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1 Background & Overview

1.1 Computational Modelling in Structural Biology

The rapidly increasing availability of experimental data for key macromolecules provides broad
opportunities for the computational modelling and functional interpretation of their structures
and one might envision routine and cheap in silico experiments replacing or aiding the interpre-
tation of costly laboratory work. To achieve this goal, we might expect simulations to reveal con-
formational preferences that could explain a given functional working model of a nanomolecular
machine or the mechanism how molecular switches trigger a biological process.

1.2 Conformational Sampling: Objectives and Limitations

The typical objective of conformational sampling is to obtain the expectation value and distribu-
tion of system specific observables that could range from simple distances such as the end to
end distance in a protein to the ’volume’ of a cavity that may accommodate a small molecule
inhibitor. The expectation values are obtained by averaging over a phase space (Ω) in which
the probability of visited states are described by a density distribution function, f : Ω→ IR that
maps elements from phase space Ω to real numbers IR. Then, for any observable, α : Ω→ IR,
the expectation value is defined as

〈α〉 =

∫
Ω
dLα(L)f(L)

where L ∈ Ω. In the case of the canonical ensemble, the probability distribution function f is
given by the Boltzmann distribution, f(L) = exp(–βE(L))/Q, where the function E : Ω → IR
represents the energy of the system, β = 1/kT (k is the Boltzmann constant and T the
temperature) and Q is the partition function defined as Q =

∫
Ω dL exp(−βE(L)). Therefore,

〈α〉 = 1/Q

∫
Ω
dLα(L) exp(−βE(L))

In order to obtain 〈α〉, one may average over all states visited in a numerical simulation
(e.g. MD, MC) and the computed values can be compared with analog experimental obser-
vations. While this hope has been put forth since the first atomic resolution calculation
(Levitt and Lifson, 1969) and experimental refinement (Levitt, 1974) on an entire biomolecule,
the desired impact has not been delivered. The failure to adequately meet these expectations
can be attributed to inherent limitations of basic molecular modelling methods such as molec-
ular dynamics (MD) or standard Monte Carlo (MC) techniques: Firstly, their limited ability to
explore globally the conformational space due to the large number of degrees of freedom
that have to be explicitly treated (referred to as the dimensionality problem), and secondly
their inefficiency in escaping from low energy conformational basins, hence conformational
transitions occur with low probability (referred to as the energy surface problem).

2 Theory & Methods

In this section we provide the basic mathematical framework for some stochastic sampling
algorithms and introduce a new methodology to reduce dimensionality in structure based
computations.



CONFORMATIONAL SAMPLING MOSAICS BIOMOLECULAR STRUCTURES

2.1 Advanced Markov Chain Monte Carlo Algorithms

Regular Monte Carlo methods are exposed to the energy surface problem and have limited
applicability to deliver expectation values, which can be better modelled by multi-canonical
Monte Carlo schemes (Geyer, 1991, Minary and Levitt, 2006). Here, we review the theory
behind both conventional and these more advanced Markov Chain Monte Carlo Methods.

Let us assume that the conformational state of a system, X = L ∈ Ω, could take different
values X1, X2, ...Xn during a simulation. We say that the simulation is guided by a Markov
process if the future state is entirely determined by the present state. Formally, P (Xn+1|X0 =
L0, ..., Xn = Ln) = P (Xn+1|Xn = Ln), where X refers to the random variable that is assigned
to different conformational states during the simulation. Next, one can define a Markov Chain,
X(.) as a sequence of states {X0, X1, X2, ..., Xn} generated by the above Markov process. In
Markov Chain Monte Carlo, we draw samples from a distribution, f(X) = φ(X)/N , which is
only known up to a normalizing constant, N and the consecutive elements are generated by
the following rule: 1.X → X ′, q(X,X ′) = q(X ′, X); 2.Pacc(X → X ′) = min{1, φ(X)/φ(X ′)}.
Here, q refers to a symmetric (often multivariate Gaussian) distribution.

In a conformational (Markov Chain) Monte Carlo trajectory we usually generate a Markov
Chain, X(T ) that samples from a Boltzmann distribution, f(X,T ), where X(= L) denotes
a conformational state (see 1.2) and T is the temperature. At low temperatures or even at
physiological conditions (T = 300K), X(T ) may include samples from only one particular
conformational state often close to the initial starting structure, X(T )

0 of the trajectory. This
phenomena is very common as the small rate of escaping from low energy conformations
hinders the global exploration of the conformational space. A widely accepted solution to this
problem is parallel tempering (Geyer, 1991), in which one executes K + 1 Markov Chains,
{X(T0), X(T1), ..., X(TK)} in parallel each sampling from a Botzmann distribution, fi(X,Ti), at
temperature, Ti, {i = 0, ...,K}. At step n, neighboring Markov Chains, X(Ti) and X(Ti+1)

may exchange states with a probability Pacc = min{1, fi−1(y)/fi−1(z) × fi(z)/fi(y)}, where
y = X

(Ti)
n and z = X

(Ti+1)
n . In this way, lower order (temperature) chains can visit more

diverse conformational states while each chain still samples according to the proper canonical
probability of occurrence at its own temperature.

2.2 Hierarchical Natural Move Monte Carlo Methods

Cartesian variables often represent the finest degrees of freedom (DOFs), Lf , that span the
full phase space, Ωf . However this choice may become impractical with increasing system size
due to the large number of independent variables. To reduce dimensionality one could use
a proper subspace, Ωs ⊂ Ωf spanned by a smaller number of generalized degrees of free-
dom, Ls. For example, Ls may represent dihedrals (torsional angles) of a chain of connected
particles/joints (Minary and Levitt, 2008, Minary and Levitt, 2006, Stein et al., 2006). Another
solution is to change the conformation along torsional angles independently in many local
segments while breaking chains connecting them, then use a closure algorithm to restore
continuity (Minary and Levitt, 2010). Within this latter scheme, often referred to as Natural Move
Monte Carlo one may use degrees of freedom (DOFs) that can be inferred from experimental
observations, e.g. ’natural’ moves.

Hierarchical Natural Move Monte Carlo (HNM-MC) (Sim et al., 2012) allows adaptive decom-
position of the system into arbitrary structural segments of hierarchically increasing complexity.
In this scheme, embedded subspaces of increasing sizes are defined, from Ωs to Ωf such
that Ωs = Ωn ⊂ Ωn−1... ⊂ Ω1 = Ωf , with each subspace representing a desired level of the
hierarchy. In this way the energy surface along highest order collective DOFs, Ln are smoothed
by introducing a hierarchical set of finer lower order DOFs, Ln−1, ...,L1. Figure 1 presents such
hierarchical DOFs for a large fractal-like RNA.
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3 Numerical Experiments

3.1 Energy Functions

Sampling algorithms are generally assigned to a task of producing a distribution or evaluating
an expectation value in a system described by the independent variable(s), L and a corre-
sponding energy function, E(L). For example, E(L) = ε0[L2 − a2]2/a4 describes a simple
one-dimensional quadratic double well potential, where ε0 is the height of the barrier and a
is the separation of the wells. A more complex energy surface may be mimicked by using a
Fourier series on the interval [0, I),

E(L) =

20∑
i=1

c(i) sin (i2πL/I)

where the coefficients c(i) could be randomly chosen. While many of the all-atom empirical
energy functions (MacKerrel, 1998, Cornell, 1995) represent a similarly rough energy surface,
adequately capturing the conformational heterogeneity of complex biomolecules also requires
a large number of Cartesian degrees of freedom (DOFs). While explicit treatment of these
DOFs would hinder the global exploration of conformational space, the use of local torsional
or essential (sometimes also called natural) DOFs often provide a computationally tractable
alternative.

3.2 Structure of the Exercises

The numerical exercises are grouped into Work Packages and are available via the Tuto-
rial link at the MOSAICS website1. There are 4 Work Packages, (WPs) and students are
recommended to complete them in increasing order. In a two days case study, students may
complete WP1-2 in the first day and and WP3-4 may left for the second day. More advanced
and interested students may consider research tutorials 2,3,4.

The covered areas are as follows:

1. WP1 Gaining familiarity with one of the popular algorithms that has superior performance
over conventional Markov Chain Monte Carlo (Metropolis et al., 1953) (MCMC) in over-
coming energy barriers and facilitates the global exploration of a state space (Ω). By com-
paring performance to the standard MCMC scheme one could demonstrate the benefits of
using methods that are designed to tackle the energy surface problem.

2. WP2 Learning the practical use of algorithms that provide solution to the dimensionality
problem. This will be done through running molecular simulations on small biological
structures so that benchmark calculations can be readily preformed during the exercise.
The benefits of using these techniques will be demonstrated through performing analog
simulations using conventional Cartesian degrees of freedom.

3. WP3 Study the same systems used in 2 and demonstrate the combine effects of algorith-
mic schemes including the ones learned in 1 and 2. These studies will demonstrate that
modern computational simulations harvest the synergetic effect of advanced algorithmic
schemes when custom designing an algorithmic protocol for a particular application in
hand.

4. WP4 This WP presents a modelling task for realistic application: to design and optimize
algorithms to explore the conformational space of one of the first RNA riboswitch struc-
tures. The exercise require all the knowledge and experience students gain during com-
pleting the previous Work Packages.

1www.cs.ox.ac.uk/mosaics
2http://www.cs.ox.ac.uk/mosaics/protein.html
3http://www.cs.ox.ac.uk/mosaics/rna.html
4http://www.cs.ox.ac.uk/mosaics/dna.html
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Figure 1: (A) Example of three embedded subspaces, Ω1 ⊂ Ω2 ⊂ Ω3 spanned by hierarchical
degrees of freedom L1,L2,L3 of a large fractal-like RNA modeled by Hierarchical Natural Move
Monte Carlo (HNMMC). Ω1, Ω2 and Ω3 spaces represent the arrangement of individual and
groups of nucleotides in helices and four helix arms, respectively. The relative size of each
subspace is illustrated by a geometric analogy: Ω1 spans the volume of cube (red), Ω2 spans
the plane abcd (green) and Ω3, spans the line cb (blue).
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