Quick Course Overview

* Quick review of logic and computational problems
« What the course is about

* First assignment



First-order Logic

V x Student (x) — Honest (x)

Every student is honest

dx Student(x) A Honest (x)

Some student is honest

V x Student (x) — dy Professor (y) A Advises (y, x)

Every student is advised by a professor



Semantics of FO Logic

Student (x) , Professor(y),
Advises (x,Vy)

In FO logic we have a signature
(aka vocabulary): set of predicates,
functions, constants

Each signature has Student Professor
many possible interpretations Advises




Semantics of FO: By Example

Vx [Student (x) 2 dy (Advises(y,x) A Professor(y))]

dx (Student (x) A Professor (x))

dx dy Student (x) A Student (y) A — (x=y)
A Jz (Advises (z,x) A Advises(z,y))

Student Advises Professor




Computational Problems for FO

A sentence ¢ is satisfiable if there is some interpretation
M where ¢ is true

A sentence ¢ is valid (or, is a tautology) if ¢ is true
in every interpretation

A sentence ¢ is a contradiction if it is false in every interpretation

Two sentences ¢4 and ¢, are equivalent if they are true
in exactly the same interpretations



Vx (A(x) V- A(x)) Valid

A(c) 2 dyA(y) Valid

Vx (Man(x) = Mortal (x))

Vz z+z>z



The question of decidability of satisfiability and validity of first order logic was
introduced by the mathematician David Hilbert in the 1920’s, with the goal of using
logic as a way of automatically verifying mathematics.




Kurt Godel
1906 - 1978

Kurt Godel created the first complete proof system for
first order logic.

Using proofs, he gave a semi-decision procedure
(one-way test) for validity, equivalence, implication of
first-order logic sentences.



Alonzo Church and Alan Turing showed that the decision

problem for first-order logic is undecidable.
«Cannot decide if ¢ is satisifiable

«Cannot decide if ¢ is valid
«Cannot decide if ¢, implies ¢,



Why is FO satisfiability undecidable?

We want to know if there is a structure that satisfies ¢

Infinitely many structures to check
¢ may be satisfied, but only in a structure with a very complex shape



What is to he Done?

Satisfiability and Validity are undecidable.

Response 1) Restrict structures:
there are classes of interpretations, where the satisfiability problem relative to that set
of structures is decidable.

Response 2) Restrict to special first-order sentences:
Find fragments of FO (restricted kinds of sentences) for which satisfiability
and/or validity are decidable.



Restricting Shape of Models

E.g. Vocabulary={Advises(x,y)}

Restrict structures to be linear orders.

There are algorithms that will take a first-order sentence ¢ using just < and decide if it
holds in all linear orders, and similarly whether it holds on some linear order.

Advises Advises Advises
Joe Susan David Marcelo




Restricting Models

E.g. Vocabulary={Advises (x,y), a; (x) ... a,(x)}

Restrict to (finite) words (labeled orderings) :
<is required to be a linear order, labels a, ... a, are restricted to be disjoint, one of them

must be true for each element of the order.

There are algorithms that will take a first-order sentence ¢ using just < and a; ... a,
decide if it holds in all labelled linear orders.

These are based on converting the sentence to a word automaton and deciding if the
language of the automaton is non-empty.

Advises Advises Advises
Joe Susan David Marcelo

Professor Professor Student Professor



Restricting Models

E.g. Vocabulary={Advises (x,y), a; (xX) ... a,(x)}

Restrict to finite labeled trees : Advises required to be a tree, a; ... a, are restricted to
be disjoint, one of them must be true for each element of the domain.

These are based on converting the

sentence to a tree automaton and
Advises deciding if the language of the

automaton is non-empty.



Restricting Models

E.g. Vocabulary={Advises(x,y), a; (x) ... a, (x): Z={a; ...a,}}

Restrict to finite labeled tree-like graphs : Advises required to be a
graph of some fixed tree-width while a, ... a, are restricted as before.

These are based on converting
the sentence to a tree
automaton running over tree
codes of the structures and
deciding if the language of the
automaton is non-empty.

Advises



What is to be Done?

Satisfiability and Validity are undecidable.

Response 2: Restrict sentences.
Find fragments of first-order logic (restricted kinds of sentences) for which

satisfiability and/or validity are decidable.

Many examples:

« Modal Logic

« Guarded Fragment

« Guarded Negation Fragment
« Unary Negation Fragment



Example: Guarded Fragment

1995 Guarded Fragment (Andreka, Nemeti, Van Bentham)
Start with basic relations (as in general FO), and close under

» boolean operations (A, -, V) as before
 guarded quantifiers

VxXi... X, R(X7 ... X)) — P(x%;1 .... ;)
dx; ... X, R(X7 ... X)) A (%7 ... xp)



Guarded Fragment

Vx Artist (x) — Person (x)

V x y Man (x) A Marriedto (x,y) > Husband (x)

Can be converted to GF



Decidability of GF

One can get an algorithm that decides whether
a GF formula is satisfiable, valid, etc.

Main idea behind decidability: GF sentences cannot force a structure to be
complicated.

If a GF sentence ¢ over graphs is satisfied, it is satisfied in a graph which is tree-like
(has tree-width bounded by a number computable from ¢)

Now use previous results on “special structures”.



This course

Go through examples of restricted logics that are decidable by this technique.

 Tree model property: Show that any satisfiable sentence has a tree-like
model.

« Translation: Show that sentence ¢ in the logic can be translated effectively
into a sentence ¢* such that:
evaluating ¢ * on the tree code of a tree-like model is equivalent to evaluating
¢ over the model.

» Decision procedures over trees: decide whether ¢ * is satisfiable over trees
that encode models using decision procedures for logics over trees (goes
via converting ¢ *to an automaton and checking non-emptiness).

Variation: directly translate ¢ into an automaton checking ¢ * with the property
above.



First case study: Modal Logic

Chapter 4 of the course notes or
Section 5 of Vardi, Why is Modal Logic so Robustly Decidable?

« Read the definition of Modal Logic

* Prove Proposition 5.2 (for every model there is a tree that is “bisimilar to it”) and

Proposition 5.1 (if two structures are bisimilar, they agree on all modal formulas —
Vardi shows this for a more general logic with fixpoints).

Together these show that every satisfiable modal formula has a tree model.

« Argue (as Vardi does not) that the tree can be made finite.

« Show how to construct from a modal logic formula a tree automaton that accepts
finite tree models of the formula.






