q and Σ to evaluation of QΣ on M0.

We will show that when Σ consists of Guarded TGDs, for every CQ Q we
can get a QΣ that consists of Frontier-Guarded Datalog rules.

89

Example 29. Consider a signature with binary relations R(x, y) and S(x, y)
as well as unary relations U(x) and UReach(x).

Consider the Guarded TGDs:

R(x, y) ∧ UReach(y)→ UReach(x)

U(x)→ UReach(x)

UReach(x)→ ∃z S(x, z)

and the query Q(x) = ∃z S(x, z).
One can check that the certain answers of Q under Σ are given by Datalog

program with the following rules:

UReach′(x) := UReach(x)

UReach′(x) := U(x)

UReach′(x) := R(x, y) ∧ UReach(y)

with UReach′(x) being the goal relation.
Notice that this is a Guarded Datalog program, since the body of each rule is

guarded.

We start with a result that gives the intuition for how this rewriting works:

Theorem 22. For every set Σ of Guarded TGDs, and for every atomic con-
junctive query Q(x), one can effectively find a Guarded Datalog program P such
that the result of P on any structure M is the same as the certain answers to
Q on M .

Note that entailment here, and throughout the section, can be interpreted
either in the classical sense or in the finite sense, since we have the finite model
property. Indeed, in our proofs, we use constructions that make use of infinite
structures, but the conclusion holds in the finite.

A Full Guarded TGD is a TGD with no existentials in the head. The idea
behind the proof the theorem will be that we take all full guarded TGDs that
are consequences of Σ, and turn them into Datalog rules. We will show that the
full guarded TGDs are sufficient to capture the certain answers.

We say that a structure M is fact-saturated (with respect to Σ) if no new
fact over the active domain of M plus the elements named by constant symbols
is entailed by the facts of M together with Σ.

Lemma 10. For Σ a set of Frontier-Guarded TGDs, if a structure M is not
fact-saturated with respect to Σ, then there is a guarded subset X of the domain
of M such that the induced substructure MX is not fact-saturated with respect
to Σ.

90

Proof. We prove the contrapositive. Assume that every induced substructure
MX , for X a guarded subset, is fact-saturated with respect to Σ. Let N be
constructed from M by chasing each MX with Σ independently and taking the
union of the results: that is N =

⋃
X guarded ChaseΣ(MX). Recalling that the

chase of MX only satisfies facts over MX that are entailed, we see that N does
not satisfy any new facts over the domain of M .

We claim that N satisfies every sentence in Σ. Given a σ in Σ of the form

∀~x (ϕ(~x)→ ∃~y ρ(~x, ~y))

and a binding of variables ~x into ~b ∈ N such that the corresponding facts ϕ(~b)

hold in N . Note that ~b is guarded. If ~b contains only constants and elements
of ~a, then each fact in ϕ(~b) must be in M . Hence ϕ(~b) is in MX and we are
done, sinceMX satisfies Σ. Consider any non-constant element bi outside ofM .
If any such element exists, then the guard fact for ~b must have been generated
in the chase process for some MX0

, hence every non-constant element ai was
generated in MX0

, and every fact in ϕ(~b) involving such an element must be in
MX0

. Since each other fact is in M , hence in MX0
, we have ϕ(~b) is contained

in MX0
as before, and so we are done because Σ holds in MX0

.
Thus we have a structure satisfying Σ, containing M , and containing no

new facts over the elements of M and the constants. Therefore M must be
fact-saturated.

We are now ready to give the proof of Theorem 22:

Proof of Theorem 22. A derived Full Guarded TGD for Σ is a full guarded TGD
with a single atom in the head which are entailed by Σ. We let ΣFullGuarded
be all the derived full guarded TGDs. Note that there are only finitely many of
these.

Lemma 10 implies that:

For every finite structure M0 and atomic query Q = goal(~x), the certain
answers of Q over M0 with respect to Σ are the same as the goal-facts using
elements of M0 entailed by M0 and ΣFullGuarded.

The Full TGDs of ΣFullGuarded are not quite Guarded Datalog: Guarded
Datalog requires us to distinguish extensional and intensional relations, and re-
quires that atoms over extensional relations do not occur as consequences within
rules. We turn ΣFullGuarded into a Guarded Datalog program by replacing each
relation R in ΣFullGuarded by a copy R′; thus a Full TGD:

∀~x (R(~x, ~y) . . .→ S(~x))

is transformed to the Datalog rule:

S′(~x) := R′(~x, ~y) . . .

91

In addition we add rules:

R′(~x) := R′(~x)

Finally, we let goal′ be the goal predicate. It is easy to see that this Datalog
program computes a fact goal′(~a) over M exactly when goal(~a) is entailed by
ΣFullGuarded over M .

9.5 Bibliographic remarks and further reading
Applying tree automata techniques to decidable fixpoint logics goes back to work
on the fixpoint extension of basic modal logic, the µ-calculus. The definition of
the µ-calculus as well as automata-based decision procedures can be found in
many places, including [Vardi, 1998].

The first definition of a fixpoint extension of a guarded relational logic was
Guarded fixpoint logic, which is formed as GNFP is but extending GF rather than
GNF. It was introduced by Grädel and Walukiewicz in [Grädel and Walukiewicz,
1999], and the complexity of satisfiability for the logic was established in the
same paper. In [Grädel and Walukiewicz, 1999], first a decidability procedure
was given using the tree model property, then a tight complexity bound is
shown via alternating automata. A later presentation [Grädel, 1999a] works by
reduction to the µ-calculus with backward and forward modalities (“two-way
µ-calculus), relying on a prior decidability result for this logic [Vardi, 1998].
The Guarded Negation Fixpoint logic was introduced in [Bárány et al., 2011,
Bárány et al., 2015], and the decidability results of [Grädel and Walukiewicz,
1999] were extended to it. As with GNF, the approach to satisfiability of GNFP
in [Bárány et al., 2011, Bárány et al., 2015] was not through a direct automa-
ton translation, but via reduction to Guarded fixpoint logic and the results of
[Grädel and Walukiewicz, 1999].

For GFP and GNFP, satisfiability over finite structures is not the same as
satisfiability over all structures. However satisfiability over finite structures was
shown decidable for both GFP [Bárány and Bojańczyk, 2012] and GNFP [Bárány
et al., 2015].

Our description of the game for deciding whether a tuple is in a fixpoint is
adapted from [Benedikt et al., 2016b], but this approach to fixpoints has been
used before, e.g., in [Blumensath et al., 2014].

The application of fixpoints to open world query answering derives from
[Bárány et al., 2013]. Datalog rewriting for Guarded TGDs was first announced
in [Marnette, 2011, Baget et al., 2011a].

92

10 Tree-like models and interpolation
We now discuss how the tree-like model property can be used to assist with
computational problems on restricted logics other than satisfiability.

Interpolation relates to implication of formulas. Given formulas ϕ1 and ϕ2,
we say ϕ1 entails ϕ2, written ϕ1 |= ϕ2, if:

for every structure M and binding σ such that M,σ |= ϕ1, it is the
case that M,σ |= ϕ2.

Entailment between formulas of a logic is closely related to the validity prob-
lem for the logic, since ϕ1 entails ϕ2 is the same thing as saying that ∀~x ϕ1 → ϕ2

is valid.
Interpolation is based on the intuition that if ϕ1 entails ϕ2, then the “cause”

of the entailment should be another formula that uses only relations that are
used in both ϕ1 and ϕ2. Formally, let ϕL and ϕR be sentences over signatures
σL and σR such that ϕL |= ϕR (that is, ϕL entails ϕR). An interpolant for such
an entailment is a formula θ for which ϕL |= θ and θ |= ϕR, and θ mentions
only relations appearing in both ϕL and ϕR.

A uniform interpolant for ϕL, subsignature σ′ of σL, and logic L is a formula
θ over signature σ′ such that:

• ϕL |= θ and

• for every entailment ϕL |= ϕR with ϕR in L such that the signature of
ϕR intersected with σL is contained in σ′, θ is an interpolant for the
entailment.

One can think of a uniform interpolant of ϕL as the best over-approximation
of ϕL in signature σ′, with respect to entailments of σ′ formulas.

It is difficult to approximate a formula in a logic L while staying in the
same logic. In particular, it is difficult to get uniform interpolants while staying
within first-order logic:

Example 30. Consider a signature σL consisting of a binary relation R(x, y)
and a unary relation U(x).

Let ϕL be:

∃x U(x) ∧ (∀x U(x)→ (∃y R(x, y) ∧ U(y)))

That is, there is a U element, and every U element links to a U element via an
R edge.

Consider σ′ that has only R(x, y) in it. For every number n, if we let ϕn
state that there is some path with n edges, then ϕn is expressible in GF. Indeed,
it is the existential quantification of a formula in modal logic. Further ϕL entails
each ϕn.

Thus a uniform interpolant of ϕL over σ′ with respect to GF entailments
would need to be a sentence using only R that is implied by ϕL, but which implies
each ϕn. One can show that there is no such sentence in first-order logic.

93

Note that we can find a uniform interpolant for ϕL over σ′ in GNFP. With
greatest fixpoints we can write a sentence stating that there are arbitrarily long
paths:

∃z [νlongpaths,x∃y R(x, y) ∧ longpaths(y)](z)

Rewritten with only least fixed points it could be expressed as:

∃z ¬[µshortpaths,x.(∀y R(x, y)→ shortpaths(y))](z)

The guarded universal quantification within can be converted to GF in the usual
way. The fixpoint is permitted in GNFP since it is unary, and similarly the
outermost negation is permissible since it is unary. We can see that the sentence
is implied by ϕL and implies each ϕn. Indeed, since the ϕn are essentially the
only statements about R that are implied by ϕL, one can show that the sentence
above is a uniform interpolant.

Example 30 suggests that we can get uniform interpolants for guarded logic
sentences by moving to a fixpoint logic. Our main result is that this is the case,
and that such interpolants are effectively computable:

Theorem 23. Given σL a relational signature, σ′ ⊆ σL, and k ∈ N, and ϕL over
σL in GNFPk, we can compute an LFP sentence that is a uniform interpolant
for GNFPk entailments.

Theorem 23 implies that entailments between GNFP formulas have LFP in-
terpolants:

Corollary 3. For ϕL, ϕR ∈ GNFP for which the entailment ϕL |= ϕR holds,
there is an interpolant for the entailment in LFP.

We now explain the main components of the proof of Theorem 23. It involves
mapping back and forth between logics on relational structures and logics on
trees. In the process we will develop a finer understanding of the relationship
between relational structures and their codes.

Recall that in Theorem 10 we have given a forward mapping, translating an
input GSO formula ϕ0 to an MSO formula ϕ′0 over tree-codes, holding on the
codes that correspond to tree-like models of ϕ0. For a set of unary relations σ,
we let MSO[σ] denote Monadic Second Order Logic over a binary child relation
and the unary relations in σ.

If we look at the translation in Theorem 10, we can see that if we start with
a first-order sentence, that we get a very restricted kind of MSO[σ] sentence
over trees: to check a sentence, we need to just check for the existence of certain
up-and-down paths connecting elements in the tree. This requires only the two-
way µ-calculus (see Subsection 9.1). The same holds in the presence of fixed
points:

Proposition 23. For every LFP sentence ϕ and number k, we can construct
in polynomial time a two-way µ-calculus sentence ϕ′ in the language of k-codes
such that for any model M that has a k-tree code t with root Root

M |= ϕ↔ t,Root |= ϕ′

94

For the purposes of our interpolation argument, the important advantage
of the two-way µ-calculus over MSO is that two-way µ-calculus formulas are
preserved under bisimulation, provided that the inputs are trees. Recall that
a bisimulation relates distinguished elements in two Kripke structures. We can
extend the definition to talk about a bisimulation between two trees, taking
the distinguished elements to be the roots. Formally, let us say that a formula
ϕ′(x) is bisimulation-invariant over trees if whenever t1,Root1 and t2,Root2 are
bisimilar, then t1,Root1 satisfies ϕ′ if and only if t2,Root2 does. Similarly if
ϕ′ is a sentence, we say that ϕ′ is bisimulation-invariant over trees if whenever
t1,Root1 and t2,Root2 are bisimilar, then t1 satisfies ϕ′ if and only if t2 does.

Proposition 24. If ϕ′ is a two-way µ-calculus sentence over some vocabulary
σ′, then ϕ′ is bisimulation-invariant over trees.

Proof. We can define a bi-directional variant of the bisimulation game in which
Spoiler can move backward. A position of the game consists of an element
x in M and x′ in M ′ as with the bisimulation game. A round of the game
proceeds by Spoiler choosing one structure, say M . Spoiler can pick x1 ∈ M
with M |= R(x, x1), and Duplicator must respond in the other structure with
x′1 such that M ′ |= R(x′, x′1). But Spoiler now can also choose to pick x1 ∈ M
with M |= R(x1, x), and Duplicator must respond in the other structure with
x′1 such that M ′ |= R(x′1, x

′). We can now extend Proposition 5 to show that
if Duplicator has a winning strategy from this game, starting at position M,x
and M ′, x′, then M,x and M ′, x satisfy the same two-way µ-calculus formulas.

Thus it suffices to show that Duplicator has a winning strategy in the game
starting from t1, r1 and t2, r2. Since t1, r1 and t2, r2 are bisimilar, Duplicator
has a winning strategy in the one-way bisimulation game. Duplicator will play
to ensure that each position is a position reachable from this winning strategy.
Suppose the position of the game consists of t1, c1 and t2, c2. If Spoiler moves
forward to a child d1 of c1, Duplicator just follows her winning strategy to choose
a child d2 of c2. But if Spoiler moves backward from c1, he is moving to the the
parent of c1 in the tree, p1. Letting p2 be the parent of c2 in t2, we know that
the play at some previous step must have consisted of t1, p1 and t2, p2. Thus
Duplicator can respond by moving from c2 to p2.

We will not need to make use of any further properties of the two-way µ-
calculus, since Propositions 23 and 24 tell us something important about any
forward mapping. Let us consider any MSO[σ] sentence ϕ′1 that represents a
forward mapping. We know that there is a two-way µ-calculus sentence ϕ′2(x)
such that ϕ′1 is equivalent to ϕ′2 evaluated at the root of a tree, and that two-way
µ-calculus sentences are preserved under bisimulation at the root. Thus, using
the definition of bisimulation-invariance over trees for a sentences, we see that
the result ϕ′1 of the forward mapping is bisimulation-invariant over trees.

For an arbitrary signature σ, we let LFP[σ] denote least fixpoint logic over
signature σ.

For a ϕ′0 over tree codes (with some given k and signature σ) a GNFk back-
ward mapping for ϕ′0 is a sentence ϕ1 such that:

95

Relational
structures

Coded
structures

ϕL ϕTree
L

χ over subsignatureθ

(Forward Mapping)

(Projection)

(Backward Mapping)

Figure 12: Back-and-forth for Interpolation

for all σ-structures M , M |= ϕ1 iff code(UGNUnravelk(M)) |= ϕ′0,

where UGNUnravelk(M) is the GNFk-unravelling of M . That is, the backward
mapping is the inverse of the forward mapping, but it does not talk about
arbitrary tree codes, but only about unravellings.

Given a bisimulation-invariant MSO sentences, we can find a backward map-
ping for it in fixed point logic:

Theorem 24. Given ϕ in MSO[Σcode
σ,k] that is bisimulation-invariant, we can

construct a GNFk backward mapping ϕ1 ∈ LFP[σ].

The theorem is proven by first converting ϕ to a two-way µ-calculus formula,
and then proceeding by induction on its structure.

Our overall approach for getting a uniform interpolant for a GNFP sentence
ϕL over signature σL with respect to subsignature σ′ will revolve going back and
forth between relational structures and their tree codes. It works as follows:

• use forward mapping to go to an MSO sentence ϕTree
L representing tree

codes of tree-like structures satisfying ϕ;

• project ϕTree
L to get an MSO sentence χ over tree codes in the target sig-

nature σ′; roughly, χ will represent all tree codes that can be expanded to
a tree code satisfying ϕ;

• use backward mapping on χ to get a sentence θ over σ′.

Figure 12 shows the approach diagrammatically.
We have discussed the forward mapping and backward mapping already. We

now discuss the component used in the projection step. It is easy to see that
MSO sentences over trees are closed under projection – existentially quantifying
over some subset of the node relations. However, to apply Lemma 24 we will
need to come up with a sentence that is bisimulation invariant. We will thus
want anMSO sentence that represents the bisimulation closure of the projection.
The following lemma gives us this:

Lemma 11. Let σ1 be a collection of unary relations for nodes and σ0 ⊆ σ1.
Given ϕ′ in MSO[σ1] that is bisimulation-invariant over trees we can construct
θ′ ∈ MSO[σ0] such that

96

t |= θ′ if and only there is t′0 bisimilar to t over σ0, and there exists
t′1 over σ1 such that t′1 |= ϕ′ and t′0 is obtained by restricting t′1 to
the relations in σ0.

We do not prove the lemma; it is proven using the idea of just projecting the
automaton for ϕ′; the proof is due to D’Augostino and Hollenberg (see Theorem
3.3. of [D’Agostino and Hollenberg, 2000]).

We can show that the formula formed above is a uniform interpolant with
respect to entailment over trees:

Theorem 25. Let ϕ′ in MSO[σ1] be bisimulation-invariant over trees, σ0 ⊆ σ1,
and let χ be the sentence formed from ϕ′ in Lemma 11. Then χ is a uniform
interpolant for ϕ′ over σ0, with respect to entailments in any logic L that is
contained in MSO and is bisimulation-invariant.

If M and M ′ are two Kripke structures with different vocabularies for the
unary relations, and σ is a subset of the set of common unary relations, we
say that M and M ′ are bisimilar over σ if there is a relation that satisfies the
properties of a bisimulation but only for the relations in σ. In general, for any
of our simulation relations, we can parameterize it by a subsignature in the
obvious way.

Towards proving this claim we state an intermediate lemma about how to
“amalgamate” two structures in different signatures that are bisimilar in their
common signature.

Lemma 12. If Mleft is a structure for signature σL, Mright is a structure for
signature σR, and Mleft is bisimilar to Mright over signature σ′ = σL ∩ σR,
then there is M ′ in σL ∪ σR that is bisimilar to Mright over signature σR and
bisimilar to Mleft over signature σL.

The short proof of this result can be found in Lemma 3.5 of [D’Agostino and
Hollenberg, 2000].

We now prove Theorem 25. Suppose ϕ′ |= ρ where the common signature of
ρ and ϕ′ is contained in σ′, and ρ is bisimulation invariant. Suppose that there
is t |= χ ∧ ¬ρ. By the definition of χ, there is t′ over σL that is bisimilar to t
over σ′ which satisfies ϕ′. By Lemma 12 there is some t′′ that is bisimilar to
t over σR and bisimilar to t′ over σL. t′′ satisfies ¬ρ since t satisfies ¬ρ and t
and t′′ are bisimilar over σR, while t′′ satisfies ϕ′ since t′ does and t′′ and t′ are
bisimilar over σL. But this contradicts ϕ′ |= ρ.

We can now make the back-and-forth approach outlined above more precise.
The algorithm consists of the following steps:

• Apply the forward mapping to ϕL to get ϕTree
L .

• Let consistentσL,k be the MSO[Σcode
σL,k

]-formula that expresses that a tree is
consistent with respect to Σcode

σL,k
. It is easy to see that such a sentence is

bisimulation-invariant, since it involves only some properties of the label
of a node with respect to its parent.

97

Since ϕTree
L and consistentσL,k are both bisimulation-invariant, so is their

conjunction ϕTree
L ∧consistentσL,k . We can thus apply Lemma 11 to ϕTree

L ∧
consistentσL,k to get χ over the subsignature Σcode

σ′,k .

• We apply the GNFk[σ′]-backward mapping to χ to get θ in LFP over σ′.

We claim that θ is the required uniform interpolant. By definition of the
backward mapping, θ is in LFP over σ′.

For θ to be a uniform interpolant for ϕL means two things:

• θ is an overapproximation of ϕL: that is ϕL entails θ

• θ is the best approximation: that is for all ϕR in GNFPk whose signature
overlaps with that of ϕL in the subsignature σ′, if ϕL entails ϕR, then θ
entails ϕR.

We will prove both of these by mapping to the corresponding statements on
trees.

Original sentence entails interpolant. First, we prove ϕL |= θ. Let M
be a σL-structure and assume M |= ϕL. Then UGNUnravelk,σL

(M) |= ϕL since
UGNUnravelk,σL

(M) andM agree on all GNFPk[σL] sentences. Hence, by the prop-
erty of ϕTree

L given by the forward mapping, we have code(UGNUnravelk,σL
(M)) |=

ϕTree
L . Since code(UGNUnravelk,σL(M)) is a consistent Σcode

σL,k
-tree, this means that

code(UGNUnravelk,σL(M)) |= ϕTree
L ∧ consistentσL,k. Since χ is a uniform inter-

polant for ϕTree
L ∧ consistentσL,k, we have code(UGNUnravelk,σL(M)) |= χ. But χ

is in MSO[Σcode
σ′,k], so the restriction of code(UGNUnravelk(M)) to the subsignature

Σcode
σ′,k also satisfies χ. Moreover, the restriction of code(UGNUnravelk,σL

(M)) to
the subsignature is the same as just taking the unravelling with respect to this
subsignature. Hence, letting UGNUnravelk,σ′(M) be the unravelling of M with re-
spect to σ′ we have that code(UGNUnravelk,σ′(M)) |= χ. So since θ is the backward
mapping of χ, we have that M |= θ.

Interpolant entails appropriate sentences in subsignature. Assume
that ϕL |= ϕR for some ϕR ∈ GNFPk[σR] with σR ∩ σL ⊆ σ′. We need to
show that θ |= ϕR. Let ϕTree

R be the result of applying the forward mapping to
ϕR.

We want to claim that the entailment between ϕL and ϕR transfers to the
tree world, once we add on the consistency sentence. Let σ′′ = σL ∪ σR.

We claim that over trees consistentσL,k∧ϕTree
L |= consistentσR,k → ϕTree

R over
all Σcode

σ′′,k-trees. Suppose that t is a Σcode
σ′′,k-tree and t |= consistentσL,k ∧ ϕTree

L .
Then t must be consistent with respect to the subsignature Σcode

σL,k
. If t is not

consistent with respect to Σcode
σR,k

, then t trivially satisfies consistentσR,k → ϕTree
R

and we are done. Otherwise, t is consistent with respect to both Σcode
σL,k

and
Σcode
σR,k

, which is enough to conclude that it is a consistent Σcode
σ′′,k-tree. Hence, by

the definition of ϕTree
L we have decode(t) |= ϕL. Since ϕL |= ϕR, this means that

98

decode(t) |= ϕR. Another application of the forward mapping theorem allows
us to conclude that t |= ϕTree

R , and hence t |= consistentσR,k → ϕTree
R as desired.

Now recall that χ is a uniform interpolant for consistentσL,k ∧ ϕTree
L over

the subsignature Σcode
σ′,k for entailments of bisimulation-invariant sentences. Ap-

plying this to consistentσL,k ∧ ϕTree
L |= consistentσR,k → ϕTree

R we know that
χ |= consistentσR,k → ϕTree

R over all Σcode
σ′′,k-trees. We will now use the properties

of the backward mapping to show that θ |= ϕR.
Let M be a σ′′-structure such that M |= θ. Hence,

code(UGNUnravelk,σ′(M)) |= χ

by the properties of the backward mapping θ of χ. But

code(UGNUnravelk,σ′′(M)) |= χ

as well, since code(UGNUnravelk,σ′′(M)) is exactly code(UGNUnravelk,σ′(M)) when
restricted to Σcode

σ′,k . By the previous paragraph this implies that

code(UGNUnravelk,σ′′(M)) |= consistentσR,k → ϕTree
R

Since code(UGNUnravelk,σ′′(M)) is a consistent Σcode
σ′′,k-tree, it is also Σcode

σR,k
-consistent.

Hence,
code(UGNUnravelk,σ′′(M)) |= ϕTree

R

By the forward mapping, this means that UGNUnravelk,σ′′(M) |= ϕR. Since M
and UGNUnravelk,σ′′(M) agree on all GNFPk sentences and ϕR ∈ GNFPk[σR] with
σR ⊆ σ′′, this means that M |= ϕR as desired.

This completes the proof that θ entails ϕR, and hence completes the proof
that θ is a uniform interpolant (Theorem 23).

10.1 Bibliographic Remarks
Interpolation results were first proven for first-order logic by Craig [Craig, 1957].
An important logic that has uniform interpolation is the µ-calculus, the nat-
ural extension of basic modal logic with a fixpoint operator. The uniform in-
terpolation result was proven by D’Agostino and Hollenberg [D’Agostino and
Hollenberg, 2000]. The interpolation result we present for GNFPk is based on
arguments in [Benedikt et al., 2015, 2017], incorporating parts of the proof for
µ-calculus given in [D’Agostino and Hollenberg, 2000]. The underlying idea of
a backward mapping from trees to relational logics originates in Grädel, Hirsch
and Otto’s [Grädel et al., 2002]. [Grädel et al., 2002] gives applications of this
technique to give several insights into the expressiveness of guarded logics.

99

11 Larger decidable fixpoint logics
In Section 9 we presented the logic GNFP and used the technique of tree-like
models to prove that it is a decidable subset of least fixpoint logic LFP. We also
showed, using a translation to automata, that the complexity of satisfiability
has the same worst-case behavior as GNF. In particular, the complexity is
much better than the complexity of MSO on trees, with the latter being non-
elementary.

It is natural to ask whether there are larger fixpoint logics that share the
attractive decidability and complexity properties of GNF. Here we introduce an
extension of GNFP, denoted GNFP-UP. Decidability for this logic will be almost
immediate from the argument for GNFP. But the automata-based analysis will
be more problematic. We can construct automata, but we really require a blow-
up. The analysis will allow us to de-couple the features of a fixpoint logic that
lead to decidability, against those that lead to elementary complexity.

11.1 GNFP-UP basics
Recall again LFP, which extends first-order logic with second-order variables,
which can be bound via a fixpoint constructor.

We now look at another restriction of LFP, denoted Guarded negation fix-
point logic with unguarded parameters (GNFP-UP). This is a fragment of LFP
that restricts negation as in GNF, but is more liberal than GNFP in its restric-
tions of fixpoints. Informally GNFP-UP allows two types of variables in the
body of a fixpoint: “fixpoint variables” – those that are changing in a fixpoint
calculation – and “parameter variables” – additional values that are kept fixed
during a fixpoint. It allows the parameter variables to be unguarded in fixpoint
definitions, but requires fixpoint variables and negation to be guarded.

Formally, a GNFP-UP[σ] formula ϕ is generated recursively from the follow-
ing grammar:

ϕ ::= R~t | Y ~t | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃y.ϕ |
α ∧ ¬ϕ where Free(ϕ) ⊆ Free(α) |

[µ~zY,~y. gdd(~y) ∧ ϕ(~y, ~z, Y, ~Z)](~t) for ϕ positive in Y

Above ~t is a tuple of variables or constants, R~t and α are atoms using a relation in
σ or =, In the fixpoint construction, the variables ~z are the parameter variables
of the fixpoint, while ~y are the fixpoint variables. The last thing we have to
explain in the grammar above is the guardedness predicate gdd(~y). This asserts
that ~y is guarded by an atom in σ or =. It can be understood as an abbreviation
for the disjunction of existentially quantified atoms that use a relation from σ or
= and involve all of the variables in ~y. Because of this, only guarded relations
can be defined using fixpoints in GNFP-UP: i.e. any tuple of elements in the
relation defined by the fixpoint formula must already be guarded by an atom in
the base signature σ. Note that the relations defined using a fixpoint operator
cannot be used as guards.

100

The parameters ~z are not required to be guarded in the fixpoint definition.
However, for the purposes of negation, parameters are treated like other vari-
ables and must be guarded. For example, if α(~x) is an atomic formula over σ,
and Y identifies a fixpoint with parameters ~z, then α(~x)∧¬Y ~x is not permitted
since Y implicitly uses parameters ~z and these parameters are not guarded by
α (since the free variables in Y ~x are really ~x and ~z).

A formula ϕ that includes free first-order variables ~x is ~x-guarded if it is
logically equivalent to gdd(~x) ∧ ϕ. If Free(ϕ) = ~x and ϕ is ~x-guarded, then we
say it is answer-guarded. Sentences or formulas with one free variable are always
answer-guarded since we can use a trivial guard like x = x. For readability
purposes, we often omit such trivial guards.

GNFP-UP vs. GNFP. A good example to keep in mind is that GNFP-UP can
express the transitive closure of a binary relation R.

Example 31. Suppose R is a binary relation in σ. Consider the following
GNFP-UP[σ]-formula:

ϕ(x, z) := [µzY,y . R yz ∨ ∃y′ (Ryy′ ∧ Y y′)](x) .

Observe that ϕ has two free variables, the variable x being tested in the fixpoint
and the parameter variable z. The formula ϕ(x, z) expresses that there is some
R-path from element x to z, i.e. (x, z) is in the transitive closure of R.

We can express that x participates in an R-cycle by using the formula ϕ(x, x).
This gives us new formulas. But what new sentences can we get out of this?

We cannot express that the structure is strongly R-connected, since this would
require unguarded negation. But we can say every pair of guarded elements is
R-connected: ¬∃ x z (gdd(x, z) ∧ ¬ϕ(x, z)) ∈ GNFP-UP.

Note that the sentence ¬∃x z (ϕ(x, z) ∧ ¬Rxz) ∨ (Rxz ∧ ¬ϕ(x, z)) that says
R is transitively closed is not in GNFP-UP, since we cannot use the fixpoint
relation defined by ϕ as a guard for ¬Rxz.

We now build on the transitive closure example to show how to use GNFP-UP
to express navigational queries. These are formulas over a signature σ containing
only binary and unary relations, generalizing the case of a Kripke Structure,
which has only a single binary relation. One can think of an instance of such
a schema as a “graph database”. For these languages, a regular expression E
over symbols R,R− coming from binary relations R ∈ σ can be seen as defining
a navigation relation that holds for (x, y) exactly when there is some path
between x and y matching E. A conjunctive 2-way regular path query (C2RPQ)
[Calvanese et al., 2000] is just a CQ over such expressions.

We now claim:

Proposition 25. Every boolean C2RPQ can be expressed in GNFP-UP.

Example 32. Consider a signature consisting of a binary relation R(x, y) and
two unary relations U(x) and V (x).

101

The property that there is an alternating U and V path from x to y can be
expressed as a C2RPQ

ϕ1(x, y) = x(UV)∗y

The property that there is a node labeled U havng both even- and and odd-
length paths from x and having an even-length paths to y can be expressed as a
C2RPQ

ϕ2(x, y) =

∃u U(u) ∧ [x((U | V)(U | V))∗y]

∧[x((U | V)(U | V))∗(U | V)u]

∧[u((U | V)(U | V))∗y]

Proof. Consider some C2RPQ over signature σ. Let Σ := {R,R− : R is a binary relation in σ}.
Given a regular expression E over Σ, we can capture the navigation rela-

tion defined by it using a GNFP-UP formula E′. We start with a finite state
automaton A = 〈Σ, Q, q0,∆, F 〉 for E and write a GNFP-UP[σ] formula with
simultaneous fixpoints E′(x, y) := [µyX0,x

. S](x) which has a second-order vari-
able Xi for each state qi ∈ Q, and the equation for the i-th component Xi, xi
in S captures the possible transitions from state qi:

∨
(qi,T,qj)∈Δ

∃z (χT (xi, z) ∧Xj z) ∨

{
xi = y if i ∈ F
⊥ if i /∈ F

where χT (xi, z) is Rxiz if T = R and Rzxi if T = R−.
Once we have E′ in GNFP-UP for each regular expression E appearing in

the C2RPQ, it is easy to translate into GNFP-UP by replacing each E(x, y) in
the C2RPQ by E′(x, y).

A similar argument shows that GNFP-UP can express disjunctions of C2RPQs.
In LFP, it is always possible to eliminate the use of parameters by increasing

the arity of the defined fixpoint predicates and passing the parameters explicitly
in the fixpoint. This is not usually possible in our context, because the fixpoint
variables are required to be guarded. Indeed, it can be shown that the transitive
closure of a binary relation R cannot be expressed in GNFP [Benedikt et al.,
2016b].

Proposition 26. GNFP-UP is strictly more expressive than GNFP.

Parameters of a formula. If Y identifies a fixpoint with parameters ~z, then
params(Y) := ~z, the parameters associated with the second-order variable Y .

We use Free(ϕ) to denote the free first-order variables in ϕ. It is defined
recursively. For atoms R~t with R ∈ σ and ~t a tuple consisting of constants and
variables, the free first-order variables are just the variables in ~t. For Y~t with Y a
second-order variable, Free(Y ~t) is the union of the variables in ~t and params(Y).

102

For boolean connectives, Free(ϕ1 ∧ ϕ2) = Free(ϕ1 ∨ ϕ2) = Free(ϕ1) ∪ Free(ϕ2),
and Free(¬ϕ) = Free(ϕ). For quantification, Free(∃x.ϕ) = Free(ϕ)\{x}. Finally,
for [µ~zY,~y . ϕ](~t), the free first-order variables consist of the parameter variables
~z together with the variables in ~t.

The parameters in ϕ consists of the union of params(Y) for all second-
order variables Y occurring in ϕ; we let params(ϕ) denote the subset of these
parameters that occur free in ϕ.

Normal form. We give a normal form for GNFP-UP. Analogous to the normal
forms for GNF and GNFP, it highlights the fact that GNFP-UP formulas can
be built up from UCQ-shaped formulas using guarded negation and guarded
fixpoints with parameters.

Formally, a normal form GNFP-UP[σ] formula ϕ or ψ is generated recur-
sively from the following grammars:

ϕ ::=
∨
i ∃~yi.

∧
j ψij

ψ ::= R~t | Y ~t | α ∧ ¬ϕ where Free(ϕ) ⊆ Free(α) |
[µ~zYm,~ym .S](~t)

where ~t is a tuple of variables or constants, R~t and α are atoms using a relation
in σ or =, and S is a system with equations of the form Y, ~y := gdd(~y) ∧
ϕ(~y, ~z, ~Y , ~Z), as described earlier.

Any GNFP-UP formula can be converted into normal form in a canonical way.
The width of a GNFP-UP formula is the maximum number of free variables used
in any subformula after the formula is converted into normal form. We write
(GNFP-UP)k[σ] for GNFP-UP formulas of width k.

In order to help study the power of GNFP-UP in more detail, we first define
a way to measure how the parameters are used. Roughly speaking, the param-
eter depth is the maximum number of nested parameter changes. We define
pdepth~z(η) inductively as follows:

pdepth~z(R~t) = pdepth~z(Y ~t) := 0

pdepth~z(α ∧ ¬ϕ) := pdepth~z∩Free(ϕ)(ϕ)

pdepth~z(
∨
i ∃~xi

∧
j ψij) := maxi pi s.t.

pi :=

{
1 + maxj pdepthparams(ψij)(ψij) if ∃j params(ψij) 6⊆ ~z
maxj pdepth~z(ψij) otherwise

pdepth~z([µ
~z′

Xm,~xm
.S](~t)) :={

1 + maxϕj∈S pdepthparams(ϕj)(ϕj) if ∃j params(ϕj) 6⊆ ~z
maxϕj∈S pdepth~z(ϕj) otherwise

.

The parameter depth pdepthϕ for normal form ϕ ∈ GNFP-UP is just pdepthFree(ϕ)(ϕ).
For ϕ not necessarily in normal form, we define it to be the pdepth after con-
verting to normal form.

103

Observe that a formula that does not use any parameters has pdepth 0. Even
a formula that does use parameters can have pdepth 0 if all of its parameters
actually come from free variables of the formula. This is because parameters
like this can be viewed as constants, since they have a fixed interpretation in
any structure. Because of this, if ϕ ∈ GNFP-UP[σ] with pdepth(ϕ) = 0 and
params(ϕ) = ~z, then we can view ϕ as a GNFP formula without parameters,
over the signature σ extended with extra constants ~z.

In general, the pdepth increases when we pass through a subformula that
introduces more parameters. This can happen when passing through existential
quantification that introduces a variable that is later used as a parameter (see
the third case in the pdepth definition), or it can happen when passing through
a fixpoint definition that introduces a fixpoint variable that is later used as a
parameter (see the fourth case).

Later, we will see that the parameter depth is the major factor impacting
the complexity of satisfiability testing.

We have mentioned that GNFP-UP subsumes GNFP. We can now say more
precisely that GNFP formulas, and thus GNF formulas, can be expressed as
GNFP-UP formulas of pdepth 0.

11.2 Decidability via the tree model property
Our aim will be to show that satisfiable (GNFP-UP)k sentences have tree-like
models. We will focus on sentences without constant symbols, where the state-
ment is identical to the ones for previous logics:

Proposition 27. Every satisfiable (GNFP-UP)k sentence has a model of tree-
width at most k.

The proof of this proposition re-uses the infrastructure built for ordinary
GNFP. We will use the same notion of bisimulation and the same notion of
unravelling. The only thing we need to show is that the notion of bisimulation
used for GNFPk also preserves (GNFP-UP)k. For this it suffices to show that if
we restrict to models of size κ, then GNFP-UP is contained in infinitary logic
(with κ-sized disjunctions and conjunctions) over GNF:

Proposition 28. For all ϕ ∈ (GNFP-UP)k[σ] and for all cardinals κ, there is
ϕ′ ∈ GNFk∞[σ] such that for all structures A of cardinality at most κ, A |= ϕ iff
A |= ϕ′.

Proof. Consider ψ := [µ~zY,~y. gdd(~y) ∧ ψ′](~x) for ψ′ ∈ GNFk∞[σ]. Then for each
ordinal β, the β-approximant to the fixpoint defined by ψ can be expressed in
GNF∞, while preserving the width. This is easily shown by transfinite induction
on β.

Now given ϕ ∈ (GNFP-UP)k[σ] and κ, we work from the inside out, replac-
ing each fixpoint definition with its κ + 1 approximant, an upper bound on
the closure ordinal where the fixpoint is reached in structures of cardinality at
most κ.

104

GNFP-UP is contained in GSO just as GNFP is, and thus we can use the
forward mapping theorem, Theorem 10, to get a translation to a tree coding.
Thus combining the tree-like model property of Proposition 27, the forward
mapping, and Rabin’s theorem, we get:

Theorem 26. Satisfiability for GNFP-UP is decidable.

11.3 Decidability of GNFP-UP using automata
In this section, we show how to convert a formula ϕ in GNFP-UP into an au-
tomaton. Our notion of automaton will be a 2-way alternating parity automaton
on binary trees, as was used for GNFP.

For GNFP, we could directly define the localized versions of the automata
using a state set of size at most singly exponential in the size of the input for-
mula. However, by adding parameters in GNFP-UP, this direct definition of a
localized version becomes more challenging. We are forced to construct non-
localized automata at some points — namely, for subformulas that introduce
new parameters — and then apply Theorems 14 and 15, resulting in an ex-
ponential blow-up. The parameter depth is a measure of how many of these
blow-ups occur.

Construction. We will assume our sentence is in the normal form for GNFP-UP
defined earlier. We now describe more details of the construction of an au-
tomaton for normal form ϕ ∈ GNFP-UP. Recall that, it is straightforward to
construct an automaton that checks consistency. Hence, we can concentrate on
defining an automaton for ϕ that runs on consistent trees and accepts iff the
decoding of the consistent input tree actually satisfies ϕ.

The main theorem states that the size of the automaton for ϕ is a tower of
exponentials whose height depends on the pdepth. Given a function f , we write
expnf (m) for a tower of exponentials of height n based on f , i.e. exp0f (m) = m

and expnf (m) = 2f(expn−1
f (m)).

Theorem 27. For normal form ϕ ∈ (GNFP-UP)k[σ] with
pdepth(ϕ) ≥ 1, we can construct a 2-way alternating parity tree automaton
Aϕ such that for all consistent code-trees t, decode(t) |= ϕ iff t ∈ L(Aϕ), and
the size of Aϕ is at most (pdepth(ϕ) + 1)-exponential in |ϕ|.

More precisely, there is a polynomial function f independent of ϕ such that
the size is at most exppdepth(ϕ)

f (f(m) · 2f(klr)) where m = |ϕ|, l = |Constσ|, and
r = rankCQ(σ) (see definitions below).

The main factor affecting the output size is the pdepth, since this determines
the height of the tower of exponentials. However, for more precise bounds, the
other factors affecting the size are the size of the formula ϕ, the width k, the
number of constants in σ, and the CQ-rank. As with GNF and GNFP, the CQ-
rank is the maximum number of conjuncts ψi in any CQ-shaped subformula
∃~x.
∧
i ψi for non-empty ~x.

105

The proof of Theorem 27 is by induction on |ϕ|, and constructs localized
2-way automata for subformulas of ϕ. For GNFP subformulas, we already know
how to do this (see Lemma 9).

We use these automata for GNFP as building blocks for our GNFP-UP con-
struction. Recall that formulas of pdepth 0 can always be viewed as GNFP
formulas. We can also transform parts of the formula into GNFP formulas over
a slightly different signature.

For this purpose, given ψ ∈ (GNFP-UP)k[σ] with params(ψ) ⊆ ~z, de-
fine the augmented signature σ~z,ψ to be the signature σ together with addi-
tional constants z ∈ ~z and subformula predicates Fη for subformulas η with
params(η) ⊆ ~z. For such η, the arity of Fη is usually |Free(η) \ params(η)|; in
the special case that η is a fixpoint formula, then the arity of Fη is the arity of
this fixpoint predicate. Then we can transform the outer part of a GNFP-UP
formula to a GNFP formula over this augmented signature. This transformation
is analogous to the trick we used for UCQ-shaped formula in GNFP. There we
transformed the outer part of the formula, which we called the “UCQ skeleton”,
to an automaton, and plugged in local automata for the subformulas.

The difference is that we can only perform this transformation on the outer
part of the formula that uses the same set of parameters. Consider η ∈ (GNFP-UP)k[σ]
with Free(η) ⊆ ~yz and params(η) ⊆ ~z. We define transform~z(η) ∈ GNFPk[σ~z,η]
inductively as follows:

transform~z(R~t) := R(~t) transform~z(Y ~t) := Y (~t)

transform~z(α ∧ ¬ϕ) := α ∧ ¬transform~z∩Free(ϕ)(ϕ)

transform~z([µ
~z′

X,~x.S](~t)) :={
F[µ~z

′
X,~x

.S](~t) (vect) if there is ϕj ∈ S with params(ϕj) 6⊆ ~z
[µX,~x.S

′](~t) otherwise

where S′ is the result of applying transform~z to each ϕj ∈ S
transform~z(

∨
i ∃~xi.

∧
j ψij) :={

F∨
i ∃~xi.

∧
j ψij

~y if there is i, j such that params(ψij) 6⊆ ~z∨
i ∃~xi.

∧
j transform~z∩Free(ψij)(ψij) o.w.

This transformation does not increase the width, CQ-rank, or the size of the
formula.

The GNFP formula ϕ′ obtained using this transformation is “equivalent” to
the GNFP-UP formula ϕ, under the assumption that the additional predicates
in the augmented signature are interpreted in the expected way: Fη holds for
a particular binding of the free variables and its parameter variables exactly
when η holds of these. To make the output ϕ′ truly equivalent to ϕ, we would
have to add “defining formulas” for each new symbol Fη. We could do this for
GNF formulas, since the resulting definitions would be in GNF and the formula
resulting from conjoining ϕ′ and the definitions would be a normal form for
GNF in terms of UCQs and GFP formulas. This “Scott Normal Form” approach

106

matches the technique for GNF satisfiability in [Bárány et al., 2015]. However
for GNFP-UP we will stick with ϕ′ and then “bake in” the semantics of the
formulas Fη in the translation to automata. This will make it easier to track
how the blow-up occurs.

If the transformation applied to η only introduces Fη′ for strict subformulas
η′ of η, then we say the transformation is helpful for η. We can see from the
inductive definition of the transformation that it is unhelpful exactly when we
reach a fixpoint or UCQ-shaped formula where the parameters of an immediate
subformula differ from the parameters of the formula itself. If a transformation
is helpful for η, all occurrences of these new predicates Fη′ appear under a guard
of Free(η′) \ params(η′). Another way to understand the parameter depth is to
say that the parameter depth measures the number of unhelpful breakpoints we
reach as we try to transform the entire formula using this operation.

The main idea in the construction, described in Lemma 13 below, is to trans-
form the outer part of the formula into a GNFP formula. If the transformation is
helpful, we can then use the GNFP automaton for the outer part of the formula,
and plug in inductively defined automata checking the subformulas. When this
is not possible, we must use different techniques, which result in an exponential
blow-up at these stages.

Lemma 13. Let ϕ(~y, ~z, ~Z) be a subformula of ϕ ∈ (GNFP-UP)k[σ] with params(ϕ) ⊆
~z. For each local assignment ~b/~y, we can construct a 2-way alternating parity
tree automaton B

~b/~y
ϕ such that for all consistent code-trees (t, ~z→, ~Z→) and for

all nodes w ∈ domain(t) with ~b ⊆ names(w),

D(t), [w,~b], ~z, ~Z |= ϕ iff B~b/~yϕ accepts (t, ~z→, ~Z→) from w.

For pdepth~z(ϕ) ≥ 1, there is a polynomial function f independent of ϕ such that
the size of all such localized automata is at most exppdepth~z(ϕ)

f (f(mn) · 2f(klr))
where m = |ϕ|, n = |σ|, l = |Constσ|, and r = rankCQ(ϕ). The number of
priorities is linear in |ϕ|. For pdepth~z(ϕ) = 0, the bounds match those for
GNFP (see Lemma 9).

Proof sketch. The proof is by induction on |ϕ|.
Assume ϕ′ := transform~z(ϕ) and the transformation is helpful at ϕ. This

always holds for the smallest (atomic) formulas, so this covers the base of the
induction. We construct B

~b/~y
ϕ to simulate the automaton A

~b/~y
ϕ′ formed from the

GNFP formula ϕ, using Lemma 9, while allowing Eve to guess valuations for the
Fη relations from ϕ′. Since the transformation is helpful at ϕ, we know that
every Fη relation in ϕ′ is for some formula η that is strictly smaller than ϕ,
and hence the inductive hypothesis ensures there is a corresponding automaton
for every suitable local assignment. During the simulation of A

~b/~y
ϕ′ , if Eve as-

serts Fη(~x) (~a) at w for some ~a ⊆ names(w), then Adam can challenge this by
launching the localized automaton for the intersection of B~a/~xη(~x) and B

~a/~x
gdd(~x) from

w; likewise, if Eve does not assert Fη(~x) (~a) at w for some ~a ⊆ names(w), then

107

Adam can challenge this by launching the localized automaton for the dual of
the intersection of B~a/~xη(~x) and B

~a/~x
gdd(~x) from w. Correctness follows from Lemma 9,

and the fact that the inductive hypothesis ensures the subautomata for Fη in
ϕ′ are correct. There is no exponential blow-up in this case.

Next, assume that ϕ′ := transform~z(ϕ) and the transformation is unhelp-
ful at ϕ. There are two possible cases, depending on whether we are dealing
with a UCQ-shaped formula or a fixpoint. But each of these will result in an
exponential blow up.

The first case is when ϕ is a UCQ-shaped formula
∨
i ∃~xi.

∧
j ψij where vari-

ables from some ~xi are used as parameters in
∧
j ψij . To start, we consider each

CQ-shaped formula separately, so fix some ∃~xi.
∧
j ψij . We use the inductive hy-

pothesis to obtain 2-way alternating automata for each conjunct ψij , using the
empty local assignment. This is possible since the size of these conjuncts must
be strictly less than the size of ϕ. Because we are using the empty local assign-
ment, these automata operate on trees with markers for all of the free variables:
~xi ∪ ~y ∪ ~z. Take the intersection of these automata using the closure properties
of automata mentioned in Proposition 16. Then take the intersection with the
automaton checking consistency. This yields a 2-way alternating automaton
corresponding to

∧
j ψij . We then convert this automaton to a nondeterminis-

tic version using Theorem 14 and project away the information about ~xi using
the projection operator mentioned in Proposition 18. This yields an equivalent
(1-way) nondeterministic parity automaton for the CQ. Next, we localize this
automaton to the desired variables ~y using Theorem 15. Finally, to construct
the automaton B

~b/~y
ϕ , we take the union of the individual CQ automata, using

union closure as in Proposition 16. The conversion from a 2-way alternating
automaton to a nondeterministic automaton is the costly step in this process,
resulting in an exponential blow-up. This matches the claimed size bound since
pdepthψij < pdepth~z(ϕ).

The second case is when ϕ is a fixpoint formula where fixpoint variables
are used as parameters in the body of the fixpoint. Suppose it is of the form
[µ~z
′

X,~x. gdd(~x)∧ χ(~x~z′, X ~Z)](~t) where params(χ)∩ ~x 6= ∅, so params(χ) 6⊆ ~z; the
construction is similar for a simultaneous fixpoint. The formula χ in the body
of the fixpoint is strictly smaller, so we can apply the inductive hypothesis to
get an automaton for this part. We want this automaton to be localized to ~x
so we can test for tuples in the fixpoint by launching copies of the automaton
for some local assignment. However, the inductive hypothesis does not directly
yield this, since some variables from ~x are used as parameters. Hence, we
must use the inductive hypothesis to get a 2-way automaton for B∅/∅χ′ , apply
Theorem 14 to get an equivalent 1-way nondeterministic automaton (resulting
in an exponential blow-up), and then localize to some ~a/~x using Theorem 15.
Once we have these localized automata B~a/~xχ for the body of the fixpoint, we can
construct an automaton that captures the fixpoint game described in Section
9.

Theorem 27 easily follows from this lemma.

108

The conversion to normal form from an arbitrary GNFP-UP sentence can be
done blowing up the size at most exponentially while keeping the width and
CQ-rank linear. Hence, we have the following corollary.

Corollary 4. For ϕ′ ∈ GNFP-UP[σ] (not necessarily in normal form), we can
construct an automaton Aϕ′ of (pdepthϕ′ + 1)-exponential size.

Because of the tree-like model property for GNFP-UP, we can use the au-
tomaton construction and EXPTIME emptiness testing of two-way alternating
parity automata (Proposition 11) to get a finer analysis of the satisfiability of
GNFP-UP:

Theorem 28. Satisfiability for ϕ ∈ GNFP-UP is decidable in (pdepthϕ + 2)-
EXPTIME.

11.4 Bibliographical remarks and further reading
The language GNFP-UP is defined in [Benedikt et al., 2016b], and this section
closely follows the development there. The language extends earlier Datalog-
based languages [Rudolph and Krötzsch, 2013, Bourhis et al., 2015].

109

12 Conclusion and further reading
We have given an overview of the use of the tree-like model property for deciding
satisfiability and other related computational problems on restricted logics.

Some natural questions are:

• What are the limitations of the method?

• Are there logics that are decidable where the method is not useful? If so,
what other methods are available?

• The method allows us to conclude decidability, and to get bounds on the
complexity of decision procedures. But can it be utilized to get useful
decision procedures in practice?

For each of these questions, the answer is necessarily complicated. In this
section we can only give some brief comments and give pointers to some relevant
work.

Limitations. One of the chief limitations of the method of tree-like models
is its reliance on infinite structures. The “witness example” produced by the
method is a structure coded by an infinite tree. Thus, by itself, the method
does not allow one to conclude anything about satisfiability, validity, or entail-
ment over finite models. For GF and GNF, it turns out that the finite variant of
these problems agrees with the unrestricted version. But to show this requires
techniques very different from those given here. For GNFP, the finite and in-
finite variation of the problems disagree; but the finite variant of the problem
is also decidable [Bárány et al., 2015]. Again, the arguments involved are quite
distinct from those given here. For the logic GNFP-UP, it is open whether finite
satisfiability is decidable.

Other methods. The tree-like model property is only one paradigm for de-
cidability. Another set of logics that are decidable are two-variable logics. The
most well-known of these is the two-variable fragment of first-order logic, FO2.
Most commonly, FO2 is built up from a signature consisting of unary and binary
relations only. Every formula has variables from x, y, and formulas are built up
from atomic formulas by the boolean operations and the quantifications

ϕ(x) := ∃y ϕ1(x, y)

ϕ(y) := ∃x ϕ1(x, y)

Universal quantification can be expressed in a similar way.
Decidability of FO2 is shown via the finite model property [Mortimer, 1975,

Grädel et al., 1997a]. The key idea is that to understand FO2, it suffices to
understand objects called atomic 1-types and atomic 2-types. A 1-type is just
a complete description of the atomic formulas true of a single element, while
2-type is similarly a complete description of the atomic formulas true of a pair

110

of elements. An FO2 formula can only express which 1-types exist, and how
1-types connect with one another via 2-types. The idea behind the finite model
property of FO2 is that if we have any model of a formula ϕ, we can look at the
abstract connection of its 1-types via 2-types, and re-arranged them in a way
to use only finitely many elements. The same kind of analysis, but much more
complicated, is done for extensions of FO2: FO2 has been shown decidable
when certain symbols are restricted to be equivalence relations [Kieronski and
Otto, 2005]. A more powerful extension is two-variable logic with counting, C2

where existential quantification is of one of the forms:

ϕ(x) := ∃≥ny ϕ1(x, y)

ϕ(y) := ∃≥nx ϕ1(x, y)

where n is a number. The first form says that there are at least n elements
y such that ϕ1(x, y) holds. Note that the ordinary existential quantification
of FO2 is a special case where n = 1, and ordinary universal quantification
of FO2 can be expressed using existential quantification and negation. For
example, ∀x ∃≥1yR(x, y) is a sentence of C2 stating that for every x, there is
at most 1 y such that R(x, y) holds.

Satisfiability of C2 is shown decidable using the method of analyzing 1- and
2-types [Grädel et al., 1997b, Pacholski et al., 1997, Pratt-Hartmann, 2005] but
the analysis is much more difficult than for FO2.

There are other logics that are decidable using methods that are quite specific
to the logic: for example, the Fluted fragment [Purdy, 1996, Pratt-Hartmann
et al., 2016] or the Gödel-Kalmar-Shutte fragment [Gödel, 1933]. A good sum-
mary of many of these fragments can be found in the classic textbook of Börger,
Grädel, and Gurevich [Börger et al., 1997].

Practical aspects. There are a number of implementations of satisfiability
of modal logic; however, these generally do not go through the method of au-
tomata. We recommend the overview of implementation given in [Hustadt and
Schmidt, 1999] for further details.

In the case of arity 2 schemas, guarded logics extend many extensions of
modal logic known as description logics. Many implementations of reasoning
algorithms for description logics exist, and they are based, either directly or
indirectly, on the tree-like model property. A good starting point for learning
about description logics is the handbook [Baader et al., 2003].

To our knowledge, there is not a single implementation of the automata-
theoretic decidability algorithms for the remaining logics in this text. The chief
issue with the automata-theoretic approach for guarded logics is the exponential
dependence on the width for the formula. In the automata-theoretic approach,
this is not only a worst-case bound: the label alphabet of the automaton is
exponential in the width, and thus even forming the automaton is infeasible
once the arity of relations is large.

111

An alternative approach to decidability for certain guarded logics is based
on resolution, originating in [Ganzinger and de Nivelle, 1999] and extended in
[de Nivelle, 1998, Kazakov and de Nivelle, 2004]. Resolution is a standard de-
cision procedure for first-order logic, based on converting formulas into clauses,
and applying resolution steps. A clause is formula ∀~x(

∨
Li), where each Li is

an atomic formula or its negation. An arbitrary first-order formula can be con-
verted into a conjunction of clauses while preserving satisfiability. A resolution
step takes two clauses where there is a literal of the form R(~u) in one clause
and a “matching” literal of the form ¬R(~v) in the other. The resolutioin step
produces a new clause in which the matching literals are removed and the re-
maining literals appear. Resolution can be paramaterized by a rule for deciding
which two formulas to resolve. The idea behind works such as [Ganzinger and
de Nivelle, 1999] is that if the selection rule is chosen carefully, then resolution
will terminate, giving a decision procedure for GF.

References
Serbe Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

Hajnal Andréka, Johan van Benthem, and István Németi. Modal languages
and bounded fragments of predicate logic. Journal of Philosophical Logic, 27:
217–274, 1998.

Franz Baader and Ulrike Sattler. An overview of tableau algorithms for descrip-
tion logics. Studia Logica, 69(1):5–40, 2001.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël
Thomazo. Complexity boundaries for generalized guarded existential rules,
2011a. Research Report LIRMM 11006.

Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël
Thomazo. Walking the complexity lines for generalized guarded existential
rules. In IJCAI, 2011b.

Vince Bárány and Mikołaj Bojańczyk. Finite satisfiability for guarded fixpoint
logic. Information Processing Letters, 112(10):371–375, 2012.

Vince Bárány, Georg Gottlob, and Martin Otto. Querying the guarded fragment.
In LICS, 2010.

Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. In ICALP,
2011.

112

Vince Bárány, Balder ten Cate, and Martin Otto. Queries with guarded nega-
tion. Proceedings of VLDB, 5(11):1328–1339, 2012.

Vince Bárány, Michael Benedikt, and Balder ten Cate. Rewriting guarded nega-
tion queries. In MFCS, 2013.

Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. Journal
of the ACM, 62(3), 2015.

Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. Interpolation
with decidable fixpoint logics. In LICS, 2015.

Michael Benedikt, Pierre Bourhis, Balder ten Cate, and Gabriele Puppis. Query-
ing visible and invisible information. In LICS, 2016a.

Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. A step up in
expressiveness of decidable fixpoint logics. In LICS, 2016b.

Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. Characterizing
definability in decidable fixpoint logics. In ICALP, 2017.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
University Press, 2001.

Achim Blumensath, Thomas Colcombet, Denis Kuperberg, Pawel Parys, and
Michael Vanden Boom. Two-way cost automata and cost logics over infinite
trees. In CSL-LICS 2014, pages 16:1–16:9, 2014.

Egon Börger, Eric Grädel, and Yuri Gurevich. The Classical Decision Problem.
Springer, 1997.

Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. Reasonable highly
expressive query languages. In IJCAI, 2015.

Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase:
Query answering under expressive relational constraints. In KR, 2008.

Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-
based framework for tractable query answering over ontologies. Journal of
Web Semantics, 14(0):57–83, 2012.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.
Vardi. Containment of conjunctive regular path queries with inverse. In KR,
2000.

C. C. Chang and H. J. Keisler. Model Theory. North-Holland, 1990.

Bruno Courcelle. The monadic second order theory of graphs i: Recognisable
sets of finite graphs. Information and Computation, 85:12––75, 1990.

William Craig. Linear reasoning. a new form of the Herbrand-Gentzen theorem.
The Journal of Symbolic Logic, 22(03):250–268, 1957.

113

Giovanna D’Agostino and Marco Hollenberg. Logical Questions Concerning The
mu-Calculus: Interpolation, Lyndon and Los-Tarski. The Journal of Symbolic
Logic, 65(1):310–332, 2000.

Marcello D’Agostino, Dov M. Gabbay, Reiner HÄHnle, and Joachim Posegg.
Handbook of Tableau Methods. Kluwer Academic Publishers, Hingham, MA,
USA, 2001.

Hans de Nivelle. A resolution decision procedure for the guarded fragment. In
CADE, 1998.

Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer-Verlag,
1999. Second edition.

Ronald Fagin, Phokion G. Kolaitis, Renee J. Miller, and Lucian Popa. Data
exchange: Semantics and query answering. Theoretical Computer Science,
336(1):89–124, 2005.

Harald Ganzinger and Hans de Nivelle. A superposition decision procedure for
the guarded fragment with equality. In LICS, 1999.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

Kurt Gödel. Zum entscheidungsproblem des logischen funktionkalküls.
Monatschefte für Mathematik und Physik, 40:433–443, 1933.

Erich Grädel. Decision procedures for guarded logics. In CADE, 1999a.

Erich Grädel. On the restraining power of guards. Journal of Symbolic Logic,
64(4):1719–1742, 1999b.

Erich Grädel. Why is modal logic so robustly decidable?, 1999c.

Erich Grädel. Guarded fixed point logics and the monadic theory of countable
trees. Theoretical Computer Science, 288(1):129 – 152, 2002.

Erich Grädel and Martin Otto. The freedoms of (guarded) bisimulation. In
Johan van Benthem on Logic and Information Dynamics, pages 3–31. 2014.

Erich Grädel and Igor Walukiewicz. Guarded fixed point logic. In LICS, 1999.

Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision prob-
lem for two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69,
1997a.

Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting
is decidable. In LICS, 1997b.

Erich Grädel, Colin Hirsch, and Martin Otto. Back and forth between guarded
and modal logics. ACM Transactions on Computational Logic, 3(3):418–463,
2002.

114

Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata Logics,
and Infinite Games: A Guide to Current Research. Springer-Verlag, 2002.

Edith Hemaspaandra and Henning Schnoor. On the complexity of elementary
modal logics. In STACS 2008, 25th Annual Symposium on Theoretical Aspects
of Computer Science, Bordeaux, France, February 21-23, 2008, Proceedings,
pages 349–360, 2008.

Ullrich Hustadt and Renate A. Schmidt. An Empirical Analysis of Modal The-
orem Provers. Journal of Applied Non-Classical Logics, 9(4):479–522, 1999.

Neil Immerman. Descriptive Complexity. Springer Graduate Texts in Computer
Science, 1999.

Yevgeny Kazakov and Hans de Nivelle. A resolution decision procedure for the
guarded fragment with transitive guards. In IJCAR, 2004.

Emanuel Kieronski and Martin Otto. Small substructures and decidability issues
for first-order logic with two variables. In LICS, 2005.

Orna Kupferman and Moshe Y. Vardi. Weak alternating automata and tree
automata emptiness. In STOC, 1998.

Richard E. Ladner. The computational complexity of provability in systems of
modal propositional logic. SIAM Journal of Computing, 6(3):467–480, 1977.

Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

Christof Löding. Automata on infinite trees, December 2011. Avail-
able at http://old.automata.rwth-aachen.de/users/loeding/
inf-tree-automata.pdf.

Bruno Marnette. Resolution and datalog rewriting under value invention and
equality constraints. Technical report, 2011. http://arxiv.org/abs/1212.
0254.

M. Mortimer. On language with two variables. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, 21:135–140, 1975.

Adrian Onet. The Chase Procedure and its Applications in Data Exchange.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity of two-
variable logic with counting. In LICS, pages 318–327, 1997.

Christos M. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting
quantifiers. Journal of Logic, Language and Information, 14(3):369–395, 2005.

Ian Pratt-Hartmann, Wieslaw Szwast, and Lidia Tendera. Quine’s fluted frag-
ment is non-elementary. In CSL, 2016.

115

William C. Purdy. Fluted formulas and the limits of decidability. Journal of
Symbolic Logic, 61(2):608–620, 1996.

M. O. Rabin. Decidability of second-order theories and automata on infinite
trees. Transactions of the AMS, 141:1–35, 1969.

Alexander Rabinovich. Composition theorems for generalized sum and recur-
sively defined types. Electronic Notes in Theoretical Computer Science, 123,
2005.

Sebastian Rudolph and Markus Krötzsch. Flag & check: data access with
monadically defined queries. In PODS, 2013.

Walter J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computing and Systems Science, 4(2):177–192,
1970.

Dana Scott. A decision method for validity of sentences in two variables. The
Journal of Symbolic Logic, page 477, 1962.

Oded Shmueli. Equivalence of datalog queries is undecidable. Journal of Logic
Programming, 15(3):231–241, 1993.

Michael Sipser. Introduction to the Theory of Computation. International Thom-
son Publishing, 1st edition, 1996.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time
(preliminary report). In Proceedings of the Fifth Annual ACM Symposium on
Theory of Computing, pages 1–9, 1973.

James W. Thatcher and Jesse B. Wright. Generalized finite automata theory
with an application to a decision problem of second order logic. Mathematical
Systems Theory, 2(1):57–81, 1968.

Wolfgang Thomas. Languages, automata and logic. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, volume 3. Springer-Verlag,
1997a.

Wolfgang Thomas. Ehrenfeucht games, the composition method, and the
monadic theory of ordinal words. In Structures in Logic and Computer Sci-
ence, A Selection of Essays in Honor of Andrzej Ehrenfeucht, 1997b.

Moshe Y. Vardi. Why is modal logic so robustly decidable? In DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, volume 31, pages
149–184. American Mathematical Society, 1997.

Moshe Y. Vardi. Reasoning about the past with two-way automata. In ICALP,
1998.

116

Undecidability of general first order logic
In this appendix we give a sketch of the proof of the undecidability of satisfia-
bility for general first order logic, as mentioned in the body.

Theorem 29. Satisfiability of first-order logic is undecidable.

We make use of the well-known halting problem for Turing Machines. This
problem takes as input a deterministic Turing MachineM with binary alphabet,
and an input string x0. The output is true if M halts on x0. A diagonal
argument shows that the halting problem is undecidable.

We will show that first-order logic satisfiability is undecidable by reducing
the complement of the halting problem to first-order satisfiability. That is,
given M and x0 we will effectively construct a sentence ϕM,x0

that is satisfiable
exactly when M does not halt on x0. Using this reduction, we see that if we
could decide first-order logic satisfiability, we could decide whether M does not
halt on x0 (and thus, by complementing, whether M does halt).

Let us recall some of the basic definitions concerning Turing Machines. A
Turing Machine M over binary alphabet consists of:

• a finite set of states Q,

• an initial state q0 ∈ Q

• a set of accepting states A ⊆ Q

• a transition function δ : 2×Q→ (Q× Dir× 2) where Dir = {Left,Right}.

A configuration of a Turing Machine consists of a finite binary sequence
s1 . . . sn representing the tape content, a state q ∈ Q, and a head position
hi ≤ n. A run of a Turing Machine is a sequence of configurations c1 . . . with
several properties described below.

• The state associated with configuration c1 is q0, the head position is 1 and
the tape content of c1 is x0

• For each index i of the sequence ci, ci+1 satisfies the transition function,
in the following sense:

Let hi be the head position of ci, HeadVali the value at index hi in the tape
content, and qi the state in ci. Let hi+1, qi+1 be defined similarly for ci+1,
and let HeadVali+1 be the value underneath hi in the tape of ci+1. The
tape values of ci+1 are the same as those of ci for cell positions other than
hi. For the cell position hi, if δ(HeadVali, qi) = (qi+1,Dir,HeadVali+1),
then the cell position at hi is HeadVali+1.

The head position hi+1 must satisfy the following:

If δ(HeadVali, qi) = (qi+1,Right,HeadVali+1) then hi+1 = hi+ 1.
If δ(HeadVali, qi) = (qi+1, Left,HeadVali+1) and hi+1 = hi− 1

117

A non-terminating run is a run that is infinite, where h(i) > 0 for all i, and
where each state is in Q−A. A Turing Machine M does not halt on x0 exactly
when it has a non-terminating run. Note that we have defined a run to terminate
if h(i) = 0. That is, if the tape head goes past the initial part of the tape. This
is for convenience only.

Intuitively we want to build a sentence ϕM,x0 describing a non-terminating
run of M on x0. How can we describe such a run?

We can represent a run as a structure with relations: <, IsZero(x, y), IsOne(x, y),
HasHead(x, y), HasStateq(x).

A discrete linear order with initial point is a binary relation < that is a linear
order with an initial element, in which every element has an immediate successor
and every element other than the initial one has an immediate predecessor. This
is captured by the following axioms:

∀xy x < y ∨ y > x ∨ x = y

∀xyz x < y ∧ y < z → x < z

∀x ¬(x < x)

∃x0 ¬∃y y < x∧
∀x ∃y x < y ∧ [¬∃z x < z < y]∧

∀x x 6= x0 → ∃y y < x ∧ [¬∃z x < z < y]

Let � (x, y) abbreviate the formula x < y ∧ [¬∃z x < z < y]. For any
positive integer i, let IsNumi(x) be the formulas defined inductively:

IsNum1(x) = ¬∃y y < xIsNumi+1(x) = ∃xi � (xi, x) ∧ IsNumi(x)

We now consider the sentence ϕM,x0 that is a conjunction of the following:

• < is a discrete linear order with initial element

• Initial configuration axioms:

∃z1 . . . zm0

∧
1≤i≤m0

IsNumi(zi) ∧
∧

i|x0(i)=1

IsOne(z0, i) ∧
∧

i|x0(i)=0

IsZero(z0, zi)∧

∀x (x > zm0
→ ¬IsOne(z0, zi) ∨ IsZero(z0, zi)

• Initial state axioms:

∃z0 IsNum1(z0) ∧ HasStateq0(z0)

• No accepting state axiom:

∀x
∧
q∈A
¬HasStateq(x)

118

• Unique state axiom:

∀x
∧

q 6=q′∈Q

¬(HasStateq(x) ∧ HasStateq′(x)

• Unique head axiom:

∀x∀y∀y′ y < y′ → ¬(HasHead(x, y) ∧ HasHead(x, y′)

• Unique bit axiom:

∀x∀y IsZero(x, y)→ ¬IsOne(x, y)

• Transition away from the head axiom:

∀xyy′ HasHead(x, y′) ∧ (y < y′ ∨ y′ > y)→ ∃x′ � (x, x′) ∧ (IsOne(x, y)↔ IsOne(x′, y)

• Transition right on 1 and write 0 axiom:

∀xy IsOne(x, y) ∧ HasHead(x, y) ∧ HasStateq(x)→
∃x′y′ � (x, x′) ∧ HasStateq′(x

′)∧ � (y, y′) ∧ HasHead(x′, y′) ∧ IsZero(x′, y′)

Where δ(q, 1) = (q′,Right, 0)

• Transition right on 1 and write 1 axiom:

∀xy IsOne(x, y) ∧ HasHead(x, y) ∧ HasStateq(x)→
∃x′y′ � (x, x′) ∧ HasStateq′(x

′)∧ � (y, y′) ∧ HasHead(x′, y′) ∧ IsOne(x′, y′)

Where δ(q, 1) = (q′,Right, 1)

• Analogous axioms for transitioning right on 0

• Transition left on 1 and write 0 axiom:

∀xyy′ IsOne(x, y) ∧ HasHead(x, y) ∧ HasStateq(x)∧ � (y′, y)→
∃x′ � (x, x′) ∧ HasHead(x′, y′) ∧ IsZero(x′, y′)

Where δ(q, 1) = (q′, Left, 0)

• Transition left on 1 and write 1 axiom:

∀xyz IsOne(x, y) ∧ HasHead(x, y) ∧ HasStateq(x)∧ � (y′, y)→
∃x′ � (x, x′) ∧ HasHead(x′, y′) ∧ IsOne(x′, y′)

Where δ(q, 1) = (q′, Left, 1)

• Analogous axioms for transitioning left on 0

119

We claim thatM has a non-terminating run if and only if ϕM,x0 is satisfiable.
First, suppose M has a non-terminating run Tapei : i ∈ N on input x0. We

create a structure SM as follows:

• < is the usual linear order on the non-negative integers

• IsOne(i, j) holds if and only if the jth cell of Tapei is one, and similarly
for IsZero(i, j)

• HasStateq(i) holds if and only if Tapei is in state q

• HasHead(i, j) holds if and only if in Tapei, the head is on cell j

It is easy to verify that all the axioms of ϕM,x0 are satisfied in SM .
In the other direction, we claim that if ϕM,x0 is satisfied, then M does not

terminate. Let S be a model. For any x, e ∈ S the configuration tx,e is defined
as follows

• the cell domain is {y ∈ S|y < e},

• the cell value on an element y is one if IsOne(x, y) holds and zero if
IsZero(x, y) holds, assuming these are defined. Note that by the Unique
bit axiom, which must be satisfied in M , at most one of IsOne, IsZero
holds.

• the state is q if and only if HasStateq(x) holds. This is unique by the
Unique state axiom.

• the head is on y if and only if HasHead(x, y) holds. This is unique by the
Unique head axiom.

• the cell domain is ordered by <

We construct a non-terminating run of M inductively, in which each con-
figuration is of the form tx,e for some x, e ∈ S. For the base case, we take
Tape1 to be tz0,m0

where m0 is the length of x0 and z0 is the element satisfying
IsNum1(z0). Note that the axioms guarantee that such a z0 is unique.

For the induction step, suppose we already have Tapei, with corresponding
xi, ei, state qi, and head hi, and HeadVali be the value under the head. We
define Tapei+1 by taking the unique xi+1 such that � (xi, xi+1) holds, and
taking ei+1 to be defined by:

• the unique e such that � (ei, ei+1) holds, if hi is the final element of Tapei,
and δ(qi,HeadVali) is of the form (q′,Right, v).

• ei otherwise

We first need to show that each Tapei is a well-defined Turing Machine
configuration, and that for each i the sequence Tape1 . . .Tapei is a valid run.
We prove the two statements by induction.

120

The fact that Tape1 is well-defined configuration agreeing with the tape of
M on x0 follows from the Initial state axioms.

Now consider the induction step, where we already know that Tape1 . . .Tapei
represent a valid run. Let qi be the state of Tapei, hi the head position, and
HeadVali the bit value under the head. δ is a total function so must be defined on
(qi,HeadVali). We do a case analysis based on the direction and bit components
of the output. For example, suppose δ(qi,HeadVali) = (q′,Right, 0), and suppose
also that hi is not the final element of Tapei. Thus the element ei+1 defined
above is the same as ei.

Let xi+1 be the unique unique such that � (xi, xi+1). By the Transition
Right axioms, we know

∃y′ ∧ HasStateq′(xi+1)∧ � (hi, y
′) ∧ HasHead(x′, y′) ∧ IsZero(xi+1, y

′)

By the unique head axiom, the only position with HasHead holding is the y′
above, which agrees with the place that the head should be on such a transition.

By the Transition away from the head axioms, we know

∀y (y < hi ∨ hi > y)→ (IsOne(xi, y)↔ IsOne(xi+1, y)

Combining this with the above, we see that the tape bits are consistent with
what they should be on such a transition as well. The other cases are similar.

Finally, to show that the sequence as a whole gives a non-terminating run,
we use the No accepting state axiom.

This completes the proof of Theorem 29.

121

