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Abstract

Motivation: The binding between a peptide and a major histocompatibility complex (MHC) is one

of the most important processes for the induction of an adaptive immune response. Many algo-

rithms have been developed to predict peptide/MHC (pMHC) binding. However, no approach has

yet been able to give structural insight into how peptides detach from the MHC.

Results: In this study, we used a combination of coarse graining, hierarchical natural move Monte

Carlo and stochastic conformational optimization to explore the detachment processes of 32

different peptides from HLA-A*02:01. We performed 100 independent repeats of each stochastic

simulation and found that the presence of experimentally known anchor amino acids affects the

detachment trajectories of our peptides. Comparison with experimental binding affinity data indi-

cates the reliability of our approach (area under the receiver operating characteristic curve 0.85).

We also compared to a 1000 ns molecular dynamics simulation of a non-binding peptide

(AAAKTPVIV) and HLA-A*02:01. Even in this simulation, the longest published for pMHC, the pep-

tide does not fully detach. Our approach is orders of magnitude faster and as such allows us to ex-

plore pMHC detachment processes in a way not possible with all-atom molecular dynamics

simulations.

Availability and implementation: The source code is freely available for download at http://www.

cs.ox.ac.uk/mosaics/.

Contact: bernhard.knapp@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Presentation of protein fragments on the surface of antigen-

presenting cells is a fundamental part of the human immune sys-

tem. In virus-infected cells, proteosomes degrade viral proteins

into peptides. These peptides are then transported via the trans-

porter associated with antigen processing into the lumen of the

endoplasmic reticulum where the peptides are loaded on major

histocompatibility complex (MHC) class I molecules. These pep-

tide/MHC (pMHC) complexes are then presented on the surface of

antigen-presenting cells to the T-cell receptors (TCR) of T cells

(Rudolph et al., 2006). The linkage between MHC, peptide and

TCR determines if an immune reaction is triggered against this

peptide (van der Merwe and Dushek, 2011). Only if the binding af-

finity between peptide and MHC is strong enough, a peptide can

be presented to TCR and a productive immune response against

this peptide can take place. A wide range of pMHC binding affin-

ity prediction methods have been developed (reviewed in Knapp

et al., 2009; Zhang et al., 2012b). Sequence-based methods usually

achieve high accuracy if sufficient training data are available.

Structure-based methods are often worse at predicting binding af-

finity but give insight into the binding mode of the peptide (com-

pare Knapp et al., 2009; Zhang et al., 2012b). Prediction methods
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based on molecular dynamics (MD) simulation attempt to not only

predict the binding affinity and binding mode but also the dy-

namics of a peptide bound inside the MHC binding groove (Knapp

et al., 2015). However, no all-atom MD simulation has so far been

able to give insight into the structural detachment process of a pep-

tide from an MHC. This is likely to be due to the immense resource

consumption that standard MD would take to map out the con-

formational space of pMHC detachment.

There are a large number of methods that have the potential to

enhance sampling of structural simulations over standard MD.

These include coarse graining at different levels [e.g. bond length

constraints (Mazur, 1998), increased masses (Feenstra et al., 1999),

virtual sites (Hess et al., 2008), n-bead models (Minary and Levitt,

2008) or the movement of rigid protein segments (Sim et al., 2012)],

biased force methods [e.g. metadynamics (Leone et al., 2010),

steered MD (Bayas et al., 2003; Cuendet et al., 2011; Kosztin et al.,

1999) or umbrella sampling (Torrie and Valleau, 1977)], replica ex-

change MD (Bernardi et al., 2015), Monte Carlo simulations or

alchemistic methods (Spiwok et al., 2014). While these methods

have been employed successfully for several ligand/receptor inter-

actions, they have so far not been used to study pMHC detachment.

Therefore, to date, neither experiments nor simulations have pro-

vided structural information on potential peptide detachment path-

ways from MHC.

In this study, we gain structural insight into the process of pep-

tide detachment from the MHC HLA-A*02:01 by identifying a

large number of low energy conformational states along the de-

tachment pathway. Instead of all-atom MD, we use a simplified

protein representation combined with generalized collective de-

grees of freedom and repeated simulated annealing. These three

steps use already established methods: First, we coarse grain our

all-atom model by using a 3-point-based amino acid representation

(Minary and Levitt, 2008) and a knowledge-based statistical po-

tential (Minary and Levitt, 2008). Second, we use hierarchical nat-

ural move Monte Carlo (HNMMC) (Sim et al., 2012) to control

the degrees of freedom. Third, we use temperature modulation

(Zhang et al., 2012a) to efficiently sample the energy landscape.

On the basis of this protocol, we are for the first time able to give a

comprehensive structural insight into the detachment processes of

peptides from MHCs.

2 Methods

All-atom MD simulations are often hampered by two obstacles: the

large number of degrees of freedom and the complexity of the en-

ergy function. In this study, we address these challenges by the com-

bination of coarse graining, HNMMC and temperature annealing

accelerated conformational optimization.

2.1 Coarse-grained protein model and force field
The all-atom pMHC structures were converted into 3-point repre-

sentations (Minary and Levitt, 2008) using gro2mat (Dien et al.,

2014). In this representation, an amino acid is modelled by the a-

carbon and carbonyl oxygen backbone atoms as well as a point at

the centre of the side chain.

The previously established (Minary and Levitt, 2008) 3-point

knowledge-based potential was used for the simulations. A coar-

se-grained potential can in principal allow atoms to approach

closer than the excluded volume. To ensure that our small peptides

did not approach the protein surface too closely, we uniformly

scaled all pair interaction energies by the continuous non-linear

function:

sðrÞ ¼
s0 þ ð1� s0Þ

r

r0

� �6

if r < r0

1:0 if r� r0

8><
>:

Where r0¼0.7 nm represents approximately the size of a large

amino acid and S0¼0.15 was chosen, so that all peptides can escape

deep energy minima. All pair interactions over 0.7 nm are identical

to the established knowledge-based potential (Minary and Levitt,

2008).

2.2 Hierarchical natural move Monte Carlo
We follow the previously described HNMMC methodology (Sim

et al., 2012), which has been used in combination with the above

coarse-grained model (Zhang et al., 2012a) and is implemented in

the software package MOSAICS. Natural moves are degrees of

freedom that describe the collective motion of groups of residues

(called regions). In proteins, this could be the movement of a stable

secondary structure element such as an a-helix or b-sheet. Regions

can additionally be grouped together and thereby form super-

regions. In our study, we grouped the MHC into seven regions

(Fig. 1; schematically in Supplementary Appendix Fig. S1). Both

helices can move independently from the rest of the MHC and are

flexible in themselves around the evolutionary conserved kinks

(Wilman et al., 2014) position in the middle of the helices. Also the

peptide can be moved as a whole as well as in sub-regions. This de-

composition enables all essential motions of the pMHC while

keeping the number of degrees of freedom to a (necessary) min-

imum. In our Markov chain Monte Carlo (MCMC) simulation,

each region as well as super-region (e.g. the two regions of one

MHC helix) is propagated independently along three translational

and three rotational degrees of freedom. The resulting chain breaks

are resolved by an efficient stochastic chain-closure algorithm

(Minary and Levitt, 2010).

Fig. 1. Structure of the pMHC complex HLA-A*02:01 based on PDB accession

code 3PWN. The peptide is bound above the b-sheet floor and flanked by two

kinked a-helices. The decomposition of the pMHC complex into regions as

used in this study is illustrated with transparent surfaces. White: MHC b-floor;

red: peptide; orange: whole MHC helices; magenta: MHC regions broken by

kinks. For clarity, the a3 region and the b2-microglobulin are not shown
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2.3 Temperature modulation
In structural simulations, higher temperature allows for more flexibility,

while a lower temperature hampers flexibility. In this study, we used re-

peated simulated annealing, which allows the rapid search for an en-

semble of energetically favourable structural states along the peptide

detachment process. It has been implemented by using a temperature

modulation protocol (Zhang et al., 2012a) as described by the function

Tk ¼ A � sin 2pk

X

� �
þ sþ A

Where A is the amplitude of the temperature modulation, k the

MCMC step counter, X is the number of steps per period and s is

used to shift the minimum temperature. Similar to previous applica-

tions (Zhang et al., 2012a), this conformational optimization proto-

col enabled the efficient exploration of important energy minima

and corresponding pMHC conformations. In this study, we used

A¼600 (Kelvin), k¼100 000, X¼5000 and s¼0 (Kelvin).

2.4 Preparation of the pMHC dataset
We used the MHC allele HLA-A*02:01 as it is among the most fre-

quent MHC alleles in humans. To ensure that we did not use an out-

lier HLA-A*02:01 structure for our study, we extracted the 10

X-ray structures of HLA-A*02:01 with the highest resolutions from

the protein data bank (PDB) (Berman et al., 2000) and validated

their amino acid sequence against the IMGT/HLA database

(Robinson et al., 2013). We then selected PDB-accession code

3PWN as it represents an average HLA-A*02:01 structure.

Thirty-two peptides with experimentally determined binding affin-

ities were selected from Ishizuka et al. (2009) (Supplementary

Appendix Table SI). We chose all peptides from the same study as this

makes it likely that the measurements are comparable in rank order.

These peptides were chosen to cover the whole range of observed ex-

perimental binding affinities. We chose a dataset with experimental

IC50 values as those are available in abundance [e.g. from the

Immune Epitope Data Base (IEDB) (Vita et al., 2010)] and therefore

used for benchmarking most pMHC binding affinity predictors.

SCWRL (Krivov et al., 2009) and the peptX (Knapp et al.,

2011b) framework were used to model the 32 peptides of Ishizuka

et al. (2009) into the MHC binding groove of PDB accession code

3PWN. This has been shown to be the most appropriate approach

for altered pMHC modelling (Knapp et al., 2008).

2.5 Performed simulations
Initial test HNMMC simulations were run for 500 000 steps. These

simulations showed that detachment usually takes place within

100 000 MCMC steps (Fig. 2A). Therefore, we ran the simulations

of all 32 modelled pMHC complexes for 100 000 steps using the

above-described HNMMC protocol. We repeated each simulation

100 times using different random seeds.

For comparison, we performed a 1000-ns standard MD simula-

tion [GROMACS 4.5 (Pronk et al., 2013) with the GROMOS96

53a6 force field (Oostenbrink et al., 2004) and explicit simple point

charge (SPC) water] of the same pMHC.

3 Results

3.1 HNMMC gives insights into the peptide

detachment processes
In Figure 2A, we show a representative detachment process of the

experimentally known non-binding peptide AAAKTPVIV. Using

our HNMMC protocol, important conformational states for the

partial peptide detachment process of this peptide can be located

within 25 000 steps. These states imply that this peptide starts to de-

tach C-terminally. All relevant conformational states for the full de-

tachment are detected after 100 000 steps (arrow in Fig. 2A). This

corresponds to approximately 2.5 h of simulation time on a standard

desktop machine (all 500 000 steps took about 13 h).

For comparison, we performed a 1000-ns MD simulation of

the same pMHC (Fig. 2B). To date, this is the longest

reported MD simulation of pMHC and took about 247 h using

128 cores. The runtime of this single MD simulation corresponds

roughly to the overall runtime of all (n¼3200) HNMMC simula-

tions (100 independent simulations for 32 different peptide se-

quences) of this project (Fig. 2C). There is a high degree of

similarity between the first 25 000 frames of the HNMMC detach-

ment process and the MD simulation (compare Fig. 2A and B).

Both simulations start their detachment process by an up and

down flapping of peptide’s C-terminal end. However, during

1000 ns of MD, only this partial detachment can be observed

(Fig. 2B). Thus, our HNMMC-based protocol is capable of accel-

erating calculations for pMHC detachment processes by several

orders of magnitude.

3.2 Putative peptide detachment pathways
Having demonstrated that the methodology is able to simulate pep-

tide detachment and that the results show agreement with classical

methods, we then simulated 32 different peptides and repeated each

simulation 100 times with different random initial seeds to initiate

stochastically different trajectories.

The average peptide detachment pathway, grouped by experi-

mentally known binder and non-binder, is illustrated in Figure 3A.

X-ray structures show that peptides bind in the MHC groove in a

slightly bent configuration. This allows for a closer proximity be-

tween the peptide ends and the MHC binding groove than between

the peptide middle and the MHC binding groove. All 32 peptides

have an initial distance between peptide and MHC floor of 1.31 nm

for the peptide middle (Ca5peptide to Ca28MHC) and 1.08 nm and

1.09 nm for the peptide N- and C-terminal ends (Ca1peptide

to Ca99MHC and Ca9peptide to Ca117MHC, respectively)

(Fig. 3A). The peptides do not start their detachment process from

Fig. 2. Simulated detachment process of AAAKTPVIV from HLA-A*02:01. (A)

Equally distributed snapshots of the 500 000 HNMMC simulation steps. This

simulation took about 13 h on a single core of an Intel i7-3770 3.40 GHz CPU.

(B) Equally distributed snapshots of a 1000 ns MD simulation. The simulation

took about 247 h using 128 Xeon cores at 2.0 GHz of the Oxford Advanced

Research Computing facility. (C) Runtime comparison between our HNMMC

simulations and a single MD simulation. The 1000 ns MD simulation has

about the same runtime demand as all the HNMMC simulations (n¼ 3200) of

our study combined
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the middle but from the N- or C-terminal end or from all peptide

positions at the same time (Fig. 3B). After only 20 000 steps, the

middle distance tends to have become the shortest distance. The pep-

tides generally do not show a preference for an N- or C-terminal

start of the detachment process from HLA-A*02:01 (Fig. 3A), but

individual peptides do have preferences for N- or C-terminal detach-

ment (Fig. 3C–E and Supplementary Appendix Fig. S2).

Two mechanisms, which we never observed, are detachments

starting from the peptide middle by either bending the ends inwards

or bending the ends outwards (Fig. 3B, lowest panel).

3.3 The relationship between MHC anchor residues and

peptide detachment pathways
The idea that certain residues are more important than others for

MHC binding is called the anchor residue concept (Rammensee

et al., 1999). We investigated the relation between known anchor

residues and the detachment pathways of our peptides. We extracted

all experimentally tested HLA-A*02:01 peptides from the IEDB. In

Supplementary Appendix Figure 4, we show the frequency of resi-

dues for binders and non-binders. This shows that binders have a

preference for the hydrophobic residues L, M or I at peptide position

2 and V, L or I at peptide position nine. These residues are in

agreement with the preferred anchors listed in the SYFPEITHI data-

base (Rammensee et al., 1999).

The presence or absence of these residues influences the detach-

ment trajectories of the peptides. For example, the experimentally

known binder FLIDLAFLI has anchor residue L at position 2 and

anchor residue I at position 9 which keeps the peptide stable in the

MHC binding groove for almost all replicas (Fig. 3C). The experi-

mentally known non-binder WIKTISKRM has an anchor at peptide

position 2 (I) but does not have an anchor residue in position nine.

Therefore, its detachment process frequently starts C-terminally

with the N-terminal end following later and more slowly (Fig. 3D).

The experimentally known non-binder RQQLEDIFM does not have

any matching anchor residues. It starts it detachment process simul-

taneously from both ends and the middle of the peptide (Fig. 3E).

This shows that anchor amino acids have a strong influence on

the detachment trajectories of peptides.

3.4 Experimental binding affinity and peptide

detachment
The accuracy of our HNMMC approach in discriminating between

experimentally known MHC binders and non-binders gives an indi-

cation of the reliability of our proposed detachment trajectories.

Non-binders should have larger distances to the MHC binding

groove than binders i.e. they are likely to detach more quickly. We

tested this by comparing the average distance over all replicas of a

peptide against its experimentally known binding affinity. This test

yields an area under the receiver operating characteristic curve

(AROC) of 0.85 (Fig. 4A) and Pearson correlation coefficient of

0.67 (Supplementary Appendix Fig. S4). Furthermore, the difference

between the pMHC-distances of all binders and all non-binders is

significant (Fig. 4B).

Single simulations might be misleading because the conform-

ational exploration could be trapped in one or few local minima.

The use of multiple replica simulations is usually more reliable. To

test whether this is the case for our pMHC detachment simulations,

we performed a boot-strapping analysis using the 100 replicas per

peptide. We investigated how the results would change if fewer rep-

licas are taken into account. We randomly chose n (taking the values

1 to 100) replicas out of our 100 replicas with repetition. We calcu-

lated the AROC against experimental data. We repeated this 5000

times for each n and calculated the standard deviation between the

5000 AROC values. Each point in Figure 5A is the standard devi-

ation over the 5000 AROC values. If only one replica is used, the

standard deviation is 0.08 and the AROCs stretch between 0.53

(close to complete randomness) and 0.91 (close to perfect

Fig. 3. (A) Average peptide detachment trajectories split by experimentally

known binders and non-binders. The same figure with error bars is shown in

Supplementary Appendix Figure S3. (B) Schematic illustration of suggested

peptide detachment pathways. Rectangular frame: MHC; bent solid line: pep-

tide; bent dotted line: initial peptide configuration. Left column: initially, the

peptide is bound in a slightly bent conformation within the MHC binding

groove. Middle column: peptides most frequently start their detachment N-

or C-terminally and in rare cases simultaneously from both sides. A detach-

ment process starting from the middle or by bending the ends inversely was

never observed. Right column: full detachment of the peptide is reached. (C)

Stable binding between FLIDLAFLI and MHC due to matching anchor resi-

dues at peptide positions two and nine (D) Detachment pathway of the pep-

tide WIKTISKRM from MHC. Peptide position two is a matching anchor

residue. (E) Detachment pathway of the peptide RQQLEDIFM from MHC. This

peptide contains no matching anchor residues. For (C–E), the average dis-

tance over 100 replicas is shown. The dotted lines indicate the standard error

of the mean over the 100 replicas. Values above 3 nm were considered as full

detachment and therefore set to 3 nm. The detachment trajectories of all pep-

tides are shown in Supplementary Appendix Figure S2

Fig. 4. Reliability of HNMMC in comparison to experimental binding data. (A)

ROC curve. (B) Boxplots of the average distance between MHC binding floor

and the peptide for all simulations split by experimentally known binders and

non-binders
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agreement). For 100 replicas, the standard deviation drops to

0.01 and the AROC values range only from 0.81 to 0.89 (Fig. 5B).

Figure 5A shows a sharp descent of the AROC standard deviations

until 25 replicas and a slower descent until 50 replicas.

This shows that our HNMMC approach can predict pMHC de-

tachment processes with high accuracy and reliability if at least 25,

if not 50, replicas are used.

4 Discussion

A large number of MD studies have investigated the structural

interaction between peptide and MHC (reviewed in Knapp et al.,

2015). In none of these studies has full detachment of the peptide

been observed. The longest reported pMHC MD simulation was

400 ns by (Narzi et al., 2012). In this study, we ran a 1000-ns

simulation of an experimentally known non-binding peptide in

complex with MHC and observed only partial peptide detachment.

This shows that current standard MD simulations are not giving

insight into the pMHC detachment processes within a reasonable

time frame. Consequently, most structural analysis has been car-

ried out on bound pMHC (Hischenhuber et al., 2012, 2013) and

TCR/pMHC structures (Dunbar et al., 2014; Knapp et al., 2014)

or empty MHC binding grooves (Rupp et al., 2011; Yaneva et al.,

2009).

To obtain insight into the peptide detachment processes, we used

the combination of three technologies. First, the coarse-grained

3-point model (Minary and Levitt, 2008) which allowed for a rea-

sonable runtime while keeping specific features of the amino acid

side chains. Second, hierarchical segmentation (Sim et al., 2012) of

the protein which further restricted the degrees of freedom and pre-

vented global denaturation or local spoiling at high amplitudes.

Third, repeated simulated annealing (Zhang et al., 2012a) which

allowed for an efficient sampling of low energy states along the en-

ergy surface. In this way, we were able to bypass the bottleneck of

computational power and show how a detachment process of a pep-

tide from MHC may occur.

There are alternative techniques to our ‘coarse grained hierarch-

ical Monte Carlo simulated annealing approach’ that could also en-

hance the sampling (see introduction). However, to our knowledge,

none of these methods have been employed for pMHC detachment

yet.

Structural sampling methods will always produce a diverse col-

lection of conformations of the structure under investigation. These

movements are based on several parameter choices in the simulation

setup. How meaningful these conformations are can be determined

by comparison to experiments. Therefore, we compared our detach-

ment data to two different types of experimental data.

First, we compared the detachment process with preferred an-

chor amino acids deduced from the IEDB (Zhang et al., 2008).

While anchor residues are not exclusively responsible for pMHC

binding, we found frequent agreement between an N- or C-terminal

detachment and the presence/absence of preferred anchor residues

(Fig. 3C–E).

Second, we investigated if our detachment trajectories can dis-

criminate between experimentally known binders and non-binders.

We achieved high agreement (Fig. 4) between predicted detachment

speed and experimental binding affinity data of (Ishizuka et al.,

2009). An AROC of 0.85 of our training-free approach is roughly in

the range of sequence-trained pMHC binding prediction methods

(Zhang et al., 2012b) and superior to structural ligand/protein dock-

ing methods applied to pMHC (Knapp et al., 2009).

These findings demonstrate that our coarse-grained HNMMC

pMHC model is biophysically accurate and can capture the main

factors contributing to the outcome of binding.

Even if methods such as temperature modulation (Zhang et al.,

2012a) or HNMMC (Sim et al., 2012) are used, there is a finite

probability that simulations will get trapped in local minima or run

outlier trajectories leading to a questionable convergence (Knapp

et al., 2011a). Therefore, we decided to run a total of 100 replica

simulations with different initial seeds per pMHC. On the basis of a

boot strapping analysis, we found that about 25–50 replicas are

needed for reliable conclusions. This is in agreement with recent

studies that showed that the comparison between few MD simula-

tions can yield to misleading results (Knapp et al., 2014) and that 50

replicas are necessary for reliable binding free energy prediction of

HIV drugs to HIV-1 Protease (Wright et al., 2014) and peptides to

MHC (Wan et al., 2015).

5 Conclusion

In this study, we showed that HNMMC is able to give insight into

the peptide detachment process from MHC. For the first time, we

were able to analyse peptide detachment trajectories and thereby

provide new views of the MHC structural landscape.
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