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The method presented here refines molecular conformations di-
rectly against projections of single particles measured by electron
microscopy. By optimizing the orientation of the projection at the
same time as the conformation, the method is well-suited to two-
dimensional class averages from cryoelectron microscopy. Such
direct use of two-dimensional images circumvents the need for a
three-dimensional density map, which may be difficult to recon-
struct from projections due to structural heterogeneity or preferred
orientations of the sample on the grid. Our refinement protocol
exploits Natural Move Monte Carlo to model a macromolecule as
a small number of segments connected by flexible loops, on multi-
ple scales. After tests on artificial data from lysozyme, we applied
the method to the Methonococcus maripaludis chaperonin. We
successfully refined its conformation from a closed-state initial
model to an open-state final model using just one class-averaged
projection.We also used NaturalMoves to iteratively refine against
heterogeneous projection images of Methonococcus maripaludis
chaperonin in a mix of open and closed states. Our results suggest
a general method for electron microscopy refinement specially
suited to macromolecules with significant conformational flexibil-
ity. The algorithm is available in the program Methodologies for
Optimization and Sampling In Computational Studies.

2D projection ∣ structure refinement ∣ stochastic optimization

Recent advances in single-particle cryoelectron microscopy,
or cryo-EM, have enabled 3D structure determination of

macromolecules to near-atomic resolution without crystalliza-
tion, provided that the sample particles are homogeneous and
adopt the same conformation (1–6). However, macromolecules
are generally flexible in solution and can adopt multiple confor-
mations in order to carry out their functions. Therefore, their
cryo-EM images usually represent a heterogeneous mixture of
macromolecular conformations. As a result, the power of single
particle cryo-EM is limited, in that the reconstruction of a high-
resolution 3D density map requires hundreds of thousands to
millions of particle images of the same conformation.

Supervised classification (7) and maximum-likelihood methods
(8) have been used to identify multiple structures from samples
in which macromolecules experience moderate conformational
fluctuations or exist in a small number of discrete structural
states. Other approaches based on statistical bootstrapping (9, 10)
have been used to separate different substrate-binding modes of
macromolecules or to define flexible fragments within a molec-
ular complex. However, these single-particle image processing
techniques are severely limited when there are large conforma-
tional changes or nondiscrete conformational states (11, 12) that
prevent correct determination of the orientation parameters for
each raw particle image. Various computational techniques have
been developed to model large conformational changes by flex-
ible-fitting of a molecular model into the density map of another
conformation (13–18). However, all these modeling methods rely
on the availability of a density map. In many cases, the structural
flexibility and heterogeneity of the sample make it difficult to
assign each projected image to the correct conformational state
of the molecular complex. Without such assignment, all classical
single-particle refinement procedures fail to determine the par-

ticle orientation parameters needed for reconstructing the 3D
density map.

In addition, many protein complexes tend to prefer a particular
orientation relative to the grid when frozen in vitreous ice for
cryo-EM (4, 19). This tendency leads to a nonuniform angular
sampling of the projections of the macromolecule that hampers
a 3D density map reconstruction. To get a more uniform sample
orientation distribution, detergent is usually added to the buffer.
Unfortunately, this can cause side effects, such as uneven ice
thickness and increased image background noise, that complicate
sample preparation and image processing for single-particle cryo-
EM. For samples whose amino acid sequences can be manipu-
lated, exposed hydrophobic patches may be removed from the
protein of interest so as to reduce preferred orientation on the
grid (4). For macromolecules that are directly purified from an
organism, their sequence cannot be changed. Therefore, this
approach is not applicable (19).

In contrast, a 2D electron microscopy projection contains valu-
able information on the macromolecular conformation: Analysis
of these 2D data provides a straightforward and robust computa-
tional approach that deals with sample flexibility and heterogeneity
(20). By refining the macromolecular model directly against these
projection data, one can bypass the need for a density map, avoid-
ing the potential information loss due to averaging over different
conformations. Nevertheless, the direct use of 2D images for re-
finement has not been fully explored for fear of overfitting the data
due to the large number of macromolecular degrees of freedom
(referred to as DOF).

Fortunately, molecular complexes can be decomposed into
rigid domain segments connected by flexible loops. Their confor-
mations can then be sampled using translational and rotational
DOF of these domains (21). Use of such DOF may break the
chains in the flexible loops necessitating solution of the chain-
closure problem. Traditional analytical chain-closure algorithms
(22–25) do not work on more than six chain-closure DOF because
of their computational complexity. In contrast, our recently de-
veloped recursive stochastic chain-closure algorithm, which has
linearly-increasing computational cost with number of variables,
removes this technical barrier (26). As a result, one can use en-
ough DOF to allow long connecting loops to be fully flexible. This
increased conformational flexibility allows the relative arrange-
ment of domain segments to be sampled more efficiently. The
chain closure algorithm also allows one to freely select domain
segments with DOF inferred from experimental observations.
We refer to these DOF as natural moves.

In this study, we use natural moves to refine macromolecular
models directly against 2D EM images, particularly the 2D cryo-
EM class averages, which have higher signal-to-noise ratio. These
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class averages are obtained by first classifying raw particle images
into different classes based on their mutual similarity using a
multivariate statistical analysis approach, then aligning and aver-
aging the raw particle images within the same class (see Materials
and Methods). We developed a computational method to model
the molecular conformations with hierarchical natural moves
that are made progressively more detailed. The projection orien-
tation parameters of the 2D EM image are also refined simulta-
neously. The robust search in conformational and projection
orientation space is guided by Monte Carlo based optimization
using a modulated temperature profile. The combination of Nat-
ural Move Monte Carlo (NM-MC) and temperature modulation
uses a small number of essential DOF while reducing the chance
of being trapped in local minima (see Materials and Methods).

This refinement protocol was applied to the Methonococcus
maripaludis chaperonin (Mm-cpn), a protein machine that helps
other proteins to fold in archaea (27). Mm-cpn molecules under-
go large conformational changes during their functional cycle
and can exist in a mixture of conformations under low ATP con-
centration (4, 28–31). Moreover, the open-state Mm-cpn exhibits
a dominant end-on view in cryo-EM, making it an excellent
benchmark for tackling the preferred orientation problem (4).

Results
Using Lysozyme-Simulated Data to Establish the Optimal Refinement
Protocol. The goal of the present procedure is to change the
structure of the starting model so as to maximize the similarity
between the target 2D EM image and the projection of this
new model. Here we use an EM energy defined by the negative
cross-correlation between the target image and model projection
to measure their similarity (Fig. 1, Figs. S1 and S2, and SI
Materials and Methods). We exhaustively search the initial projec-
tion angle along with the in-plane shift parameters in order to
optimize the match between the projection of the starting model
and the target 2D EM image. This initial search can be done with
any single-particle image processing software such as EMAN
(32). We then translate the target image by these in-plane shift
parameters to obtain the centered image Ic, which is then used
as one of the inputs in our refinement. To ensure that the estimate
of the orientation is optimal, we readjust these orientation para-
meters at every step of the refinement. This readjustment is
achieved by introducing an energy function that is minimized with
respect to orientation as illustrated in Fig. 1.

Next, the desired set of natural moves is constructed by the
following steps: (i) Partition the given molecular assembly into
several segments connected by flexible loops based on experi-
mental observation or computational prediction (33). (ii) Assign
rotational and translational DOF to each segment. (iii) Maintain
loop continuity with our recursive stochastic chain-closure algo-
rithm, which permits long connecting loops of any length and thus
allows sufficiently free movement of the segments (26).

Here, lysozyme is modeled by three rigid segments con-
nected by two flexible loops (Fig. 2A). In this ideal test case, we
assume the major conformational changes of the lysozyme can be
described with this natural move representation. Thus, an initial,
deformed model with 8.4 Å Cα rmsd to the target structure was
generated using these natural move DOF. We then refine this
model against a projection of the target model.

In all refinement protocols, the NM-MC algorithm with a
modulated temperature profile was used (see Materials and
Methods). The annealing temperature, which is a sinusoidal pro-
file with certain amplitude and frequency, facilitates rapid explo-
ration of the conformational space by efficiently escaping from
local energy minima (Fig. 2B).

In addition to the EM energy, one may optionally introduce
a molecular energy based on a knowledge-based potential (34,
35). This new term helps avoid improbable conformations and
collisions between different parts of the molecule. When the in-
itial estimate of model orientation is not within the convergence
radius of the correct orientation, it leads to an unreliable EM
energy. In this case, incorporation of the molecular energy is
essential to compensate for the inaccuracies in the EM energy.
Combing the molecular energy, Emol, and the EM energy,EEM,
we derived the total energy function, Etotal ¼ Emol þ wEEM,
which is used to guide our optimization protocol (step 6 in
Fig. 1). Here, w refers to the weight that controls the contribution
arising from the experimental EM data. Carefully choosing the
weight to be between the molecular energy and the EM energy
requires separate investigations; in the refinements done here,
a range of weights were tested to find the optimum value that
minimizes the final Cα rmsd between the refined model and
the target structure. When the target structure is unknown, one
can gradually increase the weight until the model shows bad
stereochemistry. Whereas the refinement protocol is entirely dri-
ven by the total energy, the EM energy alone is used to judge the
quality of the refined model.

Fig. 1. Obtaining the energy score of a model with an optimized orientation. The input orientationΩin is the Euler angle used to project the model, X. Ic is the
centered target image, a constant parameter (step 1). A series of orientation angles Ωk are generated around Ωin (step 2, see SI Materials and Methods). The
model X is projected along these proposed orientations to generate the corresponding projection images Ik (step 3). Negative cross-correlation scores ðkÞEEM
are calculated between these projection images and the image Ic (step 4). The lowest value is assigned to the EM energy EEM between the model X and the
input image Ic (step 5). Its corresponding orientation is considered the optimized orientation Ωopt that projects X to fit Ic . The outputs are the optimized
projection orientation Ωopt and the total energy Etotal, which is the sum of a molecular energy, Emol and the EM energy EEM, weighted by an adjustable weight
parameter w (step 6). Emol is a function of the current model X to ensure its proper stereochemistry.
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Fig. 2B shows an example with a perfect initial estimate of the
orientation. The refinement yields a resulting model with 1.3 Å
Cα rmsd to the target structure. In Fig. 2B, the EM energy, total
energy, and Cα rmsd fluctuate synchronously with the varying
temperature; this suggests that our refinement escapes from local
energy minima efficiently.

Fig. 2C shows a more difficult case where we introduce an
initial orientation deviation with altitude angle θ ¼ 0°, 4°, or 8°,
respectively, and refine the orientation parameters accordingly.
Given an accurate orientation, increasing the weight of the EM
energy generally yields a better refinement result. This finding
confirms the reliability of the EM energy when the correct orien-
tation is used. While the molecular energy term prevents the
occurrence of unphysical conformations (such as collision or over-
lap between segments), it may confine conformational search
toward the initial model and reduce the conformational sampling
efficiency. On the other hand, keeping a partial molecular energy
term is useful when there are errors in the orientation estimate:
When θ ¼ 4° or 8°, refinement with weight w ¼ 5 performed best
in this case.

Using Multiscale Natural Moves to Refine the Mm-cpn. Mm-cpn is
a 16-subunit homo-oligomeric chaperone from the mesophilic
archaea. It helps other proteins fold correctly in archaea cells. It
consists of two back-to-back rings of eight subunits. Each subunit
has a substrate-binding apical domain, an ATP-binding equatorial
domain, and an intermediate domain connecting the apical and
equatorial domains. Mm-cpn closes its folding chamber upon
ATP hydrolysis and reopens it after the γ-phosphate is released.
The entire complex is approximately 1MDa in size, and the open-
ing and closing of the ring is achieved mostly through a rigid-body
rocking of individual subunits (4, 29, 31). In EM images of the
open state of wild-type Mm-cpn, most particles take up an end-
on view orientation on the grid; this makes reconstruction of a 3D
density map very difficult (4). Under low ATP concentration,

Mm-cpn exists in various conformational states as each subunit
is conformationally flexible in the open form (30).

The large size (more than 8,000 residues) and substantial
conformational change (approximately 16 Å Cα rmsd) between
the open and closed states of Mm-cpn make it a challenge for
conventional refinement. It is, however, a perfect benchmark for
our multiscale NM-MC refinement procedure. Here, we use the
lidless variant of Mm-cpn so as to avoid the potentially unstruc-
tured protruding lid segments in the open state. Compared to the
wild-type, lidless Mm-cpn provides a higher resolution EM open
structure (4), which can be used to further verify our refinement.
The initial model was chosen as the Protein Data Bank (PDB)
structure 3J03 of the ATP/aluminum fluoride induced lidless
Mm-cpn in the closed state (31). We refine it against a top-view
class average (Fig. 3A) that was generated from 228 raw particles
of the ATP-free lidless Mm-cpn (seeMaterials and Methods). This
class average contains real noise, and its initial orientation para-
meters relative to the initial model are estimated as ϕ ¼ 22.5°
in-plane rotation around its eightfold symmetry axis. The refine-
ment is carried out with no assumed symmetry, and the orienta-
tion parameters are also optimized during refinement.

Fig. 3B shows how we define the segments and connections in
the Mm-cpn. In each Mm-cpn subunit, the apical and intermedi-
ate domains form a segment (API/INT) due to the salt bridges
between them (4). The equatorial domain without the stem loop
forms the second segment (EQU). The stem loop itself forms
a third segment (SL). Loop connectivity is always maintained
between these segments (solid red loops). The entire 16-subunit
Mm-cpn complex contains 48 segments. In the multiscale natural
move refinement, we group these segments (whether or not in the
same subunit) into different sets of “regions” with each region
having three translational and three rotational DOF. This group-
ing involves three hierarchical levels, allowing finer description of
conformational changes (Fig. 3C).

Fig. 2. Temperature-modulated NM-MC refinement protocol with lysozyme as an example. A total of 2.03 million steps of temperature-modulated NM-MC
were carried out for each refinement. No noise was added to the target 2D image projected from the target structure. (A) Each lysozyme model is represented
by three rigid segments connected by two flexible loops (residues 40–42 and 85–88 drawn as spheres). (B) The temperature, T (brown), the energy (EM in red,
total in blue), and Cα rmsd (purple) from the target lysozyme structure are shown as a function of the refinement steps. The initial model (A, Left) has an 8.6 Å
Cα rmsd to the target. The model with the lowest EM energy (obtained at the step indicated by a black vertical dash line) is much closer to the target structure
(1.3 Å Cα rmsd, A, Right). In this example, the EM image has no noise or orientation estimate error and the weight of the EM energy is 5. (C) The best Cα rmsd
each refinement can achieve with eight different weights for the EM energy (from 0.01 to 100, as marked along the x axis) and three different orientation
errors: 0° (blue bars), 4° (red bars), 8° (cyan bars). In the presence of orientation errors, the optimum weight value of 5 yields the lowest Cα rmsd values.
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Level 1: All the segments within the box are grouped into a single
rigid region; chain breaks can occur between the SL and the
EQU of the same subunit. The entire Mm-cpn complex is trea-
ted as 16 rigid regions to capture the overall rocking of the sub-
unit while maintaining the interaction between adjacent
subunits through the SL and NC termini (4).

Level 2: The API/INT segment in a subunit forms rigid region 1;
EQU in a subunit and SL of the neighbor form rigid region 2. In
one subunit, chain closure can occur between the SL and EQU
as well as between the API/INT and the EQU. The entire
Mm-cpn complex contains 32 rigid regions to capture the over-
all subunit rocking and the motion between the equatorial and
intermediate domains.

Level 3: Starting from level 2, we divide region 2 into four sub-
regions: 2.1, 2.1, 2.3, and 2.4. All subregions within the box re-
main connected by chain closure but have their own rotational
and translational DOF describing more subtle conformational
fluctuations around the ATP-binding pocket.

Fig. 3D shows the starting model, the final refined model
after three levels of refinement (Fig. S3 and Movies S1–S3, and
the open-state model (PDB ID: 3IYF) built into a 3D density
map at 8 Å resolution. Our final model refined against just a
single 2D cryo-EM class average is very similar to the model built
from the 3D density (Cα rmsd of 5.7 Å). As noted, the density-
derived model is built from a cryo-EM map (accession number
EMD-5140), which was reconstructed with D8 symmetry, while
our refined model does not assume any symmetry. After blurring
our refined model to a density map at 8 Å resolution with D8 sym-
metry imposed, the density of our refined model has a cross-cor-
relation score of 0.95 with respect to the cryo-EM map (Fig. S4).

Separating Heterogeneous Conformations of Mm-cpn in Mixed Open
and Closed States with Iterative NM-MC Refinement. Given the
closed-state Mm-cpn as an initial model, the method presented
here was used to classify an artificially constructed set of 10,000
heterogeneous particles of Mm-cpn in mixed open and closed
conformations from experimental images (Fig. 4A). First, 2D
analysis was applied to generate 100 class averages, each of which
represents a conformation viewed at a particular orientation

(Fig. 4B and Fig. S5). The 2D analysis was followed by iterative
NM-MC refinement against each of the class averages to gener-
ate their corresponding 3D models (see Materials and Methods,
and Figs. S6 and S7). Fig. 4C shows the refinement results for
six representative class averages with different orientations and
conformations. By clustering the 100 refined models, two confor-
mational populations of the Mm-cpn were identified. These
clustered models within each population were averaged and
blurred to two seed electron density maps at 30 Å resolution
to initialize additional EM data processing and map reconstruc-
tion against the 10,000 raw particle images. In the end, two 9 Å-
resolution maps were obtained that showed α-helices clearly
(Fig. 4D, and Figs. S8 and S9).

Discussion
Robustness of the EM Energy. We find that the EM energy, which
is defined as the negative cross-correlation between the target
image and the model projection, is selective enough to refine
the model against EM projection images with signal-to-noise
ratios similar to those found in a 2D class average (SI Materials
and Methods and Fig. S1). In spite of the inaccuracies in the
scaling factor or center estimate for the target images (from
errors introduced when calibrating the microscope magnification
or determining the image shift parameters), the EM energy is
still able to pick structures with small Cα rmsd (Fig. S2). We do
find that with an image noise level similar to that in an unaver-
aged raw cryo-EM image (Fig. S1), the EM energy is no longer
good for refinement. It is possible to cluster models against
multiple projection images of similar conformations in different
orientations to improve the consistency of the refinement result,
as shown in Fig. 4C and Figs. S6 and S7. To improve accuracy, we
followed an iterative approach. One may also refine the model
using a combined EM energy score from several projection
images of the same conformation at different orientations.

Cross-Validation of the Refinement Results.The use of 2D class aver-
age as the target image allows convenient cross-validation of the
refinement results. We subdivide the 228 raw particle images of
Mm-cpn initially used to generate the single top-view class aver-
age images into two groups to generate two different subclass

Fig. 3. Lidless Mm-cpn model refined against a single cryo-EM projection class average. (A) Top view of the projection class-average image in the open state.
Three subunits are labeled, and the projection orientation is estimated to be rotated by 22.5° in-plane relative to the initial model. (B) Schematic definition
of the segments and their connecting loops (solid red lines) of lidless Mm-cpn showing the three subunits from (A). Neighboring subunits are colored grey and
blue, respectively. The stem loop of one subunit is hydrogen bonded with the NC termini of the other, as indicated by dotted red lines. The viewing angle
is from the eightfold symmetry axis. (C) Three levels of region compositions for a single subunit with hierarchically increasing DOF. (D) Top and side views of
the initial model from PDB id 3J03 (blue), the refined model (orange), and the map-derived model from PDB id 3IYF (red). Eighty thousand temperature-
modulated NM-MC steps were carried out successively for each of the three levels to refine the initial model against the 2D cryo-EM class average (Fig. S3
and Movies S1–S3). The model with the lowest EM energy during the previous level of refinement was used as the initial model for the next level.
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average images. Each subclass average image can be indepen-
dently used to refine the initial model with the same protocol.
In the case of Mm-cpn, these two resulting models have a Cα

rmsd of 5.8 Å between them, which indicates the refinement con-
sistency (Fig. S10). Their Cα rmsd values from the refined model
against the target 2D class average projection (Fig. 3D, Middle)
and the model built from the 3D density (Fig. 3D, Bottom) are
5.9 and 5.8 Å and 6.3 and 6.3 Å, respectively.

Potential Application for EMDatawith Preferred Orientation. In many
single-particle cryo-EM studies, the molecules tend to be frozen
in one particular orientation. This limitation in angular sampling
is a major obstacle to generating a 3D density map. Our method
avoids fitting into a 3D density map and directly refines against
2D class averages; therefore, it does not suffer from this limita-
tion. In the example of Mm-cpn, we have successfully refined the
model against a top-view 2D class average, which represents the
preferred orientation of the sample on the grid.

Conclusions
The EM energy introduced in this study can be used to refine a 3D
molecular model and its orientation parameters directly against
EM projection images, particularly cryo-EM class average images
that benefit from high signal-to-noise ratio. An additional mole-
cular energy term may be used together with the EM energy to
compensate for inaccurate estimate for the initial orientation
parameters. As shown by the simulated data derived from lyso-
zyme and real data on Mm-cpn, the use of natural moves in
temperature-modulated Monte Carlo greatly facilitates the search
for the correct model conformation and orientation. To model
the large conformational change of Mm-cpn, we use natural move
DOF at multiple scales. Fewer DOF from a larger regions are
required at the beginning to describe large structural deforma-
tions, while more detailed DOF from smaller regions are used
later to model more subtle conformational changes. In the exam-
ple of Mm-cpn, we show that it is possible to refine the conforma-
tion of a large molecular complex with a preferred end-on
orientation on the grid, suggesting an approach to deal with the
preferred orientation problem in single-particle cryo-EM. We
demonstrate that, by using the iterative NM-MC refinement pro-
cedure, it is possible to separate heterogeneous EM particles to
generate higher-resolution density maps. By adapting the current
approach to simultaneously optimize the model conformation and

its orientation with respect to the subtomogram containing
the “missing wedge,” we hope that our NM-MC refinement
can aid in the separation of conformational heterogeneity in stu-
dies using cryoelectron tomography and 3D subvolume averaging
as well (36).

Materials and Methods
Using Multiscale Natural Move Monte Carlo. Markov Chain Monte Carlo-based
refinement of large macromolecular structure is usually hampered by two
major obstacles: the large number of DOF and the complex topology of
the scoring function. To overcome the problem of a large number of DOF,
we propose different sets of DOF, referred to as levels (Fig. 3). In each level,
segments of a macromolecule can be grouped into different regions that
can independently translate and rotate to generate a new conformation or
configuration of the regions. Each proposed configuration of these regions
may cause chain break(s) and is thus followed by a chain-closure procedure
(26) to ensure the proper geometry of the connecting loops. The resulting
proposed conformation is scored by the energy function, Etotal. The refine-
ment procedure is guided by a multi-scale temperature-modulated NM-MC
protocol, where the overall set of DOF changes so that the total number of
DOF progressively increases. In particular, Fig. 3C illustrates the three sets of
DOF used to refine the Mm-cpn models. To effectively overcome limitations
arising from the complex topology of the scoring function, the NM-MC uti-
lizes a periodically fluctuating temperature profile so that all the essential
energy basins are rapidly explored. This protocol is implemented in the soft-
ware package Methodologies for Optimization and Sampling In Computa-
tional Studies (37).

We find that the use of gradually more detailed DOF is necessary for prop-
er refinement (Fig. S11). If we skip level 1 and directly run the refinement
with only the EM energy at level 2, the resulting model gets trapped in a
local energy minima in which subunits collide. Introducing additional mole-
cular energy prevents the subunit collision, but the resulting model is still
distorted. Therefore, our control calculation suggests that using very few
DOF at the beginning can help bypass many energy barriers and aid conver-
gence to the correct model. At later stages, more detailed DOF may be used
to further explore local conformational states.

Starting Model and 2D Class-Average Image Generation, Map Conversion and
Calculation, Figure and Movie Productions. To use a reduced-model knowl-
edge-based potential, residues in the macromolecule were represented by
a three-point model that consists of the Cα, carbonyl O atoms, and a centroid
for the side chain. To establish the optimal refinement protocol using the
lysozyme-derived artificial data, another starting model in Fig. 3 with 8.4 Å
Cα rmsd was generated by 25,000 steps of Monte Carlo at 300,000 K using
the DOF defined in Fig. 3A. Two-dimensional class averages of Mm-cpn were
generated using program refine2d.py in the EMAN software (32). Map con-

Fig. 4. Separating heterogeneous conformations of lidless Mm-cpn with mixed states of EM particle images using the closed-state initial model. (A) Mixing
5000 ATP/aluminum fluoride-induced (closed) and 5000 ATP-free (open) states of lidless Mm-cpn raw particle images to generate the artificial heterogeneous
EM dataset of 10,000 particles. (B) The 100 2D class averages that were generated from the 10,000 particle images. (C) Refinement results against six repre-
sentative class averages exhibiting various conformational and orientational states such as open side view (Average #0), closed tilted view (Average #4), open
top view (Average #30), closed side view (Average #51), closed top view (Average #88), and open tiled view (Average #96). Column I shows the projections of
the initial closed-state model along the initially estimated orientations. Column C shows the target 2D experimental class averages. Column R shows the
projection of each refinedmodels (ColumnM) along the refined orientations. ColumnM shows the refined models after three iterations of NM-MC refinement
(Materials and Methods). Note that for Average #30, the initially estimated orientation was not correct due to the large conformational difference between
the initial model and the class average. After three iterations, both the correct orientation and conformation were obtained. (D) Seed maps generated from
two clustered states of the refined models at 30 Å resolution (Left) and the re-refined maps at 9 Å resolution in which α-helices are visible (SI Materials and
Methods, Figs. S8 and S9).
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version from PDB and map low-pass filtering were performed using the
pdb2mrc command and the proc3d command in EMAN, respectively. Figures
and movies were generated using University of California San Francisco
(UCSF) Chimera (38). The cross-correlation between the model-converted
map and the cryo-EM map (EMD-5140) was calculated with the Chimera
fit-in-map function.

Iterative NM-MC Refinement Against Multiple Heterogeneous Particle Projec-
tions. To refine the closed-state initial model against the 100 class-averages
of Mm-cpn with mixed conformations, we used only the EM energy and level
1 DOF as defined in Fig. 3C. To reduce the computational cost, these class
averages were shrunk fourfold relative to the original image size. To gener-
ate their corresponding 3D models (Fig. 4C and Fig. S6), NM-MC refinements
were carried out against each of the class averaged target images. When
comparing and clustering all these resulting models, we identified different
conformational populations by measuring the “openness” of the central
folding chamber of Mm-cpn (Fig. S7). The PDB coordinates of the clustered
models within each population were averaged and used to reestimate the
initial orientation parameters of each projection for another round of
NM-MC refinement. To improve the refinement results, this procedure was

carried out for three consecutive iterations having 20,000, 80,000, and 80,000
steps, respectively. The clustered and averaged refined model from the
previous iteration was used as the initial model of the following iteration.
For each class average, 20,000 steps of NM-MC refinement took about 1 h
on a single core of the Bio-X2 cluster.

EM Image Processing and Map Reconstruction Using Two Seed Maps. The
averaged models within each of the two final clusters of Mm-cpn were
blurred to give two seed electron density maps at 30 Å resolution using
the pdb2mrc command in EMAN. These two seed maps were then used to
initialize additional EM data processing and map reconstruction using the
original 10,000 raw particle images with themulti-refine command in EMAN.
D8 symmetry was imposed to achieve higher resolution out of a limited
number of particles.
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