
Modeling nucleic acids
Adelene YL Sim1, Peter Minary2 and Michael Levitt2

Available online at www.sciencedirect.com
Nucleic acids are an important class of biological

macromolecules that carry out a variety of cellular roles. For

many functions, naturally occurring DNA and RNA molecules

need to fold into precise three-dimensional structures. Due to

their self-assembling characteristics, nucleic acids have also

been widely studied in the field of nanotechnology, and a

diverse range of intricate three-dimensional nanostructures

have been designed and synthesized. Different physical terms

such as base-pairing and stacking interactions, tertiary

contacts, electrostatic interactions and entropy all affect

nucleic acid folding and structure. Here we review general

computational approaches developed to model nucleic acid

systems. We focus on four key areas of nucleic acid modeling:

molecular representation, potential energy function, degrees of

freedom and sampling algorithm. Appropriate choices in each

of these key areas in nucleic acid modeling can effectively

combine to aid interpretation of experimental data and facilitate

prediction of nucleic acid structure.
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Introduction
Understanding nucleic acid structure provides essential

insight into functional roles fundamental to molecular

biology. Unfortunately, experimentally determining

RNA and DNA structures at high resolution is tedious,

expensive and not always tractable, particularly for large

complex systems, which can show significant molecular

flexibility.

A complementary approach is to study nucleic acid struc-

ture in silico. With recent discoveries of RNA’s various

gene regulation roles and the potential applications of

nucleic acid nanostructures to biocomputing [1] and

nanotechnology [2,3], there has been extensive research
www.sciencedirect.com 
into developing computational tools for modeling and

manipulating nucleic acid structure (Table 1; also recent

reviews [4,5��] and references therein).

Since computational modeling can be used to address a

wide range of problems that vary in complexity and

resolution (time/size/precision),  an appropriate choice

of algorithm or modeling platform is required. We

discuss four main aspects of nucleic acid modeling

here: firstly, molecular representation; secondly, poten-

tial energy function; thirdly, degrees of freedom; and

fourthly, sampling algorithm. We focus on general

modeling techniques and strategies that are applicable

to an array of modeling purposes such as generating an

ensemble of plausible molecular models, identifying a

native-like molecular structure, studying folding

kinetics, probing the effects of base mutations, refining

molecular models and modeling with limited exper-

imental data.

Molecular representation
Modeling nucleic acids with an all-atom representation

and consequent precision is computationally expensive

(Figure 1), particularly for large systems. Analogous to

proteins, coarse-graining nucleic acids is a common

approach to handle larger molecular systems [6]. Each

nucleic acid base can be represented by a subset of atoms

or pseudo-atoms (e.g. [7–9] for DNA and [10�,11–13,14�]
for RNA; see Figure 1). Alternatively, each base can be

represented as a plane [15] and modeled by rigid body

parameters (Figure 1). These different coarse-grained

representations have been successfully implemented in

RNA structure prediction [10�,11,12].

For very large nucleic acid systems with many nucleo-

tides, modeling can still be intractable even with such

extensive coarse-graining. Because base-paired helices of

DNA and RNA are rigid compared to single strands of

bases, another coarse-graining strategy is to depart from

atomic-level detail and instead represent each nucleic

acid helix as a cylinder (Figure 1). Clearly this coarse-

graining is only applicable for exploring global confor-

mations rather than for extracting fine molecular infor-

mation.

What molecular representation is most suitable? For

practical considerations, it makes most sense to use the

minimum possible representation that is still able to

capture the phenomenon of interest with reasonable

computational cost (Figure 1). While all-atom molecular

modeling is usually favored due to the high level of

structural detail, the cost could become astronomical
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Table 1

Summary of molecular modeling software

Modeling software Purpose Representation Potential energy function Degrees of freedom Sampling algorithm

Amber; Nucleic

Acid Builder [50]

Dynamics; Sampling All-atom Physics-based force-fields All-atom Molecular dynamics

BARNACLE [28] Structure prediction All-atom Dihedral angle Bayesian

network

Dihedral angles Markov chain model

FARNA/FARFAR

[25,26��]

Structure prediction All-atom Knowledge-based Fragments Monte Carlo

iFoldRNA [10�,17] Structure prediction Coarse-grained

(all-atom

reconstruction

available)

Knowledge-based All coarse-grained

atoms

Discrete molecular

dynamics

MacroMolecule

Builder (formerly

RNABuilder) [11]

Optimization All-atom Knowledge-based and

experimental

constraints

User defined Relaxation with

changing degrees

of freedom and

constraints

(user-defined); simulated

annealing

MC-Sym [38��] Structure prediction All-atom Chain connectivity Fragments Cyclic building

MOSAICS [37] Sampling; Optimization Any Any Any/User defined;

embedded degrees

of freedom allowed

Monte-Carlo; Monte

Carlo Minimization

NAMD [51] Dynamics All-atom Physics-based force-fields All-atom Molecular dynamics

NAST [12] Sampling Coarse-grained Knowledge-based and

experimental

constraints

All coarse-grained

atoms

Molecular dynamics

Vfold [13] Structure prediction All-atom Physics and

knowledge-based

Fragments Piece-wise assembly

YUP [52] Sampling;

Optimization

Any Knowledge-based or

user-defined

User defined Monte Carlo;

molecular dynamics;

gradient-based

minimization
for large systems, making coarse-graining an absolute

necessity. Perhaps an appropriate compromise would

be to coarse-grain selected regions, and model important

interacting sites at all-atom representation, however such

a choice would require development of an interaction

potential to traverse different molecular representations.

Alternatively, one could also retain a high level of detail in

the molecular representation, but decrease the number of

degrees of freedom (DOFs) that are used in the sampling

process (see ‘Degrees of freedom’ section). A less

straightforward process is to first model with a coarse-

grained representation, then restore all-atom resolution

based on known or idealized nucleotide geometry

[13,16,17].

It is also important to note that here we have only

discussed different representations of the nucleic acid

structure, not those of its surrounding solvent or counter-

ions, which can be expressed implicitly and/or explicitly.

Nucleic acids carry high negative charges and hence

solvent and ions must be correctly treated in order to

accurately model RNA and DNA. Discussion of nucleic

acid solvation and electrostatics is beyond the scope of

this review and the reader is referred to other relevant

literature (e.g. [18,19]).
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Potential energy function
In molecular modeling, a potential energy function is

required to distinguish physical and biologically

relevant conformations. These potentials come in vary-

ing degrees of precision and complexity (Figure 1),

ranging from a primitive function considering only

steric restraints to one that depends on quantum mech-

anical calculations. The choice of potential is critical to

the efficacy of molecular modeling: the accuracy of

modeling depends on the correctness of the potential

whereas sampling efficiency varies with the nature of

the potential guiding the simulation (discussed in

‘Sampling algorithm’ section).

Traditional physics-based potentials such as AMBER

[20] and CHARMM [21] approximate atomic-level inter-

actions as bonded (bond, bend-angle stretching, torsional

rotations) and pairwise non-bonded terms, each described

by analytical mathematical formulas. Parameters for these

mathematical expressions were optimized using exper-

imental observations on small molecules or else by fitting

to quantum chemical calculations. A significant advantage

of such physics-based potentials is their applicability to

molecular dynamics simulations (see [22,23] and refer-

ences therein).
www.sciencedirect.com
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Figure 1
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This schematic diagram classifies nucleic acid modeling according to molecular representation and potential energy function; both affect

computational complexity. Very detailed potentials are not applicable to molecular representations that are too coarse (dark shaded triangle).

Computational complexity also depends on the number and type of degrees of freedom of the particular system that in turn depend on the potential

energy function and molecular representation. Large systems with more atoms are generally more complex than small systems.
Coarse-grained systems are usually modeled with knowl-

edge-based potentials that are typically derived from struc-

tural information gathered from high-resolution

experimental structures [10�,11,12,24], from molecular

models produced by all-atom simulations with physics-

based potentials [9], or both [14�]. A major advantage of

knowledge-based potentials is the ability to tune potentials

to the particular molecular representation just by adjusting

the information that is extracted from known structures. For

instance, one could use different nucleotide representations

to generate potentials based on known physical interactions

such as nucleic acid base-pairing and stacking (compare refs.

[10�,11,12,25,26��,27]), or from interatomic distances [24] or

torsional angles [28], or a combination of the above [29].

Recently, a coarse-grained potential was developed for

RNA using parameterized bonded and non-bonded terms

like those in traditional physics-based potentials [14�].
Another advantage of knowledge-based potentials is that

their mathematical forms can be easily adjusted. In some
www.sciencedirect.com 
cases, these potentials are discontinuous; it was shown that

RNA molecules can be efficiently modeled using a discre-

tized knowledge-based potential [10�]. Additionally,

because knowledge-based potentials implicitly capture sol-

vent effects, they are less computationally intensive to use,

in that water molecules and ions need not be explicitly

included.

While physics-based potentials have been applied widely,

knowledge-based potentials have mostly been used to

select native-like structures; in some cases their accu-

racies supersede those using physics-based potentials

[26��]. Despite successes in distinguishing native-like

conformations, because knowledge-based parameters

are usually derived from static experimental structures,

it is unclear how accurate they would be for studying

nucleic acid dynamics and folding pathways, particularly

in different ionic solution conditions than those used to

solve the experimental structures.
Current Opinion in Structural Biology 2012, 22:273–278
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Cartesian Torsional

Parts of nucleic acid as rigid bodiesNatural moves
G C

H
ie

ra
rc

h
ic

al
em

b
ed

d
ed

 D
O

F
s

C
o

m
m

o
n

ly
u

se
d

 D
O

F
s

Current Opinion in Structural Biology

Different ways of manipulating nucleic acid degrees of freedom (DOFs)

in modeling. Use of Cartesian DOFs is the default in most modeling

procedures, but generally results in large sampling dimensionality

(number of DOFs) for systems of biomedical or nano-engineering

significance. Modeling with torsional DOFs significantly reduces

sampling dimensionality, however, due to the lever-arm effect (see main

text), such an approach can cause a low acceptance ratio in Monte

Carlo simulations. Recently, hierarchical embedded DOFs [36��]

together with stochastic chain closure [35��] were introduced; both

facilitate efficient sampling of nucleic acid structure. Different levels of

embedded rigid body motions (centers of motions are illustrated by red

dots) ensures that no segment of the nucleic acid is completely rigid, to

give a sampling distribution that is similar to sampling with just natural

moves but with substantially improved sampling efficiency [36��].
Another class of potentials can be derived from con-

straints that come in the form of secondary structure

information or low-resolution experimental data. Such

limited experimental data appears to provide sufficient

constraints so that RNA structure determination can be

more tractable, particularly for larger systems [11,12,30–
33].

Degrees of freedom (DOFs)
Another approach to coarse-graining large systems is to

use alternate sets of DOFs while retaining an all-atom

representation. By modeling using dihedral or torsional

DOFs instead of all-atom Cartesian DOFs, dimension-

ality (number of DOFs) is substantially reduced. This

technique is motivated by the limited flexibility of bond

lengths and bond angles: any conformational rearrange-

ment in Cartesian space can be accurately expressed in

torsional space because bond lengths and bond angles are

approximately fixed at their equilibrium values.

Unfortunately, the benefits of modeling with torsional

DOFs are less obvious when modeling large and complex

molecular assemblies. The root of the problem is the lever

arm effect caused by rotating a dihedral angle about a

single bond: a small torsional rotation about a bond can

lead to substantial conformational change distant from it,

rather like how a small rotation about one’s elbow results

in a large movement of the hand. The solution to this

lever arm problem is to use torsional DOFs that only

affect local conformation. However, doing this will break

the continuity of the molecular chain, which needs to be

repaired with a chain-closure algorithm [34]. The com-

putational complexity of standard chain-closure algor-

ithms makes them very expensive, encouraging the

development of closure algorithms that are of reasonable

computational cost. This need has been met with a linear

complexity stochastic chain-closure algorithm [35��] that

opens up new avenues of application: arbitrary sets of

DOFs can be used, since the chain-closure algorithm can

effectively restore multiple chain breakages.

Recently we applied our chain-closure algorithm to com-

plex RNA systems, exploiting the hierarchy present in

RNA structure to define different embedded sets of

DOFs [36��]. The DOFs used varied in size and complex-

ity: at the lowest level nucleotide planes move as rigid

bodies with an all-atom representation; some higher level

DOFs involve moving helices (base-paired regions of

nucleic acids) independently or as sets of two or more

helices (see Figure 2). Since these DOFs are embedded,

none of the helices are perfectly rigid so that we explore a

continuous phase space at the nucleotide level. In each

proposed move of a Markov chain Monte Carlo step, the

RNA is first regarded as a ‘liquid’ of individual nucleo-

tides that are free to move based on the user-defined

DOFs independent of chain connectivity. Such a com-

plex move may lead to multiple chain breakages within
Current Opinion in Structural Biology 2012, 22:273–278 
the RNA that we fix with chain-closure. Using embedded

DOFs (implemented in MOSAICS [37]; discussed in

[36��]) allows more effective and accurate exploration

of the conformational space of an RNA four-way junction

than with other state-of-the-art RNA sampling methods.

Sampling algorithm
Finally, one needs to choose an appropriate dynamical/

sampling/optimization algorithm to guide exploration of

conformational space. The choice is primarily dependent

on the question at hand. If one is interested in kinetics or

folding dynamics, molecular dynamics should be used; it

has been successfully employed to study folding processes
www.sciencedirect.com
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of nucleic acids (e.g. [22] and references therein). Alterna-

tively, Monte Carlo is a general sampling algorithm that can

be used to generate conformational ensembles with con-

tinuous or discontinuous potentials alike. Such ensembles

can then be used to extract distributions of physical obser-

vables or to provide diverse models in structure prediction

[25,38��]. If instead the objective is to locate local or global

minima of the scoring energy surface (e.g. in structure

refinement), optimization algorithms such as conjugate

gradient minimization or simulated annealing can be used.

A major issue in molecular modeling is that sampled

conformations often remain close to the initial starting

model. This is because almost all potential energy func-

tions give rise to energy barriers between low energy

conformational basins; these barriers hinder transitions

between different low energy states. Sometimes such

barriers are unnaturally high due to the potentials and

DOFs used. Hence conformational transitions occur with

low probability in simulations, impeding effective

sampling of conformational space [39].

In order to overcome these limitations, several techno-

logical innovations have been proposed to speed up

conformational exploration using the aforementioned

sampling algorithms. Perhaps the most popular approach

is to implement multi-canonical sampling algorithms that

manipulate either the temperature [40,41] or the poten-

tial [42,43]. Other solutions to overcome barriers in extra

dimensions include data augmentation [44] and coupling

to extended systems [45,46]. More complex solutions

reformulate the basic partition function (that describes

the system in thermodynamic equilibrium) in terms of

new variables [47] or change the underlying potential

surface [48,49].

Conclusions
We have reviewed some key aspects and recent develop-

ments in the field of nucleic acid modeling. Despite

improved computational resources and increased import-

ance of modeling in nucleic acid nanotechnology and

biomedicine, it remains crucial to interpret modeling

results with utmost care: the accuracy of any particular

molecular modeling technique is only as good as the

potential energy function used. To avoid overinterpreta-

tion of modeling data, one needs to be aware of the

limitations of the selected modeling protocol. Nonethe-

less, in many instances, carefully selected combinations of

the appropriate molecular representation, potential energy

function, DOFs and sampling algorithm yield sufficiently

accurate modeling results that can facilitate interpretation

of experimental data and/or to guide future experiments.
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