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RNA modeling, naturally
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he biological functions of RNA
sequences are directly related to
the folds they can adopt after
transcription. Nowadays it is ap-
parent that even coding RNA transcripts
depend on complex architectures for their
efficient translation (1). Furthermore,
several noncoding RNA transcripts exert
their biological functions through their
folded states. RNA elements called ri-
boswitches (2) are able to recognize a huge
variety of ligands of various sizes and,
thereby, exert their functions at the tran-
scriptional or translational levels. In the
absence of structural methods (like X-ray
crystallography or NMR techniques) or
chemical and biochemical solution probing
methods, the prediction of RNA archi-
tecture is still a major challenge. However,
attracted by the huge interest in noncoding
RNAs, several groups of theoreticians
have introduced original and innovative
approaches to fold in silico RNA se-
quences. Such methods, highly complex,
rely on force fields at various scales and
computer algorithms with different levels
of approximations for attempting to mas-
ter the tremendous complexity of mixing
locally atomic details and globally long-
range contacts typical of large molecular
assemblies. A study in PNAS by Sim et al.
(3) introduces an original approach to deal
accurately and efficiently with both long-
range and short-range interactions during
the modeling of large RNA architectures.
RNA transcripts, synthetized as single-
stranded molecules, possess a strong
tendency to fold back on themselves to
form Watson—Crick pairs and double-
stranded helical regions. The base pairings
lead to hairpins of various lengths and
complexities. The secondary structure
enumerates or describes the Watson—
Crick paired helical regions of an RNA
molecule. The set of hairpins and internal
helices defining the secondary structure
can further assemble into intricate 3D ar-
chitectures. The architectures are held
together precisely through defined sets of
RNA-RNA contacts with defined molec-
ular interactions mediated by various
types of RNA modules (for a recent
overview see ref. 4). To an excellent ap-
proximation, RNA architecture can be
viewed as a modular and hierarchical as-
sembly of preformed building blocks (5).
This approximation simplifies, at least in
principle, the obstacles of dealing with
multiple levels of complexity, but its au-
tomatic implementation with available
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Fig. 1. Relative orientations of helices at multiple
junctions are key for restricting the spatial ranges
necessary to sample for correctly positioning the
specific RNA-RNA interacting modules (Upper).
For the four-way junction (Lower Left) there exist
at least eight isomers [depending on the choice of
the coaxially stacked helices (here is shown A with
D and B with C), whether the strands cross or not
at the junctions, and because the coaxial stacks are
not parallel the resulting choice in the chirality of
the two coaxial stacks (21)], and only one of them
will allow the formation of a specific loop-loop
contact. Three-way junctions (Lower Right) occur
in three main families, with some conservation in
the local junction folds [especially for one of the
families, the most numerous one (22)], and gen-
erally a single conformation will allow for long-
range contacts between two of the helical arms.

computer tools still constitutes a daun-
ting task.

Not surprisingly, a very efficient method
has been to use human and manual in-
tervention for the modeling of large RNA
molecules. First, building blocks are pre-
assembled automatically, and those are
then manipulated and positioned on
a computer graphics system until a satisfy-
ing architecture results (6, 7). The advan-
tages are that large and global movements
can be operated on the molecular objects
without too much consideration of local
atomic clashes that can afterward be re-
lieved by standard refinement tools. Al-
though such a method can be successful
given an appropriate number of long-dis-
tance relationships, it has several draw-
backs. A serious disadvantage is that
a single model is obtained, and therefore

the ensemble of compatible structures

is only glimpsed by the human manipula-
tor(s). In addition, most if not all of the
rejected models are not saved. Even if they
were not discarded, this set of models
would still constitute a fraction of the

full ensemble because of the amazing
power of the human brain for screening
3D space. Another disadvantage is that the
process is highly time-consuming and re-
quires expert knowledge for using the as-
sembly program. Most importantly, the
approach relies on the available structural
database and on dedicated tools for in-
terrogating the databases in a relevant
fashion, for example through topological
relationships or relations in space. Other-
wise, the method relies only on what

has been acquired by the human manipu-
lator(s) (in other words, the database is
human-wired).

To alleviate those disadvantages, frag-
ment assembly methods with knowledge-
based libraries have been developed
for automatic modeling (8-11). Such
methods circumvent some of the dis-
advantages of human intervention. How-
ever, they present severe drawbacks, one
of which is the difficulty of escaping from
local conformational basins. Standard
Monte Carlo or molecular dynamics
methods are efficient locally only. Coarse-
grained methods may sample globally
more efficiently but in an unnatural and
complex energy landscape with un-
suspected barriers to cross. Further, al-
though they produce many decoys, the
resulting samplings are not adequate for
deriving thermodynamic observables, as
shown by Sim et al. (3).

The power of the Sim et al. algorithm
(3) stems from the facts that, first, it ad-
dresses these questions directly and,
second, it offers an elegant and very nat-
ural solution anchored in the modular hi-
erarchy of RNA architecture. Sim et al.
develop an efficient sampling method
that works at various hierarchical embed-
ded levels. Thus, both global and local
moves can be automatically performed.
The inevitable loss in stereochemistry and
covalent geometry is repaired afterward.
The Hierarchical Natural Move Monte
Carlo sampling can be used in conjunction
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with recent packages like Rosetta 3.0 (9)
or MC-Sym (8). Canonical distributions of
observables are produced whatever the
starting structures. This latter advantage is
particularly important for the design of
nanostructures that rely on the assembly of
RNA building blocks and modules (12,
13). Such large nanostructures are gener-
ally highly symmetric, at least globally but
not at the local level (14), emphasizing the
importance of being able to decouple
global and local moves. Sim et al. (3)
convincingly apply the method to four-
way junctions. Junctions between helices
constitute central RNA architectural
elements in many RNAs (Fig. 1), and
they are also key for building up RNA
nanostructures.

The recent increase in sophisticated
automated algorithms for predicting sec-
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