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Abstract

Relational program derivation has gathered momentum over the last decade with
the development of many specification logics. However, before such relational speci-
fications can be executed in existing programming languages, they must be carefully
phrased to respect the evaluation order of the language. In turn, this requirement in-
hibits the rapid prototyping of specifications in a relational notation. The aim of this
thesis is to bridge the gap between the methodology and practice of relational pro-
gram derivation by realising a compositional style of logic programming that permits
specifications to be phrased naturally and executed declaratively.

The first contribution of this thesis is the identification of a collection of desiderata
that sets out the particular language requirements necessary to support our notion
of compositionality. Thus, from the outset, we differentiate between the execution of
specifications and programs, the latter an enterprise best left to the likes of Prolog
and Mercury.

Compositionality is obtained in this thesis by translating higher-order elements
of functional programming style into the logic paradigm. By doing so, these elements
become enriched with the extra expressiveness fostered by nondeterminism, logic
variables, and program converses. Another contribution of this thesis is the demon-
stration that a curried representation of programming terms in a compositional logic
language is sufficient to provide the desired higher-order facilities without the need
for either extra-logical predicates or higher-order unification.

A further contribution of this thesis is the rediscovery of fair SLD-resolution as
a fundamental way to guarantee termination of compositional programs within the
confines of resolution. Unfortunately, though, fair SLD-resolution using the ‘breadth-
first’ computation rule exhibits efficiency behaviour that is difficult to predict. Conse-
quently, this thesis proposes and implements two novel versions of fair SLD-resolution
that overcome the deficiencies of the breadth-first computation rule.

The first strategy, based on a new formulation of tabled evaluation, restores effi-
ciency by eliminating redundant computation and also inherits the extra termination
benefits intrinsic to tabled evaluation. The second strategy, called prioritised fair
SLD-resolution, selects literals in a goal from those whose resolution is known to ter-
minate at the expense of the others. Prioritised resolution centres around an original
adaptation of an existing termination analysis for logic programs. Although termi-
nation analysis has recently been used to verify the correctness of logic programs, its
application in this thesis to improve the efficiency of compositional programs is new.
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Chapter 1

Introduction

One of the primary strengths of functional programming languages is their ability to split
up programs into small, mind-sized pieces. Through the use of higher-order operators,
or combinators, one can capture common idioms of program composition. Apart from the
aesthetic benefits and the increased readability of programs, employing combinators en-
courages the formulation of general mathematical results about programs (Backus 1985).
In turn, such results facilitate concise verification of the equivalence of programs and per-
mit the derivation of functional programs from mathematical specifications (Bird 1987).
Also, because combinators are defined by the user, they can be tailored to specific applica-
tions: for example, to parsing (Hutton 1992b), pretty-printing (Hughes 1995), graphical
user interfaces (Hallgren & Carlsson 1995), or capturing patterns of parallel computa-
tion (Darlington, Field, Harrison, Kelly, Sharp, Wu & While 1993).

Recently, members of the program derivation community (Bird & de Moor 1996,
Berghammer & Von Karger 1995, Aarts, Backhouse, Hoogendijk, Voermans & Van der
Woude 1992, Jones & Sheeran 1990) have shown that it is often useful to use a relational
calculus to derive programs from specification, rather than a purely functional one, since
a relational calculus provides a natural treatment of nondeterminism and function con-
verses; these two elements combine to form a calculus whose primitive constructs are
more powerful than those available in a functional one. Furthermore, the flexibility of a
relational calculus can help to clarify and simplify the structure of proofs made in the
calculus (Bird & de Moor 1994).

The main drawback is that, of all the relational calculi being developed (Bird &
de Moor 1996, Möller 1993, Backhouse & Hoogendijk 1993, Jones & Sheeran 1990,
Schmidt & Ströhlein 1988), no language exists in which the relational expressions be-
ing derived can be directly executed. Two notable exceptions are (Cattrall 1993, Hut-
ton 1992a), although both of these are more concerned with executing certain types
of programs than with the prototyping of specifications. The absence of a widely ac-
cepted notion of relational computation prohibits the prototyping of specifications in a
relational notation and hinders the understanding of why some relational transformations
lead to an efficient program and others do not. Of the existing declarative programming
paradigms, the logic paradigm allows direct execution of very high-level specifications—
through the application of nondeterminism and program converses—whilst the functional
paradigm requires a specification to be phrased more algorithmically due to the distinc-
tion between input and output. However, functional languages provide more support for
composing specifications.



1 / Introduction 2

The logic programming community has also recognised the benefits of compositional-
ity and the issue has been explored in the design of functional logic (Hanus, Kuchen &
Moreno-Navarro 1995, Lloyd 1995, Hanus 1994, Moreno-Navarro & Roderiguez-Artalejo
1992, Reddy 1987, Bellia & Levi 1986) and higher-order logic languages (Nadathur &
Miller 1988). Moreover, this work focuses on executable languages and even addresses
questions of efficient execution. Nevertheless, such languages still fail to support the
direct execution of the relational expressions derived in the calculi above.

The main deficiency of these new logic languages and, indeed, the traditional lan-
guages like Prolog (Colmerauer, Kanoui, Pasero & Roussel 1973) and Mercury (Somogyi,
Henderson & Conway 1995), for executing relational programs stems from their predom-
inant use of the left-to-right computation rule which effectively bans the use of relational
composition and converse. Programs executed in such languages often loop infinitely, un-
less extra-logical annotations are added to them. By doing so, however, the declarative
underpinnings of relational programming are lost, as is the ability to reason abstractly
about such programs.

Despite the widespread use of the left-to-right computation rule in the logic pro-
gramming community, its limitations have been acknowledged by the introduction of
coroutining computation rules (Lüttringhaus-Kappel 1993, Naish 1992, Naish 1985) in
languages such as NU-Prolog (Thom & Zobel 1987). Coroutining rules attempt to over-
come the inflexibility of the left-to-right one by selecting literals in a goal depending upon
the pattern of instantiation of their arguments. The result is increased flexibility that
allows more programs to terminate than does the left-to-right computation rule. How-
ever, automatically determining precisely which instantiation patterns for a program will
lead to its efficient execution is a difficult undertaking (Lüttringhaus-Kappel 1992). Con-
sequently, a coroutining logic language can often rely too heavily on the programmer’s
particular choice of instantiation patterns to facilitate efficient computation.

An alternative approach to address the shortcomings of the left-to-right computa-
tion rule when executing compositional programs was presented by (Hamfelt & Nils-
son 1996, Nilsson & Hamfelt 1995) who abandoned explicit recursion in favour of provid-
ing structurally recursive combinators over the list data type. To encapsulate recursion
of this nature in Prolog, (Hamfelt & Nilsson 1996) provided multiple versions of each
combinator and used groundness analysis (Apt & Etalle 1993) to determine at run-time
the most appropriate implementation to use during the resolution of the selected literal.
The disadvantage of such an approach to realising compositional logic programming is
that every recursive data type must be analysed to determine all of its possible combi-
nator forms and, furthermore, their use is restricted to ground arguments. Moreover,
despite the virtues of compositionality, there are occasions when programming only with
combinators is inconvenient and explicit recursion is preferable: an observation that is
also true in functional programming.

Another deficiency of most existing logic languages, that becomes evident when writ-
ing compositional programs in them, is their lack of adequate support for higher-order
programming constructs. One recent attempt to rekindle interest in higher-order logic
programming in Prolog (Naish 1996) suggests once more the use of the extra-logical con-
struct first introduced by (Warren 1982) which has largely been overlooked by the com-
munity over the years. This construct provides a more faithful analogy to the higher-order
programming style found in the functional paradigm than the one adopted by languages
like Mercury. Nevertheless, the application of cumbersome extra-logical predicates by the
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programmer hinders the declarative formulation of programs. Furthermore, any style of
higher-order programming in Prolog inherits the left-to-right computation rule and, in
turn, the poor termination behaviour of compositional programs.

The major exception to the lack of support for compositionality in logic programming
is provided by the higher-order language λProlog (Nadathur & Miller 1988) which allows
higher-order programs to be constructed naturally, without the need for extra-logical
predicates. This advantage over Prolog led (Gegg-Harrison 1995) to propose a general
characterisation of structural recursion in λProlog, suitable for certain common data
types, through the provision of a handful of combinators. Although these combinators
form a solid basis for writing compositional programs, the inheritance of the left-to-right
computation rule in λProlog once again hinders their execution.

All the above approaches to support compositional programming are based upon the
computational process of resolution. However, alternative computation mechanisms have
recently been suggested for logic programming. For example, (Lipton & Broome 1994)
propose a computational model based upon rewriting relational expressions directly using
a set of relational axioms. This line of work, though, is still in development and it remains
to be seen whether it can provide an effective method of evaluating relational expressions.

Contributions of this thesis

The aim of this thesis is to design and implement a compositional logic programming
language that overcomes the problems of executing relational specifications in existing
logic languages and, ultimately, to bridge the gap between the methodology and prac-
tice of relational programming. In the following definition, we pin down the notion of
compositionality adopted in this thesis.

Definition 1.1 (Compositional logic programming). A combinator is a predicate
that takes one or more partially applied predicates as arguments. A compositional
logic programming language allows programs to be constructed using both the primi-
tive connectives of the language and user-defined combinators such that the termination
behaviour of the program is independent of the way in which it is composed. ♦

The first contribution of this thesis is the identification and realisation of a compo-
sitional style of logic programming. Compositional logic languages benefit from being
able to execute high-level specifications that are bereft of the algorithmic detail com-
monly required in existing programming languages. Consequently, a compositional logic
language frees the programmer from the burden of writing programs with regard to the
language’s execution order. The downside of this declarative style, however, is that a
compositional language can never be expected to compete in terms of efficiency with pro-
gramming languages that have a rigid evaluation order. Even though such languages are
unable to execute naturally the style of programs proposed in this thesis, from the outset
we emphasise that the purpose of a compositional language is to prototype specifications,
rather than to execute algorithms; once a specification is refined to an actual program, it
should be implemented in an efficient programming language designed for that purpose.

Despite the attempts discussed earlier to introduce higher-order programming into
the logic community, its limited acceptance can be attributed to an incomplete analysis
of the language features necessary to support faithfully such a style of logic programming.
This thesis identifies, for the first time, a particular set of requirements that complements
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compositional logic programming. One such requirement is the curried representation of
terms in the language to allow the partial application of predicates. True, Prolog permits
this style of partial application—albeit as something of an afterthought—though it re-
quires the cumbersome use of extra-logical predicates. The use of curried terms permits
the majority of higher-order programming constructs required for compositionality, yet
without the need for unnatural syntax. Moreover, the impact of curried terms on the
operational mechanisms of a logic language, in particular the unification algorithm, is
insignificant. Although the higher-order logic language λProlog also supports a curried
syntax, the price paid for this is the adoption of higher-order unification which is an unde-
cidable procedure in general. The curried representation of terms proposed in this thesis
permits a compositional style of programming without the need for either extra-logical
predicates or higher-order unification.

Another contribution of this thesis is the identification that a fair computation rule is
crucial for the support of compositionality. We rediscover fair SLD-resolution (Lassez &
Maher 1984) from logic programming and prove that it guarantees the termination of
a logic program whenever any other resolution strategy would terminate for it. There-
fore, fair SLD-resolution rectifies the infinite looping of compositional programs often
experienced in Prolog whenever possible within the confines of resolution. Despite its
theoretical elegance, however, fair SLD-resolution using the ‘breadth-first’ computation
rule, as opposed to Prolog’s depth-first (left-to-right) one, results in efficiency behaviour
that is difficult to predict. Moreover, a prior attempt to rectify the efficiency problems
of fair SLD-resolution (Janot 1991) fails to generalise to compositional programs. This
thesis contributes two novel implementations of resolution that provide better support
for compositional programming than existing techniques.

The first method, based on recording (or tabling) the results of individual resolutions,
extends existing work on the tabled evaluation of logic programs (Chen, Swift & War-
ren 1995, Warren 1992, Tamaki & Sato 1986) to improve the termination behaviour of fair
SLD-resolution in practice. Such behaviour is achieved both by eliminating redundant
subcomputations in a resolution and by expanding the theoretical class of terminating
programs beyond that of SLD-resolution. Secondly, we suggest a novel fair computa-
tion rule that selects literals in a goal depending on whether their resolution is known
to terminate. We achieve this by adapting an existing termination test for logic pro-
grams (Lindenstrauss & Sagiv 1997) to use the new computation rule and we craft a
static analysis of logic programs to determine the set of terminating literals for a pro-
gram. Although termination analysis has recently been used to verify the correctness of
logic programs (Speirs, Somogyi & Søndergaard 1997), the application of it to improve
the execution efficiency of logic programs is novel.

In this thesis, only definite programs—those free of occurrences of negation—are
considered in order to keep the discussion focussed on the important issues regarding
compositionality. However, the compositional languages presented in this thesis can be
extended to encompass normal programs—those that may contain negative literals—by
implementing negation-as-failure through the use of a “safe” computation rule (Lloyd
1987). A safe computation rule selects negative literals for resolution only when they
are ground so as to avoid introducing unsound answer substitutions. A fair computation
rule can be extended with the notion of safeness by simply delaying the resolution of all
negative literals until they are ground and, once selected for resolution, must be resolved
away completely so that the success or failure of its resolution can be noted.
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Overview of the thesis

The thesis is organised into seven chapters. In the remainder of this chapter, we present
two substantial programming examples—implemented in the actual compositional lan-
guage developed in this thesis—to demonstrate the desirability of the novel style of com-
positional logic programming. Previous attempts to promote a combinatory style of logic
programming (Hamfelt & Nilsson 1996, Gegg-Harrison 1995) have lacked adequate exam-
ples which illustrate the practical benefits of constructing programs from combinators.
The first example provides a set of combinators that serves to build both parsers and
pretty-printers simultaneously, and the second is an implementation of the relational
hardware description language Ruby (Jones & Sheeran 1990).

Chapter 2 establishes a collection of desiderata for a compositional programming
language and uses it to examine the suitability of various programming paradigms for
supporting declarative relational programs. The paradigms considered are functional,
logic, and higher-order logic programming. After the investigation, we explain why each
of these paradigms fails to satisfy fully our requirements for a relational programming
language.

In Chapter 3, we identify the language features necessary to support relational pro-
gramming in a logic language: a curried representation of terms which allows a natural
syntax for compositional programs; and a fair computation rule which guarantees the
termination of programs whenever possible by any other resolution strategy. We also ex-
plain why the choice of search strategy in a compositional language is orthogonal to the
choice of computation rule. We then show that despite the elegant theoretical benefits
of fair SLD-resolution, its efficiency behaviour in practice is difficult to predict. We end
the chapter by discussing why coroutining computation rules fail to provide an adequate
basis for compositional programming.

In Chapter 4, we review the notion of tabled evaluation of logic programs (Tamaki &
Sato 1986) and introduce ‘fair’ tabling techniques, called fair OLDT-resolution, to over-
come the practical limitations of fair SLD-resolution experienced when executing compo-
sitional programs. Tabling is able to achieve this by eliminating redundant computation
and avoiding the cycles that are intrinsic to left-recursive programs. Fair tabling tech-
niques also address the termination problems experienced by existing tabling systems that
inherit the left-to-right computation rule from Prolog. However, the drawback is that fair
tabled evaluation loses the desirable termination property of fair SLD-resolution which
guarantees the termination of a query should any other resolution strategy terminate for
it.

In Chapter 5, we reinstate the termination property of fair SLD-resolution yet im-
prove upon its efficiency behaviour by developing a novel fair computation rule called
prioritised fair SLD-resolution. We present a new computation rule that selects literals
for resolution if its resolution is known to terminate; this determination is made via an
original adaptation of an existing termination test for logic programs (Lindenstrauss &
Sagiv 1997).

The penultimate chapter presents a comparison between the performance of four res-
olution strategies—SLD-resolution, fair SLD-resolution, fair OLDT-resolution, and pri-
oritised fair SLD-resolution—when executing various compositional programs in terms of
the number of resolution steps taken to complete their computation successfully. Finally,
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Chapter 7 presents the conclusions of the thesis and suggests possible areas of future
work.

Three appendices to the thesis contain respective implementations of the resolution
strategies presented in Chapters 3, 4, and 5 in an effort to formalise the important algo-
rithms and data structures presented in the thesis, allow comparisons to be made between
the three strategies, and provide a platform from which more efficient implementations
can be launched.

1.1 Combinator parsing and pretty-printing

In functional programming, the preferred method of writing parsers is through the use
of parsing combinators (Hutton 1992b). The reasons for this preferential position are
the speed of creating such parsers, the simplicity of their structure, and the ease with
which the parsers can be modified. Combinator parsers in functional languages make
essential use of compositionality and higher-order programming. Ambiguous grammars
are dealt with by appealing to the classic “list of successes” approach (Wadler 1985),
which encapsulates a form of backtracking. Traditional logic programming languages
are, for the most part, unsuitable for a combinatory approach to programming since
features like currying and higher-order programming are not generally supported.

In this example, it is shown how our compositional logic programming language proves
adequate for implementing combinator parsers. As we shall see, our parsers are also more
symmetrical than their functional counterparts; later, we run our parsers “backwards”—
taking full advantage of the expressive power of the logic language—thus producing a
pretty-printer for our grammar without expending any additional programming effort.

Primitive parsers

The structural simplicity of combinator parsers stems from the hierarchical nature in
which they are derived; from a discrete set of primitive parsing constructs, we can build
elaborate parsers for sophisticated grammars. Each parser is represented by a predicate
in the logic program. The “input” to our parsers is a list of characters and the “output”
consists of both the converted part of the input string, called the value, and the uncon-
sumed remainder of the input. A pair is represented by (a, b) in the language and lists
are constructed by the symbols nil , which denotes the empty list, and ‘:’, which denotes
infix cons.

The first primitive parser is

succeed V X V X :− .

that consumes no input and always succeeds with some predetermined value V . In a logic
programming language, we do not require a parser that always fails; we simply inherit
the failure of a parser from the lack of a proof for a parse, i.e., if a parser fails then the
interpreter simply indicates no. The parser

satisfy P (A : X ) V Y :− P A, succeed A X V Y .

provides a good illustration of this phenomenon since any A that does not satisfy the
predicate P will result in failure of satisfy .
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Another primitive parser

literal A X V Y :− satisfy (eq A) X V Y .

succeeds when the first character in the input string X matches A. The predicate eq deter-
mines the equality of two terms by unifiability. The curried use of eq above demonstrates
a particularly convenient syntactic notation corresponding to that found in functional
programming.

By now the explicit replication of logic variables in our predicate definitions may ap-
pear tedious: after all, in functional programming we simply omit redundant parameters.
Indeed, there is no fundamental reason for preventing this form of η-conversion of terms
in our language. Such syntactic changes to our language compliment compositionality
and their inclusion in a complete language implementation would be desirable.

Parsing combinators

One of the aims of combinator parsing is to facilitate an easy translation from a BNF
description of a grammar to its parser. To achieve this, we provide a number of higher-
order predicates, taking parsers to parsers, that correspond to the various constructs
of BNF. For instance, we can define the choice operator of BNF as the higher-order
predicate or :

(P1 $or P2) X V Y :− P1 X V Y .

(P1 $or P2) X V Y :− P2 X V Y .

The unary operator ‘$’ permits the infix use of a predicate. Additionally, we define the
sequential composition of two parsers using the predicate then:

(P1 $then P2) X (pair V W ) Y :− P1 X V Z , P2 Z W Y .

To build useful parsers, we provide for the direct manipulation of values returned by
a parser. For example, as we proceed with a parse we could envisage the construction of
an abstract syntax tree or some immediate semantic evaluation of the parsed expressions.
The parser P $using F performs this task by applying the arbitrary predicate F to the
value returned by the parser P . The new value is then passed on to the next stage in the
parse.

(P $using F ) X V Y :− P X W Y , F W V .

The following parser many embodies the repetitious application of some parser P to
the input, analogous to the BNF construct P∗.

many P X V Y :− (((P $then (many P)) $using cons) or
(succeed nil)) X V Y .

The predicate cons is defined as cons (A,X ) (A : X ) :− . As well as the construct P∗,
BNF also provides the notation P+ which selects strictly greater than zero items from
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term P . The corresponding parser some is a simple variant of the parser many and is
defined below:

some P X V Y :− ((P $then (many P)) $using cons) X V Y .

A grammar invariably contains certain reserved words and symbols which, although
vital for guiding the logical structure of expressions in the parse, play no further role after
performing this duty. Therefore, it is useful to discard the values of these items during
the course of a parse. The two combinators xthen and thenx perform exactly this task
and are defined below:

(P1 $xthen P2) X V Y :− ((P1 $then P2) $using snd) X V Y .

(P1 $thenx P2) X V Y :− ((P1 $then P2) $using fst) X V Y .

The parser xthen discards the first component of the value pair, using snd (A,B) B :−,
and thenx discards the second component, using fst (A,B) A :−, before proceeding with
the remainder of the parse.

Parsing simple, numerical expressions

We now give an example of parsing the expressions of a small calculator using the com-
binators presented earlier. The BNF grammar for the calculator is as follows:

e ::= t + t | t − t | t
t ::= f ∗ f | f /f | f
f ::= digit+ | (e)

Of course, ‘/’ and ‘−’ are not associative and, to keep matters simple, we require that
extra parentheses are inserted in expressions to explicitly dictate associativity. Therefore,
an expression like 1− 2− 3 does not parse but 1− (2− 3) or (1− 2)− 3 will.

The translation from the above grammar to its parser is straightforward since each
BNF construct in the grammar has an analogous combinator in the program. The parser
is presented in Figure 1.1. The predicate parse can be used to parse numerical expressions
into their abstract syntax trees which are built from the constructors add , sub, mul , div ,
and num. As an example, we can write the parser

# :− parse “2 + (4− 1) ∗ 3” V Y .

This produces the following solutions:

V = add (num “2”) (mul (sub (num “4”) (num “1”)) (num “3”))
Y = “ ” ;
V = add (num “2”) (sub (num “4”) (num “1”))
Y = “ ∗ 3” ;
V = num “2”
Y = “ + (4− 1) ∗ 3” ;
no

An expression that cannot be parsed is rejected by the parser, e.g., the query

# :− parse “ + (4− 1) ∗ 3” V Y .

fails.
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e X V Y :− ((((t $then ((literal ’+’) $xthen t)) $using plus) $or
((t $then ((literal ’−’) $then t)) $using minus)) $or t) X V Y .

t X V Y :− ((((f $then ((literal ’∗’) $xthen f )) $using times) $or
((f $then ((literal ’/’) $xthen f )) $using divide)) $or f ) X V Y .

f X V Y :− ((number $using value) $or
((literal ’(’) $xthen (e $thenx (literal ’)’)))) X V Y .

digit A :− elem A “0123456789”.
value X (num X ) :− .

plus (pair X Y ) (add X Y ) :− .

minus (pair X Y ) (sub X Y ) :− .

times (pair X Y ) (mul X Y ) :− .

divide (pair X Y ) (div X Y ) :− .

number X V Y :− some (satisfy digit) X V Y .

parse X V Y :− e X V Y .

Figure 1.1: The combinator parser for a simple calculator.

Pretty-printing

One of the most interesting and appealing aspects of programming a parser in a logic
programming language is that, to some extent, pretty-printing comes free with the pars-
ing program. Pretty-printing is the converse operation of parsing and, by exploiting
the declarative nature of the logic language, we immediately obtain a pretty-printer by
running our parser backwards. The following query illustrates this point.

# :− parse X (add (num “2”)
(mul (sub (num “4”) (num “1”)) (num “3”))) “ ”.

(1.1)

This query produces the infinite sequence of solutions

X = “2 + (4− 1) ∗ 3” ;
X = “2 + (4− (1)) ∗ 3” ;
X = “2 + (4− ((1))) ∗ 3” .
yes

There are, of course, an infinite number of possible pretty-prints for the expression since
we can indefinitely supply redundant parentheses in the manner shown above. As we
shall see later in this thesis, it is important for our logic programming language to em-
ploy a particular computation rule in order to terminate whenever possible and, for the
programs that are unable to terminate, provide a fair enumeration of the possible so-
lutions. So, for example, the strategy would avoid the immediate report of solutions
formed by consecutively inserting parentheses in (1.1). (This point is discussed further
in Section 3.3.)
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Our pretty-printer inherits all its knowledge regarding sophisticated layout, e.g., off-
side rules and indentation conventions, from the parser. However, since our parser is
relatively simple, our pretty-printer is consequently simple also. Achieving the complex-
ity of a pretty-printer written exclusively for the task, like (Hughes 1995), would involve
extending the parser of this section with additional combinators to capture the required
features. Although we do not describe the details here, combinator parsers allow such
extensions to be carried out easily.

1.2 Ruby

In this example, we show how to implement the Ruby (Jones & Sheeran 1993, Jones &
Sheeran 1990, Sheeran 1989) relational language in the actual compositional language
developed in the subsequent chapters of the thesis. Until now, only the purely functional
subset of Ruby has been implemented (Hutton 1993); in this section, we implement the full
relational remainder. Ruby is a relational language for describing hardware circuits. The
behaviour of a circuit is specified by a relational program which can then be transformed
into an equivalent program amenable to implementation in hardware. A circuit in Ruby
is represented as a binary relation between simple data values.

The data values on which Ruby circuits operate consist solely of integers, and both
tuples and lists of integers. A relation in Ruby can be given pictorially, corresponding
directly to its interpretation as a circuit. For example, the circuit associated with the
relation R can be represented as the single node:

R

The convention regarding data flow in such a diagram is that domain values appear at the
left and top sides of the node and range values appear at the bottom and right sides. In
addition, multiple wires to and from a node are read from left to right, and from bottom
to top. Therefore, a relation (a, b) S (c, d)—taking tuples to tuples—may be represented
by the circuit

Sa

b

c

d

Since data flows from left to right in a circuit, we read our relational expressions from
left to right, too.

Ruby expressions are composed hierarchically from primitive relations and higher-
order predicates that take relations to relations. The primitive relations, defined in Fig-
ure 1.2, are used to construct and deconstruct the data values of a circuit. (Of these
relations, though, only id , outl , and outr are essentially primitive in the presence of re-
lational intersection (Bird & de Moor 1996).) These primitive relations provide us with
the bare bones of the Ruby language whilst the real expressive power is obtained from
higher-order predicates. The most fundamental of these are sequential composition, par-
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A $id A :− .

(pair A B) $swap (pair B A) :− .

(pair A B) $outl A :− .

(pair A B) $outr B :− .

A $fork (pair A A) :− .

A $null nil :− .

A $wrap (A : nil) :− .

app (pair nil Y ) Y :− .

app (pair (A : X ) Y ) (A : Z ) :− app (pair X Y ) Z .
(pair A X ) $apl Y :− app (pair (A : nil) X ) Y .

(pair X A) $apr Y :− app (pair X (A : nil)) Y .

(pair (pair A B) C ) $lsh (pair A (pair B C )) :− .

(pair A (pair B C )) $rsh (pair (pair A B) C ) :− .

Figure 1.2: The implementation of the primitive Ruby relations.

allel composition, and converse. The sequential, forward composition of two relations R
and S is given by

(R $comp S ) A C :− R A B , S B C .

The sequential composition of two circuits looks like this:

R S

The parallel composition of two relations R and S is expressed by

(R $par S ) (pair A C ) (pair B D) :− R A B , S C D .

and simply places R above S . Every relation R has a well-defined converse conv R, given
straightforwardly by

conv R A B :− R B A.

Two commonly used higher-order predicates are simple shorthands, given by

fst R A B :− (R $par id) A B .
snd R A B :− (id $par R) A B .

Since Ruby is a language for designing circuits, a plethora of predicates exist for
combining circuit elements. For two circuits, denoted respectively by the relations R
and S , the predicate beside joins R and S together in the following fashion:

(R $beside) S A B :−
(rsh $comp ((fst R) $comp (lsh $comp ((snd S ) $comp rsh)))) A B .
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The beauty of Ruby is exemplified when we define the dual of existing predicates in terms
of themselves, providing a convenient way to produce new circuits. We can obtain the
dual of any higher-order predicate by first taking the converse of all its arguments and
then taking the converse of the entire expression. For example, we can manufacture the
predicate below in terms of its dual predicate beside by defining

(R $below S ) A B :− conv ((conv R) $beside (conv S )) A B .

Both beside and below , interpreted as circuits, are shown in Figure 1.3.
Using beside, we can create a new predicate row which forms a linear array, cascading

the circuit R a number of times. The predicate row takes strictly non-empty lists in its
pair arguments and is defined as follows:

row R A B :− ((snd (conv wrap)) $comp (R $comp (fst wrap))) A B .
row R A B :− ((snd (conv apl)) $comp ((R $beside (row R)) $comp (fst apl)))

A B .

Notice that row is defined as a disjunction. The first clause succeeds only when the second
component of the domain tuple is the singleton list. The second clause fails in this case
since its recursive call to row receives a domain pair argument whose second component
is the empty list and such calls to row always fail. An instance of row is shown below:

R R R R

The predicate col , forming a vertical column of circuits, is defined in terms of its dual
predicate row as

col R A B :− conv (row (conv R)) A B .

Finally, the two predicates rdl and rdr relate tuples of values to single values and cor-
respond to the circuit equivalent of “reducing” (or “folding”) in functional programming.
They are defined as

rdl R A B :− ((row (R $comp (conv outr))) $comp outr) A B .
rdr R A B :− ((col (R $comp (conv outl))) $comp outl) A B .

respectively.
An attractive aspect of using a compositional logic language to implement Ruby is

the ease with which Ruby operators translate from abstract mathematics into a concrete
program. This exemplifies the declarative nature of our language.

A simple sorting circuit in Ruby

We now present a circuit for sorting an arbitrary, non-empty list of natural numbers using
the selection sort algorithm. Two alternative methods for describing the sorting circuit
have been given in the past, one by (Sheeran & Jones 1987) and the other by (Hutton
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Ra

b

c

S

e

f

g

(R $beside S ) (a, (b, e)) ((c, f ), g)

Se

f

h

Ra

c

d

(R $below S ) ((a, e), f ) (c, (d , h))

Figure 1.3: The circuits corresponding to beside and below .

1992a) which has also been implemented. We implement the former presentation here
since it is more relational than the latter.

The input to the circuit is a list of naturals and the output is the same list but sorted
according to the relation cmp, defined shortly. The sorting circuit for the relation sort is
illustrated below.

cmp

cmp cmp

cmp cmp cmp

cmp cmp cmp cmp

The implementation of Ruby in our compositional programming language adopts a sym-
bolic representation of natural numbers since the language lacks a primitive implemen-
tation of them. The symbolic representation adopted is that of Peano natural numbers:
zero is represented by 0, one by s 0, two by s (s 0), and so on, although we will often
abbreviate Peano naturals to actual numerals in the following.

The implementations of the natural number comparison operators are given below
where leq represents the numerical relation ≤, geq is ≥, lt is <, and gt is >.
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star R A B :− id A B .
star R A B :− (R $comp (star R)) A B .

succ A (s A) :− .

leq A B :− star (conv succ) A B .
geq A B :− conv leq A B .
lt A B :− ((conv succ) $comp leq) A B .
gt A B :− (succ $comp geq) A B .

The leq relation is implemented in Ruby as the reflexive, transitive closure of the the
converse of the successor relation succ. The comparison operator cmp is defined in terms
of the following relations min and max that return the minimum and maximum elements
in a pair, respectively:

min (pair A B) B :− leq A B .
min (pair A B) A :− gt A B .

max (pair A B) B :− geq A B .
max (pair A B) A :− lt A B .

cmp A B :− (fork $comp (min $par max )) A B .

A non-empty list of naturals is sorted using the following sort relation:

sort A B :− ((conv wrap) $comp wrap) A B .
sort A B :− ((conv (rdr (conv ((conv apr) $comp (col cmp))))) $comp

((snd (conv wrap)) $comp apr)) A B .

To the uninitiated, relational expressions can appear rather terse and the ability to ex-
ecute such expressions is clearly a useful instruction tool. For example, given the above
program, we can query

# :− sort (2 : 4 : 0 : 1 : 3 : 5 : nil) B . (1.2)

which produces the single answer A = 0 : 1 : 2 : 3 : 4 : 5 : nil . The truly relational aspect
of the programming language is illustrated by the following query in which the converse
of sort is computed, producing every permutation of the sorted list 0 : 1 : 2 : 3 : 4 : 5 :
nil :

# :− conv sort (0 : 1 : 2 : 3 : 4 : 5 : nil) B . (1.3)

Naturally there are more efficient ways of permuting a list of numbers but (1.3) serves as
an exemplar of running a program backwards.

1.3 Summary

Programming in a compositional style results in concise programs, encourages reuse of
code by identifying common patterns of recursion, and facilitates the development of
formal results about programs. However, such a style of programming is, for the most
part, alien to the logic programming community. A compositional logic language inherits
all the above benefits familiar from functional programming and is also enriched with
the extra expressiveness obtained from nondeterminism, logic variables, and program
converses. As a result, a truly compositional logic language is able support the execution
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of declarative specifications. This chapter proposed such a language and presented two
substantial programming examples to illustrate the expressive benefits of a compositional
style of logic programming.

In the remainder of this thesis, we present several novel discoveries that realise faith-
fully this form of logic programming. The first discovery is that a curried representation
of terms in a language permits the higher-order features necessary to support composi-
tionality, without the need for either extra-logical predicates or higher-order unification.
The second discovery is that fair SLD-resolution guarantees the termination of logic pro-
grams whenever any other resolution strategy would terminate. The proof of this result
is presented in this thesis. Finally, two efficient versions of fair resolution are described
and implemented in this thesis to overcome the poor efficiency of fair SLD-resolution.



Chapter 2

Survey of Existing Languages

Two example programs were presented in the previous chapter to motivate the desired
style of compositional programming and to illustrate the level of expressiveness required
in an actual language. In this chapter, three existing programming paradigms are eval-
uated for their suitability of supporting compositionality. Each paradigm is examined
according to a collection of desiderata, identified in Section 2.1, which includes: the ease
with which high-level specifications can be represented as programs; the extent to which
compositional programs can be written and executed without regard to the evaluation
order of the language; and, finally, the efficiency with which compositional programs are
executed in the language. The programming paradigms considered in this chapter are
functional (Gofer), first-order logic (Prolog), and higher-order logic (λProlog).

Functional programming, considered first, is used to implement an elementary rela-
tional calculus where relations are represented as set-valued functions in order to capture
nondeterminism. However, it becomes apparent that such a representation of relations is
unable to support a general implementation that respects the aforementioned desiderata
of a compositional language.

We then examine first-order logic programming and review the important processes of
unification and resolution since they provide the foundations upon which later chapters
are built. Furthermore, we detail the problems associated with implementing relations in
Prolog, one of which is its lack of support for higher-order programming. This limitation
is addressed by the higher-order logic language λProlog which we consider subsequently.
There, we describe the method of higher-order unification which is a crucial compo-
nent of λProlog’s operational mechanism. However, both these logic paradigms share a
fundamental shortcoming for implementing a truly compositional language, namely the
left-to-right computation rule they both adopt. Despite this, we that λProlog can sup-
port a partial implementation of the relational language Ruby, albeit through the critical
use of extra-logical annotations to the program. The implementation is far from satisfac-
tory since the heuristics employed in it are unable to generalise to other compositional
programs.

A possible fourth contender for review is functional logic programming (Hanus et
al. 1995, Hanus 1994, Moreno-Navarro & Roderiguez-Artalejo 1992, Bellia & Levi 1986)
which invariably employs the computational mechanism of narrowing (Bellia, Bugliesi &
Occhiuto 1990, Reddy 1987), a blend of rewriting for evaluating functional expressions and
resolution for evaluating predicates. However, the functional logic paradigm is subsumed
by the logic paradigm with regards to compositionality in that functional logic languages
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also employ the left-to-right computation rule. Thus, the findings of this chapter for logic
languages are equally applicable to functional logic ones.

We conclude by noting that each of the three paradigms considered falls short of
the language requirements set out in Section 2.1 for the support of compositionality.
However, the investigation of this chapter identifies that first-order logic programming
provides a promising starting point in the quest for a compositional language. The
material presented in this chapter paves the way towards subsequent chapters in which
alternative computation rules are developed that better support compositionality than
the predominant left-to-right one.

2.1 The desiderata of a compositional programming language

The primary purpose of the compositional style of programming advocated in this thesis
is to support the prototyping of high-level specifications. Consequently, a fundamental
requirement of any compositional language is that it should allow high-level relational
specifications to be easily translated from abstract mathematical notation into programs.
Thus, the syntax of the language should unobtrusively permit the phrasing of specifi-
cations as programs. This requires the language to support higher-order programming
constructs since they aid compositionality by facilitating abstraction during program
construction, as exemplified in the programs of Chapter 1.

The second feature of a compositional language is more subtle: since specifications are
intrinsically devoid of algorithmic detail, a compositional language should allow programs
to be formulated independently of the actual evaluation order employed by the language.
This requirement underpins the desired declarative nature of the language by avoiding
the need for compositional programs to be constructed with regard to the particular
context in which they are used. However, by removing the need for the programmer to
consider the evaluation order of the language, we must ensure that the execution of a
compositional program terminates whenever possible. In the absence of such a property,
it can be difficult to differentiate between programs that are unable to terminate under
any circumstances and those that can under a specific order of evaluation.

The final requirement, which is related to the previous one, is that the language
must ensure that programs are executed with predictable efficiency behaviour. That is,
the programmer should be able to expect the evaluation of a compositional program to
proceed with comparable efficiency–for example, to within some constant factor of an
appropriate measure—to one designed for execution in a language with a fixed order of
evaluation.

The desiderata discussed above are independent of the actual operational mechanisms
employed by any particular compositional language. However, in this thesis we restrict
our attention to evaluating mechanisms drawn exclusively from functional, first-order
logic, and higher-order logic programming, since the most common languages based on
these paradigms appear to fall short of satisfying our desiderata for a compositional
language. Despite this decision, it may nevertheless be the case that a novel model of
execution exists which provides a better foundation for evaluating compositional programs
than any of the aforementioned ones. For example, (Lipton & Broome 1994) propose a
computational model based upon rewriting relational expressions directly using a set of
relational axioms; although this work has yet to evolve into an actual implementation, it
may yet prove to be a suitable operational foundation for compositional programming.
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2.2 Functional programming languages

Functional languages provide an unobtrusive syntax for compositional programs and pos-
sess a well-defined and theoretically simple computational model. For these reasons,
functional languages appear to be good candidates for supporting compositional pro-
gramming. Moreover, functional languages have been used in the past to implement
relational calculi (Collins & Hogg 1997, Cattrall 1993, Hutton 1992a, MacLennan 1983).
However, each of these calculi fail to capture the full generality of executing specifications
whilst simultaneously satisfying the criteria of a compositional language set out in the
previous section.

For example, the interpreter presented by (Cattrall 1993), which is implemented in
the lazy functional language Miranda (a trademark of Research Software Limited), uses
the type information of relational programs to infer their most appropriate underlying
representation: either association lists, set-valued functions, or characteristic functions.
However, the programmer must often use language primitives to restrict the number
of elements in the range or domain of a relation before applying certain operators like
relational converse. The reason for this is due to the limitations of implementing relations
as set-valued functions, which are discussed in Section 2.2.3.

Alternatively, the Ruby interpreter (Hutton 1992a), which is implemented in the func-
tional language LML, represents relations using techniques other than set-valued func-
tions. The interpreter provides primitive definitions of relational composition, converse,
and product, which are sufficient to allow all other Ruby combining forms to be defined
directly as functions in LML. Nevertheless, this implementation executes only a subset
of arbitrary Ruby specifications, as discussed in Section 2.2.4.

One recent exception to the problem of providing a general implementation of relations
in a functional language has been addressed by (Seres & Spivey 1999) who have developed
an embedding of Prolog in the functional language Haskell. This novel approach to
implementing Prolog interprets its logical connectives as Haskell functions which, in turn,
permits well-known algebraic properties of the functions to be inherited into the embedded
Prolog program. Moreover, (Seres & Spivey 1999) have even considered how to integrate
aspects of fairness into their implementation, advocated earlier by (McPhee & de Moor
1996).

In the remainder of this section, we illustrate the difficulties of implementing a compo-
sitional language using the natural representation of relations as set-valued functions. We
use Gofer as the implementation language and perform the study by introducing a rela-
tional calculus and then translate it into a Gofer program using a simple data refinement
of sets to lists.

2.2.1 Relations

A binary relation R : A→ B , of type A to B , is a subset of the Cartesian product A×B
of sets A and B . The notation aRb denotes that the pair (a, b) ∈ R. The composition of
two relations R : B → C and S : A→ B , written as R ◦ S : A→ C , is defined as follows:

a(R ◦ S )c = ∃b.aSb ∧ bRc
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Every relation R : A → B has a well defined converse R◦ : B → A defined straightfor-
wardly as

bR◦a = aRb

Converse is contravariant, i.e., reverses composition, in that (R ◦ S )◦ = S ◦ ◦ R◦ and is
also an involution since (R◦)◦ = R.

The final two operations used are the intersection of two relations R,S : A → B ,
written as R ∩ S : A→ B , and their union, written as R ∪ S : A→ B . These operations
are defined predictively as follows

a(R ∩ S )b = aRb ∧ aSb
a(R ∪ S )b = aRb ∨ aSb

The small collection of relational operators above is already sufficient for writing inter-
esting compositional programs. In the next section, we implement relations as set-valued
functions in the functional programming language Gofer.

2.2.2 An implementation of relations as set-valued functions in Gofer

One essential difference between a relation and a function is that a relation may relate
a single domain value to several range values whereas a function, by definition, maps
each domain value to precisely one range value. To accommodate the nondeterminism
of relations in a functional language, we appeal to an alternative mathematical model of
relations as set-valued functions. The set-valued function representation of relations is
particularly suitable since it provides an ostensibly natural way to emulate relations in a
functional language: by considering sets as lists, we can model a relation in a functional
language as a list-valued function. Hence, a relation is implemented as a function that
takes a single domain value as its argument and returns a list of all related range values.
We present the implementation in the functional programming language, Gofer.

Sets in Gofer

We implement sets as lists in Gofer using the following type synonym with the data type
invariant that a set does not contain duplicate elements.

> type Set a = [a]

The invariant is enforced by an appropriate implementation of setify , i.e.,

> setify :: [a] → Set a
> setify = nub

where the Gofer library function nub removes duplicate elements from a list.
We define the function set , which applies a function to all values in a set, as follows.

> set :: (a → b) → Set a → Set b
> set = map

From an implementation point of view, we do not employ setify here to avoid testing
equality of lists.
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The function inject makes a set out of any value and is defined as

> inject :: a → Set a
> inject a = [a]

The function union returns the union of a set of sets and is implemented as follows:

> union :: Set (Set a) → Set a
> union = setify . foldr (++) [ ]

By implementing union using the library function foldr , we arrive at a simple definition
and restore the data type invariant for the resulting set using setify .

Two utility functions that operate on pairs of sets are defined next. The first calculates
the union of two sets in terms of list concatenation as follows:

> cup :: (Set a, Set a) → Set a
> cup = setify . uncurry (++)

The second computes the intersection of two sets by retaining only those range elements
common to both:

> cap :: (Set a, Set a) → Set a
> cap (a,b) = (setify . filter (flip elem b)) a

In this section we have chosen to implement the set data type using lists, however, the
functions presented above abstract over the actual implementation selected.

Relations in Gofer

Using the implementation of sets given in the previous section, we define a relation to be
a set-valued function using the following type synonym:

> type Rel a b = a → Set b

The function unit is the identity relation which converts any value to a singleton set,
where the data type invariant for sets is trivially satisfied:

> unit :: Rel a a
> unit = inject

We implement the composition of two relations using the function

> comp :: Rel b c → Rel a b → Rel a c
> comp r s = union . set r . s

The implementations of the union and intersection of set-valued functions depend on the
function split which forms a pair of sets.

> split :: Rel a b → Rel a c → a → (Set b, Set c)
> split r s a = (r a, s a)
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Using split , the union of two relations is programmed as

> join :: Rel a b → Rel a b → Rel a b
> join r s = cup . split r s

The intersection of two relations is computed by the function meet whose implementation
is given below.

> meet :: Rel a b → Rel a b → Rel a b
> meet r s = cap . split r s

The relational combinators above allow for the definition of many other useful relational
programs in a natural, declarative manner.

An additional benefit of implementing relations in Gofer is that we obtain the built-in
Gofer data types—like integers, pairs, and lists—for free. For example, the relation succ,
which relates an integer to its successor, uses the Gofer built-in type Int and is pro-
grammed as

> succ :: Rel Int Int
> succ = lift (1+)

The abstraction function lift converts any Gofer function into a relation and is defined
as follows:

> lift :: (a → b) → Rel a b
> lift f = unit . f

We already used Gofer’s built-in pair data type in the definition of split and we use it
again to program the right projection of a pair as relation

> outr :: Rel (a,b) b
> outr = lift snd

The Gofer list data type is used frequently in the following relational programs and we
define the list construction relation cons that adds an element to a list as follows:

> cons :: Rel (a,[a]) [a]
> cons = lift (uncurry (:))

The relational combinators implemented thus far are enough to allow the implemen-
tation of interesting relations. For example, the reflexive, transitive closure of a relation
is programmed declaratively as

> close :: Rel a a → Rel a a
> close r = unit ‘join‘ ((close r) ‘comp‘ r)

Using this definition, we can specify the relation geq which computes the set of integers
greater than or equal to a given integer.

> geq :: Rel Int Int
> geq = close succ



2.2 / Functional programming languages 22

Similarly, the relation

> leq :: Rel Int Int
> leq = close (lift (flip (−) 1))

relates an integer to all the integers less than or equal to it.
We can implement a relational fold over lists as follows:

> fold :: b → Rel (a,b) b → Rel [a] b
> fold c r [ ] = unit c
> fold c r (x :xs) = (union . set (curry r x ) . fold c r) xs

Many relational programs can be expressed in terms of fold . For example, the length of
a list can be calculated by the relation

> len :: Rel [a] Int
> len = fold 0 (succ ‘comp‘ outr)

Therefore, in Gofer, we can query

? len [1. .5]
[5]

Notice that len always returns a singleton set since len is a function. However, fold is
able to return a set that contains more than one element, thus capturing the nondeter-
ministic behaviour that lends the extra expressiveness to relations. For example, all the
subsequences of a list can be computed using the function

> subseqs :: Rel [a] [a]
> subseqs = fold [ ] (cons ‘join‘ outr)

The nondeterminism of subseqs arises from the fact that, at each step in the relational
fold, we decide whether to include the current element of the list, using cons, or exclude
it, using outr . So, the query

? len (subseqs [1. .5])
[32]

determines that there are 32 subsequences, i.e., 25, of [1,2,3,4,5] as expected.
So, implementing relations as set-valued functions in Gofer permits the natural expres-

sion of relational composition, union, and intersection. However, the conspicuous absence
of an implementation of relational converse is not an accident: representing relations as
set-valued functions does raise significant problems since not all the essential features of
sets can be implemented in Gofer. The following section details these problems.

2.2.3 Problems with implementing relations as set-valued functions

In the previous section, we demonstrated that pleasingly declarative relational programs
can be written in a functional language by representing relations as list-valued functions.
However, these relational programs ignored an implementation of converse. Indeed, de-
spite the declarative implementation obtained, representing relations as set-valued func-
tions presents two substantial problems.
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First of all, calculating the converse of a relation is a nontrivial operation. To il-
lustrate this point, consider the relation outr which was defined in the previous section.
The converse of outr—a relation that takes an element and returns any tuple whose sec-
ond component is that element—is nondeterministic since the second component of the
resultant tuple may be any element of the appropriate type. Functional languages like
Gofer require each applicable value to be explicitly enumerated and if there is an infinite
number of such values, then the set-valued function will also be infinite.

Secondly, introducing relations that return infinite lists is problematic itself since
the obvious definitions of the set-valued relational operations, presented in the previous
section, could result in non-terminating programs even when the solution set is finite.
For example, the set of all numbers can be specified as

> top :: Set Int
> top = join leq geq 0

Then, simple expressions like elem 5 top fail to terminate since leq enumerates the infinite
number of integers less than 0 before considering those greater than 0.

However, the exploitation of lazy evaluation when joining infinite lists in Gofer can
help make an implementation of relations more declarative. To explain, consider the
following function that interleaves two lists by alternating (“twiddling”) their elements:

> twiddle :: [a] → [a] → [a]
> twiddle [ ] ys = ys
> twiddle (x :xs) ys = x : twiddle ys xs

The function twiddle is ‘fair’ when joining two lists in the sense that it always considers
elements in both of its arguments, whereas ++ may not if its first argument is infinite.
With this knowledge, the occurrence of concatenation in the function join can be replaced
by twiddle to permit the fair union of infinite relations. Similarly, union can be redefined
to use twiddle, therefore, allowing comp to compose infinite relations. In this case, the
expression elem 5 top would terminate with the answer True.

Despite improving the termination behaviour for the relational operators above, the
same trick of using twiddle cannot be applied to the function meet since it is obliged
to traverse the entire length of a list, finite or otherwise, in the search for duplicates.
For example, to determine the intersection of geq and leq , which is a finite relation, the
following query could be used

? meet geq leq 4
[4

However, Gofer does not terminate here since all the elements of an infinite list must be
enumerated. So, a direct implementation of relations as set-valued functions—complete
with relational converse—in a functional language is unsatisfactory since relations that
operate on infinite domains often require the enumeration of infinite lists, even when the
relation itself is finite. Consequently, many simple relations can fail to terminate.

2.2.4 An existing implementation of Ruby in LML

In this section, we give a brief overview of an existing implementation of a Ruby inter-
preter (Hutton 1993, Hutton 1992a). We refer to this implementation as the ‘interpreter’
to avoid confusion with the Ruby implementation presented in Chapter 1.



2.2 / Functional programming languages 24

The analogy between circuits and Ruby expressions in the interpreter is more rigorous
than in Section 1.2. In particular, each Ruby primitive in the interpreter has identified
inputs and outputs, just as in any real circuit. On the other hand, the programs of
Section 1.2 capture the specification of Ruby expressions—rather than their interpretation
as real circuits—and, consequently, can specify circuits that are unable to be described
directly in hardware. Thus, the Ruby implementation of Section 1.2 permits the execution
of Ruby specifications whilst the interpreter executes Ruby programs, i.e., actual circuits.

The interpreter operates on the subset of Ruby specifications that adhere to a defi-
nition of being ‘executable’, i.e., those specifications that are ‘causal relations’ (Hutton
1992a). Essentially, a Ruby circuit is executable if each component of the circuit is a
function (rather than a relation) and the value of each ‘wire’ connecting components in
the circuit can be determined by these functions. Moreover, the value of each wire is de-
termined by only one circuit component and the value of an input wire must not depend
upon the value of any output wire from the same component, unless delay components are
used. (Delay components are used in sequential circuits to allow their input value during
one clock cycle of the circuit to be returned as their output value during a subsequent
clock cycle. However, as is the case with (Hutton 1992a), we make no use of them in the
following discussion.) An executable circuit need not be a functional program and the
interpreter is able to compute Ruby circuits that contain uses of relational converse, for
example.

Since each Ruby circuit component in the interpreter has a notion of directionality, i.e.,
each component has defined inputs and outputs, two components can only be composed
if the output value of the first follows the input direction of the second. For example,
consider the not primitive for logical negation, defined in the syntax of Section 1.2 as:

not true false :− .

not false true :− .

The circuit corresponding to this definition is shown below where the data flows from left
to right, as indicated by the direction of the arrows.

- not -

The composition of two circuits in the interpreter is only possible if the arrows of each
circuit to be composed flow in the same direction. Thus, the composition not $comp not
of two not components is executable as the following circuit shows:

- not - not -

However, the Ruby specification not $comp (conv not) is not executable since, in its
representation as a circuit below, the wire connecting both components is driven twice:

- not -� not◦�

(The label not◦ in the circuit above represents conv not .) Consequently, the interpreter
rejects this program since it is a Ruby specification rather than an executable program.
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On the other hand, this specification can be executed in the compositional logic language
of Section 1.2 using a query of the following form:

# :− (not $comp (conv not)) true A.

The result of this query is A = true.
The primary benefit of the Ruby interpreter is to execute circuits that are realisable

in hardware whilst that of the compositional language of Section 1.2 is to execute speci-
fications. The Ruby language is designed to provide a method of describing the abstract
behaviour of a circuit in a high-level notation and then permit its transformation to an
‘executable’ program through the application of various algebraic laws. Therefore, the
interpreter and the implementation of Section 1.2 complement each other and illustrate
the distinct roles of a programming language and a specification language.

2.3 First-order logic programming languages

The example compositional programs presented in Chapter 1 made fundamental use of
a higher-order syntax to allow partially applied relations to be passed as arguments to
other relations. Functional programming, as illustrated in the previous section, provides
support for higher-order programming that is both natural for the programmer and se-
mantically well-founded. However, first-order logic programming, as its name suggests,
lacks the same solid theoretical foundation for higher-order constructs. Therefore, an
examination of first-order logic programming, using Prolog, is necessary to evaluate the
extent to which it satisfies the desiderata for compositional programming given at the
beginning of the chapter.

In this section, we review the aspects of first-order logic programming that will be
used pervasively in subsequent chapters: the structure of terms, substitutions, unification,
and SLD-resolution. We restrict our attention to definite programs only, i.e., those free
of negated literals, since the extension to include negative literals in definite programs is
straightforward (Lloyd 1987). The material contained in this section is standard from the
literature and further details can be found in (Hogger 1990, Lloyd 1987), for example.

2.3.1 Terms, programs, goals, and substitutions

Let us begin by defining the structure of terms and programs in first-order logic languages.

Definition 2.1 (Terms and literals). Let X be a set of variables and Ω a set of con-
stant symbols. The terms (or literals) of the programming language are defined induc-
tively by the grammar

TΩ(X ) ::= x
| f (t1, . . . , tn)

where x ∈ X , f ∈ Ω, and t1, . . . , tn ∈ TΩ(X ) for n ≥ 0. In the case where n = 0, we
write f rather than f ( ). ♦

In untyped logic programming languages, like Prolog, the arity of a constant symbol f
can vary between its occurrences in a program, although such behaviour is prohibited in
strongly typed languages, like Mercury.
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Definition 2.2 (Definite clauses and programs). A definite clause, or just clause, is
a formula A :− B1, . . . ,Bn , for n ≥ 0. The literal A is called the head of the clause and
the outermost constant in A is called a predicate symbol. The literals B1, . . . ,Bn form
the body of the clause. When n = 0, we write the clause as A :− and refer to it as a fact.
Finally, a program is a set of clauses. ♦

Definition 2.3 (Goal clauses). A goal clause, also known as a query or just a goal, is
a formula # :− B1, . . . ,Bn where B1, . . . ,Bn are literals, for n ≥ 0. The symbol # is a
unique predicate symbol that cannot appear in a program. When n = 0, we write the
goal as # :− and refer to it as the empty clause. ♦

Most presentations of first-order logic programming in the literature make a distinc-
tion between terms and literals: terms being that subset of literals devoid of predicate
symbols. In the current review, no such distinction is made and, in Section 3.1, we ar-
gue that such a distinction prohibits the natural adoption of higher-order programming
constructs in logic languages.

The operational framework of a first-order logic language requires a procedure to
determine whether or not a query succeeds with respect to a given program. The result-
ing proof procedure must match literals in a goal with clauses in a program and apply the
technique of choosing only those values for the variables of a literal when an appropriate
value becomes apparent. In other words, logic variables are ‘place holders’ until the proof
procedure can determine suitable values for them. Substitutions bind variables to terms
and can be considered as functions, as defined next.

Definition 2.4 (Substitutions). Let X and Y be sets of variables. A substitution φ :
X → TΩ(Y ) is a total function mapping variables to terms. For X = {x1, . . . , xn}
and n ≥ 0, we represent φ using the notation {x1 7→ s1, . . . , xn 7→ sn} where variables xi

map to terms si , for 1 ≤ i ≤ n. (For brevity, we will ignore pairs of the form xi 7→
xi , simply assuming their existence.) The set Y is given by

⋃n
i=1 vars si , where the

function vars : TΩ(Y ) → PY takes a term and returns the set of variables contained in
that term. ♦

The result of a computation in a logic language is a substitution generated by the
matching process mentioned above. The proof procedure uses these substitutions to
systematically replace variables in a term by other terms. The instance of a term under
a substitution is obtained according to the definition below.

Definition 2.5 (Application of substitutions). Given φ = {x1 7→ s1, . . . , xn 7→ sn} :
X → TΩ(Y ), we define a function [φ] : TΩ(X ) → TΩ(Y ) (pronounced “apply φ”) that
determines the instance of a term t under φ as follows:

t [φ] =

{
φ x , if t = x ∈ X
f (t1[φ], . . . , tn [φ]), if t = f (t1, . . . , tn)

That is, when φ is applied to a variable, that variable gets replaced by whatever φ maps
it to and when φ is applied to a composite term, φ is applied to each subterm. ♦

Substitutions obey several important algebraic properties that aid the construction
of the desired proof procedure. In particular, we can define the composition of two
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substitutions; given two substitutions σ : X → TΩ(Y ) and φ : Y → TΩ(Z ), there exists
another substitution φ ◦ σ : X → TΩ(Z ), called the composition of σ and φ, such that
the identity

(φ ◦ σ) x = (σx )[φ] (2.1)

holds. Furthermore, it is easy to prove that

t [φ ◦ σ] = t [σ][φ]

for all terms t and that the composition of substitutions is associative.
The identity substitution ι : X → TΩ(X ) maps each variable to itself and is defined

simply as ι x = x . The substitution ι is the unit of composition since ι ◦ φ = φ = φ ◦ ι.
The proofs of the above well-known properties of substitutions are straightforward and
we omit the details.

2.3.2 Unification

As mentioned in the previous section, the matching of literals in a goal with clauses in
a program is the key component of the proof procedure used to determine whether a
goal is a logical consequence of a program. The matching process is known as unifica-
tion (Paterson & Wegman 1978) and unifying two terms produces a substitution such
that the terms become identical after applying this substitution over them. Moreover,
the substitution created by the unification algorithm is the ‘most general’ one possible in
the sense that all other unifiers are an instance of it. Most general unifiers prevent the
generation of useless instances of literals in the proof procedure and help keep the search
space that a computer must examine as small as possible.

Definition 2.6 (Most general unifiers). Let D = {(s1, t1), . . . , (sn , tn)} be a set of
pairs of terms from TΩ(X ), for n ≥ 1, and φ : X → TΩ(Y ) be a substitution. We say
that φ unifies, or is a unifier of, D if si [φ] = ti [φ], for all 1 ≤ i ≤ n. Moreover, we call φ
a most general unifier if, for every other unifier ψ : X → TΩ(Y ) of D , there exists a
substitution σ : Y → TΩ(Y ), such that ψ = σ ◦ φ. The most general unifier φ of two
terms is unique up to the renaming of the variables in Y . ♦

An algorithm that determines the most general unifier of two terms is given in Fig-
ure 2.1. By a slight abuse of notation, we understand the application of a substitution φ
over a set D of pairs of terms by defining

D [φ] = {(s[φ], t [φ]) | (s, t) ∈ D}. (2.2)

The gist of the algorithm is that ok = false if the terms u and v are not unifiable, otherwise
ok = true. In the latter case, we let φ be a unifier of u and v ; moreover, we write ψ = σ ◦ φ,
for ψ some other unifier of the disagreement set D and σ some substitution. Therefore, φ
accumulates the most general unifier of u and v as the computation progresses whilst D
represents the disagreement set containing those parts of u and v pending unification.
The invariant maintained by the algorithm, which is used in a proof of the correctness
of unify , is as follows.
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unify u v =
let D := {(u, v)}, φ := ι, ok := true
while ok and D 6= { } do

let D ′ ∪ {(s, t)} = D
if s = x = t −→ D := D ′

s = x /∈ t −→ D := D ′[x 7→ t ], φ := {x 7→ t} ◦ φ
t = x /∈ s −→ D := D ′[x 7→ s], φ := {x 7→ s} ◦ φ
s = f (t1, . . . , tn) and t = f (s1, . . . , sn) −→ D := D ′ ∪ {(ti , si) | 1 ≤ i ≤ n}
otherwise −→ ok := false

fi
od
if ok −→ Just φ

otherwise −→ Nothing
fi

Figure 2.1: The unification algorithm for two terms.

Proposition 2.1. The invariant of the while loop in the unification algorithm, illustrated
in Figure 2.1, is as follows:

1. If u and v have a unifier then ok = true.

2. If ok = true then some substitution ψ unifies u and v if and only if there exists a
substitution σ such that ψ = σ ◦ φ and φ unifies D .

The function unify , therefore, returns either ‘Nothing’, signalling that the disagree-
ment pair is not unifiable, or ‘Just φ’ where φ is the most general unifier of the terms u
and v as established by the following lemma, whose proof is well known and is omitted.

Lemma 2.1. If two terms u and v have a unifier, then they have a most general unifier.
Moreover, the function unify u v determines this fact.

Let us now step through an example unification of two terms. Consider the compu-
tation of unify f (a, g(X ),Y ) f (Y , g(h(Z )),V ). After the first iteration of the while loop
in the algorithm of Figure 2.1, we obtain the disagreement set

D1 = {(a,Y ), (g(X ), g(h(Z ))), (Y ,V )}

On the next iteration of the loop, we can select any disagreement pair from D1; suppose
we select (Y ,V ). The unification of this pair produces the single substitution φ1 = {Y 7→
V } and we apply this over the remaining pairs in D1 to form the new disagreement set

D2 = {(a,V ), (g(X ), g(h(Z )))}
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Suppose we select (a,V ) at the subsequent unification step. The resulting substitution
is φ2 = {V 7→ a} which we apply over D2 to obtain the new set

D3 = {(g(X ), g(h(Z )))}

There is only one pair to choose at the next unification step which results in the formation
of the set

D4 = {(X , h(Z ))}

The final unification step produces the substitution φ3 = {X 7→ h(Z )} and the empty
disagreement set. Therefore, the most general unifier of the two terms f (a, g(X ),Y )
and f (Y , g(h(Z )),V ) is φ = φ3 ◦ φ2 ◦ φ1. The application of φ over both terms produces
the unified term f (a, g(h(Z )), a).

In this section, we have reviewed an algorithm to calculate the most general unifier
for two terms if it exists. What we now require is a proof procedure to check whether
a goal is a logical consequence of a program. The systematic search for the proof of a
goal, with respect to a given program, is centred around the process of resolution and we
discuss this in the following section.

2.3.3 SLD-resolution

In this section, the computational strategy of resolution is reviewed. Logic programming
languages, like Prolog, use a particularly simple form of resolution, called SLD-resolution
(Selected literal using Linear resolution for Definite clauses), that allows a programmer to
write efficient programs. The drawback of using SLD-resolution, as we shall see shortly,
is that the search for a proof of a goal can often fail to terminate even for logically simple
queries. In other words, a Prolog programmer must be cognisant with the manner in which
programs are executed by Prolog and construct programs accordingly. Consequently, the
declarative nature of Prolog programs is often severely restricted.

Resolution is called an ‘inference rule’ because it derives information about a goal
and a program. A choice exists of how to perform resolution; for example, individual
clauses in the program could be selected to match with literals in a goal or, alternatively,
program clauses could be matched together to form new clauses to resolve a goal with.
The former of these methods, called linear resolution, involves resolving a literal in the
goal with a clause taken from the program, producing a new goal which we continue to
resolve in the same manner, and forms the basis of resolution for languages like Prolog.
The soundness and completeness of resolution are proved, for example, by (Apt & van
Emden 1982) where ‘soundness’ means that each derived resolvent is a logical consequence
of the program and ‘completeness’ means that all such consequences of the program may
be derived by resolution.

Linear resolution itself allows various choices at each resolution step during the proof
of a goal: if a goal has more than one literal, any literal from the goal may be selected
for resolution and, moreover, any program clause may be chosen to resolve with the
selected literal. The method of selecting program clauses is called the search strategy
and the goal literal called the computation rule (or selection strategy). It is, however,
well known that any applicable program clause or goal literal may be selected and still
retain the aforementioned soundness and completeness properties of resolution (Spivey
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1996, Hogger 1990, Lloyd 1987, Apt & van Emden 1982). With this in mind, both the
search strategy and the computation rule can be fixed in advance to allow the systematic
search for proofs of a goal.

The proof of a goal can be visualised in the form of a tree structure, with each node
labelled with a goal and each branch representing the result of a resolution step. Given
the myriad of choices possible in a resolution, it is not difficult to imagine that this tree
can quickly become enormous. From the point of view of systematically searching for
a proof of a goal, a priority is to reduce the size of search space that a machine must
examine before successfully finding an answer. One resolution-based method of searching
for proofs that restricts the size of a search tree is called SLD-resolution, adopting linear
resolution and a predetermined computation rule and search strategy. We now give a
few definitions to formalise the use of SLD-resolution for searching for a proof of a query
with respect to some program.

Definition 2.7 (SLD-resolution). Let C = A :− B1, . . . ,Bm , for m ≥ 0, be a definite
clause, and G = # :− A1, . . . ,An , for n ≥ 1, a goal such that A1 and A are unifiable
with most general unifier φ. Then the SLD-resolvent of C and G is the goal

G ′ = (# :− B1, . . . ,Bm ,A2, . . . ,An)[φ]

The substitution φ is called the substitution of the SLD-resolution. ♦

A sequence of SLD-resolutions forms an SLD-derivation where the selected literal,
the substitution of the SLD-resolution, and the program clause used to resolve with, are
recorded for each resolution step.

Definition 2.8 (SLD-derivation). For a program P and a goal G , an SLD-derivation
of P∪{G} is a (possibly infinite) sequence of triples (G1,C1, φ1), . . . , (Gn ,Cn , φn), for n ≥
1, where Cn denotes a ‘variant’ of a definite clause in P , Gn is a goal (we distinguish G1 =
G), and φn is a substitution. Moreover, for 1 ≤ i < n, Gi+1 is derived from Gi and Ci

via substitution φi by an SLD-resolution. ♦

A variant clause C is identical to its corresponding program clause except that all vari-
ables in C are renamed to avoid clashes with variables in the current derivation.

The basic method of searching for a proof of a goal G = # :− A1, . . . ,An with respect
to a program P involves interpreting the symbol ‘#’ in a special way. In particular, ‘#’
is imagined as a unique predicate symbol of no arguments; then the literals in G are
repeatedly resolved with relevant clauses from P until the process either fails or derives
the empty clause # :−, from Definition 2.3. This process, called refutation, utilises SLD-
resolution and the unification algorithm presented earlier to determine the most general
values of any free variables in G . The definition of this process, called SLD-refutation, is
as follows.

Definition 2.9 (SLD-refutation). For a program P and a goal G , an SLD-refutation
of G is an SLD-derivation for P ∪ {G} starting at G and ending with Gn = # :−,
for n ≥ 1. If the substitutions of the SLD-resolutions in the derivation are φ1, . . . , φn ,
then the answer substitution of the refutation is φ = φn ◦ . . . ◦ φ1. ♦

The search tree formed from an SLD-resolution is commonly known as an SLD-tree,
and we define them as follows.



2.3 / First-order logic programming languages 31

Definition 2.10 (SLD-trees). Let P be a program and G a goal. An SLD-tree for P ∪
{G} is a (possibly infinite) tree with each node labelled with a goal and each branch
labelled with a substitution so that the following conditions are satisfied:

1. The root node of the tree is G .

2. Let G ′ = # :− A1, . . . ,An , for n ≥ 1, be a node in the tree. For each program
clause A :− B1, . . . ,Bm , for m ≥ 0, such that A1 and A are unifiable with most
general unifier φ, the node has a child # :− (B1, . . . ,Bm ,A2, . . . ,An)[φ]. We label
the arc connecting G ′ to a child with the substitution of the SLD-resolution and
call A1 the selected literal.

3. Nodes labelled with the empty goal # :− have no children.

Each sequence of nodes in an SLD-tree is clearly either an SLD-refutation or an SLD-
derivation. ♦

The shape of the SLD-tree generated for a query depends on the particular computa-
tion rule employed in the SLD-resolution; indeed, the choice of rule can have a tremendous
influence on the size of the corresponding SLD-tree. Nevertheless, every SLD-tree is essen-
tially the same with respect to the refutations it contains. In other words, every SLD-tree
contains the same number of refutations, irrespective of the computation rule used in the
resolution steps. This result is a reformulation of the completeness of SLD-resolution.

In this section, we have only considered the resolution of definite programs, i.e.,
those free of negation, since extending a logic language to include negative literals is
straighforward (Lloyd 1987). The essential alteration is the use of a safe computation
rule (Lloyd 1987) which selects a negative literal in a goal only when it is ground (variable
free) to ensure its resolution cannot result in an unsound answer substitution. Now that
we have reviewed the important aspects of SLD-resolution, we can evaluate Prolog against
the desiderata for a compositional language.

2.3.4 Higher-order logic programming in Prolog

The use of higher-order functions in functional programming results in concise programs,
encourages program reuse, and, by abstracting common patterns of recursion, promotes
the development of formal results about programs. On the other hand, Prolog programs
are typically constructed from first-order predicates, with the flow of data between literals
in a goal facilitated through the use of logic variables rather than from combinators.
Indeed, a first-order syntax actively hinders the adoption of a compositional style of
programming in Prolog. Superficially, then, Prolog may appear to lack the desiderata of
compositional programming. Therefore, in this section, Prolog is assessed on its ability
to support compositionality both in terms of syntax and operational behaviour.

To illustrate the traditional, stylistic differences between logic and functional pro-
grams, let us consider how we might write the well known insertion sort algorithm in
both paradigms. An experienced functional programmer often writes programs using
higher-order functions to express recursive algorithms over particular data structures.
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So, one might expect the following definition of insertion sort in the functional language,
Gofer.

> insert a [ ] = [a]
> insert a (b : x )
> | a ≤ b = a : b : x
> | otherwise = b : insert a x

> isort = foldr insert [ ]

Note that isort is defined using a standard pattern of recursion over lists, embodied by
the function foldr .

On the other hand, a Prolog programmer must often express recursion explicitly
since higher-order constructs are alien to pure Prolog. A typical Prolog implementation
of insertion sort is as follows:

insert(A, [ ], [A]) .
insert(A, [B |Y ], [A|B |Y ]) :− A ≤ B .
insert(A, [B |Y ], [B |Z ]) :− A > B , insert(A,Y ,Z ).

isort([ ], [ ]) .
isort([A|X ],Y ) :− isort(X ,Z ), insert(A,Z ,Y ).

The absence of higher-order predicates makes abstraction impossible in pure Prolog,
resulting in programs that regularly contain many identical instances of the same recursive
patterns that could otherwise be abstracted out into combinators. Nevertheless, the
benefits of higher-order programming have not entirely escaped the logic programming
community and, over the years, Prolog implementations have included ad-hoc support
for higher-order programming features at the syntactic level. However, to say that such
attempts have failed to catch on would be quite an understatement.

The reason for the apparent apathy towards higher-order programming in Prolog
can be attributed to its lack of appropriate theoretical foundations. Consequently, this
has fostered an obscure syntax for programming with higher-order predicates in Prolog
and such programs are notoriously hard to decipher in comparison to their functional
counterparts. Two predominant methods of supporting higher-order predicates in Prolog
exist, both involving the use of meta-level predicates. We discuss both in turn below.

The ‘call’ primitive in Prolog

The meta-level predicate call is often provided as a primitive in many implementa-
tions of Prolog, including Mercury (Somogyi et al. 1995), to support higher-order pro-
gramming. In such cases, call(Q) treats Q as a goal and evaluates it. For example,
if Q is isort([3, 2, 1],Y ) then call(Q) is equivalent to isort([3, 2, 1],Y ). Supplemen-
tary versions of call are also provided to cater for arguments greater than one, such
that call(Q ,A1, . . . ,An) is evaluated by passing the literals A1, . . . ,An as extra arguments
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to Q before evaluating it. Using the call notation, then, the higher-order predicate foldr
can be defined in Prolog as

foldr(F ,C , [ ],C ).
foldr(F ,C , [A|X ],B) :− foldr(F ,C ,X ,D), call(F ,A,D ,B).

From this, the isort predicate defined at the beginning of the section can be reformulated
as

isort(X ,Y ) :− foldr(insert , [ ],X ,Y ).

resulting in a program much more similar to its functional counterpart.
However, the main drawbacks of using call are two-fold: firstly, programs must explic-

itly contain occurrences of call , unnecessarily cluttering the code and reducing the aes-
thetic benefits of higher-order programming; secondly, the higher-order features that call
provides are less expressive than those found in functional programming languages. In
particular, predicates are not first class objects in such logic programs since they cannot
be returned as the result of a predicate. The following example illustrates this point.

Example 2.1. Consider the Prolog program below that defines relational composition
and the addition predicate for Peano natural numbers.

compose(R,S ,A,C ) :− call(S ,A,B), call(R,B ,C ).

add(0,N ,N ) .
add(s(M ),N , s(K )) :− add(M ,N ,K ).

The query

# :− foldr(compose(add , add(1)), 0, [1],A). (2.3)

is intended to add 1 to each value in the given list and then sum this new list. However,
when executed in Prolog, the query fails, returning the non-informative answer no. To
see why this is so, consider the SLD-tree for (2.3) shown in Figure 2.2. Each leaf of the
tree ends in failure since compose is defined for only four arguments, rather than five.
The crucial point is that compose(add , add(1)) should return a predicate as a result that
can then be applied to the correct number of arguments. ♦

The main competitor to the call primitive for supporting higher-order programming
is the apply primitive, detailed next. The apply literal addresses the problem with call
discussed in Example 2.1.

The ‘apply’ primitive in Prolog

A method of dealing with higher-order programming in Prolog, similar to the call prim-
itive above, was suggested by (Warren 1982) that used the meta-level predicate apply .
The use of apply has recently been championed by (Naish 1996) as the superior of the
two approaches since it provides a more faithful analogy of higher-order functional pro-
gramming than does call by allowing predicates to return partially applied predicates as
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call(compose(add , add(1)), 1,B ,A).
Fail # :− foldr(compose(add , add(1)), 0, [ ],B),

Fail

{B 7→ 0}

Fail

# :− foldr(compose(add , add(1)), 0, [1],A).

# :− call(compose(add , add(1)), 1, 0,A).

# :− compose(add , add(1), 1, 0,A).

Figure 2.2: The SLD-tree for # :− foldr(compose(add , add(1)), 0, [1],A) implemented
using call .

results. The literal apply(F ,A,G) takes a predicate F as its first argument and attempts
to evaluate F (A,G). When F (A,G) is a first-order term, the behaviour of apply and call
are identical. However, if F (A,G) remains partially applied, apply binds G instead to an
appropriate representation of F (A).

Occurrences of call in a program can be replaced by apply , though applications
of apply must be cascaded to replace uses of call that have more than three arguments.
The central technique is to use currying to pass each argument in turn to the higher-order
predicate, until it is fully applied. In particular, n − 2 occurrences of apply are necessary
to replace a single use of call with n arguments. Although generally more occurrences
of apply must appear in the body of a clause than with call , the trade-off is that the
resulting programs behave in a manner similar to analogous functional programs. Let us
illustrate with an example.

Example 2.2. Using apply , we can recast the definitions of foldr and compose as follows:

foldr(F ,C , [ ],C ).
foldr(F ,C , [A|X ],B) :− foldr(F ,C ,X ,D), apply(F ,A,G), apply(G ,D ,B).

compose(R,S ,A,C ) :− apply(S ,A,B), apply(R,B ,C ).

Using these new definitions, query (2.3) can be successfully executed, producing the
answer A = 2. To illustrate the reason for this, consider the corresponding SLD-tree
shown in Figure 2.3. The node labelled (*) in the figure can, this time, be success-
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# :− foldr(compose(add , add(1)), 0, [1],A).

Fail

Fail

{B 7→ 0}

(*)

apply(compose(add , add(1)), 1,G), apply(G ,B ,A).
# :− foldr(compose(add , add(1)), 0, [ ],B),

# :− apply(compose(add , add(1)), 1,G),
apply(G , 0,A).

# :− apply(add(1), 1,F ), apply(add ,F ,G),
apply(G , 0,A).

Figure 2.3: The SLD-tree for # :− foldr(compose(add , add(1)), 0, [1],A) implemented
using apply .

fully executed: the subgoal apply(add(1), 1,F ) can be executed directly, binding F to
the value 2. The next subgoal, apply(add ,F ,G), is instantiated to apply(add , 2,G),
resulting in G being bound to the partially applied literal add(2). The final subgoal
becomes apply(add(2), 0,A) which can be evaluated directly to produce the final an-
swer A = 2. ♦

2.3.5 The limitations of SLD-resolution

The previous section demonstrated that Prolog can support a compositional style of
programming at the syntactic level, albeit a little obtrusively. However, syntax is only
one component of the desiderata that characterises the ability of a language to support
compositionality. The proof of the pudding lies in the successful execution and termi-
nation of relational programs. Unfortunately, the resolution strategy adopted by Prolog
exhibits intrinsic deficiencies when executing relational programs and we discuss them in
the remainder of this section.

Most implementations of logic programming languages, whose computational model is
based on SLD-resolution, employ a left-to-right (or depth-first) computation rule. So, for
the goal # :− A1, . . . ,An , the leftmost literal A1 is always selected at each resolution step
and any introduced literals take its place. However, the search for an SLD-refutation can
sometimes be substantially more difficult, often resulting in non-termination, when using
a left-to-right computation rule than some other one. The following example demonstrates
this phenomenon.
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# :− append nil Y (a : nil).

# :− .
# :− append X2 Y2 Z2,

# :− append (A1 : A2 : nil) Y (a : nil).

# :− append X1 Y Z1,

{X 7→ A1 : X1,

{X1 7→ A2 : X2,

# :− append(A1 : nil) Y (a : nil).

...

# :− .

{Y 7→ a : nil}

{X 7→ nil}

{X1 7→ nil}

{A1 7→ a}
{X2 7→ nil}

{A1 7→ a}

Z 7→ A1 : Z1}

Z1 7→ A2 : Z2}

append (A1 : X1) Y (a : nil).

append (A1 : A2 : X2) Y (a : nil).

# :− append (A2 : nil) Y nil .

Fail

# :− append X Y Z ,
append X Y (a : nil).

Figure 2.4: The SLD-tree for # :− append X Y Z , append X Y (a : nil).

Example 2.3. Consider the following standard definition in a logic language of the pred-
icate append that concatenates two lists:

append nil Y Y :− .

append (A : X ) Y (A : Z ) :− append X Y Z .

Furthermore, consider the following query:

# :− append X Y Z , append X Y (a : nil). (2.4)

The left-to-right computation rule of Prolog effectively enumerates all lists X and Y
which, when concatenated, form Z , and then checks each of them to see if X and Y
concatenate to form the list a : nil . The SLD-tree for this query, depicted in Figure 2.4,
illustrates that the resolution is infinite since there are an infinite number of such lists X ,
Y , and Z . ♦

By initially selecting the rightmost literal in (2.4), only two possibilities for X and Y
would be enumerated, therefore dramatically reducing the search required before discov-
ering all SLD-refutations and terminating. In fact, the use of a left-to-right computation
rule means that SLD-resolution can be incomplete, in a practical sense, when search-
ing for a proof of a goal. Despite the limitations of the left-to-right computation rule,
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it remains predominant in logic programming owing almost entirely to the ease of its
implementation and the fact that programmers can write more efficient programs once
educated about the order of evaluation.

Although ostensibly pathological in nature, queries like (2.4)—where infinite subgoals
occur before finite ones in a goal—arise remarkably often in compositional programs.
Therefore, the combination of a left-to-right computation rule and depth-first search is
unsuitable for supporting compositional logic programs. Nevertheless, resolution and
unification naturally capture the desirable feature of nondeterminism prevalent in com-
positional programs.

In the following section, we turn our attention to the higher-order logic programming
language λProlog (Nadathur & Miller 1988) whose resolution strategy is similar to that
of Prolog’s but adopts a more sophisticated representation of terms and, consequently,
a more elaborate unification algorithm. Again, λProlog utilises the left-to-right compu-
tation rule and, therefore, inherits the same problems with termination of compositional
programs. However, a partial solution to this problem is illustrated that relies on an
extra-logical primitive and could be equally be implemented for Prolog.

2.4 Higher-order logic programming languages

Higher-order logic languages (Nadathur & Miller 1998, Qian 1994, Prehofer 1994) appear
to satisfy immediately at least some of the desiderata for compositional languages. In
particular, languages like λProlog (Nadathur & Miller 1988) employ a higher-order logic
as their semantic basis which provides natural support for the usual syntactic higher-order
constructs—currying and passing predicates as arguments to other predicates—pervasive
in compositional programs.

In this chapter, we give an introduction to λProlog, describing the higher-order
terms employed and the programming benefits associated with them. We then discuss
the process of higher-order unification—fundamental to the computation of programs
in λProlog—and present several examples that illustrate the computation of higher-order
unifiers. Beyond that, we complete the analysis of λProlog against the desiderata for a
compositional language by implementing the relational language Ruby, from Section 1.2.
However, λProlog retains the left-to-right computation rule and so suffers the same ter-
mination problems as Prolog when executing compositional programs. Despite this clear
shortcoming in terms of compositionality, this section demonstrates that λProlog sup-
ports a partial solution to the problem of termination for compositional programs, at
least for the Ruby implementation.

2.4.1 Terms of the language

The notion of higher-order logic programming is captured using a generalisation of definite
clauses (Nadathur & Miller 1998). The terms of these clauses are described in a higher-
order logic, Church’s simple theory of types (Church 1940) in the case of λProlog, and
a degree of familiarity with this is assumed in the current section, especially with the
typing of terms. Basically, the terms are λ-terms which, informally, have the concrete
syntax λx1, . . . , xn .A1, . . . ,Am , for n,m ≥ 0. Here, the variables x1 . . . xn form the binder
of the term—often abbreviated to ~x—and A1, . . . ,Am are the terms of its body. The
usual meanings of abstraction and application of λ-terms are given next.
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Definition 2.11 (λ-conversion). Let S and T be λ-terms. The process of λ-conversion,
which shows how to convert one λ-term to another, is given as the reflexive, transitive
closure of the following rules:

λx .T λ-converts to λy .T [x 7→ y ],provided y /∈ fv(T ) α-conversion
(λx .T ) S λ-converts to T [x 7→ S ] β-conversion
λx .T x λ-converts to T ,provided x /∈ fv(T ) η-conversion

The function ‘fv’ returns the set of free variables in a λ-term. The expression T [x 7→ S ]
substitutes S for the free occurrences of x in T , ensuring that any bound variables in T
are renamed to avoid the capture of any free variables in S . ♦

With respect to the rules of λ-conversion, the equality of two λ-terms S and T is
defined as follows:

S = T ≡ S λ-converts to T or T λ-converts to S

A λ-term is said to be in normal form if it can be written as λ~x .P A1 . . . An , where n ≥ 0,
P is a constant or variable of type α1 → . . . αn → β with β being of non-functional type,
and each Ai is a term that can be written in a similar way. A term can be rewritten to this
form by performing all applicable β-conversions, and also by applying the η-conversion
rule in the reverse direction, known as η-expansion, to supply explicitly all arguments to
terms of functional type.

Functions in λProlog are irreducible constants used to construct data types and have
no equational definition in a program. Consequently, a λ-term in λProlog is evaluated
using only the rules of λ-conversion rather than the usual rewriting found in functional
programming where free variables are replaced by the right hand side of an appropriate
equation defined in the program. The benefit of restricting β-conversion to encode only
the most basic form of substitution is that unification can be used to determine the
actual value of a function variable.

To illustrate this important deviation from functional programming, let us define a
procedure mapf that takes a function as its first argument, and applies it to each element
of its second argument.

mapf F nil nil :− .

mapf F (A : X ) ((F A) : Y ) :− mapf F X Y .

From this definition and assuming ‘+’ is some predefined constructor function, we can
query

# :− mapf F (1 : 2 : 3 : nil) (1 + 1 : 2 + 1 : 3 + 1 : nil) . (2.5)

This query succeeds in λProlog with F bound to λx .x + 1. Here, the binding for F is
determined from the rule for β-conversion which constructs an appropriate λ-term. Find-
ing values of this kind for higher-order variables depends critically on the aforementioned
weakened form of function evaluation.



2.4 / Higher-order logic programming languages 39

On the other hand, predicates in λProlog embody the ‘real’ evaluation phases in a
program since it is they that are defined by clauses in the program. For example, consider
the analogy of mapf that instead takes a predicate as an argument:

map P nil nil :− .

map P (A : X ) (B : Y ) :− P A B , map P X Y .

and the predicate

succ M (M + 1) :− .

Then, the query

# :− map P (1 : 2 : 3 : nil) (1 + 1 : 2 + 1 : 3 + 1 : nil) . (2.6)

attempts to enumerate possible predicative bindings for P , rather than functional ones
as in (2.5). Possible solutions could be P = λxy .succ x y , P = λxy .succ x Z , succ x y ,
and so on. In fact, since an infinite number of predicates could be generated to solve such
a query, it seems reasonable to limit the positions that a predicate variable can occupy.

With reference to a clause of the form A :− G , there are four alternative locations
that a predicate variable can occupy in a definite clause: (1) the head of the atomic
formula A; (2) an argument position of the atomic formula A; (3) the head of an atomic
goal formula in G ; (4) an argument position of an atomic goal formula in G . These four
locations, labelled correspondingly, are illustrated in the following example clause:

1
↓

map

2
↓
P (A : X ) (B : Y ) :−

3
↓
P A B ,map

4
↓
P X Y .

Only (1) seems an unrealistic location for a predicate variable since the clause would
be anonymous. Therefore, predicate variables are prohibited from assuming such posi-
tions. Despite this, predicate variables can still occupy such positions in goal queries, i.e.,
position 3. Therefore, queries such as (2.6) remain legitimate. The reason for permit-
ting such queries—even though, by themselves, they cannot be expected to enumerate
meaningful solutions—is that they can be coerced into providing meaningful bindings
for predicate variables by constraints imposed by other conjuncts in the goal; such tech-
niques depend upon the left-to-right computation rule employed by λProlog and prove
valuable in meta-programming (Nadathur & Miller 1998) but we will make no use of such
techniques in what follows.

2.4.2 Higher-order unification

As in first-order logic, the notion of computation in higher-order logic corresponds to solv-
ing a query with respect to a given program by a process of resolution. The main difference
between first-order and higher-order logic languages is that unification in higher-order lan-
guages is performed over λ-terms where the equality between these terms is based on the
rules of λ-conversion, rather than on Clark’s axioms of equality (Lloyd 1987), i.e., syn-
tactic equality of terms. In particular, the problem of unifying two λ-terms is equivalent
to unifying their normal forms. In the remainder of this section we describe the process
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of higher-order unification, i.e., the unification of λ-terms. These λ-terms are assumed to
be simply typed (Church 1940).

Unification aims to determine whether an arbitrary disagreement set has any unifiers
and, if so, to provide one such unifier. In a higher-order setting, finding a unifier for an
arbitrary disagreement set of simply typed λ-terms is undecidable (Huet 1973). Moreover,
a unifiable disagreement set may not have a most general unifier. Despite these problems,
(Huet 1975) developed a sound and complete method of finding unifiers for arbitrary
disagreement sets. By sound, we mean that any substitution computed for a disagreement
set by the procedure is a unifier for it, and, by complete, we mean that a unifier is
returned for a disagreement set if one exists. In the case where a unifier does not exist for
a disagreement set, however, the procedure may not terminate. For a strictly first-order
disagreement set, the procedure always returns the most general unifier.

The algorithm hinges upon the observation that, for some disagreement sets, it is
relatively straightforward to discover at least one unifier for the set or to establish that it
is not unifiable. The unification procedure uses an iterative application of two functions
in an attempt to transform a disagreement set to one where the above determination
can be made. The following lemma, due to (Huet 1975), provides the basis for the first
of these functions. The notation U (D) denotes the set of unifiers for a disagreement
set D and, for a literal A, if the head of A is other than a variable we say that A is rigid
otherwise we say A is flexible.

Lemma 2.2. Let s = λ~x .f A1 . . . An and t = λ~x .g B1 . . . Bm be two rigid, simply
typed λ-terms in normal form with the same type. Then φ ∈ U ({(s, t)}) if and only if
f = g , which implies that n = m, and φ ∈ U ({(λ~x .Ai , λ~x .Bi) | 1 ≤ i ≤ n}).

The lemma above suggests that we can either determine whether no unifiers exist
for a disagreement set D or that we can reduce the problem to finding unifiers for the
arguments of each pair in D . For two arbitrary λ-terms, we use α-conversion to ensure
they have identical binders. From the lemma, we construct the function simplify , whose
definition follows.

Definition 2.12 (Simplify). Let D be a disagreement set. The function simplify , de-
picted in Figure 2.5, transforms D into either the symbol ‘fail’ if D does not have a unifier,
or a new disagreement set consisting solely of flexible-flexible or flexible-rigid pairs. ♦

The first stage in computing the unifiers for a disagreement set D involves evaluat-
ing simplify D . If the result is ‘fail’ then no unifiers exist for D . Alternatively, if the
result is an empty set, or a set consisting only of flexible-flexible pairs, then at least one
trivial unifier can be found for D . However, more work needs to be performed if the
new set contains any flexible-rigid pairs. For such a pair, we fabricate substitutions that
attempt to make the heads of the two terms identical. The function match undertakes
this task.

Definition 2.13 (Match). Let s be a flexible term and t a rigid term, both in normal
form with the same type. The function match takes (s, t) to a set of substitutions and is
defined in Figure 2.6. ♦

The role of match is to determine a set of substitutions, each substitution forming a
partial unifier, for the pair of terms and, hence, bring the search for a complete unifier
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simplify D =
let D ′ = { }
while D 6= { } do

let D ′′ ∪ {(s, t)} = D and D := D ′′

if flexible s −→ D ′ := D ′ ∪ {(s, t)}
flexible t −→ D ′ := D ′ ∪ {(t , s)}
otherwise −→

let s = λ~x .f A1 . . . An and t = λ~x .g B1 . . . Bm be in normal form

if f 6= g −→ return fail
otherwise −→ D := D ∪ {(λ~x .Ai , λ~x .Bi) | 1 ≤ i ≤ n}

fi

fi

od
return D ′

Figure 2.5: The function simplify .

match (s, t) =
let s = λ~x .F A1 . . . An and t = λ~x .G B1 . . . Bm and S = { }
let F : α1 → · · · → αn → β where β is primitive

if G /∈ ~x −→
let w1, . . . ,wn and H1, . . . ,Hm be fresh variables
S := S ∪ {(F , λw1, . . . ,wn .G (H1 w1 . . . wn) . . . (Hm w1 . . . wn))}

fi

for i = 1 to n do

if αi = γ1 → · · · → γk → β −→
let w1, . . . ,wn and H1, . . . ,Hk be fresh variables
S := S ∪ {(F , λw1, . . . ,wn .wi (H1 w1 . . . wn) . . . (Hk w1 . . . wn))}

fi

od
return S

Figure 2.6: The function match.
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unify u v =
let D := simplify {(u, v)}, φ := ι ok = false
while ok and D 6= { } do

let D ′ ∪ {(s, t)} = D

if match (s, t) = { } −→ ok := false
otherwise −→

let ψ ∈ match (s, t)
D := simplify (D ′[ψ]), φ := ψ ◦ φ

fi
od
if ok −→ Just φ

otherwise −→ Nothing
fi

Figure 2.7: The unification algorithm for two λ-terms.

closer to a solution. The function match makes essential use of type information to de-
termine the number of arguments each higher-order term requires. The following lemma,
due to (Huet 1975), states that match achieves this goal.

Lemma 2.3. Let s be a flexible term and t be a rigid term where both terms have the
same type and are in normal form. If there exists a substitution φ ∈ U ({(s, t)}) then
there exists a substitution ψ ∈ match (s, t) such that φ = σ ◦ ψ, for some substitution σ.

The functions simplify and match provide the necessary machinery to describe a uni-
fication algorithm for two λ-terms based on an iterative use of them. The resulting
function, unify , is shown in Figure 2.7. Notice that the algorithm for unify is nondeter-
ministic in two places. The first is the selection of a pair from D and the second is the
choice of substitution ψ. All such choices should be explored in an actual implementation
of unify .

Example higher-order unifications

In this section, we step through two examples to illustrate the computation of higher-order
unifiers. For the first example, consider the computation of unify (g (F 1) (F 2)) (g 1 2)
where the variable F has type nat → nat (assuming that nat is already declared as the
type of natural numbers). We begin by generating the disagreement set

D = {(F 1, 1), (F 2, 2)}

according to the algorithm of Figure 2.7. Next, we select either of the flexible-rigid terms
in D , using match to generate a set of substitutions. Suppose we choose the first pair
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and compute

match (F 1, 1) = {F 7→ λw .1,F 7→ λw .w} (2.7)

of possible substitutions. Here, we note that the argument 1 to F is of type nat . Conse-
quently, variable w in the generated λ-abstraction λw .w is a first-order variable and is,
therefore, bereft of any arguments in the body.

We may arbitrarily select either of these substitutions to apply in the remainder of
the unification step. By choosing φ = {F 7→ λw .1}, we generate the new disagreement
set

D1 = D [φ] = {((λw .1) 1, 1), ((λw .1) 2, 2)}.

We can simplify D1 by β-converting the first component of each pair, resulting in the set

D1 = {(1, 1), (1, 2)}.

To complete the unification step we call simplify D1 which fails in this instance since
the rigid-rigid pair (1, 2) cannot be unified. At this stage, we backtrack and choose
the alternative substitution φ = {F 7→ λw .w} from (2.7). This time, we obtain the
disagreement set

D2 = D [φ] = {((λw .w) 1, 1), ((λw .w) 2, 2)}

which, by β-converting each pair, reduces to

D2 = {(1, 1), (2, 2)}.

The call to simplify D2 succeeds and returns D2 unchanged. The unifier for D is, therefore,
the substitution {F 7→ λw .w}.

A more involved example is to determine the unifier for the terms g (F 1) and g (2 +
1), for variable F : nat → nat and ‘+’ a constructor. The initial disagreement set is
constructed using

simplify {(g (F 1), g (2 + 1))} = {(F 1, 2 + 1)}

and we next compute

match (F 1, 2 + 1) = {F 7→ λw .(H1 w) + (H2 w),F 7→ λw .w} (2.8)

from the algorithm of Figure 2.6. The second of these substitutions, ψ = F 7→ λw .w ,
produces

D1 = D [ψ] = {((λw .w) 1, 2 + 1)}

and, by a single β-conversion, we obtain

D1 = {(1, 2 + 1)}.

Here, simplify D1 fails since 1 and 2 + 1 are not unifiable. On backtracking to the
substitution φ1 = {F 7→ λw .(H1 w) + (H2 w)} in (2.8), we produce the set

D2 = D1[φ1] = {((λw .(H1 w) + (H2 w)) 1, 2 + 1)}
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which β-converts to

D2 = {((H1 1) + (H2 1), 2 + 1)}.

Since ((H1 1) + (H2 1), 2 + 1) is a rigid-rigid pair, we derive

D3 = simplify D2 = {(H1 1, 2), (H2 1, 1)}.

Therefore, simplify reduces the problem of finding unifiers for the two terms in D2 to that
of finding unifiers for their arguments. We now repetitiously perform a unification step
on either of the pairs in D3. The first pair results in the substitutions

match (H1 1, 2) = {H1 7→ λv .2,H1 7→ λv .v}. (2.9)

However, the second substitution {H1 7→ λv .v} is inappropriate since

simplify ({(H1 1, 2), (H2 1, 1)}[H1 7→ λv .v ])

= {application of substitution}

simplify {((λv .v) 1, 2), (H2 1, 1)}

= {β-conversion}

simplify {(1, 2), (H2 1, 1)}

= {application of simplify}

fail.

Therefore, we choose the other substitution φ2 = {H1 7→ λv .2} from (2.9), and, in a
similar fashion as above, derive

D3 = {(2, 2), (H2 1, 1)}.

Selecting the second pair, we obtain the set of substitutions

match (H2 1, 1) = {H2 7→ λu.1,H2 7→ λu.u}.

This time, either choice of substitution is suitable. Suppose we choose φ3 = {H2 7→ λu.u}.
We derive

simplify ({(2, 2), (H2 1, 1)}[H2 7→ λu.u])

= {application of substitution}

simplify {(2, 2), ((λu.u) 1, 1)}

= {β-conversion}

simplify {(2, 2), (1, 1)}

= {application of simplify}

{ }.
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We are done and the unifier of D is obtained from the composition of each substitution
in the computation, i.e.,

φ3 ◦ φ2 ◦ φ1

= {definitions}

{H2 7→ λu.u} ◦ {H1 7→ λv .2} ◦ {F 7→ λw .(H1 w) + (H2 w)}

= {composition of substitutions}

{F 7→ λw .((λv .2) w) + ((λu.u) w)}

= {two β-conversions}

{F 7→ λw .2 + w}.

2.4.3 An implementation of Ruby in λProlog

The higher-order logic that underpins λProlog allows compositional programs to be writ-
ten naturally without the extra-logical annotations necessary in its first-order counter-
parts. However, λProlog deviates markedly from existing practice by adopting higher-
order unification, a process which is undecidable in general. Moreover, λProlog also
employs the left-to-right computation rule which was identified in Section 2.3.5 as pro-
hibitive for the support of compositionality.

In this section, we present an implementation of Ruby (Section 1.2) in λProlog which
demonstrates that Ruby specifications translate naturally into λProlog programs and
attempts to overcome the problem of the left-to-right computation rule. The former
objective is unsurprising since the compositional language of Chapter 1 adopted a similar
syntax to that of λProlog. Therefore, in this section we concentrate on the novel aspects
of the Ruby implementation. In Section 2.2.4, we reviewed an existing implementation
of the functional subset of Ruby; here, we show how a λProlog implementation of Ruby
encompasses the full specification component of Ruby. No familiarity with λProlog is
assumed in the discussion.

The language λProlog is polymorphically typed and is curried in the same sense as in
many functional programming languages like Haskell. Type signatures are mandatory for
all function and predicate symbols. Type variables in λProlog are denoted by identifiers
beginning with an upper case letter. The type of propositions, i.e., truth values or
booleans, is the special type ‘o’ and, consequently, the type signature of a predicate
in λProlog always terminates with this type. Thus, functions (or constructors) can be
distinguished from predicates by their types.

The pair data type can be defined in λProlog using the following program:

kind pair type→ type→ type.
type pair A→ B → (pair A B).

The ‘kind’ operator introduces a new type constructor of arity one less than the number
of occurrences of the keyword ‘type’ in the declaration. In the case above, pair constructs
a pair from two argument types. The type of function and predicate symbols are declared
via a ‘type’ declaration. In the program above, the constructor function pair takes two
arguments of type A and B , and returns a value of type pair A B .
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The following λProlog program declares the data type nat of Peano natural numbers:

kind nat type.
type 0 nat .
type s nat → nat .

Natural numbers are thus represented by 0, s 0, s (s 0), and so on, although we will
abbreviate such expressions to actual integers in what follows. With the declaration of
naturals above, the addition of natural numbers can be defined in Ruby as follows.

type add (pair nat nat)→ nat → o.

add (pair 0 N ) N .

add (pair (s M ) N ) (s K ) :− add (pair M N ) K .

In addition to pairs and natural numbers, an implementation of Ruby in λProlog requires
the following declaration of lists:

kind list type→ type.
type nil list A.
type : A→ (list A)→ (list A) .

where nil denotes the empty list and ‘:’ denotes infix cons. The function symbol ‘:’
takes two arguments, one of type A and the other of type list A, and returns a result of
type list A.

An attractive aspect of using λProlog to implement Ruby is the ease with which Ruby
operators translate into λProlog programs; the higher-order functions translate almost
identically from their abstract Ruby definitions to their corresponding implementations
in λProlog. Consequently, the λProlog implementation of Ruby is almost identical to
that of Section 1.2. The only, yet significant, difference is that the implementation of
Ruby in λProlog depends critically on the use of an extra-logical primitive flex : A → o
that succeeds if its argument is a variable. The use of flex attempts to overcome the
inherent problem of the left-to-right computation rule adopted in λProlog. Recall from
Section 2.3.5 that a left-to-right computation rule adversely affects the ability to run
predicates “in reverse,” i.e., solving for variables in either the range or domain positions
of a predicate. Such behaviour is vital to satisfy the requirement that each relation in
Ruby has a well defined converse.

The fundamental Ruby primitive of sequential composition is directly affected by the
problematic behaviour of the computation rule. To see why, consider the following naive
implementation of sequential composition in λProlog:

type comp (A→ B → o)→ (B → C → o)→ A→ C → o.
comp R S A C :− R A B , S B C .

Consider the following query:

# :− comp add (conv add) A (pair 1 1) .
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After one resolution step, it produces the resolvent

# :− add A B , conv add B (pair 1 1) . (2.10)

In the subsequent resolution step, the left-to-right computation rule of λProlog selects the
literal add A B which can be satisfied in an infinite number of ways. Consequently, the
resolution of (2.10) enters an infinite loop. However, the literal conv add B (pair 1 1) can
be satisfied in only one way, namely by binding B to 2, which when applied to add A B
results in the literal add A 2 whose resolution is finite. Thus, the evaluation of (2.10)
can be made to terminate by selecting the second literal for resolution instead of the first
one. As discussed in Section 2.1, one criterion for a compositional language is that its
termination behaviour should not depend upon the order in which relations are composed;
so, for a language like λProlog to support a compositional style of programming, we must
avoid selecting infinite literals over finite ones.

A solution to this problem in λProlog is relatively straightforward although admittedly
less declarative than one might prefer: in the definition of comp, its third argument A
is checked to see whether it is uninstantiated. If so, the literals in the body of comp are
resolved in the reverse order to avoid slipping into an infinite computation. The assump-
tion made is that if A is uninstantiated then the final argument C will be instantiated.
The revised implementation of composition is shown in Figure 2.8. The appearance of
the cut ‘!’ in the first clause of comp avoids the second clause being attempted should the
first one fail. Another point to note is that some type obscuring takes place to overcome
the fact that a Ruby value comprises either a number, a tuple, or a list. An alternative
way of tackling this problem is to declare a new type of all possible Ruby values, hence,
distinguishing each value using constructors.

The implementation of Ruby in λProlog exhibits pleasing termination behaviour when
executing the following sorting circuit, originally presented in Section 1.2:

sort A B :− (wrap comp (conv wrap)) A B .
sort A B :− (apr comp (snd (conv wrap)) comp

(conv (rdr (conv ((col cmp) comp (conv apr)))))) A B .

For example, both queries (1.2) and (1.3) terminate as desired when using the definition
of comp in Figure 2.8 but fail to terminate when using the naive definition.

2.5 Summary

In this chapter, three existing programming paradigms were examined against a collection
of criteria to determine how well they supported the style of compositional programming
proposed in Chapter 1. The criteria encompassed matters of: the ease with which high-
level specifications can be translated into programs of the language; the declarative nature
of the resulting programs, in particular, that their termination behaviour should not
depend upon how the program was composed; and, finally, the efficiency of the language.

The three paradigms considered were functional, first-order logic, and higher-order
logic. Although functional programming allowed high-level specifications to be phrased
naturally as programs, it was able to capture only a subset of the expressiveness re-
quired for compositional relational programming. First-order logic programming proved
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kind anonymous type.

type comp (A→ B → o)→ (B → C → o)→ A→ C → o.
type untype A→ anonymous.
type uninstantiated A→ o.
type flexible anonymous → o.

comp R S A C :− uninstantiated A, !, S B C , R A B .
comp R S A C :− R A B , S B C .

uninstantiated A :− flexible (untype A) .

flexible (untype A) :− flex A, !.
flexible (untype (pair A B)) :− flexible (untype A), flexible (untype B) .
flexible (untype (A : nil)) :− flexible (untype A), !.
flexible (untype (A : X )) :− flexible (untype A), flexible (untype X ) .

Figure 2.8: The implementation of sequential composition in λProlog.

to be more expressive than functional programming by naturally supporting nondetermi-
nism and program converses. However, first-order logic programming lacked the elegant
higher-order programming constructs that accompany functional and higher-order logic
languages. Consequently, specifications often required some syntactic massaging during
their transformation to programs which resulted in their obfuscation.

Whereas Prolog suffers from a cumbersome syntax, λProlog allows the natural repre-
sentation of high-level specifications as programs. The price paid, though, is that λProlog
adopts higher-order unification which is an undecidable procedure in general. However,
the main limitation for supporting compositionality in both these logic languages is their
use of the inflexible left-to-right computation rule which causes many simple composi-
tional programs to fail to terminate. Despite this behaviour, we demonstrated that the
problem of the left-to-right computation rule in λProlog can be partially solved in an im-
plementation of the relational language, Ruby. The implementation relied on a heuristic
method of reordering literals in the body of a clause. Unfortunately, such heuristics fail
to generalise to arbitrary compositional programs and hinder the construction of truly
declarative programs.

The exploration of this chapter suggests that logic programming forms an appropri-
ate starting point for creating a compositional programming language. The deficiencies
of logic programming that must be addressed, however, are two-fold: the lack of elegant
higher-order programming constructs that eliminate the need for extra-logical predicates;
and, secondly, the need for a computation rule that guarantees termination of composi-
tional programs whilst retaining their efficient execution. These issues are addressed in
the remainder of the thesis.



Chapter 3

Compositionality in Logic Languages

In this chapter, we present the language features necessary for a logic language to support
the compositional style of programming proposed in the previous chapters. The first
language feature we introduce is a curried syntax for the terms of the language which
allows specifications to be phrased naturally without the need for extra-logical predicates,
as is the case with Prolog and Mercury. We show that the adoption of curried terms in
a first-order language does not affect the definition of SLD-resolution in any way and
necessitates only superficial changes to the standard unification algorithm.

The most significant language feature which facilitates compositionality in a logic
language is the use of fair SLD-resolution. Fair SLD-resolution was introduced to the
logic programming community by (Lassez & Maher 1984) to provide a theoretical under-
standing of negation-as-failure. We augment their results by proving that the fair SLD-
resolution of a query is guaranteed to terminate whenever any other resolution strategy
would also terminate for it. Thus, fair SLD-resolution rectifies the poor termination be-
haviour caused by the left-to-right computation rule and, consequently, provides a method
by which compositional programs can be constructed independently of the evaluation or-
der of the language. A summary of this work appears in (McPhee & de Moor 1996).

Despite the theoretical elegance of fair SLD-resolution, however, we show that the
use of the ‘breadth-first’ fair computation rule often exhibits poor execution efficiency
when evaluating compositional programs. In a previous, though entirely independent,
treatment of fair SLD-resolution, (Janot 1991) introduced indexed fair SLD-resolution
to overcome the efficiency problems associated with the breadth-first computation rule.
Although indexed fair SLD-resolution does improve performance over the breadth-first
computation rule, we show that it fails to support the desiderata of a compositional
language outlined in Chapter 2.

One often cited alternative to the left-to-right computation rule in the logic program-
ming community is the use of coroutining computation rules (Lüttringhaus-Kappel 1993,
Naish 1992). Coroutining ostensibly offers improved termination behaviour over the left-
to-right one whilst simultaneously maintains efficient execution. We examine this class
of computation rules and show that, like indexed fair SLD-resolution, they fall short of
allowing a general implementation of compositional programming.
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3.1 A higher-order syntax

Higher-order programming constructs aid compositionality by encouraging abstraction
during program construction, as exemplified in the programs presented in Chapter 1.
In this section, we employ a curried syntax for logic programs which naturally allows
variables to appear as the head of a literal, previously reserved only for predicate sym-
bols (Definition 2.1). Consequently, compositional programs can be written without
extra-logical predicates—currently required in languages like Prolog—since higher-order
variables can be instantiated directly during the application of a unifier over a goal. The
new definition of terms is as follows.

Definition 3.1 (Curried terms). Let X be a set of variables and Ω a set of constant
symbols. The terms, T′Ω(X ), of the programming language are defined inductively by the
grammar

T
′
Ω(X ) ::= x

| c
| s t

where x ∈ X , c ∈ Ω, and s, t ∈ T′Ω(X ). The application of two terms is written by
juxtaposition and associates to the left. ♦

The definitions of definite clauses, programs, goal clauses, and substitutions from
Section 2.3.1 each abstract over the actual form of literals and, as such, are unaffected by
the adoption of curried terms. Furthermore, the change to curried terms necessitates only
superficial alterations to the application of a substitution over a term (Definition 2.5).
A unification algorithm for curried terms is depicted in Figure 3.1 which contains only
minor differences to the standard one from Figure 2.1. Moreover, the correctness proof
of the new unification algorithm is identical to the one for the standard algorithm.

Owing to the fact that a change to curried terms is entirely syntactic, it is straight-
forward to show that the class of programs that can be expressed using curried terms is
precisely the class of pure Prolog programs that may also contain occurrences of the call
extra-logical predicate. We define the set of call terms that may appear in a pure Prolog
program as follows.

Definition 3.2 (Call terms). Let X be a set of variables and Ω a set of constant sym-
bols. The call terms, CΩ(X ), are defined by the grammar

CΩ(X ) ::= call(t1, . . . , tn)

where n ≥ 1 and each ti ∈ TΩ(X ), for 1 ≤ i ≤ n. ♦

As discussed in Section 2.3.4, the call literal is provided by most Prolog implemen-
tations to permit higher-order logic variables to appear in programs; without call , such
programs would be syntactically incorrect. The semantic interpretation of a call literal
during a resolution step is given by the following equations:

call(f (s1, . . . , sm), t1, . . . , tn)
= call(f , s1, . . . , sm , t1, . . . , tn)
= f (s1, . . . , sm , t1, . . . , tn)
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unify u v =
let D := {(u, v)}, φ := ι, ok := true
while ok and D 6= { } do

let D ′ ∪ {(s, t)} = D
if s = x = t −→ D := D ′

s = x /∈ t −→ D := D ′[x 7→ t ], φ := {x 7→ t} ◦ φ
t = x /∈ s −→ D := D ′[x 7→ s], φ := {x 7→ s} ◦ φ
s = s1 s2 and t = t1 t2 −→ D := D ′ ∪ {(s1, t1), (s2, t2)}
otherwise −→ ok := false

fi
od
if ok −→ Just φ

otherwise −→ Nothing
fi

Figure 3.1: The new unification algorithm for two terms.

where m,n ≥ 0, f is a constructor of arity m +n, and each si and ti are terms. Whenever
a call literal is selected for resolution, it must be in either of the forms above otherwise
the resolution step fails.

A simple equivalence exists between curried terms and regular terms augmented with
the call predicate, characterised by the translation function α : TΩ(X )∪CΩ(X )→ T

′
Ω(X )

whose definition is given below.

α(t) =


x , if t = x ∈ X
f (α(t1)) . . . (α(tn)), if t = f (t1, . . . , tn)
f (α(s1)) . . . (α(sm)) (α(t1)) . . . (α(tn)),

if t = call(f (s1, . . . , sm), t1, . . . , tn)

(3.1)

It is straightforward to show that the function α has an inverse modulo the equality of call
literals stated above. In order to formalise the aforementioned equivalence, we introduce
a few additional concepts.

Given a substitution φ = {x1 7→ s1, . . . , xn 7→ sn} : X → TΩ(Y ), by a slight abuse of
notation we define the substitution α(φ) : X → T

′
Ω(Y ) as follows:

α(φ) = {x1 7→ α(s1), . . . , xn 7→ α(sn)}

For a term t ∈ TΩ(X ), it is easy to prove that

α(t [φ]) = (α(t))[α(φ)] (3.2)

The following lemma proves the equivalence of programs written using curried terms and
those written using standard terms augmented with the call predicate.
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Lemma 3.1. Every pure Prolog program augmented with the call extra-logical primitive
can be equivalently expressed using curried terms.

Proof. It suffices to show that for any SLD-derivation D = G1,G2, . . . , in Prolog, an
equivalent one exists using curried terms. Consider two successive triples Gi and Gi+1

in D . Let A1 be the selected literal in Gi and A :− B1, . . . ,Bm be the selected clause.
Then the resolvent of the resolution step is the goal

# :− B1[φ], . . . ,Bm [φ]

where φ is the substitution of the resolution. By applying α to this resolvent, we obtain
the resolvent that should be computed in the corresponding derivation using curried
terms:

# :− α(B1[φ]), . . . , α(Bm [φ]) (3.3)

Now, in the equivalent derivation using curried terms, the selected literal is α(A1)
and the chosen clause is α(A) :− α(B1), . . . , α(Bm). The resolvent of this resolution step
is

# :− (α(B1))[φ′], . . . , (α(Bm))[φ′]

where φ′ = α(φ), a fact that is clear from the similarity of the two unification algorithms.
By m applications of (3.2), the previous resolvent is equivalent to

# :− α(B1[φ]), . . . , α(Bm [φ])

which is identical to the resolvent (3.3). Since this equivalence holds for all such triples
in D , we have the desired result. ♦

3.2 Fair SLD-resolution

The main problem with logic programming languages with respect to supporting compo-
sitionality is the use of the left-to-right computation rule. As discussed in Section 2.3.5,
the use of this rule often causes non-termination of even simple logic programs. Conse-
quently, the programmer must be aware of the restrictions imposed by the rule, therefore
reducing the declarative nature of programs. Moreover, the same program will generally
fail to terminate for a variety of argument instantiations. The main aim of compositional
logic programming, however, is to relieve the programmer from such burdens. Thus, an
alternative computation rule must be discovered that promotes, rather than restricts,
declarative programming.

Fortunately, a class of computation rules exists that guarantees the termination of
a logic program whenever any other computation rule would do so. The class of rules,
called fair computation rules, ensures that every literal in a goal is selected for resolution
after a finite number of resolution steps. A fair SLD-derivation captures this behaviour
and is formalised in the following definition, originally due to (Lassez & Maher 1984).

Definition 3.3 (Fair SLD-derivation). An SLD-derivation of a goal # :− A1, . . . ,Am ,
is fair if it is either failed or, for every literal Ai , for 1 ≤ i ≤ m, (some further instantiation
of) Ai is selected within a finite number of resolution steps. ♦
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A simple way to institute a fair computation rule is to queue the literals pending
resolution in a goal, i.e., add the literals introduced by a resolution step to the end of the
current goal. This is called the breadth-first fair computation rule. A simple adjustment
to Definition 2.7 suffices to define fair SLD-resolution.

Definition 3.4 (Fair SLD-resolution). Let C = A :− B1, . . . ,Bm , for m ≥ 0, be a
definite clause, and G = # :− A1, . . . ,An , for n ≥ 1, a goal such that A1 and A are
unifiable with most general unifier φ. Then the SLD-resolvent of C and G is the goal

G ′ = (# :− A2, . . . ,An ,B1, . . . ,Bm)[φ]

The substitution φ is called the substitution of the SLD-resolution. ♦

Varying the computation rule in an SLD-resolution does not affect the answer sub-
stitutions contained in the corresponding SLD-tree—the number of success nodes in an
SLD-tree is invariant with respect to the computation rule—but rather alters the shape
of the SLD-tree. Therefore, the choice of computation rule has a significant effect on the
overall efficiency of a resolution. The most important observation of fair SLD-resolution
is that if any computation rule can be used to construct a finite SLD-tree for a query,
then every fair computation rule constructs a finite tree. In other words, if an infinite
loop in a program can be avoided by some computation rule then any fair computation
rule will avoid it. In order to prove this claim, we will require the following two lemmas.

The first lemma, stated and proved by (Lloyd 1987), demonstrates that the order in
which subgoals are selected for resolution is irrelevant in a derivation. Given a program
clause C , the notation C :− represents the literals in the body of C .

Lemma 3.2 (Switching Lemma). For a program P and a goal G , suppose that P ∪
{G} has an SLD-derivation (G ,C1, φ1), . . . , (Gn ,Cn , φn), for n ≥ 1. Suppose also that,
for 1 < k < n, we have the goals

Gk−1 = (# :− A1, . . . ,Ai , . . . ,Aj , . . . ,Am)
Gk = (# :− A1, . . . ,C :−

k , . . . ,Aj , . . . ,Am)[φk ]
Gk+1 = (# :− A1, . . . ,C :−

k , . . . ,C :−
k+1, . . . ,Am)[φk+1 ◦ φk ]

Then there exists an SLD-derivation of P ∪ {G} in which Aj is selected in Gk−1 instead
of Ai , and Ai is selected in Gk instead of Aj .

Fair SLD-resolution was introduced by (Lassez & Maher 1984) to provide a description
of negation-as-failure. They showed that fair SLD-resolution is complete with respect to
finite failure: whenever some SLD-resolution of a goal finitely fails, then every fair SLD-
resolution of that goal also finitely fails. Despite this result, they neglected to formulate
an equivalent result regarding finite success: whenever some SLD-resolution of a goal
finitely succeeds, then every fair SLD-resolution of that goal also finitely succeeds. We
provide precisely such a result in the following novel lemma and corollary. A similar
result has been independently stated and proved by (Janot 1991).

Lemma 3.3. For a program P and a goal G , if there exists an infinite fair SLD-tree
for P ∪ {G} then every SLD-tree for P ∪ {G} is infinite.
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Proof. Let D = G1,G2, . . . , be an infinite, fair SLD-derivation in the fair SLD-tree for P∪
{G}, and R be some arbitrary computation rule. It suffices to show that D can be
transformed into some other infinite SLD-derivation that uses R as its computation rule.
By fairness, we know that all the literals of G are selected in D after a finite number of
steps. Moreover, it must be the case that R selects at least one literal of G . We proceed
by induction over the length n of the new infinite derivation.

For n = 1, let A1 be the selected literal in G1 of D and B1 be the selected literal in G1

using R. Since D is fair, a further instantiated version of B1 must be selected in Gk ,
for k > 1. By k applications of the Switching Lemma, we can construct an infinite, fair
SLD-derivation, D1, where B1 is selected in G1 instead of A1.

For n > 1, let Dn = G1,G2, . . . ,Gn , . . . , be an infinite, fair SLD-derivation with the
same initial n−1 selected literals as in the derivation via R, by the induction hypothesis.
Let Ai be the selected literal in Gn of Dn , and Bi the selected literal in Gn for the
derivation via R. The first n − 1 selected literals are the same in both derivations and
so Bi must be selected in goal Gk+p , for some p ≥ 0, since Dn is fair. By p applications of
the Switching Lemma, we can construct a new infinite, fair SLD-derivation Dn+1 where Bi

is selected in Gn instead of Ai , and so selects the same initial n literals as in the derivation
via R.

Therefore, for an arbitrary computation rule R, we can construct an infinite SLD-
derivation D ′ = G1,Gn , . . . ,Gi , . . . , via R, such that for all i ≥ 1, there is an infinite
fair SLD-derivation Dj , for j > i , that selects the same i initial literals as D ′. Since R is
arbitrary, then all SLD-derivations must be infinite. ♦

The following corollary to Lemma 3.3 establishes the termination behaviour of fair
SLD-resolution.

Corollary 3.1. For a program P and a goal G , if some SLD-tree for P ∪ {G} is finite,
then every fair SLD-tree for P ∪ {G} is finite.

Proof. Immediate from Lemma 3.3 by the contrapositive law. ♦

The corollary above guarantees that the fair SLD-resolution of a goal will terminate
if it it is possible to do so using any other computation rule. The following example
provides an illustration of this valuable behaviour.

Example 3.1. Consider again the predicate append that concatenates two lists:

append nil Y Y :− .

append (A : X ) Y (A : Z ) :− append X Y Z .

Furthermore, consider the following query which was initially presented in Example 2.3.

# :− append X Y Z , append X Y (a : nil).

In that example, we saw that evaluating the query using the left-to-right computation
rule resulted in an infinite SLD-tree (which was depicted in Figure 2.4). However, the
corresponding fair SLD-resolution of this query using the breadth-first computation rule
is is finite, producing the SLD-tree shown in Figure 3.2. ♦
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# :− append nil Y (a : nil).

# :− append X1 Y Z1,

# :− append (A1 : X1) Y (a : nil),

{X 7→ A1 : X1,

{Y 7→ a : nil}

{X 7→ nil} Z 7→ A1 : Z1}

append X1 Y Z1.

append X1 Y nil .

# :− append X Y Z ,
append X Y (a : nil).

Fail

{A1 7→ a}

{X1 7→ nil}

# :− . Fail

# :− append (A2 : X2) Y nil ,
append (A2 : X2) Y (A2 : Z2).

Fail Fail

{Y 7→ nil}

# :− append nil Y (a : nil).

{X1 7→ A2 : X2,
Z1 7→ A2 : Z2}

# :− .

Figure 3.2: The fair SLD-tree for # :− append X Y Z , append X Y (a : nil).

The above properties of fair SLD-resolution are essential in a compositional language
that requires the termination behaviour of programs to be independent of the way in
which they are composed from smaller ones. To see why fair SLD-resolution satisfies this
requirement, consider the following predicate that relates a binary tree to its frontier:

frontier (tip A) (A : nil) :− .

frontier (bin S T ) Z :−
frontier S (A : X ), frontier T (B : Y ), append (A : X ) (B : Y ) Z .

Now, suppose we attempt to solve the following goal using the left-to-right computation
rule:

# :− frontier T (a : b : c : nil) . (3.4)

The proof search in this instance reports one solution for T and then enters an infinite
loop since it must resolve the literal frontier S (A : X ) which has an infinite number
of solutions. By contrast, a fair SLD-resolution discovers both solutions for T and then
terminates.
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The standard solution to this problem of entering an infinite loop in a language like
Prolog is to write another predicate

cfrontier (A : nil) (tip A) :− .

cfrontier Z (bin S T ) :−
append (A : X ) (B : Y ) Z , cfrontier (A : X ) S , cfrontier (B : Y ) T .

However, rewriting a program according to the context in which it is used defies the
notion of compositionality identified in Section 2.1. Without the ability to write programs
without regard for the evaluation order of the language, we would be unable to implement
the elementary composition operator, converse:

conv R A B :− R B A .

A minimum healthiness requirement for the two programs above is the equivalence

conv frontier = cfrontier .

However, the two sides of this equation exhibit different behaviours under a left-to-right
computation rule, as can be seen from the execution of query (3.4). On the other hand,
fair SLD-resolution guarantees that, for programs that exhibit only finite nondeterminism,
such surprises do not occur. Therefore, a fair computation rule is necessary to implement
relational converse, and this argument can be made for other elementary composition
operators such as relational composition and intersection.

3.3 Search strategies

In Section 2.3.5, we demonstrated that depth-first search, coupled with the left-to-right
computation rule, hampered compositionality by causing the non-termination of many
programs. Depth-first search is incomplete because it can plummet down an infinite
search path before discovering all proofs of a query. One way to tackle this problem—
without adding extra-logical control annotations to programs—is to adopt a complete
search strategy. Breadth-first search is one such complete strategy but it suffers from the
well-known disadvantage of being space-inefficient.

An alternative search strategy that attempts to address the incompleteness of depth-
first search is bounded depth-first search (Korf 1985) which limits the depth to which
an SLD-tree may be explored. The depth bound indicates the maximum number of
resolution steps that can be performed in any SLD-derivation with the result that only
a finite portion of a possibly infinite search space is actually considered. The choice of
value for the depth bound, however, is an inherent problem in bounded search: if the
chosen bound is too small then some solutions may be missed. On the other hand, if the
bound is too large, much unnecessary computation may be performed.

One way to address this problem is to search with an increasing depth bound. That
is, we begin by searching for all solutions up to some initial depth bound and then
successively increment the depth bound, searching for solutions up to the new depth.
The resulting strategy, called depth-first iterative deepening (Stickel 1988, Korf 1985),
emulates breadth-first search except that previously visited nodes are not retained; rather,
we commence the search again from the original goal each time the depth bound is
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increased. The consequential redundant computation incurred by iterative deepening
might, at first sight, seem terribly inefficient. However, considering that the search space
can increase exponentially between increments of the depth bound, it becomes apparent
that the repeated work constitutes a small proportion of the overall size of the search
space.

According to the suggestions of (Korf 1985), search strategies should be compared by
considering trade-offs in terms of space, time, and the length of solution paths. Moreover,
Korf argues that, of all the exhaustive search strategies, depth-first iterative deepening
fairs the best on these three criteria. Nevertheless, the primary aim of compositional
programming is to produce terminating programs whenever possible, i.e, to construct
finite SLD-trees. Unfortunately, every exhaustive search strategy will fail to terminate
when traversing an infinite SLD-tree: different search strategies only affect the number of
solutions found before committing themselves to an infinite branch in the tree. Since fair
computation rules are guaranteed to construct finite SLD-trees whenever possible, the
choice of search strategy becomes less significant and we simply adopt depth-first search
for its easy and efficient implementation.

Nevertheless, compositional programs that exhibit unbounded nondeterminism can
never have a finite SLD-tree, irrespective of the computation rule used. In such instances,
the choice of search strategy becomes essential for the fair enumeration of the infinite
number of solutions. To illustrate this point, let us return to the pretty-printing example
of Section 1.1 and consider the following query in which the parser is run backwards to
produce a pretty-print of an abstract syntax tree:

# :− parse X (add (num “2”)
(mul (sub (num “4”) (num “1”)) (num “3”))) “ ”.

The query produces an infinite sequence of solutions:

X = “2 + (4− 1) ∗ 3” ;
X = “2 + (4− (1)) ∗ 3” ;
X = “2 + (4− ((1))) ∗ 3” .
yes

In this example, the use of depth-first search results in successive pretty-prints that
contain extra parentheses around the same subexpression. By using a complete search
strategy, like breadth-first search or depth-first iterative deepening, a wider variety of
pretty-prints would be obtained. Therefore, in an ideal compositional logic language,
both a fair computation rule and a complete search strategy would be desirable to enhance
the ability of a programmer to construct compositional programs without regard for the
evaluation order of the language.

3.4 The limitations of fair SLD-resolution

Fair SLD-resolution satisfies the language requirement which states that the termination
behaviour of a compositional program should not rely on the way in which it is composed.
However, the fair SLD-resolution of a query is only guaranteed to terminate whenever
any other SLD-resolution of it does also. As we explain in this section, one limitation of
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SLD-resolution is that, irrespective of the choice of computation rule, it is often unable to
terminate for the class of left-recursive programs, of which many compositional programs
are an instance. Another limitation of fair SLD-resolution that we discuss in this section
is that its efficiency behaviour when executing compositional programs can be rather
difficult to predict.

3.4.1 Left-recursive programs

Although fair SLD-resolution is guaranteed to construct a finite SLD-tree whenever any
other computation rule would, fairness alone is not enough to remove all possible infinite
branches in an SLD-tree. In particular, it is a trivial undertaking to construct programs
that loop infinitely for any computation rule. For example, the program

loop :− loop.

and the query # :− loop is one such contrived case. However, the inability of resolution to
solve queries of this form is not confined solely to such pathological cases. In compositional
programming, logically correct specifications can fail to terminate when executed under
any form of resolution, as illustrated in the following example.

Example 3.2. Consider the task of computing the reflexive, transitive closure of a rela-
tion using a calculus similar to that presented in Section 2.2.1. The basic combinators
are illustrated below:

id A A :− . succ (s N ) N :− .

(R $comp S ) A C :− R A B , S B C .

(R $cup S ) A B :− R A B .
(R $cup S ) A B :− S A B .

The transitive closure of a relation is computed by the predicate close:

close R A B :− (id $cup ((close R) $comp R)) A B .

Now, consider using fair SLD-resolution to solve the following query which has only one
solution, namely {A 7→ 0}:

# :− close succ 0 A. (3.5)

The fair SLD-tree of this query is shown in Figure 3.3. The branch labelled (1) of the tree
ends in success, binding A to 0. Branch (2) ends in failure since the goal # :− id 0 (s A)
cannot be satisfied. Finally, branch (3) does not terminate because a similar search tree to
the one above is repeated infinitely. Indeed, resolution always results in non-termination
for (3.5), irrespective of the computation rule. ♦

Query (3.5) illustrates an example of a left-recursive program. Termination is im-
possible since the proof of close succ 0 A depends on a variant of itself, i.e., the lit-
eral close succ 0 B . The notoriety of left-recursion stems partially from the fact that
little can be done to overcome this problem short of rewriting the program or adopting
a novel computation mechanism that can detect and avoid infinite branches in a proof
tree. (Such a computation mechanism is developed in the following chapter that does
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# :− (id $cup ((close succ) $comp succ)) 0 A.

# :− id 0 A.

{A 7→ 0}

# :− .

(1)

# :− ((close succ) $comp succ) 0 A.

# :− close succ 0 B , succ B A.

# :− succ B A, (id $cup ((close succ) $comp succ)) 0 B .

{B 7→ s A}

# :− (id $cup ((close succ) $comp succ)) 0 (s A).

# :− id 0 (s A).

Fail

(2)

# :− ((close succ) $comp succ) 0 (s A).

# :− close succ 0 B ′, succ B ′ (s A).

# :− succ B ′ (s A), (id $cup ((close succ) $comp succ)) 0 B ′.

{B ′ 7→ s (s A)}

# :− (id $cup ((close succ) $comp succ)) 0 (s (s A)).

(3)

# :− close succ 0 A.

Figure 3.3: The fair SLD-tree for the query # :− close succ 0 A.
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# :− frontier T “abcde”.

# :− frontier S1 (A1 : X1),

{S1 7→ bin S2 T2}

{T 7→ bin S1 T1}

# :− frontier T1 (B1 : Y1),

frontier T1 (B1 : Y1),
append (A1 : X1) (B1 : Y1) “abcde”.

append (A1 : X1) (B1 : Y1) “abcde”,
frontier S2 (A2 : X2),
frontier T2 (B2 : Y2),
append (A2 : X2) (B2 : Y2) (A1 : X1).

Fail

Figure 3.4: A fragment of the fair SLD-tree for # :− frontier T “abcde”.

allow both # :− loop and (3.5) to terminate.) The predicate close from Example 3.2 can
be rewritten as follows, replacing left- with right-recursion:

close R A B :− (id $cup (R $comp (close R))) A B .

This alteration is enough to permit (3.5) to terminate, as desired.

3.4.2 Efficiency and the choice of fair computation rule

The idyllic theoretical foundations of fair SLD-resolution unfortunately incur a severe
efficiency penalty in practice: the breadth-first computation rule often generates many
branches in the fair SLD-tree that are destined to finitely-fail and, hence, contribute
nothing to the search for refutations. The exploration of these dead-end derivations
can have an adverse affect on the efficiency of the computation. The following example
illustrates the problem.

Example 3.3. Consider again the frontier predicate from Section 3.2 and the following
query that enumerates all the binary trees that have “abcde” as their leaves.

# :− frontier T “abcde”. (3.6)

A fragment of the fair SLD-tree for (3.6) is depicted in Figure 3.4. However, searching
this tree, in practical terms, takes such a long time that the computation is rendered
virtually infeasible. The main reason for the explosive growth of the search tree arises
from the fact that variants of the literal frontier S1 (A1 : X1) are solved redundantly
many times in the computation. Moreover, the proofs of such literals are cyclic since
they introduce two further variants of themselves at each resolution step. ♦
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The only requirement for fairness in a resolution is that each literal in a goal is selected
for resolution after a finite number of resolutions steps; the breadth-first computation rule
of Definition 3.4 is perhaps the most naive method of achieving fairness. However, one
can imagine alternative fair computation rules that exhibit better efficiency behaviour in
practice than the breadth-first one. Indeed, (Janot 1991), who independently identified
the significance of fair SLD-resolution, suggested several alternative fair computation
rules to improve the efficiency of fair SLD-resolution. The most successful of these is
the indexed fair computation rule which performs a bounded number of resolution steps
using the left-to-right computation rule before performing a resolution step using the
breadth-first one.

Indexed fair SLD-resolution attaches a natural number—the so-called index—to each
literal in the body of a clause. In terms of notation, a literal A that is indexed with
the number n is denoted A[n]. The definition of indexed fair SLD-resolution is given
by (Janot 1991) as follows.

Definition 3.5 (Indexed fair SLD-resolution). Let C = A :− B1[i1], . . . ,Bm [im ], for
m ≥ 0, be an indexed definite clause and G = # :− A1[j1], . . . ,An [jn ], for n ≥ 1,
an indexed goal such that A1 and A are unifiable with most general unifier φ. Then
the SLD-resolvent of C and G is the goal

G ′ =

{
(# :− A2[j2], . . . ,An [jn ],B1[i1], . . . ,Bm [im ])[φ], if j1 = 1
(# :− B1[k1], . . . ,Bm [km ],A2[j2], . . . ,An [jn ])[φ], if j1 > 1

where kp = min(j1 − 1, ip), for 1 ≤ p ≤ m. ♦

So, if the index of the selected literal is equal to 1, new literals are introduced at
the end of the goal. Otherwise, the new literals are introduced at the beginning of the
goal, but their respective indices must be strictly less than the selected literal’s index. By
doing so, only a finite number of literals can be added to the beginning of a goal before
using a breadth-first resolution step to maintain fairness.

Although (Janot 1991) demonstrated substantial improvements to the efficiency of fair
SLD-resolution using indexing, the process of determining appropriate indices for literals
is an arbitrary endeavour based solely upon trial-and-error observations for various values
of index for a particular query. Indexed fair SLD-resolution falls short of the criteria for a
compositional logic language identified at the beginning of Chapter 2: the heuristic nature
of determining indices places too much of a burden on the programmer and provides little
or no consistency in execution efficiency of different programs. Therefore, the declarative
nature of compositional programs is hampered when using indexed fair SLD-resolution.
In Chapters 4 and 5, we present novel resolution strategies that attempt to satisfy the
requirements of compositionality more accurately than the computation rules suggested
by (Janot 1991).

3.5 Using coroutining to improve the efficiency of fair SLD-resolution

A key criterion for the support of compositionality in a logic language is the adop-
tion of a flexible computation rule to overcome the termination problems of the left-
to-right one. Coroutining computation rules have been introduced by (Lüttringhaus-
Kappel 1993, Naish 1992, Naish 1985) to address precisely this problem of the left-to-right
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computation rule whilst simultaneously maintaining efficiency. A natural response to the
efficiency problems inherent with fair SLD-resolution is to suggest the use of a coroutin-
ing computation rule over a fair one. In this section, therefore, we review coroutining
computation rules and examine the extent to which they can be used to overcome the
practical limitations of fair SLD-resolution.

3.5.1 The benefits of a coroutining computation rule

The successful resolution of a literal depends crucially on the terms that its arguments are
bound to. Certain bindings will contribute more information to the computation by in-
stantiating variables in other subgoals and may also allow the computation to terminate.
It is well known in the logic programming community that selecting literals whose argu-
ments are bound to terms rather than variables can be significantly more flexible than
Prolog’s left-to-right computation rule, facilitating the termination of more programs
than Prolog. In particular, the use of a coroutining computation rule (Lüttringhaus-
Kappel 1993, Naish 1992, Ullman & Gelder 1988) attempts to overcome the limitations
of the left-to-right computation rule by selecting literals driven purely by the data flow,
i.e., the interactions of subgoals by the instantiation of common variables.

Let us illustrate coroutining computation rules by examining once again the append
predicate:

append nil Y Y :− .

append (A : X ) Y (A : Z ) :− append X Y Z .

Consider the query

# :− append X Y Z , append X Y (a : nil).

A coroutining computation rule would avoid selecting the leftmost subgoal append X Y Z
since all its arguments are variables. Instead, append X Y (a : nil) would be selected: its
third argument is bound to a term other than a variable and, moreover, the variables X
and Y would receive ‘meaningful’ bindings after a resolution step.

The idea of a meaningful binding can be defined using various criteria. For example,
the clauses of a predicate could be examined to identify those arguments used for struc-
tural induction. Then, literals with these arguments bound to a term may reduce the size
of the remaining proof and, therefore, would be selected for resolution over others. The
resolution process that performs coroutining computation is reviewed in the following
section.

3.5.2 SLDF-resolution

A coroutining computation rule makes use of information extracted from a program
to determine those instances of a predicate that are likely to maximise dataflow in a
resolution step. A call set for a program provides a representation of those callable
literals that may be selected during a resolution step. For the time being, we assume
that the call set already exists for a program, although we return to how it can be
automatically constructed in Section 3.5.4. We now present several definitions that permit
the description of a computation rule that selects literals according to the call set. In
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particular, the call set in coroutining is simply a set of literals and a literal in a goal is
callable if an instance of it appears in the call set.

Definition 3.6 (Call set). A call set C is a set of literals. ♦

Definition 3.7 (Callable literals). Let A be a literal and C be a call set. Then A
is callable with respect to C if and only if A[φ] ∈ C for some substitution φ. ♦

Since call sets are likely to be infinite, we will write only the most general form of
each literal in the set, simply assuming every instance of the general form exists in it.
The following example illustrates this point.

Example 3.4. A possible call set for append that contains only the most general form
of each literal is:

{append nil Y Z , append (A : X ) Y Z ,
append X Y nil , append X Y (B : Z )}. (3.7)

Each literal in the set has its first or third argument bound to a constructor. The selection
of such a literal in a goal ensures that the size of the remaining problem is decreased at
each subsequent resolution step. ♦

Adopting a computation rule that selects only those literals in a goal that are instances
of those in the call set could result in no literal being selected at all. For example, suppose
the call set (3.7) is used for append and consider the following query:

# :− append X (a : b : c : nil) Y , append X Y Z .

Here, no literal can be selected because neither subgoal is an instance of a literal in (3.7).
In this case, the goal is floundered and its evaluation is considered unsuccessful. Thus,
a coroutining computation rule is a partial function that takes a goal and a call set, and
returns a selected literal from the goal.

Definition 3.8 (Coroutining computation rule). Let G = # :− A1, . . . ,An , for n ≥
1, be a goal and C a call set. A computation rule RC is a partial function mapping G
to the leftmost callable literal Ai , for 1 ≤ i ≤ n, with respect to C. We say that G
is floundered if no literal in G is callable. ♦

The notion of a goal being floundered is adapted from SLDNF-resolution (SLD-
resolution with Negation as Failure) (Hogger 1990, Lloyd 1987), occurring there when
a goal comprises only non-ground negative literals. The notion of a floundered goal is
generalised by SLDF-resolution (SLD-resolution with Floundering), defined next, where
a goal of positive literals is floundered if it contains no callable literals.

Definition 3.9 (SLDF-resolution). Let C = A :− B1, . . . ,Bm , for m ≥ 0, be a definite
clause, G = # :− A1, . . . ,An , for n ≥ 1, a goal, and RC a computation rule. There are
two cases to consider:

1. Suppose the selected literal is RC(G) = Ai , for 1 ≤ i ≤ n, and that A1 and A are
unifiable with most general unifier φ. The SLDF-resolvent of C and G is the goal

G ′ = (# :− B1, . . . ,Bm ,A1, . . . ,Ai−1,Ai+1, . . . ,An)[φ]
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2. Suppose that G is floundered. Then the resolution is said to be floundered, also.

Therefore, an SLDF-resolution is the same as an SLD-resolution, except that the last goal
in any derivation may be floundered. An SLDF-resolution may be infinite, successful, or
failed in the same way as an SLD-resolution, or floundered. ♦

In practice, SLDF-resolution is efficient and terminates more often than corresponding
Prolog programs. However, the main drawback of SLDF-resolution is that the computa-
tion of a goal can flounder if the call set fails to contain enough general forms of literals.
Therefore, the analysis for determining bindings of arguments is of utmost importance.
In the following section, the programming language NU-Prolog, that uses a coroutining
computation rule, is reviewed and a method of automatically constructing the call set for
a program is presented.

3.5.3 NU-Prolog

NU-Prolog (Thom & Zobel 1987) is a variant of Prolog that utilises the coroutining
computation rule of Definition 3.8. In this section, we give a brief overview of NU-Prolog,
demonstrating its strengths and weaknesses.

In NU-Prolog, the notion of a call set of literals is captured by new syntactic constructs
called when-declarations that annotate logic programs, dictating the circumstances under
which a literal is able to be selected for resolution. The following definition formalises
when-declarations.

Definition 3.10 (When-declarations). A when-clause is a statement of the form

A when W

where A is an unrestricted literal, i.e., no variable occurs in A more than once, and W is
a when-formula, defined as follows:

W ::= true | X | ground(X ) |W and W |W or W

where X is a variable that occurs in A. Finally, a when-declaration is a set of when-
clauses. ♦

For a when-clause A when W , the meaning of W is given by the associated truth
value of an instance of W . This idea is formulated in the following definition.

Definition 3.11 (Interpretation of when-declarations). Let A when W be a when-
clause and φ a substitution. The truth value of W [φ] is defined as follows:

W [φ] =



true, if W = true
true, if W = X and X [φ] is not a variable
true, if W = ground(X ) and X [φ] is a ground term
W1[φ] ∧W2[φ], if W = W1 and W2

W1[φ] ∨W2[φ], if W = W1 or W2

false, otherwise

A literal B is callable if B = A[φ] and W [φ] is true, or B does not unify with A. ♦
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Example 3.5. Suppose, for the predicate append we add the following when-declaration
to the program:

append(X ,Y ,Z ) when X or Z .

Then the literals append([ ],X ,Y ) and append(X ,Y , [A,B ,C ]) are callable since ‘[ ]’
and ‘[A,B ,C ]’ are not variables. Alternatively, the literal append(X , [a, b, c],Y ) is not
callable since both the first and third arguments are variables. ♦

The simplicity of NU-Prolog’s incarnation of SLDF-resolution is particularly pleasing
since the control information gained by when-declarations is separate from the logic of
the programs. That is, the insertion of when-declarations in a program does not affect
its declarative nature. Recall from the list of criteria for a compositional logic language
(Chapter 2) that the programmer should be liberated from all control information. Let
us now illustrate the benefits of coroutining, with respect to compositionality, by looking
at an example NU-Prolog program.

Example 3.6. Consider the following NU-Prolog program that implements quicksort:

partition(A, [ ], [ ], [ ]).
partition(A, [B |X ],Y , [B |Z ]) :− A < B , partition(A,X ,Y ,Z ).
partition(A, [B |X ], [B |Y ],Z ) :− A ≥ B , partition(A,X ,Y ,Z ).

qsort([ ], [ ]).
qsort([A|X ],Y ) :−

partition(A,X ,X1,X2), append(Y1, [A|Y2],Y ), qsort(X1,Y1), qsort(X2,Y2).

The predicates < and ≥ respectively embody the less-than and greater-than-or-equal-
to relations over integers. Now suppose we add the following when-declarations to the
program:

append(X , ,Y ) when X or Y
partition( ,X ,Y ,Z ) when X or (Y and Z )
qsort(X ,Y ) when X or Y

The first when-declaration states that a literal of append should only be selected for
resolution when its first or third argument is not a variable. The second clause states
that a literal of partition should be selected either when its second argument is not a
variable or when both its third and fourth arguments are not variables. The final when-
declaration states that a literal of qsort may be selected in the cases where either its first
or second arguments are not variables.

With these when-declarations, qsort can be used to sort lists of integers and also to
permute sorted lists since the SLDF-tree of such queries is finite and non-floundering.
Moreover, ‘mixed-mode’ queries—where both arguments are bound to partial lists—can
be successfully computed. For example, the query

# :− qsort([4,A, 6,B ,C , 5], [1, 2, 3|Y ]).

terminates with the answer substitution {A 7→ 3,B 7→ 2,Z 7→ 1,Y 7→ [4, 5, 6]} and the
five other answer substitutions that bind X , Y , and Z to the remaining permutations
of 1, 2, and 3. ♦
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generate P =
let C0 := patterns P and finished := false
while not finished do

let C := C0 and accept := true
while C 6= { } and accept do

let A ∈ C and C := C− {A}
accept := finite (P ∪ {# :− A},C0)

done
if not accept −→

let B ∈ C0 and C′ ⊆ successors B
C0 := (C0 − {B}) ∪ C′

fi
finished := accept

done

Figure 3.5: The algorithm for determining a call set for coroutining.

The call set is crucial for the efficient and terminating execution of queries: the
remaining problem being to determine it automatically. In what follows, we review a
method presented by (Lüttringhaus-Kappel 1993) for computing a call set for a corou-
tining computation rule.

3.5.4 Generating a call set automatically

An algorithm was presented by (Lüttringhaus-Kappel 1992) to determine automatically a
call set C for a coroutining computation rule with respect to a given program. The main
criterion for a literal’s inclusion in C is that it has a finite SLDF-tree. The algorithm
proceeds by maintaining a set of candidate literals and simulating their execution to
determine if their SLDF-tree is finite. Those literals that appear to be infinite are refined
by incrementally binding more arguments until the literals either become finite or are
deemed to be infinite. The algorithm terminates when every literal in the candidate set
has a finite SLDF-tree at which time the candidate set is returned as the call set. The
algorithm is shown in Figure 3.5.

The candidate call set C0 for the program P initially comprises the most general form
of each predicate in P , i.e., where the arguments to each literal are bound to a variable.
The function patterns creates precisely this set for P . There are several nondeterministic
choices in the abstract algorithm that affect the efficiency of an implementation. Some of
these issues are resolved in (Lüttringhaus-Kappel 1993) by employing heuristics to reduce
the size of the search space. Naturally, there are occasions when other heuristics would
result in a more effective call set. The most important choices are discussed below.

In the while loop, each literal in C is checked for a finite SLDF-tree with respect to
the current candidate call set C0 using the function finite. However, since determining
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whether an arbitrary SLDF-tree is finite is undecidable, the check is approximated using
loop detection techniques (Bol 1991) to test for infinite recursion. The resolution of the
current literal is simulated using C0 as the call set in the coroutining computation rule.
Essentially, a loop is assumed to exist in the SLDF-tree if any variant literal appears
twice in a derivation. Although this heuristic works well in general, loops in an SLDF-
tree can be caused by other means and therefore the heuristic may fail to detect them.
To envelope this type of loop, (Lüttringhaus-Kappel 1993) employs a bound on the size
of the SLDF-tree constructed in the simulated execution. The role of the depth bound is
to reject infinite literals, although it often excludes valuable finite ones.

If the current SLDF-tree is assumed to be infinite, there is a choice of which literal to
refine. The best choice is often the literal that caused the loop in the SLDF-tree. A poor
choice of literal might likely cause the same loop in a subsequent SLDF-tree or result in
a set under which some goals will flounder that could otherwise be successfully executed
with a different set.

Interestingly, the algorithm of Figure 3.5 makes crucial use of type information to
allow the refinement of literals by adding appropriate constructors; such is the behaviour
of the successors function. Historically, strong type information has been ignored by the
logic programming community, considered too restrictive on programs. However, a re-
cent trend in the logic community has acknowledged the advantages of type-checking logic
programs (Naish 1996, Lüttringhaus-Kappel 1992), notwithstanding languages like Mer-
cury (Somogyi et al. 1995) and λProlog (Nadathur & Miller 1988) that are already
strongly typed.

Finally, the successive refinements of literals and the size of the candidate set must
be considered. Literals are refined until they reach a certain term depth: if the literal
can be refined beyond this term depth, it is assumed to be infinite and it is removed
from the candidate set. Also, new literals are admitted to the set only if they are not
instances of literals already there. Let us illustrate these considerations by examining
several examples of computing call sets.

Example 3.7. Consider again the append predicate:

append nil Y Y :− .

append (A : X ) Y (A : Z ) :− append X Y Z .

The initial candidate set, C0, comprises the most general form of append , i.e., the single
literal append X Y Z . We commence by checking whether the SLDF-tree for # :−
append X Y Z is finite. It is easy to see that, in fact, the tree is infinite with a
repetitious call to a variant of append X Y Z . According to the discussion above, this
literal is refined by selecting a single variable in the literal and binding it to either nil
or A1 : X1. This process is repeated for each variable X , Y , and Z , and then each refined
literal is included in C0:

C0 = {append nil Y Z , append (A1 : X1) Y Z , append X nil Z ,
append X (A1 : X1) Z , append X Y nil , append X Y (A1 : X1)}. (3.8)
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From this new set, any literal may be selected; suppose it is append X nil Z . Repeating
the process above, the SLDF-tree for append X nil Z is again found to be infinite with
a variant of this literal causing the loop. Refining this literal produces the new literals

C
′ = {append nil nil Z , append (A2 : X2) nil Z , append X nil nil ,

append X nil (A2 : X2)}.

However, all of these literals are covered by more general literals in C0 and so are excluded
from C0.

Now suppose append X (A1 : X1) Z is selected from (3.8). Again, the correspond-
ing SLDF-tree contains a loop. Furthermore, all successive refinements to this literal—
append X (A1 : nil) Z , append X (A1 : A2 : X2) Z , and so on—exhibit similar looping
behaviour. This situation is dealt with by cutting-off further refinement when the size
of these terms reaches some finite bound: on reaching the bound the the original literal
is deemed infinite and it is removed, along with its successors, from C0. Of course, this
bound is a heuristic and can mean that some literals with finite SLDF-trees are excluded
from the set. Finally, C0 contains the literals in (3.7) that all have finite, though possibly
floundering, SLDF-trees. ♦

Sometimes there can be an infinite number of literals in a call set that have finite
SLDF-trees. The following example illustrates this point.

Example 3.8. Consider the reverse program below.

reverse nil nil :− .

reverse (A : X ) Y :− reverse X Z , append Z (A : nil) Y .

By tracing through the algorithm of Figure 3.5, the following call set is computed
for reverse:

{reverse nil Y , reverse (A1 : X1) Y , reverse X nil , reverse X (A1 : nil),
reverse X (A1 : A2 : nil), reverse X (A1 : A2 : A3 : nil), . . . }

In theory, the set is infinite: when the first argument to reverse is a variable,the second
argument must be a complete list, i.e., one terminated with nil . Since only finite lists
may be represented by when-declarations, the refinement is again cut-off at some bound
but this time the literals are included in the set. ♦

The previous examples illustrate the limitations of the algorithm. Firstly, literals are
deemed infinite using heuristics and, secondly, there may be an infinite number of literals
in a call set. In the latter case, there may be a general recursive scheme that describes
such infinite sequences, like the idea of a complete list in Example 3.8. However, the
algorithm itself does not provide a general method of spotting when arguments must be
complete. The following example considers again the qsort predicate from Example 3.6
and illustrates the practical problems with the algorithm.
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Example 3.9. The call set computed by the algorithm for predicate qsort is:

{qsort([ ],Y ), qsort([A1|X1],Y ), qsort(X , [ ]), qsort(X , [A1]),
qsort(X , [A1,A2]), qsort(X , [A1,A2,A3]), . . . }

The value of the depth-bound on terms dictates the number of admitted literals in the
sequence {qsort(X , [ ]), qsort(X , [A1]), . . . }. If the bound is too small, e.g., the value 5,
then queries like

# :− qsort X [4, 6, 2, 3, 1, 5].

may flounder if the second argument exceeds the bound on the term size. ♦

The generic shape of an argument is of prime importance in coroutining computation
rules, as Example 3.9 illustrates. However, the algorithm of Figure 3.5 used to generate
a call set for a program is not suitable for abstracting over terms in this way. In fact,
it is the very nature of coroutining that is to blame for this problem; coroutining is
designed to compute incrementally, interleaving the resolution of subgoals depending on
the instantiations of their variables. Therefore, restricting attention to one resolution step
at a time limits the ability to abstract naturally over the size of terms. (In Chapter 5, we
introduce a computation rule that replaces the local nature of a coroutining computation
rule with a global view of a literal’s termination behaviour. The call set, then, comprises
literals whose SLD-resolution is guaranteed to terminate.)

3.6 Summary

In Chapter 2, we identified a collection of requirements that are necessary for a language to
support the style of compositional programming proposed in Chapter 1. One requirement
was that the language should allow specifications to be phrased naturally in the syntax of
the language, which requires the ability to define higher-order predicates. In this chapter,
we presented a curried syntax for the terms of a logic language that replaces the need for
higher-order programming constructs to be introduced via extra-logical predicates, as is
currently the case in languages such as Prolog and Mercury. Moreover, we showed that
the addition of curried terms to a language provides the same higher-order programming
capability as that afforded by the extra-logical call predicate from Prolog.

A second language requirement identified in Chapter 2 is that a compositional program
should be able to be written without regard for the evaluation order employed by the
language. In this chapter we reviewed the notion of fair SLD-resolution and showed that
it satisfied this language criterion by proving that every fair SLD-resolution of a goal
terminates whenever any other SLD-resolution of the same goal would do so also.

We also explained that, although the choice of computation rule alone affects the
termination characteristics of a logic language, the choice of search strategy can help to
augment the declarative nature of the language. In particular, when a compositional
program exhibits unbounded nondeterminism, a fair search strategy, like breadth-first
search or depth-first iterative deepening, can ensure that solutions from all parts of the
search tree are discovered, whereas an unfair search strategy, like depth-first search, may
commit to enumerating an infinite number of related solutions contained in a restricted
part of the search tree.
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Despite the theoretical elegance of fair SLD-resolution, we demonstrated that it suffers
from poor efficiency behaviour when executing simple compositional programs. There-
fore, we reviewed two possible methods of overcoming the efficiency problems of fair
SLD-resolution: a previous, though independent, treatment of fair SLD-resolution, called
indexed fair SLD-resolution; and coroutining. However, we showed that both fell short
of satisfying the desiderata for a compositional language. Firstly, indexed fair SLD-
resolution relied upon the use of heuristics to prune the search tree and required extra
annotations to each program clause. In the case of coroutining, it often computed a call
set that was inadequate to allow efficient evaluation of compositional programs. More-
over, the computed set was often ‘unsafe’ in the sense that the resolution of a goal could
terminate using an unsafe call set but may loop infinitely for any instantiation of it.
Therefore, when using coroutining it is difficult to predict whether a query will execute
efficiently and whether it will terminate.



Chapter 4

Tabling Logic Programs

Fair SLD-resolution, which we reviewed in the previous chapter, constructs a finite SLD-
tree for a query should any such tree exist. However, as discussed in Section 3.4, the
practicalities of fair SLD-resolution can be less convincing than the theory suggests: the
search tree for many fair computations can grow so large—yet still theoretically finite—
that traversing the tree in reasonable time becomes practically impossible. The perpe-
trator of this adverse efficiency behaviour is often the redundant evaluation of previously
computed subgoals. Moreover, we saw that another limitation of fair SLD-resolution,
inherited from SLD-resolution, is its inability to terminate for left-recursive programs, of
which many compositional programs are an instance.

One possible solution to these problems is to record, or table, the result of resolving
each literal during an evaluation (Chen et al. 1995, Warren 1992, Tamaki & Sato 1986).
Then, on repetitious calls to variants of these ‘tabled’ literals, their solutions are obtained
from the table rather than by recomputing them. Tabling has already been integrated
into some logic programming systems, such as XSB (Sagonas, Swift & Warren 1994), and
the reasons for doing so are two-fold: firstly, the class of terminating programs is extended
beyond that possible under SLD-resolution by permitting left-recursive programs to ter-
minate; secondly, redundant computation is eliminated since the solutions to previously
computed literals are recorded in the table. Owing to these factors, tabling languages
like XSB are extremely efficient, often executing programs in fewer resolution steps than
in regular Prolog implementations. However, systems like XSB adopt the same left-to-
right computation rule as Prolog and, consequently, inherit the same poor termination
behaviour when executing compositional programs.

In this chapter, we present a straightforward extension to an existing tabling system
that uses the left-to-right computation rule (Tamaki & Sato 1986) to perform fair tabled
resolution instead. We then employ fair tabled evaluation as the computation strategy
of our compositional language and show that it overcomes the non-termination of left-
recursive programs experienced when using fair SLD-resolution and also improves upon
its execution efficiency. However, we also discuss that the trade-off for this behaviour is
that compositional programs are no longer guaranteed to terminate in the way that they
are when executed using fair SLD-resolution.
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4.1 Adding tabling to logic languages

Existing logic languages are incomplete for at least two reasons: the first is the left-to-
right consideration of subgoals in a goal; and the second is due to entering a cycle in a
single computation path where the same subgoal is satisfied infinitely many times. One
main reason for adopting tabulation techniques in logic languages like XSB (Sagonas et
al. 1994) is to avoid recomputing previously evaluated literals and, consequently, overcome
the problem of entering cyclic evaluations.

In analogy with techniques from functional programming (Bird 1980), tabling in logic
programming involves recording the evaluation of literals during the course of a computa-
tion. The situation is more complicated than in functional programming, however, since
logic programs may have more than one solution. Therefore, a table in logic language is
regarded as a finite mapping from literals to sets of their answers. The main motivation
for adopting tabling in logic languages like XSB is to increase their class of terminating
programs by detecting, and removing, cyclic evaluations (Warren 1992). In such systems,
it is a pleasant side-effect that redundant evaluation of subgoals is avoided. However, we
find the converse to be true: our motivation for adopting tabling rests with the elimi-
nation of redundant subcomputations since such behaviour is intrinsic to fair resolution.
Let us begin this section with a motivating example to develop an intuition for the tabled
evaluation of logic programs.

4.1.1 An example tabled evaluation

Tabling broadens the class of programs for which a logic language can terminate beyond
that of SLD-resolution. Moreover, tabling can drastically improve the efficiency of execu-
tion of many programs by eliminating redundant computation. In this section, we detail
an example OLDT-resolution that illustrates both of these points.

Consider the following program for the predicate path that determines the transitive
relationships between the vertices a, b, and c in a directed graph:

arc a b :− . arc b c :− .

path X Z :− path X Y , path Y Z .
path X Z :− arc X Z .

Even though the graph above is free of cycles, the SLD-resolution of any literal of path
loops infinitely, irrespective of the choice of computation rule or the instantiation of the
literal’s arguments; such SLD-trees always contain a cyclic derivation since every literal
of path introduces another path literal whose resolution depends on itself. For example,
consider the SLD-resolution of the query

# :− path a Z . (4.1)

The SLD-tree of this query is depicted in Figure 4.1. We can see from the figure that
the SLD-resolution of (4.1) enters an infinite loop without finding any solutions. Clearly,
the culprit is the cyclic call to variants of path a Z along the left branch of the tree.
However, as illustrated below, OLDT-resolution is able to rectify this problem of infinite
recursion and produce a terminating computation for (4.1).
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0. # :− path a Z .

1. # :− path a Y1, path Y1 Z1.

2. # :− path a Y2, path Y2 Z2, path Y2 Z1.
...

{Z 7→ Z1}

{Y1 7→ Y2}

Figure 4.1: The SLD-tree for # :− path a Z .

In a tabled evaluation, it often makes sense to restrict those predicates in a program
whose computations are tabled. For example, in the case of the program above, we
choose not to table the arc predicate since it is defined solely in terms of facts, and so
its computation will always terminate. Indeed, existing implementations of tabled logic
languages, like XSB, use dependency analysis to decide upon the set of predicates whose
evaluation should be tabled. These predicates, like path above, are referred to as ‘tabled
predicates’.

An OLDT-tree for a query is a forest of SLD-trees; the OLDT-tree of (4.1) is illustrated
in Figure 4.2. The numbering of nodes in the tree helps identify paths in the derivation.
A node also labelled with ‘*’ identifies the first occurrence of a tabled predicate; we call
such a node an ‘answer node’.

Since path is a tabled predicate and no variant of path a Z already occurs as the
root of a tree, the tabled evaluation of (4.1) commences by creating an answer node, i.e.,
node 0*, with root # :− path a Z . Using depth-first search, path a Z is resolved with the
first of its program clauses to generate node 1. From here, the leftmost literal path a Y
is selected only to discover that it is a variant of the answer node 0*. Node 1 is called
an ‘active node’ and its further evaluation is delayed until answers have been discovered
for path a Y via the answer node 0*.

Since no progress from node 1 can be made for the time being, we backtrack to node 0*
and perform a resolution with the second program clause of path. This step generates
node 2 and arc a Z is selected for resolution. As mentioned earlier, arc is defined solely
in terms of facts and there is no benefit to be gained by tabling its execution. Node 2 is
called an ‘interior node’ and a resolution step is performed on it. We arrive at node 3 to
discover a refutation for path a Z . At this point, the answer path a b for literal path a Z
is inserted into the table to obtain

path a Z 7→ {path a b} (4.2)

Next, we backtrack to the delayed, active node 1. On re-encountering an active node,
the action taken depends upon the state of the table: any answers that have been entered
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0*. # :− path a Z .

{Z 7→ c}

1. # :− path a Y , path Y Z .

4. # :− path b Z . 11. # :− path c Z .

Fail

4*. # :− path b Z .

8. # :− path c Z .

Fail

5. # :− path b Y , path Y Z .

8*. # :− path c Z .

Fail Fail

9. # :− path c Y , path Y Z .

{Y 7→ c}

{Y 7→ b}

{Z 7→ c}

{Y 7→ c}

2. # :− arc a Z .

3. # :− .

7. # :− .

6. # :− arc b Z .

10. # :− arc c Y .

10. # :− .

{Z 7→ b}

Figure 4.2: The OLDT-tree for # :− path a Z .



4.1 / Adding tabling to logic languages 75

into the table since the previous visit to the active node are applied to its goal; conversely,
if no new answers have appeared in the table then the active node simply fails, provided
the associated answer node is ‘completely evaluated’. We formalise the concept of an
answer node being completely evaluated later in the chapter. Here, there is an answer
for path a Z in table (4.2), and it is used to obtain node 4. Since a variant of path b Z
does not already form the root of a tree, node 4* is identified as an answer node.

The computation from node 4* continues and node 5 is generated. Again, node 5 is
an active node and it is delayed until answers for path b Z have been found elsewhere. We
backtrack to node 4*, and derive nodes 6 and 7 which provide a refutation for path b Z .
The table (4.2) is extended with this solution, resulting in

path a Z 7→ {path a b}
path b Z 7→ {path b c} (4.3)

We now return to node 5 with one new answer for path b Z entered in the table. Using
this answer, node 8 is formed with node 8* as its corresponding answer node. The
development of this tree is similar to that of node 4*, first delaying node 9 but this time
failing at node 10. We backtrack to node 9 but there are no answers for literal path c Y
in the table. Since the tree for path c Z is completely evaluated—it has been resolved
with all program clauses and its only remaining child is cyclic—the delayed node 9 fails,
terminating the tree of node 8*. At this point, node 8* is identified as a ‘complete node’.

Now all the remaining nodes in the collection of trees are active, namely nodes 8 and 4.
Backtracking from node 8* to node 8, the table is examined only to find that no answers
exist for path c Z and so node 8 fails. Consequently, node 4* is deemed a complete
node and we backtrack to node 4. This time, a previously untried answer for path b Z
exists in the table. Using this, a refutation is discovered for path a Z , the new answer
being path a c. The success of this refutation depends on whether a variant of the new
answer has been discovered previously for path a Z . After checking table (4.3), we see
that the answer path a c does not appear so it is indeed a new answer. Adding this to
the table results in

path a Z 7→ {path a b, path a c}
path b Z 7→ {path b c} (4.4)

Tracing back up the tree, the second answer for path a Y is applied to node 1, creating
node 11. Now, the literal path c Z is the root of a complete node but has no answers
in the table. Therefore, path c Z is a finitely-failed literal and so node 11 fails. At this
point, all possible answers for node 0* have been generated and the resolution of the
original query (4.1) terminates with the following substitutions for Z :

Z = b;
Z = c;
no.

Therefore, OLDT-resolution has constructed a finite OLDT-tree when the corresponding
SLD-tree is infinite.
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4.1.2 The left-to-right computation rule in tabled evaluation

A logic language that uses tabled evaluation is guaranteed to terminate if an SLD-
resolution using the same computation rule would make only finitely many different calls
and generate only finitely many different answers (Warren 1992). Therefore, tabling elim-
inates non-termination due to making the same call infinitely many times—as was the
case with query (4.1)—resulting in the termination of a larger class of programs than
SLD-resolution alone. Nevertheless, a tabling system that employs the left-to-right com-
putation rule, as is the case with XSB (Sagonas et al. 1994), is still susceptible to the
inherent problem of building infinite search trees. Let us now discuss an example which
illustrates this problem in the context of tabled evaluation.

Example 4.1. Consider the program to add Peano natural numbers:

add 0 N N :− .

add (s M ) N (s K ) :− add M N K .

and the following query, where the value 50 abbreviates the corresponding Peano natural
number:

# :− add M N K , add M N 50. (4.5)

The tabled execution of this query using a left-to-right computation rule will not ter-
minate. To explain why, consider the evaluation of the leftmost literal add M N K ,
only. The first resolution step produces a refutation for add M N K with the answer
literal add 0 N N . After the next resolution step, the search tree rooted at add M N K
is

{M 7→ s M1,N 7→ N1,
K 7→ s K1}.

0*. # :− add M N K .

1. # :− . 2. # :− add M1 N1 K1.

Node 2 is active since the literal add M1 N1 K1 is a variant of add M N K . However, an
answer exists in the table for this variant, namely add 0 N N . On returning this answer
to node 2, the above tree becomes

3. # :− . 2. # :− add M1 N1 K1.

K 7→ s K1}.
{M 7→ s M1,N 7→ N1,

1. # :− .

0*. # :− add M N K .

with a new refutation at node 3 and associated answer add 1 N2 (s N2). This answer does
not already appear in the table so it is inserted there. The resolution proceeds again from
node 2 with the new answer returned to it. Each subsequent resolution step produces
a new, distinct answer that is used to produce yet another new answer. Since there are
an infinite number of triples (M ,N ,K ) such that M + N = K , the tabled resolution
attempts to enumerate them all which forces non-termination of the query. ♦
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The main problem in the example above is that the leftmost, infinite subgoal is always
selected for resolution over the rightmost, finite one. In terms of producing terminating
computations—necessary for compositional programming—we require the ability to select
literals other than the leftmost one. We identify such a class of flexible rules for tabled
evaluation in the following section.

4.1.3 Flexible computation rules in tabled evaluation

The tabled evaluation of logic programs described by (Tamaki & Sato 1986) enforces the
use of the left-to-right computation rule. However, as we saw in the previous section,
this computation rule is undesirable for the execution of compositional programs since it
can cause them to loop infinitely. We saw in Chapter 3 that a fair computation strategy
is preferable since it permits such programs to terminate whenever possible. However, a
concept of fairness for tabled evaluation, analogous to that for fair SLD-resolution, cannot
be obtained by simply adopting the breadth-first computation rule.

The reason for this is that tabled evaluation imposes a restriction on the computation
rules that can be used naturally with it. Specifically, tabling permits the use of any arbi-
trary but fixed computation rule. By arbitrary, we mean that any literal can be selected
initially from a goal. The fixed requirement means that, at subsequent resolution steps,
the further arbitrary selection of literals is restricted to only those literals introduced at
the previous resolution step. The reason for the above restriction is that a tabled evalu-
ation must be able to detect precisely when a refutation for an individual literal occurs
and, hence, when its answer has been computed so that it may be inserted into the table.
The following example illustrates this important but subtle point.

Example 4.2. Consider the simple logic program below:

q X :− .

p Y :− q Y .

r Z Z :− .

Let us consider a tabled evaluation of the following query using an arbitrary, but not
fixed, computation rule:

# :− p X , r X a.

Suppose the literal p X is selected in the first resolution step. Then we obtain the new
goal:

# :− q X , r X a.

A computation rule with a fixed requirement would permit only the literal q X to be
selected at the subsequent resolution step. However, as there is no fixed requirement on
the current rule, let us select the literal r X a for resolution, which produces the following
resolvent:

# :− q a.
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The resolution of this literal results in a refutation with the answer substitution {X 7→ a}
which is too specific to be an answer substitution for p X .

On the other hand, a fixed computation rule would permit the selection of only q X
since it was introduced at the previous resolution step. Resolving this literal results
immediately in a refutation of it and, implicitly, in a refutation of p X with the identity
substitution as its answer substitution. Therefore, we are able to insert p X into the
table as a genuine answer for p X . ♦

Technically, by ensuring that a computation rule adopts the fixed requirement, we
can apply the notion of a ‘subrefutation’, defined in the following section, which allows
us to identify precisely the answers for each resolved literal that can then be inserted into
the table.

4.1.4 OLD-resolution

In this section, the original definition of OLD-resolution (Ordered selection using Linear
resolution for Definite clauses), due to (Tamaki & Sato 1986), is generalised to use any
arbitrary but fixed computation rule which lends more flexibility in the selection of literals
than with the left-to-right computation rule. The modification to OLD-resolution, pre-
sented below, is couched simply as an SLD-resolution using the left-to-right computation
rule (Definition 2.7) but where the order of the literals introduced at each resolution step
is permuted; the permutation satisfies the arbitrary requirement of the computation rule
since it dictates the order in which literals will be selected for resolution at subsequent
steps. Moreover, by ensuring that the permutation of these literals is placed at the front
of the resolvent, the fixed requirement of the computation rule is also achieved.

In other words, the modification to OLD-resolution makes explicit the restricted se-
lection of subgoals—subgoals not introduced at the previous resolution step may only
be selected once the current derivation is complete—yet permits any newly introduced
literal to be selected at the next resolution step. The generalised form of OLD-resolution
defined below differs from the original one by (Tamaki & Sato 1986) in that the order of
introduced subgoals may be permuted.

Definition 4.1 (OLD-resolution). Let C = A :− B1, . . . ,Bm , for m ≥ 0, be a definite
clause and G = # :− A1, . . . ,An a goal. Moreover, suppose that A1 and A are unifiable
with most general unifier φ. Then, the selected literal is A1 and the OLD-resolvent of C
and G is the goal

G ′ = (# :− Q ,A2, . . . ,An)[φ]

where Q is some permutation of the literals B1, . . . ,Bm . The substitution φ is called
the substitution of the OLD-resolution. ♦

The following definitions related to OLD-resolution are almost identical to those for
SLD-resolution which were reviewed in Section 2.3.3. For example, an OLD-derivation
is analogous to an SLD-derivation from Definition 2.8 in that an OLD-derivation is a
sequence of triples that records the following for each OLD-resolution step: the current
OLD-resolvent; the program clause used to resolve against the selected literal in the cur-
rent resolvent; and the substitution of the OLD-resolution. The only difference between
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an OLD-derivation and an SLD-derivation is that the initial goal in an OLD-derivation
can be a permutation of the actual goal, corresponding to the order in which literals are
selected by the arbitrary computation rule.

An OLD-refutation is exactly an SLD-refutation, given earlier in Definition 2.9. More-
over, it is easy to see that OLD-resolution using a left-to-right computation rule is
precisely SLD-resolution (Definition 2.7). Also, the search tree formed from an OLD-
resolution, i.e., an OLD-tree, is simply an SLD-tree from Definition 2.10. Again, the
soundness and completeness of OLD-resolution follow directly from that of standard
SLD-resolution (Hogger 1990, Lloyd 1987, Apt & van Emden 1982).

Despite the similarities of OLD-resolution to SLD-resolution, the notion of an OLD-
subrefutation is particular to OLD-resolution. An OLD-subrefutation is a manifestation
of the fixed requirement of a computation rule and allows the tabled evaluation of a query
to be visualised as the resolution of each subgoal in a goal independently. Subrefutations
make it possible to determine the correct answers for each subgoal, which can then be
inserted into the table; we elaborate on this point in the following section. The definition
of an OLD-subrefutation is due to (Tamaki & Sato 1986) and is repeated below.

Definition 4.2 (OLD-subrefutation). Let D be an OLD-derivation and T a triple
in D with goal G = # :− A1, . . . ,An , for n ≥ 1. Furthermore, let T ′ be a descendant
of T in D with goal (# :− Ak+1, . . . ,An)[φ], for k < n and φ some substitution. Clearly,
the path from T to T ′ can be considered as a refutation of # :− A1, . . . ,Ak by neglecting
the (instantiated versions of) literals Ak+1, . . . ,An in each intermediate triple. Such a
refutation is called a subrefutation of # :− A1, . . . ,Ak . When k = 1 the refutation is
called a unit subrefutation. ♦

A unit subrefutation allows the refutation of a particular subgoal in a goal to be
considered in isolation from the remaining subgoals in the goal. With an eye towards
tabling the answers of a literal, it is the answer substitutions obtained from unit sub-
refutations that are used to populate the table with ‘answer literals’. To explain, sup-
pose a node in an OLD-tree is labelled with G = # :− A1, . . . ,An and has a descen-
dant G ′ = (# :− A2, . . . ,An)[φ], for some substitution φ. Then, according to Defini-
tion 4.2, the path between these two nodes constitutes a unit subrefutation of # :− A1.

Moreover, the literal A1[φ] is an answer literal for A1 and should, therefore, be inserted
in the table. Conceptually, any bindings determined for variables in A1 by the unit
subrefutation can be viewed as being ‘withheld’ from the remaining subgoals A2, . . . ,An

in G until the refutation of A1 is complete since none of A2, . . . ,An have been selected for
resolution. The notion of a subrefutation is central in the formulation of OLDT-resolution
which we review in the following section.

4.1.5 OLDT-resolution

OLDT-resolution (OLD-resolution with Tabling) was originally introduced by (Tamaki &
Sato 1986), and later reconsidered by (Warren 1992), to eliminate an incompleteness of
Prolog caused by evaluating an infinite number of calls to the same literal during a
derivation. Tabling is able to do so by avoiding the redundant resolution of literals that
have already been resolved by obtaining their solutions from the table.

In the previous section, we modified the original definition of OLD-resolution to use
any arbitrary but fixed computation rule, as opposed to the left-to-right one. In the
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current section, we permeate this modification through the original definition of OLDT-
resolution and make the routine revisions to the completeness proof of OLDT-resolution
which was originally formulated by (Tamaki & Sato 1986) for the left-to-right computation
rule. We begin by reviewing the standard definitions of an answer literal and a table,
which have been given previously by (Warren 1992, Tamaki & Sato 1986).

Definition 4.3 (Answer literal). For some literal A, suppose that # :− A has an OLD-
refutation with answer substitution φ. We call A[φ] an answer literal (or just answer)
for A. ♦

Definition 4.4 (Table). A table is a finite mapping taking literals to sets of their answer
literals. A tabled predicate is one whose answers will be place in the table, otherwise it
is a non-tabled predicate. Furthermore, suppose N is a node in an OLD-tree, labelled
with a goal G . Node N is called active if the selected literal in G is a tabled predicate,
or interior if it is non-tabled. ♦

OLDT-resolution can be viewed as the growth of a forest of OLD-trees. Each OLD-
tree in the forest is rooted at a node labelled with a goal containing only one subgoal. For
each tabled literal A, only one OLD-tree may exist with a variant of A as its root. The
root node is called the answer node for A. Only answer and interior nodes are resolved
with clauses from the program; any other variants of an answer node are resolved with
the answer literals computed by the answer node. The definition of OLDT-resolution,
due to (Tamaki & Sato 1986), formalises this process and is repeated below.

Definition 4.5 (OLDT-resolution). Let P be a program, F a forest of OLD-trees,
and N a node in some tree in F labelled with G = # :− A1, . . . ,An , for n ≥ 0. Fur-
thermore, let T be a table. An OLDT-resolution step consists of one of the following
actions:

Answer registration Suppose that n = 0 and that the root of the tree containing N is
labelled with # :− B , for some literal B . Then the path from # :− B to N is a
refutation of B . Let the answer literal be B ′ which is added to the answers for B
in T unless a variant of B ′ already exists there.

Program clause resolution Suppose that N is either an interior or answer node. Perform
a previously untried OLD-resolution step on the goal G .

Answer clause resolution Suppose that N is active and its selected literal A1 appears as
the root of an OLD-tree in F . Then resolve against A1 a previously untried answer
of A1 from T .

Sprout Suppose that N is active and its selected literal A1 does not appear as the root
of an OLD-tree in F . Then create a new OLD-tree with root A1.

Completion Suppose N is the root of a tree that has been completely evaluated. Then
identify N as a complete node.

♦

The following notion of an answer node being completely evaluated was used in the
definition of OLDT-resolution and is standard from (Warren 1992). Essentially, a subgoal
is completely evaluated if all possible operations have been performed on its nodes and
has, therefore, computed all its possible answers.
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Definition 4.6 (Completely evaluated). Let P be a program, F a forest of OLD-
trees, T a table, and R a tree in F whose root is labelled # :− A. We say that R
is completely evaluated if it satisfies the following conditions: (1) for each clause in P
that unifies with A, there is a child from the root corresponding to the resolution step;
(2) for each active node N in R with selected literal B then, for each answer B ′ for B
in T , there is a child from N corresponding to the resolution of B ′ :− and B ; and (3) for
each interior node N in R with selected literal B then, for each clause in P that unifies
with B , there is a child from N corresponding to the resolution step. ♦

Intuitively, it is not difficult to see that OLDT-resolution is a correct resolution strat-
egy: for each derivation path in an OLDT-resolution, there will be a corresponding
derivation in an OLD-resolution constructed by replacing each answer clause resolution
step of a literal with its entire tree. Conversely, any path in an OLD-resolution will
correspond to a path in an OLDT-resolution, the only difference being that repeated
OLD-derivations will appear only once in the OLDT-resolution. The following lemma
characterises this behaviour and forms the basis of the soundness and completeness con-
ditions for OLDT-resolution. The lemma and its proof are originally due to (Tamaki &
Sato 1986) although the versions below are adapted to take account of the modified form
of OLD-resolution from Definition 4.1.

Lemma 4.1. Let P be a program, F a forest of OLD-trees, G = # :− A1, . . . ,An ,
for n ≥ 1, a goal, and r an OLD-subrefutation of G . Suppose that N is a node in a tree
of F labelled with G ′ = # :− B1, . . . ,Bm , for m ≥ n, such that each Bi , for 1 ≤ i ≤ n,
is a variant of Ai . Then there exists an OLDT-subrefutation of G ′ in F .

Proof. The proof is by induction on the length of the refutation r , i.e., the number of
resolution steps in r . For r of length 1, then r is a refutation of # :− which is always
satisfied. For the length of r > 1, we consider whether N is an active or answer node.

Case 1: N is an active node. There must exist an answer node N ′ in F labelled
with # :− B ′1, a variant of B1. Now, consider the initial portion r1 of r corresponding
to the subrefutation of # :− A1. Since the length of r1 < r , and A1, B1 and B ′1 are
variants, the induction hypothesis dictates that we have an OLDT-subrefutation of B ′1,
with answer B ′′1 , from node N ′. Therefore, by answer registration, B ′′1 appears in the
table.

Suppose A′′1 is the answer of r1. Then A′′1 :− and # :− A1, . . . ,An have an OLD-
resolvent # :− A′2, . . . ,A

′
n . Moreover, since B ′′1 and B1, . . . ,Bn are respective instances

of A′′1 and A1, . . . ,An , we obtain, by answer clause resolution, the node M labelled with
the variant OLD-resolvent # :− B ′2, . . . ,B

′
n . Therefore, we can construct the OLDT-

subrefutation of # :− B1 from N to M in F .
The remaining portion r2 of r is a OLDT-subrefutation of A′2, . . . ,A

′
n . Again, the

length of r2 < r and, by the induction hypothesis, we have the OLDT-subrefutation s
of B ′2, . . . ,B

′
n in F from node M . The path from N to M , followed by s, constitutes the

required subrefutation of B1, . . . ,Bn .
Case 2: N is other than an active node. Let C = A :− Q be a definite clause, such

that Q is some permutation of the literals {L1, . . . ,Lk} for k ≥ 0, and A1 and A are
unifiable. Then the first child node in r is the OLD-resolvent # :− L′1, . . . ,L

′
k ,A

′
2, . . . ,A

′
n

of C and G which has a subrefutation r ′, i.e., the remaining subrefutation of r . The label
of N , then, is OLDT-resolvable using program clause resolution, producing a node M
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labelled with the variant goal # :− L′′1, . . . ,L
′′
k ,B

′
2, . . . ,B

′
n . By the induction hypothesis,

we have a subrefutation s of # :− L′′1, . . . ,L
′′
k ,B

′
2, . . . ,B

′
n from node M in F . The path

from N to M , followed by s, constitutes the subrefutation of B1, . . . ,Bn . ♦

The completeness of OLDT-resolution is a direct consequence of the completeness of
OLD-resolution: for any OLD-refutation of a goal G , Lemma 4.1 states that an equivalent
OLDT-refutation of G must also exist in the OLDT-tree of G . The soundness and
completeness results of OLDT-resolution have been presented previously by (Tamaki &
Sato 1986).

4.2 Fairness in tabled evaluations

So far in this chapter, we have developed a basic extension to the existing work on
tabled evaluation so that we may deploy more flexible computation rules to overcome the
limitations of the left-to-right one. The problem exists, however, of determining which
literal to select for resolution so that the computation will terminate whenever any other
tabling system would do so also; recall from the desiderata of a compositional language
from Chapter 2 that this termination property is essential to permit programs to be
written without regard for the language’s evaluation order.

In the current section, we address this outstanding issue by introducing a novel com-
putation strategy, called fair OLDT-resolution, which evaluates each literal in a goal si-
multaneously until the first completely evaluated (or terminating) literal is discovered.
By doing so, fair OLDT-resolution overcomes the poor termination behaviour of the left-
to-right computation rule and increases the class of terminating tabled programs beyond
that of existing tabling systems, like XSB (Sagonas et al. 1994).

A trade-off is made, however, in fair OLDT-resolution between achieving better ter-
mination behaviour than in existing tabling systems versus the development of subgoals
that do not contribute meaningfully to the resolution. Nevertheless, we demonstrate in
this section that fair OLDT-resolution can provide better practical efficiency than fair
SLD-resolution when executing compositional programs. (In the subsequent chapter, we
rectify this trade-off by developing an evaluation mechanism for logic programs that em-
ploys a static analysis to indicate in advance whether the resolution of a given literal will
terminate.)

4.2.1 Fair OLDT-resolution

The development of a subgoal in OLDT-resolution can be viewed as a sequential process
that may spawn child processes where each child process is a new OLD-tree. From the
description of OLDT-resolution in Section 4.1.5, such child processes are selected for
development by the computation rule (via the sprout component of Definition 4.5). The
left-to-right computation rule develops each child process eagerly, i.e., as soon as it is
created, since the subgoal selected by the sprouting transformation is fixed.

However, a fair selection of a subgoal’s child processes can be imposed such that a
particular child is not further developed until its parent process has sprouted all of its
remaining child processes. In effect, the computation rule is changed from depth-first
to breadth-first. A simple alteration to the sprouting transformation of Definition 4.5
suffices to permit the fair development of OLD-trees.
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Definition 4.7 (Fair OLDT-resolution). Let P be a program, F a forest of OLD-
trees, and N a node in some tree in F labelled with G = # :− A1, . . . ,An , for n ≥ 1.
Fair OLDT-resolution is identical to OLDT-resolution (Definition 4.5) in all but the
following case:

Sprout Suppose that N is active. Then, for each 1 ≤ i ≤ n, add to F a new OLD-tree
with root Ai if such an OLD-tree does not already exist in F .

Moreover, every node N in the forest F is selected for OLDT-resolution after a finite
number of steps. ♦

The behaviour of fair OLDT-resolution is characterised by the following novel lemma
which provides an analogous result for fair OLDT-resolution as Lemma 3.3 does for fair
SLD-resolution. The lemma states that the fair OLDT-resolution of a query is guaranteed
to terminate whenever any other OLDT-resolution for the query terminates also. In other
words, this result ensures that the termination behaviour of a compositional program
when executed using fair OLDT-resolution is independent of the manner in which it was
composed from other ones.

Lemma 4.2. For a program P and a goal G , if there exists an infinite fair OLDT-tree
for P ∪ {G} then every OLDT-tree for P ∪ {G} is infinite.

Proof. Let D = G1,G2, . . . , be an infinite, fair OLDT-derivation in the fair OLDT-tree
for P ∪ {G}, and let R be some arbitrary but fixed computation rule. It suffices to
show that D can be transformed into some other infinite OLDT-derivation that uses R
as its computation rule. The proof is identical to that of Lemma 3.3 except for the
following simple consideration: any literal A in a goal is effectively selected in a fair
OLDT-resolution only if it forms the root of a unit subrefutation, since each literal is
developed simultaneously until the first unit subrefutation is discovered. Now, as unit
subrefutations are finite, we are able to apply the switching lemma as desired and the
proof of Lemma 3.3 applies. ♦

Adopting fair OLDT-resolution in a compositional language can overcome the often
poor efficiency behaviour of fair SLD-resolution experienced when executing programs.
The main reason for the improved efficiency is that redundant computation, which is
prevalent in fair SLD-resolution, is eliminated by tabled evaluation. Example 3.3, from
the previous chapter, illustrated the adverse effect of redundant computation during the
fair SLD-resolution of the program

frontier (tip A) (A : nil) :− .

frontier (bin S T ) Z :−
frontier S (A : X ), frontier T (B : Y ), append (A : X ) (B : Y ) Z .

and the query

# :− frontier T “abcde”.

The redundancy in this case is due to the vast number of repeated calls to variants
of frontier T (A : X ). In this case, fair OLDT-resolution avoids the redundant calls—
effectively pruning them from the OLD-tree—and, thus, restores efficient execution. This
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desirable behaviour of fair OLDT-resolution is also observable during the execution of
more elaborate compositional programs as discussed further in Chapter 6.

Fair OLDT-resolution also addresses the problem found in SLD-resolution of entering
cyclic derivations when evaluating left-recursive programs. For example, in the case of
Example 3.2, the fair OLDT-resolution of

# :− close succ 0 A.

reports the single solution A = 0 and then terminates whereas the fair SLD-resolution of
this query loops infinitely.

4.2.2 Efficiency considerations in fair OLDT-resolution

In an OLDT-resolution, active nodes can be selected for resolution independently of their
corresponding answer node. As a result, there exists an intrinsic asynchrony between
the generation of answers by an answer node and the consumption of answers by an
active node. Moreover, answers can be consumed by an active node in many different
ways: the particular method is prescribed by the scheduling strategy (Freire, Swift &
Warren 1996) and the choice of scheduling strategy can greatly influence the efficiency of
a tabled evaluation. The scheduling strategy adopted in OLDT-resolution is analogous to
the search strategy in SLD-resolution. We now discuss the scheduling strategy preferable
in an implementation of fair OLDT-resolution, like the one presented in Appendix B.

Definition 4.7 above describes fair OLDT-resolution as the growth of a forest of OLD-
trees such that the construction of a particular OLD-tree does not proceed indefinitely
while other OLD-trees are waiting. However, by developing the OLD-tree for each sub-
goal in a goal—rather than, say, the leftmost one only—many irrelevant answers will be
computed for some subgoals, e.g., the infinite ones. In other words, returning the answers
discovered for a subgoal before it is completely evaluated may introduce many OLD-trees
into the forest that are destined to fail yet, owing to fairness, must be developed nev-
ertheless. Consequently, much unnecessary computation can be avoided by delaying the
return of answers from a subgoal to a goal until the subgoal is completely evaluated. The
scheduling strategy which behaves in this manner is a variant of local scheduling, intro-
duced by (Freire et al. 1996), and is a natural companion to the breadth-first computation
rule of fair OLDT-resolution.

A second phenomenon arises in any implementation of fair OLDT-resolution which
requires careful consideration: the breadth-first computation rule of fair OLDT-resolution
sprouts every subgoal in a goal, resulting in a forest that often contains more OLD-trees
than one created by, say, a depth-first rule. Moreover, as answers are returned from
a completely evaluated subgoal to a goal, the remaining subgoals in that goal become
instantiated. As a result, some answer nodes in the forest may no longer have any cor-
responding active nodes. In other words, some answer nodes may become ‘disconnected’
from the OLDT-resolution of the original goal and it makes little sense to continue to
develop them in an actual implementation. The following example illustrates this subtle
point.

Example 4.3. Consider again the following query from Example 4.1:

# :− add M N K , add M N 50.
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This time, let us proceed with its evaluation using fair OLDT-resolution. Initially, the
OLD-trees for both subgoals, i.e, add M N K and add M N 50, are sprouted. However,
only the latter subgoal terminates and, once it becomes completely evaluated, its answers
can be supplied to the remaining subgoal add M N K . Each answer updates this literal
to produce a sequence of new ones, like # :− add 0 50 K for example. At this point, the
OLD-tree in the forest rooted at add M N K becomes disconnected from each new goal
of the original query and is, therefore, no longer relevant to the computation. ♦

The two implementation points above are discussed further in Appendix B which
details an implementation of fair OLDT-resolution using local scheduling.

4.3 The limitations of fair OLDT-resolution

We saw in the previous section that fair OLDT-resolution can perform significantly better
that fair SLD-resolution when executing compositional programs owing to the elimination
of redundant computation. Despite this advantage in efficiency, fair OLDT-resolution
does not exhibit the same termination behaviour as fair SLD-resolution. The reason
for this is simple: finding a terminating proof of a goal may depend critically on a
literal introduced by another subgoal or on the instance of a subgoal in the current goal.
However, in OLDT-resolution the selection of literals is restricted by the arbitrary but
fixed computation rule. In particular, the fixed requirement means that the selection
of subsequent literals is confined to those introduced at the previous resolution step;
the siblings of a subgoal may only be selected for resolution once the subgoal itself is
completely evaluated. The following example illustrates this point.

Example 4.4. Consider the quicksort program shown below.

partition A nil nil nil :− .

partition A (B : X ) Y (B : Z ) :− lt A B , partition A X Y Z .
partition A (B : X ) (B : Y ) Z :− geq A B , partition A X Y Z .

qsort nil nil :− .

qsort (A : X ) Y :− partition A X X1 X2, qsort X1 Y1, qsort X2 Y2,

append Y1 (A : Y2) Y .

where the predicates lt and geq are the operations < and ≥ on Peano natural numbers,
respectively. The query

# :− qsort (A : 2 : nil) (1 : Y ). (4.6)

terminates under fair SLD-resolution with the single answer

A = 1
Y = 2 : nil ;
no
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but fails to terminate under fair OLDT-resolution. The reason for this is apparent on
examination of the first few OLDT-resolution steps. After one step, query (4.6) produces
the new goal

# :− partition A (2 : nil) X1 X2, qsort X1 Y1, qsort X2 Y2,

append Y1 (A : Y2) (1 : Y ).
(4.7)

Each of the four subgoals in (4.7) has an infinite OLDT-tree and, therefore, the OLDT-
resolution of (4.6) is consequently infinite. However, fair SLD-resolution of partition A (2 :
nil) X1 X2 in (4.7) with the two unifiable clauses for partition produces the goals

# :− qsort X1 Y1, qsort (2 : Z ′) Y2, append Y1 (A : Y2) (1 : Y ),
lt A 2, partition A nil X1 Z ′.

(4.8)

and

# :− qsort (2 : Z ′) Y1, qsort X1 Y2, append Y1 (A : Y2) (1 : Y ),
geq A 2, partition A nil Z ′ X2.

(4.9)

Under fair SLD-resolution, the former goal terminates successfully whilst the latter finitely
fails. Therefore, fairness coupled with the interaction of subgoals, i.e., the instantiation
of common variables during resolution steps, is crucial for the termination of queries (4.8)
and (4.9). ♦

The advantage fair SLD-resolution has over fair OLDT-resolution is that literals intro-
duced by a resolution step join the goal directly and the substitution of the resolution is
applied over every subgoal in the goal. OLDT-resolution, on the other hand, attempts to
completely evaluate each individual subgoal before an answer is applied over the original
goal. By doing so, literals that allow a computation to terminate can be overlooked. In
other words, OLDT-resolution is complete with respect to finite success but not to finite
failure. Moreover, characterising the precise class of programs for which OLDT-resolution
does terminate has so far proven difficult and is a potential area of future investigation,
as discussed in Section 7.2.

Nevertheless, fair OLDT-resolution terminates at least as often as ‘regular’ OLDT-
resolution and more often than Prolog, although in both cases fair OLDT-resolution
may take more resolution steps than either other strategy. Indeed, the number of OLD-
resolution steps taken during the fair OLDT-resolution of a goal hinges upon the number
of distinct literals in the forest of OLD-trees: each distinct literal forms an answer node
in the forest and is computed using program clause resolution, whereas variant literals
take their solutions from the table. Therefore, the more distinct literals there are in
a resolution, the larger the forest of OLD-trees and, hence, the greater the number of
resolutions that must be performed. The following example illustrates the difficulties fair
OLDT-resolution can encounter when many distinct literals exist in a program.

Example 4.5. Consider the program:

mem A (A : X ) :− .

mem A (B : X ) :− mem A X .

explode X :− explode (a X ), explode (b X ).
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The constructors a and b are used to ensure that the recursive calls to explode are distinct
from one another; if the calls were not distinct then tabling would avoid their redundant
computation. Now, consider the following query:

# :− mem a “bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb”, explode a.

The efficiency behaviour of this query under fair OLDT-resolution is exponential in the
length of the list since each recursive call to explode is distinct and, therefore, sprouts
two new distinct OLD-trees. ♦

One solution to the problem of developing useless branches in Example 4.5 is to spot
that calls to explode do not terminate and, therefore, postpone them in favour of the
calls to mem which do terminate. By doing so, the size of the search space in this case
becomes linear in the length of the list by avoiding the useless branches in the search tree
that would otherwise have to be examined. In the following chapter, we pursue this point
at more length and describe a computation rule that selects a literal in a goal depending
upon whether its resolution terminates.

4.4 Summary

In the previous chapter, we saw that the fair SLD-resolution of a query will terminate
should any other SLD-resolution of it terminate also. However, the efficiency of fair SLD-
resolution using the breadth-first computation rule is often prohibitive in practice, owing
primarily to the redundant computation of many literals in a goal. Furthermore, SLD-
resolution using any computation rule can fail to terminate for left-recursive programs.

Tabled evaluation of logic programs, originally introduced by (Tamaki & Sato 1986)
and reconsidered by (Warren 1992), ostensibly addresses these two limitations of fair
SLD-resolution by eliminating redundant computation and avoiding the cycles that are
intrinsic to left-recursive programs. However, existing tabling systems, like XSB (Sagonas
et al. 1994), invariably employ the left-to-right computation rule and, therefore, inherit
the same poor termination properties of Prolog when executing compositional programs.

In this chapter, we introduced the new concept of fair tabled evaluation to over-
come the limitations of the left-to-right computation rule. We began by adapting OLD-
resolution (Tamaki & Sato 1986) in a straightforward way to use any arbitrary but fixed
computation rule which provided the flexibility required for our novel notion of fairness in
tabled evaluation. Next, we made straightforward alterations to the existing definition of
OLDT-resolution (Warren 1992, Tamaki & Sato 1986) and to its completeness proof. We
then defined fair OLDT-resolution and showed that it terminates for a query whenever
any other OLDT-resolution terminates for it. We also demonstrated that fair OLDT-
resolution enhanced the execution efficiency and termination behaviour of a number of
compositional programs.

However, the price paid for the improved efficiency behaviour over fair SLD-resolution
is that some compositional programs that terminate under fair SLD-resolution no longer
do so under fair OLDT-resolution. Furthermore, although fair OLDT-resolution is guar-
anteed to terminate as often as Prolog and XSB, and more often in practice, identifying
the precise class of programs for which it terminates is difficult to characterise: we have
been unable to do so at at this time and further investigation into this point would be a
valuable area of future work.



Chapter 5

Prioritised Fair SLD-Resolution

Fair OLDT-resolution was introduced in the previous chapter to eliminate the redundant
subcomputations that caused fair SLD-resolution to execute compositional programs in-
efficiently. However, unlike fair SLD-resolution, we saw that fair OLDT-resolution is
incomplete with respect to finite failure. Furthermore, fair OLDT-resolution can itself
suffer from adverse efficiency behaviour since, owing to its fairness condition, it is obliged
to develop OLD-trees that do not meaningfully contribute to the computation of a query.

In this chapter, we address these two issues by formulating a novel resolution strategy,
termed prioritised fair SLD-resolution (or prioritised resolution in short), which prioritises
the selection of literals in a goal according to whether their computation is known to
terminate. Prioritised resolution reinstates the desirable termination property of fair
SLD-resolution—the fair SLD-resolution of a query is guaranteed to terminate whenever
any other SLD-resolution strategy terminates for it also—yet simultaneously enhances
its efficiency behaviour. We begin by defining a new computation rule, followed by a
new algorithm which automatically generates a call set for the prioritised resolution of a
program.

A crucial component of this algorithm is a termination test that detects termination
of queries to logic programs. We review an existing termination test (Lindenstrauss &
Sagiv 1997) and present a slight modification to it to determine termination of programs
with respect to the new computation rule of prioritised resolution, rather than the left-
to-right one. Furthermore, we describe an extension to the test to allow higher-order
predicates to appear in programs, which were ignored in the original presentation. Al-
though termination analysis has recently been used to verify the correctness of logic
programs (Speirs et al. 1997), its application in this chapter to improve the efficiency of
SLD-resolution is new.

5.1 Introduction

Recall from Section 3.5 that one problem with SLDF-resolution (SLD-resolution with
Floundering) is that the method of automatically determining its call set is heuristic in
nature. In many cases, the computed call set is a poor approximation of those subgoals
that have finite SLDF-trees. Worse still, the computed set is often ‘unsafe’, i.e., an SLDF-
resolution using an unsafe call set may terminate for some goal but may loop infinitely
for an instantiation of it. The primary cause of such behaviour is the incremental nature
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of coroutining in the sense that, once a resolution step is performed, the computation
rule is free to select any new callable literal in the resolvent. As a result, it is difficult to
predict whether a query will execute efficiently and certainly whether it will terminate.

We can overcome these limitations by generalising the coroutining computation rule
of Definition 3.8 to a new one that selects a literal in a goal only if its SLD-tree, as
opposed to its SLDF-tree, is finite with respect to the computation rule. Then, since
the resolution of the selected literal will terminate, it may be resolved away completely
before considering any other subgoal in the goal. Essentially, the only difference between
the new computation rule and the one in Definition 3.8 is the representation of the call
set.

Of course, the main difficulty in describing such a computation rule rests in the
determination of whether a given literal terminates: since definite clause logic is Tur-
ing complete, and the Halting Problem is undecidable, determining whether the proof
of a literal terminates is also undecidable. However, in logic programs, the only cause
of non-termination is infinite recursion and, for this special case, it is possible to de-
tect termination automatically for a large, but so far uncharacterised, class of pro-
grams (Lindenstrauss & Sagiv 1997, Codish & Taboch 1997, Plümer 1991, Sagiv 1991).

The most important task in prioritised resolution is to describe an algorithm that
automatically determines a safe call set for a program. The actual representation of a
callable literal is guided by the representation of a literal during termination analysis
since the call set will comprise precisely such literals. Termination analysis requires
a comprehensive examination of the shape of a literal’s arguments since it strives to
determine termination for all literals whose arguments share the same structural patterns.
In particular, the proof of termination for a literal A extends to all those literals that
share the same canonical structure as A, irrespective of their actual form. An abstraction
function, called a norm, has been used in termination analyses to determine whether
or not two terms share the same canonical structure. The following section reviews the
notion of a norm and paves the way towards the representation of the call set or prioritised
resolution, introduced in Section 5.3.

5.2 Symbolic norms and norm functions

In order to uncover a suitable representation for members of the call set in prioritised reso-
lution, we must examine the way in which termination is shown for a literal. Termination
analysis (Lindenstrauss & Sagiv 1997, Codish & Taboch 1997, Plümer 1991, Sagiv 1991)
has been formulated for classes of literals that share the same canonical structure, with
respect to a measure called a norm (Dershowitz 1982). As detailed in this section, norms
provide an account of the essential characteristics of a term’s structure. Consequently,
norms can be used to determine whether an actual literal shares the same essential struc-
ture as another. Moreover, norms provide an indication of the relative size of terms with
the same canonical structure and, as shown later, can be compared using a well-founded
order.

Existing termination analyses attempt to show that every derivation in an SLD-
resolution is finite. This is invariably achieved by ensuring that the size of at least one of a
literal’s arguments, with respect to some norm, strictly decreases at each recursive call in
a derivation towards a terminating condition which is ensured by the well-founded order
on norms. The rigorous formulation of such a termination test is the topic of Section 5.6
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which culminates in Theorem 5.1 (Sagiv 1991). The theorem provides a necessary and
sufficient condition under which logic programs may be shown to terminate. Below, we
review the standard definitions of symbolic norms and norm functions (Lindenstrauss &
Sagiv 1997) which are used pervasively in this chapter.

Definition 5.1 (Symbolic norms). A symbolic norm is a linear integer expression of
the form a0 + a1X1 + · · · + anXn , where n ≥ 0 and, for 0 ≤ i ≤ n, each ai is an integer
and each Xi is a distinct variable. ♦

Definition 5.2 (Norm functions). Let T be a term. A norm function || ||, or just
a norm, maps terms to symbolic norms and is defined as:

||T || =

{
T , if T is a variable
n +

∑k
i=1 mi × ||Ti ||, if T = f T1 . . .Tk , for k ≥ 0

where f is a constructor and, for 0 ≤ i ≤ k , Ti are terms, and n and mi are non-negative
integers that depend only on f . ♦

The following example defines the term-size norm which is occurs frequently in ter-
mination analysis (Lindenstrauss & Sagiv 1997, Plümer 1991).

Example 5.1 (Term-size norm). The term-size norm is obtained from Definition 5.2
by setting n to be the arity of the constructor f , and each mi to be 1, as shown below:

||T || =

{
T , if T is a variable
n +

∑n
i=1 ||Ti ||, if T = f T1 . . .Tn

The term-size norm of a term is an integer if only if the term is ground. ♦

The constants n and each mi in Definition 5.2 lend generality to the construction of
symbolic norms. However, we have found that taking n = 0 for constructors of arity 0,
and n = 1 otherwise, and each mi = 1, gives the same termination results in practice as
using any other values. Indeed, these findings have been recently corroborated by another
implementation of termination analysis (Speirs et al. 1997).

The symbolic norm of a term essentially provides an abstract interpretation of its
structure in a canonical way. In particular, symbolic norms can be used to determine
whether one term exhibits a comparable form to another term. The significance of this
is that termination analysis is able to prove termination for entire classes of literals,
in particular those whose arguments share the same canonical structure as determined
by some norm. So, given some norm, two terms have the same essential structure
if they are both instantiated enough with respect to that norm; the definition is due
to (Lindenstrauss & Sagiv 1997) and is repeated below.

Definition 5.3 (Instantiated enough). A term T is instantiated enough with respect
to some norm || || if its symbolic norm, ||T ||, is an integer. ♦

The above notion of a term being instantiated enough takes into account the fact
that variables may occur in it. This is important since, during a resolution, a variable
in a term may become instantiated to any other term and, therefore, markedly affect
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the overall structure of the term that it appears in. However, depending on the norm
used to describe the canonical structure of terms, variables in certain positions in a
term may or may not be considered significant. The most important fact regarding a
term being instantiated enough with respect to some norm is that its symbolic norm is
invariant under substitution. In other words, for a term T that is instantiated enough
(with respect to some norm) and for any substitution φ, it is the case that ||T || = ||T [φ]||.
As demonstrated later, it is precisely this property that allows the call set of prioritised
resolution to be safe. The following example defines the commonly used list-size norm
and serves to demonstrate how the choice of norm affects whether a term is instantiated
enough or not.

Example 5.2 (List-size norm). The list-size norm is defined as:

||T || =


T , if T is a variable
0, if T = nil
1 + ||X ||, if T = A : X

The importance of the list-size norm is that any finite list is instantiated enough, irre-
spective of whether its elements are instantiated or not. For example, both a : b : c : nil
and A : B : C : nil are instantiated enough, with symbolic norm 3, using the list-size
norm but only the former list is instantiated enough, with symbolic norm 6, using the
term-size norm. ♦

5.3 Instantiation patterns

The previous section reviewed norms as functions taking terms to symbolic norms and
explained how norms can be used to determine whether two terms have a comparable
canonical structure: if two terms are instantiated enough with respect to some norm
then they share the same essential form. In this section, we review the notion of an in-
stantiation pattern which is an abstraction of a literal that indicates whether or not its
arguments are instantiated enough with respect to a norm. Critically, the proof of termi-
nation of a literal can be performed on its instantiation pattern rather than on its actual
form. Therefore, the result of termination analysis for an instantiation pattern extends
to all those actual literals which share that instantiation pattern.

The definitions of instantiation patterns and the abstraction function that trans-
forms a literal into its instantiation pattern, with respect to some norm, are given
by (Lindenstrauss & Sagiv 1997) and are repeated below.

Definition 5.4 (Instantiation patterns). Let P be a program and p be a predicate
in P with arity n, for n ≥ 0. Furthermore, let ie and nie be special terms that may not
occur in P . An instantiation pattern for p is a literal of the form p T1 . . . Tn where, for
each 1 ≤ i ≤ n, the term Ti is either ie or nie. ♦

The special terms ie and nie in an instantiation pattern are used to represent ar-
guments that are respectively instantiated enough or not instantiated enough, for some
given norm. The abstraction function α, taking literals to their instantiation patterns
with respect to some norm, is defined next.
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Definition 5.5. Let A be a literal and || || a norm. The abstraction function α, taking
literals to instantiation patterns, is defined as follows:

α(A) =


p α(T1) . . . α(Tn), if A = p T1 . . . Tn where p is a predicate symbol
ie, if A is a term instantiated enough w.r.t. || ||
nie, otherwise

where T1, . . . ,Tn are terms, for n ≥ 0. ♦

Example 5.3. Consider calculating α(append X (A : nil) Y ) with respect to the list-
size norm. We proceed by applying the first equation of Definition 5.5 to produce the
new literal append α(X ) α(A : nil) α(Y ). The first and third subexpressions in this
term evaluate to nie via the third equation of Definition 5.5 since a variable is always
not instantiated enough with respect to the list-size norm. However, the term A : nil is
instantiated enough with respect to the list-size norm and, therefore, α(A : nil) evaluates
to ie. Hence we have that α(append X (A : nil) Y ) = append nie ie nie.

Alternatively, let us compute α(append X (A : nil) Y ) with respect to the term-size
norm. The application of the first equation of Definition 5.5 results once more in the
literal append α(X ) α(A : nil) α(Y ) and, again, the first and third subexpressions are
not instantiated enough, this time with respect to the term-size norm. Furthermore,
the term A : nil is not instantiated enough with respect to the term-size norm which
means that α(A : nil) = nie. Therefore, we have that α(append X (A : nil) Y ) =
append nie nie nie for the term-size norm. ♦

One last useful concept is the notion of one instantiation pattern subsuming another.
Essentially, one instantiation pattern subsumes another if the former has at least the
same structure as the latter, and the definition, due to (Lindenstrauss & Sagiv 1997), is
as follows.

Definition 5.6 (Subsuming instantiation patterns). Let p be a predicate, and A
and B be instantiation patterns for p. Then A subsumes B if, for every argument
position in B that is ie, the corresponding argument position in A is also. ♦

As formalised in the following section, the call set in prioritised fair SLD-resolution is a
set of instantiation patterns, and a literal in a goal is callable if its instantiation pattern is
contained in the call set. Moreover, a call set of instantiation patterns is always finite for
a finite program even though it describes an infinite set of actual literals whose resolution
terminates.

5.4 Prioritised fair SLD-resolution

In this section, we introduce the novel resolution strategy prioritised fair SLD-resolution,
or prioritised resolution for brevity, which prioritises the selection of literals in a goal
according to whether or not their resolution terminates. Prioritised resolution is an in-
stance of the fair SLD-resolution formulated in Chapter 3 and, consequently, inherits the
desirable termination property of fair SLD-resolution, namely, that if the resolution of a
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query terminates using some computation rule, then the prioritised fair SLD-resolution
of that query also terminates. As we shall see shortly, however, prioritised resolution
also overcomes the efficiency problems of fair SLD-resolution that were detailed in Sec-
tion 3.4. In the following discussion, we borrow terminology from coroutining, reviewed
in Section 3.5.

To institute prioritised fair SLD-resolution, a novel computation rule is envisaged as
follows: given a goal and a set of callable literals, the rule selects the leftmost callable
literal in the goal. In the case where the goal is floundered, i.e., no known terminating
subgoal exists in it, a fair resolution step using the breadth-first computation rule of
Definition 3.4 is performed. The latter case ensures that fairness is maintained and,
therefore, a finite SLD-tree is constructed, if at all possible.

The criterion for a literal to be callable is that its prioritised SLD-resolution terminates
without the need for any fair resolution steps. Thus, inefficient fair resolution steps are
eliminated during the prioritised resolution of a callable literal and it is precisely this fact
that makes prioritised resolution more efficient than fair SLD-resolution (Definition 3.4).
Termination analysis, presented later in Section 5.6, is used to determine whether an
instantiation pattern terminates without the need for fair resolution steps. We begin the
presentation of prioritised resolution by providing the definition of the call set, below.

Definition 5.7 (Call set). A call set C is a set of instantiation patterns (from Defini-
tion 5.4). ♦

From this definition, a literal is callable if its instantiation pattern is included in the
call set of the program.

Definition 5.8 (Callable literals). Let A be a literal, C be a call set, and α be the
transformation function from Definition 5.5. Then A is callable with respect to C if and
only if α(A) ∈ C. ♦

The description of the computation rule for prioritised resolution is similar to the one
for coroutining (from Definition 3.8) but instead uses the two previous definitions where
appropriate. Finally, prioritised fair SLD-resolution can be defined as follows.

Definition 5.9 (Prioritised fair SLD-resolution). Let R be a computation rule and
let C be a set of instantiation patterns. Furthermore, let C = A :− B1, . . . ,Bm , for m ≥ 0,
be a definite clause and G = # :− A1, . . . ,An , for n ≥ 1, a goal. There are two cases to
consider:

1. Suppose the selected literal is RC(G) = Ai , for 1 ≤ i ≤ n, and that Ai and A are
unifiable with most general unifier φ. The SLD-resolvent of C and G is the goal

G ′ = (# :− B1, . . . ,Bm ,A1, . . . ,Ai−1,Ai+1, . . . ,An)[φ]

2. Suppose G is floundered but that A1 and A are unifiable with most general unifier φ.
Then the selected literal is A1 and the SLD-resolvent of C and G is the goal

G ′ = (# :− A2, . . . ,An ,B1, . . . ,Bm)[φ]

The substitution φ is called the substitution of the SLD-resolution. ♦
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Prioritised fair SLD-resolution exhibits more predictable efficiency behaviour than
that of fair SLD-resolution using the breadth-first computation rule since, whenever pos-
sible, prioritised resolution will select a terminating literal for evaluation over an infinite
one. Consequently, many useless branches in the SLD-tree that would finitely-fail un-
der fair SLD-resolution are completely avoided by prioritised resolution. The practical
benefits of executing compositional programs using prioritised resolution are examined in
detail in Chapter 6.

Furthermore, prioritised resolution is suitable for the application of tabling techniques,
such as those presented in Chapter 4, to eliminate the redundant evaluation of callable
literals. Therefore, prioritised resolution has the potential to increase further its efficiency
gains over fair SLD-resolution. This point is pursued in more detail in Section 7.2.

5.5 Generating a call set automatically

In this section, we describe a novel algorithm—depicted in Figure 5.1—that automati-
cally constructs a call set of a program for use in prioritised resolution. The algorithm
commences, for a program P and some norm function, by using patterns P to construct
the set C0 of every possible instantiation pattern for each predicate defined in P . The
job of C is to accumulate the instantiation patterns of C0 whose prioritised resolution
terminate without performing any fair resolution steps.

On each iteration of the outer loop, a set C′ identical to C0 is created. Then, for each
instantiation pattern A ∈ C′, the following checks are performed. Firstly, the function
call subsumed (A,C) checks to see if A is subsumed by any instantiation pattern in the call
set C, according to Definition 5.6. If so, then A is guaranteed to terminate. Otherwise, the
second check is carried out: the function finite tests whether the instantiation pattern A
has a finite prioritised resolution, with respect to the call set C∪{A}, without performing
any fair resolution steps. If either of the two above checks succeed, then A is removed
from C0 and added to C. The variable finished is assigned the value false since existing
instantiation patterns in C0 may be proved terminating with respect to the expanded
set C.

The execution of generate always terminates for a program that contains a finite
number of clauses since, in this case, the inner loop iterates over a finite set and, on
each iteration, either decreases the size of C0 or maintains that finished = true. The
function generate terminates when every instantiation pattern in C0 cannot be shown
to terminate. Neglecting the function finite for the time being, the efficiency behaviour
of generate P is exponential in the maximal arity of the predicates in P since this factor
dominates the cardinality of C0.

All that remains is the realisation of the function finite, i.e., the determination of
whether the prioritised resolution of literals with a particular instantiation pattern ter-
minate without performing any fair resolution steps. Such tests exist for the left-to-
right computation rule (Lindenstrauss & Sagiv 1997, Codish & Taboch 1997, Sagiv 1991)
and, in the following section, we extend the test of (Lindenstrauss & Sagiv 1997) in a
straightforward manner to use the computation rule of prioritised resolution instead of
the left-to-right one.
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generate P =
let C0 := patterns P and C := { } and finished := false
while not finished do

let C′ = C0

finished := true
while C′ 6= { } do

let A ∈ C′ and C′ := C
′ − {A}

if subsumed (A,C) or finite (P ,A,C) −→
C0 := C0 − {A}; C := C ∪ {A}; finished := false

fi
done

done
return C

Figure 5.1: The algorithm for determining a set of callable literals.

5.6 Termination analysis

In the logic programming community, much research has taken place over the past
decade to detect automatically whether a given goal will terminate for a given pro-
gram (Lindenstrauss & Sagiv 1997, Codish & Taboch 1997, Sagiv 1991, Plümer 1991).
However, all of the algorithms developed test termination with respect to the left-to-right
computation rule of Prolog (Definition 2.7). In this section, we review the termination
test introduced by (Lindenstrauss & Sagiv 1997) and present a straightforward modifi-
cation to it to allow the termination of literals to be determined for the computation
rule of prioritised resolution, rather than for the left-to-right one. The adapted test is
a vital component of the algorithm in Figure 5.1 which constructs a program’s call set
automatically for prioritised resolution. Thus, for the first time, termination analysis is
used to improve the execution efficiency of logic programs.

The existing test is augmented with the notion of a call set as well as the novel
computation rule of prioritised resolution, both introduced in Section 5.4. Moreover, in
Section 5.7, the termination test is adapted to cope with the occurrence of higher-order
predicates in programs—pervasive in compositional programs—which was neglected in
the original presentation of the test (Lindenstrauss & Sagiv 1997).

Termination analysis attempts to show that the SLD-tree for a literal contains no
infinite branches. Broadly speaking, the instantiation pattern of a literal, with respect
to some norm, is used to to generate an approximation of the actual SLD-tree. Each
derivation is shown to terminate by demonstrating that the size of each recursive call
to a predicate strictly decreases in size, with respect to some well-founded order. The
size of a term is determined by an appropriate norm function and the ordering is defined
by the comparison of symbolic norms. Only arguments that are instantiated enough are
considered in termination analysis since only they have a constant symbolic norm and can
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therefore be meaningfully compared. The choice of norm used in termination analysis,
then, is crucial: an inappropriate norm may fail to identify some arguments of a literal as
instantiated enough when another norm would not. Consequently, a proof of termination
for a literal may be impossible. The following example illustrates this point.

Example 5.4. Consider append (1 : A : 3 : nil) X (B : 2 : 3 : 4 : nil). Both the first
and third arguments of the literal are instantiated enough with respect to the list-size
norm. However, neither argument is instantiated enough with respect to the term-size
norm. In this latter case, termination analysis would be unable to prove that the literal
terminates. ♦

Since an arbitrary number of conceivable norms exist, it would be desirable to dis-
cover a method of automatically deriving the most suitable norm to use in a termination
analysis, i.e., the norm that permits the greatest number of literals to be proven to ter-
minate. To date, we have been unable to formalise such a process, although one possible
direction of future research in this area is discussed in Section 7.2. In the rest of this
section, we consider proving termination of programs with respect to the term-size norm
of Example 5.1.

5.6.1 An informal example of termination analysis

To motivate the process of termination analysis, consider the following predicate that
determines if one list is a sublist of another list:

sublist X Y :− append U X V , append V W Y .

Therefore, X is a sublist of Y if there exists three lists U , V , and W such that U ++
X = V and V ++ W = Y . Let us informally demonstrate how the following query can
be shown to terminate under prioritised fair SLD-resolution with respect to the term-size
norm:

# :− sublist X (a : b : c : nil). (5.1)

The instantiation pattern for query (5.1) is sublist nie ie, where the symbolic norm
of a : b : c : nil is 6 with respect to the term-size norm. A portion of the prioritised fair
SLD-tree for (5.1) is depicted in Figure 5.2, where the selected literal at each resolution
step is underlined.

Termination analysis approximates the shape of the actual SLD-tree by replicating
the resolution step made at each node. In this way, portions of a derivation are generated
until a recursive call to a literal on the path is discovered, or all such non-recursive
portions have been examined. At each recursive call, it is possible to check whether the
call has decreased in size since its initial appearance by comparing the symbolic norm of
each appropriate argument.

The approximated tree usually contains far fewer nodes than the actual SLD-tree
since recursive calls are terminal nodes in the analysis. Moreover, since each literal is
represented by its instantiation pattern, the termination test does not perform explicit
unification of literals in an abstract resolution step. To explain, consider performing
a simulated resolution step for an abstract literal and a program clause: the formal
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{V 7→ a : X1}

4. # :− .

2. # :− append U X V ,

Fail

{X1 7→ b : X2}

7. # :− append X2 W (c : nil),

X 7→ nil}

W 7→ a : b : c : nil}

6. # :− append U X (a : nil).

{X1 7→ nil ,

1. # :− sublist X (a : b : c : nil).

W 7→ b : c : nil}

{V 7→ nil ,

{U 7→ nil ,

append V W (a : b : c : nil).

append U X (a : b : X2).

5. # :− append X1 W (b : c : nil),
append U X (a : X1).

3. # :− append U X nil .

Figure 5.2: The prioritised fair SLD-tree for # :− sublist X (a : b : c : nil).

parameters of the clause are instantiated enough if the corresponding arguments of the
abstract literal are instantiated enough. Then, for each subgoal in the body of the clause,
if all the variables contained in each of its arguments are instantiated enough then that
argument becomes instantiated enough. These new subgoals are then used to create more
abstract resolutions, following the actual resolution performed in the real SLD-tree.

So, in the SLD-tree of Figure 5.2, node 1 generates node 2 via the sole clause of sublist .
In the abstract resolution step for this clause and the instantiation pattern sublist nie ie,
only the final argument in the subgoal append V W (a : b : c : nil) is instantiated
enough with symbolic norm 6. Furthermore, this literal is selected for resolution in
node 2 since it is callable. Let us show why this is the case. The instantiation pattern for
the selected literal is append nie nie ie. In node 2, the resolution of it with the second
clause for append produces node 5, introducing the next selected literal append X1 W (b :
c : nil), i.e., a recursive call to append . Again, this literal has only its third argument
instantiated enough, but this time with symbolic norm 4 with respect to the term-size
norm. Now, since the third argument in the recursive call has a smaller norm than the
original and there is only one recursive clause for append in the program, we deduce
that all calls to append terminate that have an instantiated enough third argument with
respect to the term-size norm.

The knowledge that the selected literal in node 2 terminates leaves us with the proof
of whether the consequently instantiated version of append U X V terminates. The
concern here is to determine whether any of the variables in this term will have become
instantiated enough (with respect to the term-size norm) after the successful resolution
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of append V W (a : b : c : nil). This information is gleaned from a preliminary
stage of termination analysis, called instantiation analysis, that determines the possible
instantiation patterns of literals in the success set of a predicate. Instantiation analysis
is detailed in Section 5.6.2 but, for the time being, let us assume that both V and W
become instantiated enough.

Therefore, the final argument of append U X V becomes instantiated enough. The
size of V follows from constraints that exist between the sizes of the arguments of append .
These constraints—established during another preliminary stage of termination analysis,
called constraint analysis—provide vital information regarding the relative size of ar-
guments and, consequently, help establish that recursive calls decrease in size. In the
current example, however, such information is not necessary. Indeed, constraint analysis
is an optional component of termination analysis but, more often than not, is essential to
prove termination for a query. Returning to the example, the remaining subgoal has the
instantiation pattern append nie nie ie. However, such patterns have just been proven
to terminate. Therefore, we deduce that calls to sublist that have their second argument
instantiated enough with respect to the term-size norm terminate since every branch in
the abstract tree is finite.

The motivating example above provides an informal description of termination analy-
sis for logic programs; we will return to this example later in the chapter and present
a rigorous termination analysis once the necessary machinery has been introduced. The
critical benefit of termination analysis is that termination is determined for instantiation
patterns of literals with respect to some norm. Therefore, the result of termination analy-
sis holds for all literals that share the same instantiation pattern. In the following section,
the process of instantiation analysis is detailed which identifies all those arguments of a
literal that become instantiated enough after its successful resolution.

5.6.2 Instantiation analysis

For a given predicate and a norm, instantiation analysis determines every possible instan-
tiation pattern of the literals that are contained in the success set of the predicate, with
respect to the norm. So, for the append predicate and the term-size norm, instantiation
analysis would discover that calls to append where only the third argument is instanti-
ated enough result in the other two arguments being instantiated enough on termination.
Alternatively, calls to append where only the first argument is instantiated enough re-
sult in the remaining two arguments being insufficiently instantiated with respect to the
term-size norm.

In this section, we describe the process of instantiation analysis, originally introduced
by (Lindenstrauss & Sagiv 1997), which is a relatively simple application of abstract inter-
pretation of logic programs, due to (Cousot & Cousot 1992). In the following discussion,
we use the terminology introduced in Section 5.3, in particular the abstraction function α
from Definition 5.5. In addition, from the standard definition of the Herbrand base of a
program (Lloyd 1987), we define the extended Herbrand base of a program which differs
from the standard one only in that it also contains literals that include variables.

The instantiation analysis of a program is computed by way of a bottom-up abstract
interpretation. For a program P and its extended Herbrand base B , the effect of the
instantiation analysis of P is described as an immediate consequence operator TP : PB →
PB . The behaviour of the function TP is defined as follows: for a set S ⊆ B , TP (S ) is the
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set of literals in B that are heads of the clauses in P whose body literals all appear in S .
The least fixed-point of TP therefore comprises those literals in B that have an SLD-
refutation with the identity substitution as the computed answer, i.e., that are logical
consequences of P . Although this set may be infinite, we can appeal to the Fixed-Point
Abstraction Theorem (Cousot & Cousot 1992) to help us compute the finite set of its
instantiation patterns.

The Fixed-Point Abstraction Theorem is a standard result in logic programming which
essentially permits the abstract interpretation of the least fixed-point of a function to be
computed instead as the least fixed-point of an abstract interpretation of the function’s
domain. A number of rigorous conditions must be met by the function and the abstraction
operator, in our case the functions TP and α, respectively; the details of showing that
the instantiation analysis adheres to these conditions can be found in (Lindenstrauss &
Sagiv 1996). In our case, the Fixed-Point Abstraction Theorem dictates that, if a literal A
is a logical consequence of a program P , then the abstract interpretation of that literal,
i.e., α(A), is contained in the minimal model of a program P ′, where P ′ is an abstract
interpretation of P . More specifically, we have that α(lfp(TP )) ⊆ lfp(TP ′) where ‘lfp’ is
the least fixed-point operator.

The first step in describing the algorithm of instantiation analysis is to provide the
function that transforms a program P into the abstract program P ′ as follows: for each
clause C in P having n distinct variables, we create all 2n instances of C , obtained
by either substituting the special token ‘ie’ for each variable or leaving the variable
unchanged. For each new clause C ′, we apply α to each literal in C ′, resulting in a
ground clause. The whole process produces a program P ′ that consists solely of ground
clauses and, hence, its minimal model, i.e., the set of all literals that are true consequences
of P ′, can be computed bottom-up in a finite number of steps.

The following example illustrates how to compute the minimal model of a program.

Example 5.5. Consider the append predicate whose definition is repeated below.

append nil Y Y :− .

append (A : X ) Y (A : Z ) :− append X Y Z .

Let us construct the abstract representations of the first clause according to the method
described above, with respect to the term-size norm. The abstraction process results
in the following two new clauses obtained by substituting the special term ie for the
variable Y and by leaving Y unchanged.

append nil Y Y :− .

append nil ie ie :− .

To each of these new clauses we apply the operator α, from Definition 5.5, which respec-
tively produces the following two ground abstract clauses:

append ie nie nie :− .

append ie ie ie :− .

The next step is to translate the second clause of append , which contains four distinct
variables, into its 24 = 16 abstract clauses. For reasons of brevity, let us detail the
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construction of only one abstract clause: given the substitution {X 7→ ie,Y 7→ ie,Z 7→
ie}, we obtain the intermediate clause

append (A : ie) ie (A : ie) :− append ie ie ie.

As before, we apply α to each literal in this clause which results in the following abstract
clause:

append nie ie nie :− append ie ie ie.

Once we have obtained all the abstract clauses for the original program by following
the method described above, we can then compute the minimal model of the abstract
interpretation of append , starting with TP ({ }) which results in a set that contains all the
head literals of each fact in the abstract program. Specifically, in the current example we
arrive at the set

TP ({ }) = {append ie nie nie, append ie ie ie}.

We compute the next element in the least fixed point from this set as TP (TP ({ })), and
continue the process until a fixed point is reached.

Ultimately, instantiation analysis of append produces the set

{append ie ie ie, append ie nie nie, append nie ie nie, append nie nie nie}

of instantiation patterns. Therefore, every literal in the success set of append must have
one of these instantiation patterns.

The use of a different norm naturally results a different set of instantiation patterns.
For example, the set {append ie ie ie, append ie nie nie} is produced by using the list-size
norm, instead. ♦

5.6.3 Mappings

The basic component of the termination test of (Lindenstrauss & Sagiv 1997) is a graph—
historically known as a mapping (Sagiv 1991)—which is constructed for each clause (other
than facts) in the program. A mapping is the abstract representation of a clause referred
to in the motivating example of Section 5.6.1. Each node in a mapping corresponds
to an argument of a literal in the clause. Arcs connect nodes and make explicit the
size relationships between various arguments of the literals in the clause. In addition, a
mapping identifies those arguments that are instantiated enough with respect to some
norm. Essentially, mappings abstractly describe finite portions of the SLD-tree for a
query. Termination analysis uses mappings to approximate the actual SLD-tree for a
query and applies certain rules, which are formulated in this section, to the abstract tree
to determine whether it is finite. The definitions contained in this section are standard
from (Lindenstrauss & Sagiv 1997).

Definition 5.10 (Mappings). For a given norm and a clause C with a non-empty body,
the mapping of C is a directed, weighted graph. A node in the graph corresponds to
an argument position of a literal in C and is labelled with the corresponding argument.
A node is coloured black if the label is instantiated enough with respect to the norm,
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or white otherwise. A zero-weight arc connects two nodes with equal symbolic norm. A
weighted arc connects a pair of nodes such that the difference between their symbolic
norms is a linear expression with (non-negative) non-positive coefficients and a (positive)
negative constant term. ♦

Example 5.6. Consider again the reverse predicate whose definition is repeated below:

reverse nil nil :− .

reverse (A : X ) Y :− reverse X Z , append Z (A : nil) Y .

Using the term-size norm, the mapping for the second clause is

reverse ◦A:X

2+A
��

◦Y

0

��

reverse ◦X
−(2+A)

GG

◦Z

0ssappend ◦Z

0
33

◦A:nil ◦Y

0

YY

(5.2)

The head of the clause appears at the top of the mapping followed by successive literals in
the body. Notice that there is no arc between the nodes labelled with A : X and A : nil ;
their symbolic norms are respectively 2 + A + X and 2 + A, and the difference between
these two norms is X . The lack of a positive constant term in this norm indicates that we
cannot be certain that the first term will always be strictly larger than the second, with
respect to the term-size norm. For example, the variable X could eventually be bound
to nil whose symbolic norm is 0. ♦

For brevity, we will often replace zero-weight arcs by unlabelled, undirected arcs and
will omit negative-weight arcs, simply assuming their existence. Therefore, mapping (5.2)
is equivalent to the mapping

reverse ◦A:X

2+A
��

◦Y

??????????????????

reverse ◦X ◦Z

ppppppppppppp

append ◦Z ◦A:nil ◦Y

(5.3)

which is easier on the eye than its counterpart.
Representing clauses as mappings captures concisely the relationships between the

sizes of various arguments. Some of these relationships can be inferred simply from the
symbolic norms of each node in a mapping but others can be derived in a more sophisti-
cated fashion by scrutinising the clauses of a predicate. Indeed, the process of constraint
analysis, detailed later in Section 5.6.4, provides such extra relationships, called con-
straints. A constraint between two nodes in a mapping is represented by an undirected
arc if the nodes have the same symbolic norm, or by an arc of weight 1 if the symbolic
norm of the first is greater than that of the second. Once constraints are known between
nodes in a mapping, we can insert appropriate arcs to represent this knowledge. The
following example illustrates this process.
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Example 5.7. For the reverse predicate of Example 5.6, suppose we know that the length
of the first list argument to reverse is equal to the length of its second list argument. We
can represent this constraint by inserting an undirected arc (dotted, for emphasis) into
mapping (5.3) between the arguments of the first subgoal of the clause as follows:

reverse ◦A:X

2+A
��

◦Y

??????????????????

reverse ◦X ◦Z

ppppppppppppp

append ◦Z ◦A:nil ◦Y

(5.4)

By doing so, we explicitly indicate that the variables X and Z have the same symbolic
norm. ♦

Constraint analysis provides crucial information about argument sizes in a clause
without which proving termination of a literal may be impossible. Moreover, inserting
constraints into a mapping often further elucidates the relationships between argument
sizes since we may be able to infer more relationships from the extra information gleaned
from the constraints. Technically, we can infer the existence of other arcs based on
traversing paths in a mapping, which we define next.

Definition 5.11 (Paths). Let M be a mapping. A path between nodes u and v in M has
positive-weight if the sum of the weights along the path is a linear expression in which the
coefficients are non-negative and the constant term is positive. A path between nodes u
and v in M has zero-weight if it contains no unlabelled arcs and the sum of the weights
along the path is zero. ♦

Essentially, arcs are inferred in a similar vein to taking the transitive closure of a
mapping but not identically since transitivity is predicated by the following rules.

Definition 5.12 (Inferred arcs). Let M be a mapping, and u and v be nodes in M .
An undirected arc can be inferred between u and v if there is a zero-weight path between
them. An unlabelled arc can be inferred from u to v if there is a positive-weight path
between them. ♦

Example 5.8. For mapping (5.4), we can infer the new mapping

reverse ◦A:X

2+A
��

��

''

◦Y

??????????????????

reverse ◦X ◦Z

ppppppppppppp

append ◦Z ◦A:nil ◦Y

(5.5)

The inferred arcs are dotted for emphasis. ♦

The activity of inserting arcs into a mapping may introduce cycles into it. The
existence of a positive-weight cycle in a mapping means that, for some norm and a node
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labelled with T , we have that ||T || < ||T || which is impossible. Therefore, a mapping with
a positive-weight cycle corresponds to a portion of the SLD-tree that cannot actually
occur and we can disregard such mappings. We identify a mapping as consistent if it
does not contain any positive-weight cycles.

Now that we have introduced the abstract representation of a clause, we introduce
the notion of merging subgoals in a mapping. Merging two subgoals corresponds to their
unification in the actual SLD-tree. The basic principle of merging two nodes in a mapping
is that if either node is instantiated enough then both nodes become so after merging.
The process of merging is defined below.

Definition 5.13 (Merging subgoals). Let P and Q be two subgoals in a mapping
labelled with the same predicate. We can merge P and Q to form a new subgoal as
follows: for each corresponding node in P and Q , we form a new node that is black if
either of the two nodes are black, otherwise the new node is white. The arcs of the new
subgoal are the union of the arcs between the nodes of P and Q . ♦

Merging subgoals essentially corresponds to the application of a substitution over
literals in goal. Moreover, should a node be instantiated enough, we assume that all
variables contained in the label of that node are instantiated enough, again in analogy
with variables becoming bound in the actual SLD-tree. Therefore, once new nodes in
a mapping become instantiated enough, other nodes in the mapping may consequently
become instantiated enough; we can infer precisely which nodes are affected according to
the following definition.

Definition 5.14 (Inferred instantiations). Let M be a mapping, and u and v be
nodes in M . If u is black and there is a zero- or positive-weight path from u to v , then v
is also black. A variable is instantiated enough if it appears in the label of a black node.
Any node is black if all the variables in its symbolic norm are instantiated enough. ♦

In this section, we have introduced the abstract representation of a clause as a mapping
and shown how the constraints between the sizes of arguments can be modelled as arcs
in the mapping. In the following section, we show how mappings are used to infer
constraints between the arguments of a predicate. This process of constraint inference is
a precursor to the termination test and provides vital information that allows us to prove
the termination of many literals.

5.6.4 Constraint analysis

Constraint analysis infers relationships between the size of arguments in a predicate,
with respect to a norm, by examining a logic program in a bottom-up fashion. In this
section, we review the process of constraint analysis introduced by (Lindenstrauss & Sagiv
1997). A constraint inferred by this process corresponds to an arc between arguments
in the head literal of a mapping. Thus, we have equality constraints, corresponding to
undirected arcs in the mapping, and monotonicity constraints, corresponding to directed
arcs. Alternative forms of constraint analysis have been considered in the past (Codish &
Taboch 1997, Sagiv 1991, Ullman & Gelder 1988) that use linear inequalities which can
infer constraints that cannot be inferred by the method reviewed here. Conversely, the
analysis in this section can infer constraints that cannot be inferred by linear inequalities.
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The process of constraint analysis is optional in termination analysis but, without it, the
proof of termination for many literals becomes impossible. A constraint for our purposes
is as follows.

Definition 5.15 (Constraint pattern). A constraint pattern, or simply constraint, is
the restriction of a mapping to the nodes of only one subgoal. Each node is white and
the arcs are restricted to only those between the nodes of the subgoal. ♦

An example constraint for the predicate append is

append ◦ ◦ ◦ (5.6)

which indicates that the second and third arguments to append have equal size. Since
a constraint is a subgoal, a constraint can be merged with another subgoal according to
Definition 5.13.

The algorithm we review for constraint inference, which is due to (Lindenstrauss &
Sagiv 1997), employs an abstract interpretation of programs similar to that used in the
instantiation analysis of Section 5.6.2. This time, however, the abstraction function α
takes a term T ∈ B to the constraint pattern that can be inferred for T according to
some norm. For example, using the term-size norm, α maps the literal append nil Y Y
to the constraint (5.6) since the norms of the last two arguments are equal. We attempt
to infer a new constraint for the predicate in the head of a mapping, using the method
defined below.

Definition 5.16 (Constraint inference). Let C = A :− B1, . . . ,Bn , for n ≥ 1 be a
clause. We derive a new constraint for the predicate of A as follows:

1. Let M be the mapping of C .

2. For each Bi , where 1 ≤ i ≤ n, select a constraint inferred already for Bi . If none
exists, C cannot be used to infer a new constraint. Otherwise, merge the constraint
and the subgoal Bi in M according to Definition 5.13.

3. Infer all arcs according to Definition 5.12.

If M is consistent then the constraint pattern for A is inferred as a new constraint for
the predicate of A. ♦

Suppose C is the set of all constraints and P is a program. Then the effect of a
single inference step can be described as an immediate inference operator IP : PC → PC
as follows: for a set of constraints S ⊆ C , the set IP (S ) contains those constraints
inferred according to Definition 5.16 for the predicate of each constraint in S . Since IP is
both monotonic and continuous, and the set of abstract clauses is finite, the least fixed
point of IP can be computed iteratively in a finite number of steps. The Fixed-Point
Abstraction Theorem gives us that, for each literal A that is a logical consequence of P ,
A satisfies at least one constraint in the fixed-point of IP . That is, α(lfp(TP )) ⊆ lfp(IP )
where TP is the immediate consequence operator of Section 5.6.2 and ‘lfp’ is the least
fixed-point operator. The details of fixed-point abstraction in constraint analysis are
given by (Lindenstrauss & Sagiv 1996). The following example illustrates the inference
of constraints for a program.
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Example 5.9. Consider the inference of constraint patterns for the append predicate.
We have that IP ({ }) comprises the single constraint (5.6), obtained from the first (fact)
clause. For the next ordinal of IP , we take the basic mapping for the second clause
of append and follow the process described in Definition 5.16. We end up with the
following mapping, where the solid arcs are from the basic mapping and the dotted arcs
are the inferred arcs.

append ◦A:X

2+A

��

◦Y ◦A:Z

2+A

��

oo

xx
append ◦X ◦Y ◦Z

Thus, we are able to derive a single additional constraint for append , namely

append ◦ ◦ ◦oo

which indicates that the third argument is larger than the second. ♦

The constraints inferred by the process described in this section are vital for the
success of termination analysis. In the following section, we describe the termination
analysis of (Lindenstrauss & Sagiv 1997) and its novel adaptation to test termination of
programs using prioritised resolution (Definition 5.9).

5.6.5 The termination test

In this section, we adapt the termination test of (Lindenstrauss & Sagiv 1997) to use
the computation rule of prioritised resolution, described in Definition 5.9, rather than
the left-to-right one. The alterations to the existing test are relatively straightforward,
requiring only the integration of the notion of a call set and the novel computation rule of
prioritised resolution into the method of generating query-mapping pairs (Definition 5.20).
Nevertheless, the extended termination test equips us with the power to implement the
novel algorithm, presented earlier in Section 5.5, which automatically generates a call set
of a program for use with prioritised resolution. The application of termination analysis
in this way to improve the execution efficiency of resolution is unique to this thesis.

Termination analysis constructs an abstract version of the actual SLD-tree and tests
whether every recursive call in the tree is finite. The crucial point of termination analysis
is that a recursive call will be finite if certain arguments of it decrease in size: this
observation is formalised and proved later in Theorem 5.1, which is originally due to (Sagiv
1991). We construct the abstract tree by mimicking the actual resolutions made in the
SLD-trees. The crucial components in the abstract version are the selected literal and
the relevant program clause. Therefore, an abstract resolution step is characterised by
the abstract forms of both of these components. The abstract form of the program clause
is a mapping (Definition 5.10) and a ‘query pattern’, defined next.

Definition 5.17 (Query pattern). A query pattern is the restriction of a mapping to
the nodes of only one subgoal. The arcs of the query pattern are restricted to those
between the nodes of the subgoal. ♦
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Two query patterns are identical if they are labelled by the same predicate, corre-
sponding nodes are the same colour and also have the same arcs between them. An
instantiation pattern is obtained from a query pattern in the obvious manner: an argu-
ment in the instantiation pattern is ie if its counterpart in the query pattern is black,
otherwise the argument is nie.

Let us how see how an actual resolution step is modelled abstractly using mappings.
Consider a prioritised resolution step with a callable literal and a suitable program clause.
The selected literal in the subsequent step is one of those introduced by the previous step,
i.e., a subgoal in the body of the program clause used in the previous resolution. In order
to construct an abstract portion of a derivation, we restrict our attention in an abstract
resolution step to the head of a mapping and the subgoal in its body corresponding to the
next selected literal. We refer to this restriction of a mapping as its ‘summary’, formalised
in the next definition.

Definition 5.18 (Summary mapping). Let M be a consistent mapping of some pro-
gram clause C . A summary mapping of M is a mapping that comprises only the following:
the nodes corresponding to the head of C , called the domain; the nodes corresponding
to one subgoal of C , called the range; and the arcs between these nodes in M . Moreover,
we delete the label from each node, the weight from each non-zero arc, and also delete
all non-zero arcs that connect nodes other than black ones. ♦

Example 5.10. The summary mapping of (5.5), with its range being the second subgoal
in its body, is

reverse ◦

��

◦

NNNNNNNNNNNNN

append ◦ ◦ ◦
(5.7)

The query pattern for the range of this summary is

append ◦ ◦ ◦ (5.8)

The query pattern is bereft of arcs since no arcs appear in (5.7) between the nodes
of append . ♦

A summary mapping isolates successive selected literals in a pair of resolution steps;
the domain of the summary is the selected literal of the first resolution step and the
range is the selected literal in the following step. The literal in the range, as in the actual
SLD-resolution, is then ‘unified’ with an appropriate mapping. The repetition of this
process allows us to generate an abstract version of the actual SLD-tree.

From a summary mapping, we define ‘query-mapping pairs’ that represent finite por-
tions of actual SLD-derivations. Using a technique of ‘composing’ query-mapping pairs,
the termination test generates all possible combinations of pairs that can be formed by the
computation rule, and tests all recursive pairs for a strict decrease in size. Query-mapping
pairs are defined as follows.

Definition 5.19 (Query-mapping pairs). A query-mapping pair (P ,H ) consists of
a query pattern P and a summary mapping H such that the predicate labelling P is
identical to the predicate labelling the domain of H . ♦
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The range of a query-mapping pair, interpreted as a query pattern, is used to construct
subsequent mappings. From these mappings, new query-mapping pairs are generated ac-
cording to the computation rule of the resolution strategy; for example, (Lindenstrauss &
Sagiv 1997) use the left-to-right computation rule. However, we are instead interested in
generating query-mapping pairs for the computation rule of prioritised resolution.

So, given a query pattern for some predicate, we create a mapping for it using one of
the predicate’s program clauses. The head of the mapping and the query pattern are then
merged and a constraint is added for each previously selected subgoal in the mapping,
which are recorded in a sequence that makes explicit the prior order of selection. The key
point of the sequence is that each previously selected literal in it is assumed to terminate
and, therefore, to be a logical consequence of the program. As a result, we can merge
with each such literal a subsuming instantiation pattern, created during instantiation
analysis, as well as a constraint, created during constraint analysis. All extra arcs and
bindings are then inferred. The final step is to select from the remaining subgoals in the
clause the leftmost one whose binding pattern is contained in the call set. This process
simulates the actual computation rule of prioritised resolution. A query-mapping pair is
then created using the original query pattern, with the summary formed from the head
of the mapping and the selected subgoal.

In order to use the computation rule of prioritised resolution in the termination test,
we augment the original generation procedure presented by (Lindenstrauss & Sagiv 1997)
with the notion of a call set and also a sequence that records the previously selected
literals—the ones already known to terminate—in the mapping which results in the fol-
lowing algorithm.

Definition 5.20 (Generating query-mapping pairs). Let C = A :− B1, . . . ,Bm ,
for m ≥ 1, be a clause and Q a query pattern for the predicate of A. Furthermore, let C
be a call set and S some (possibly empty) sequence of unique indices from {1, . . . ,m}. A
query-mapping pair is created as follows:

1. Let M be the mapping for C .

2. Merge Q and A according to Definition 5.13.

3. For each i ∈ S , in turn:

(a) select a constraint for the predicate of Bi and merge it with Bi in M according
to Definition 5.13;

(b) infer new arcs according to Definition 5.12;
(c) select a subsuming instantiation pattern for Bi and blacken the nodes of Bi

accordingly; and
(d) infer new black nodes according to Definition 5.14.

4. Let Bj be the first subgoal in M such that 1 ≤ j ≤ m ∧ j /∈ S and the instantiation
pattern of Bj is in C. Add j to the end of S .

A query-mapping pair is then generated with the query pattern Q and the summary of M
having Bj as its range. ♦

The important aspect of the method above is the sequence of indices that corresponds
to the order in which literals are selected for resolution in the actual SLD-tree. Once
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a new query-mapping pair is created using the method of Definition 5.20, the query
pattern of its range is used to construct more pairs in the same way. Through a process
of composition of query-mapping pairs, defined shortly, the exploration of every branch in
the actual SLD-tree is simulated. It is this process of composing all query-mapping pairs
that determines whether a subgoal terminates. If composition implies that a subgoal does
indeed terminate, then its index is added to the sequence of previously selected subgoals
and the whole procedure repeats.

Thus, a generated query-mapping pair is composed with all appropriate pairs already
discovered, and the composition of two pairs summarises that portion of a derivation in
the actual SLD-tree by producing a new pair whose domain and range correspond to the
first and last literals in the derivation. The essential importance of composition is that it
elucidates the size relationships between the arguments of the first and last literals. We
define the composition of query-mapping pairs next.

Definition 5.21 (Composition of query-mapping pairs). Let S = (P ,F ) and T =
(Q ,H ) be query-mapping pairs. If the range of F and Q are identical, then the com-
position of S and T is a new query-mapping pair (P ,K ) obtained as follows. A new
mapping K ′ is formed from F and H by merging the range of F with the domain of H ,
according to Definition 5.13. Finally, K is the summary mapping of K ′. ♦

Example 5.11. In diagrams, the query pattern of a query-mapping pair is enclosed in
parentheses. The composition of the query-mapping pair

[ reverse ◦ ◦ ]

reverse ◦

��

◦

NNNNNNNNNNNNN

append ◦ ◦ ◦

and

[ append ◦ ◦ ◦ ]

append ◦

��

◦ ◦

��
append ◦ ◦ ◦

is the new query-mapping pair

[ reverse ◦ ◦ ]

reverse ◦

��

◦

''
append ◦ ◦ ◦

(5.9)

The dotted arcs in (5.9) follow from the composition but are deleted from the query-
mapping pair as they do not connect black nodes (Definition 5.18). ♦
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As mentioned earlier, the crux of the termination test is the generation of all possible
query-mapping pairs for a query pattern. The composition of these pairs corresponds
to the exploration of every branch in the actual SLD-tree. This process ends with pairs
that have an identical range and domain which correspond to recursive calls in the actual
derivation. For each recursive pair, we must ensure that the call in the range is strictly
smaller than the call in the domain. We do so by creating a ‘circular variant’ for each
recursive pair which indicates whether any of its arguments have decreased in size.

Definition 5.22 (Circular variant). Let S = (P ,H ) be a query-mapping pair such
that P and the query pattern of the range of H are identical. Then S has a circular
variant (P ,H ′) where H ′ is obtained from H by inserting a distinguished zero-weight
arc, referred to as a circular arc, between corresponding nodes in the range and domain
of H . ♦

Example 5.12. Given the query-mapping pair

[ reverse • ◦ ]

reverse •

��

◦

reverse • ◦

the circular variant of this pair is

[ reverse • ◦ ]

reverse •

��

◦

reverse • ◦

where the circular edges are dotted. ♦

The main technical component of the termination test is to determine that, for each
circular variant derived for the program, it contains at least one forward positive cycle,
the existence of which indicates a decrease in the size of the recursive call.

Definition 5.23 (Forward positive cycle). Let S = (P ,H ) be the circular variant of
some query-mapping pair. Then S has a forward positive cycle if H has a positive cycle
such that each circular edge in the cycle is traversed from a node in the range to a node
in the domain of H . ♦

The observation that each circular variant should possess at least one forward positive
cycle corresponds to the SLD-tree having no infinite branches. The following theorem,
due to (Sagiv 1991), establishes this result.

Theorem 5.1. Let P be a program, H a goal, and S the set of all query-mapping pairs
associated with the SLD-tree of P ∪ {G}. If all circular variants of the query-mapping
pairs in S have a forward positive cycle, then the SLD-tree for P ∪ {G} is finite.
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Proof. Suppose that every circular variant has a forward positive cycle, but there is an
infinite branch in the SLD-tree for P ∪ {G}. Then there must be an infinite sequence of
selected literals A1,A2, . . . ,Ai , . . . , along this infinite branch. For each i ≥ 1, the head
of some program clause is unified with Ai , and Ai+1 is one of the subgoals of the clause
(guaranteed by the computation rule). Let Mi be the mapping formed with Ai as its
head. Then there is an infinite sequence of mappings M1,M2, . . . ,Mi , . . . , corresponding
to the infinite sequence of selected literals.

We can define an infinite sequence of query-mapping pairs T1,T2, . . . ,Ti , . . . , as fol-
lows. For i = 1, T1 = (Q1,H1), where Q1 is the initial query pattern and H1 is the
summary of M1. For i > 1, Si = (Qi ,Hi) where Qi is the query pattern of the range
of Mi−1 and Hi is the summary of Mi . Observe that each Ti ∈ S and, for each j > i ,
the composition of the query-mapping pairs Ti ,Ti+1, . . . ,Tj is also in S . Now, since S
is finite—any program can only have a finite number of query-mapping pairs—at least
one query-mapping pair in T1,T2, . . . ,Ti , . . . , call it T , must appear an infinite number
of times in sequence. T is clearly a recursive query-mapping pair and, moreover, T must
have a circular variant that contains a forward positive cycle. In this infinite composition
of T , there exists a positive cycle showing that at least one argument of T must strictly
decrease at each step. By induction, there are infinitely many subgoals in the composi-
tion of T , such that as we go from one to the next, the symbolic norm of at least one
argument position become strictly smaller. This contradicts the well-foundeded property
of the ordering on argument size, dictating that such an infinite composition cannot exist.
This contradiction proves the theorem. ♦

At this point, all the machinery necessary to describe termination analysis for arbi-
trary literals has been introduced. An implementation of termination analysis can be
found in Appendix C which provides a detailed view of all the important algorithms of
this section. In the next section, we draw together the material of the current section
by presenting a rigorous application of termination analysis to the motivating example
given at the beginning of the chapter.

5.6.6 A formal example of termination analysis

Termination analysis attempts to determine whether a particular instantiation pattern
of a predicate, with respect to some norm, terminates. In this section, the example of
Section 5.6 is revisited, giving a formal termination analysis of the query

# :− sublist X (a : b : c : nil).

We use the term-size norm and prioritised fair SLD-resolution in the example. The
instantiation pattern of this query, with respect to the term-size norm, is sublist nie ie
which corresponds to the query pattern sublist ◦ • .

Termination analysis proceeds by approximating the SLD-tree of Figure 5.2 for the
query pattern. Earlier, we noted that constraint analysis is an optional component of
termination analysis and, for simplicity, let us ignore the use of constraints in the cur-
rent example. The first resolution step involves the construction of the mapping for the
query pattern and the subsequent generation of a query-mapping pair according to Defi-
nition 5.20. The following mapping is constructed by merging the query pattern with the
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head of the mapping for sublist and inferring new bindings, according to Definition 5.14:

sublist ◦X

NNNNNNNNNNNNN •Y

<<<<<<<<<<<<<<<<<<<

append ◦U ◦X ◦V

hhhhhhhhhhhhhhhhhhhhhhhhhhh

append ◦V ◦W •Y

(5.10)

To construct the query-mapping pair, the subgoal in the body of (5.10) selected by
prioritised resolution must be identified. To do so, a call set of instantiation patterns is
necessary.

Therefore, it is advantageous to perform termination analysis following the topological
ordering of the predicate dependency graph of the program. By doing so, each predicate
in the body of a clause will have been previously analysed (other than those in the same
strongly connected component of the dependency graph). In the current example, the
call set will contain the instantation pattern append nie nie ie since it terminates. Let us
demonstrate why this is so. The query pattern corresponding to the instantiation pattern
is

append ◦ ◦ • (5.11)

Again, the first task is to construct the mapping for append and merge it with (5.11):

append ◦A:X

2+A

��

◦Y •A:Z

2+A

��
append ◦X ◦Y •Z

Since there is only one subgoal in the body of the mapping, the only query-mapping pair
is the following one:

[ append ◦ ◦ • ]

append ◦ ◦ •

��
append ◦ ◦ •

(5.12)

For each new query-mapping pair constructed, its circular variant (if it exists) is checked
for at least one forward positive cycle (Definition 5.22). The pair (5.12) does indeed
have a circular variant that contains a forward positive cycle. Query-mapping pairs with
a circular variant are terminal in the generation of other pairs and so the pair (5.12)
is sufficient to determine that all query patterns (5.11) terminate with respect to the
term-size norm.

So, mapping (5.10) is revisited with the knowledge that its second subgoal terminates.
At this point, the results of instantiation analysis are used to decide which arguments of
the second subgoal have become instantiated enough after the successful resolution. The
applicable instantiation patterns are those of (5.5), from Section 5.6.2. Since the third
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argument of the second subgoal is instantiated, the only subsuming instantiation pattern
(Definition 5.6) is append ie ie ie. The arguments of the second subgoal in (5.10) are
instantatiated appropriately and, after inferring new bindings, results in the mapping:

sublist ◦X

NNNNNNNNNNNNN •Y

<<<<<<<<<<<<<<<<<<<

append ◦U ◦X •V

hhhhhhhhhhhhhhhhhhhhhhhhhhh

append •V •W •Y

This time, the first subgoal must be selected for resolution since it is the only unconsidered
one. The instantiation pattern for this subgoal is the same as before which is known
to terminate. Therefore, termination is shown for the initial query using prioritised
resolution with respect to the term-size norm.

5.7 Higher-order predicates in termination analysis

Higher-order predicates are a pervasive component of compositional programs. However,
the original termination analysis introduced by (Lindenstrauss & Sagiv 1997) ignored the
possibility of higher-order predicates appearing in programs. In this section, we show
how to extend that termination analysis to cope with higher-order predicates; the modi-
fication is conceptually straightforward although it increases the complexity of an actual
implementation of prioritised resolution. (An implementation of prioritised resolution
that includes termination analysis for programs that may contain higher-order predicates
can be obtained from the author.)

Let us illustrate the main difficulties of dealing with higher-order predicates in termi-
nation analysis using the following example. Consider the following parsing combinators
from Section 1.1:

eq A A :− .

satisfy P (A : X ) V Y :− P A, succeed A X V Y .

literal A X V Y :− satisfy (eq A) X V Y .

The clause for satisfy has the corresponding mapping

satisfy ◦P ◦A:X

2+A

��

2+X

��������������������
2+X

xxppppppppppppp ◦V ◦Y

P ◦A

succeed ◦A ◦X ◦V ◦Y

(5.13)

The variable P in mapping (5.13) occurs as the ‘name’ of a predicate and, in order to
determine whether calls to satisfy terminate, the actual binding of P must be known.
Consequently, termination analysis can only be performed on the unique ‘first-order in-
stance’ of a higher-order predicate, i.e., where each higher-order variable is bound to a
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first-order term. For example, in the literal parser above, suppose we wish to discover
whether the query pattern literal • • ◦ ◦ terminates. The analysis of this pattern
relies on the termination of satisfy (eq • ) • ◦ ◦ which, in turn, requires termination of
the goal # :− eq • • , succeed • • ◦ ◦ , that consists solely of first-order predicates.
Thus, the termination analysis of literal is possible because the instance of satisfy in the
body of the clause for literal is a first-order instance.

The implication of the above result on the programming language is that queries may
not contain unbound higher-order variables. So far, however, the inability to evaluate
such queries has not yet proved to be a significant restriction to the style of compositional
programming presented in this thesis; for example, the programs presented throughout
the thesis have made no use of such a facility. Nevertheless, it may be the case that
the ability to determine the values of higher-order variables could prove to be valuable
in some alternative notion of compositionality than the one advocated in this thesis. Of
course, any such compositional language would need to adopt higher-order unification
in its evaluation mechanism, as is the case with λProlog (Nadathur & Miller 1988). In
such a case, though, it is difficult to see how termination analysis could be adapted to
operate on goals that contain unbound higher-order variables. Integrating higher-order
unification and prioritised resolution could, therefore, present an interesting area of future
work; we remark further on this point in Section 7.2.

The implementation of prioritised resolution presented in Appendix C ignores the
possibility of programs containing higher-order predicates, solely for reasons of simplicity.
Fortunately, extending the implementation to cope with higher-order predicates, mainly
affects the construction of the program’s predicate dependency graph. In effect, a top-
down process of partial evaluation is necessary to instantiate each higher-order variable in
the first-order instance of a higher-order predicate. The main complication in the partial
evaluation is determining for each predicate which of its arguments are higher-order
and, therefore, require instantiation. A primitive typing mechanism, hidden from the
programmer in the internals of the language, is sufficient for this purpose. Alternatively,
a strong type system could be adopted for the language. (The interpreter referred to at
the beginning of the section follows the latter approach.)

5.8 The limitations of prioritised fair SLD-resolution

The constraint analysis of Section 5.6.4 infers equality and monotonicity constraints for
a program in a bottom-up style, and is implemented in this way in the interpreter of
Appendix C. However, this approach is somewhat primitive in comparison to recent con-
straint analyses which instead solve linear inequalities between argument sizes of literals
in a clause (Codish & Taboch 1997, Speirs et al. 1997). These new techniques are of-
ten able to infer a more comprehensive set of constraints for a program than the one
of Section 5.6.4. Consequently, without the knowledge of these extra constraints, the
termination test of Section 5.6 can find the termination proof of some literals impossible.
Fortunately, the results of these new constraint analysis can be expressed straightfor-
wardly in our termination test and we discuss how to do so in this section.

The constraint analysis of (Codish & Taboch 1997) is implemented using a standard
constraint-solving library of a particular dialect of Prolog, called SICStus Prolog (SICS
1997). The use of this library simplifies the implementation and improves the efficiency of
their termination analysis which evolved from the test of (Lindenstrauss & Sagiv 1997).
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In order to illustrate the deficiencies of the bottom-up constraint analysis of Section 5.6.4,
let us consider the following elementary Ruby program, familiar from Section 1.2:

id A A :− .

par R S (pair A C ) (pair B D) :− R A B , S C D .

Consider determining the constraints for par id id using the method of Definition 5.16
and the term-size norm. Constraint analysis infers the following sole constraint for id :

id ◦ ◦ (5.14)

To infer constraints for par id id , the mapping corresponding to its program clause is
first constructed as follows:

par id id ◦(pair A C )

2+C

��
2+A

��

◦(pair B D)

2+D

��
2+B

��

id ◦A ◦B

id ◦C ◦D

Then, each occurrence of id in the body of the mapping above is merged with the con-
straint (5.14). The next step, according to Definition 5.16, is to infer all possible arcs
which results in the following mapping where the inserted and inferred arcs are dotted
for emphasis.

par id id ◦(pair A C )

2+C

��
2+A

��

&&

��

◦(pair B D)

2+D

��
2+B

��

xx

��

id ◦A ◦B

id ◦C ◦D

(5.15)

As there is no constraint in the head of the mapping, no constraint can be inferred
for par id id .

An arc cannot be inferred between the arguments of the head since the path between
the nodes labelled (pair A C ), A, B , and (pair B D) has weight (2 + C ) + 0− (2 + D) =
C − D . Since C − D does not have all non-negative coefficients, a constraint cannot
be inferred. However, the constraint between the second id subgoal in (5.15) explicitly
states that C = D . Using this information would allow the weight of the path above
to be simplified to 0 and permit the inference of an equality constraint between the
arguments in the head of the mapping. On the other hand, the constraint analysis
of (Codish & Taboch 1997) is able to infer constraints of this nature and, as we shall
see in the following chapter, the inability to infer constraints like the one above can
result in poor efficiency behaviour of prioritised resolution. The actual integration of
alternative constraint analyses into our termination test has yet to be conducted and
forms a desirable area of future work, as discussed in Section 7.2.
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5.9 Summary

In this chapter, we introduced prioritised fair SLD-resolution to recover the desirable
property of fair SLD-resolution, lost by fair OLDT-resolution, which ensures the termi-
nation of a query whenever any other resolution strategy would terminate for it. Further-
more, prioritised resolution aimed to improve the efficiency of executing compositional
programs over that of fair SLD-resolution by prioritising the selection of literals in a
goal according to whether their resolution terminates. Prioritised resolution also offers
advantages over coroutining computation rules: firstly, the construction of the call set for
a program in prioritised resolution is less heuristically based; and, secondly, prioritised
resolution permits the prediction of whether a particular query will execute efficiently
based on whether it can be proved to terminate.

We reviewed the definition of norm functions which we subsequently used to construct
the members of the call set for prioritised resolution, namely instantiation patterns. We
then formalised the novel computation strategy of prioritised fair SLD-resolution, fol-
lowed by the presentation of an algorithm which automatically generates the call set
for the prioritised resolution of a program. A pivotal component of this algorithm is
automatic termination analysis which we use to determine whether the resolution of a
literal terminates. We reviewed an existing termination analysis (Lindenstrauss & Sa-
giv 1997) and extended it to determine termination of programs with respect to the
computation rule of prioritised resolution, rather than the left-to-right one. Furthermore,
we extended that termination analysis to test termination for programs that may contain
occurrences of higher-order predicates, which was neglected in the original presentation
by (Lindenstrauss & Sagiv 1997).

The termination test presented in this chapter, however, contains a limitation that
affects the performance of prioritised resolution when executing some compositional pro-
grams. The problem is caused by the particular incarnation of constraint analysis used
since it is unable to infer all the constraints necessary to prove the termination of key pred-
icates. However, alternative constraint analyses have recently been developed (Codish &
Taboch 1997, Speirs et al. 1997) which are able to infer the missing constraints. The
termination test of this chapter is amenable for use with these new constraint analyses
and their integration would result in better performance of prioritised resolution.



Chapter 6

Evaluation of Compositional Logic
Languages

This thesis has proposed a style of compositional logic programming based upon a higher-
order syntax and the fair selection of subgoals in the resolution process. Furthermore,
several prototypical implementations for such a language, written in Caml-light, are pre-
sented in Appendices A, B, and C. In this chapter, the performance of these implemen-
tations is evaluated for the execution of several example programs. The objective of the
comparison is to identify the extent to which each interpreter satisfies the desiderata for
a compositional language, as set out in Chapter 2; in particular, we aim to investigate
the efficiency of each interpreter in terms of the number of resolutions steps taken to
complete the execution of each program.

Naturally, the implementations presented in the appendices are far from optimal in
terms of efficiency of execution: their primary roles are to elucidate algorithms and sug-
gest appropriate data structures. Therefore, comparisons of the execution of the inter-
preters based on processor time consumed are somewhat unhelpful; rather, a comparison
based on the number of resolution steps performed by each interpreter is favoured. Nev-
ertheless, each interpreter does incur run-time overheads beyond those of any Prolog
implementation and these are acknowledged in the cases where they become prohibitive
to the execution of a query.

The four interpreters evaluated in this chapter vary only in the resolution strategy
they adopt. The strategies, and their appropriate definitions elsewhere in the thesis, are as
follows: SLD-resolution, i.e., Prolog, (Definition 2.7); fair SLD-resolution using the naive
breadth-first computation rule (Definition 3.4); fair OLDT-resolution (Definition 4.5);
and prioritised fair SLD-resolution (Definition 5.9). A graph of performance that charts
the number of resolutions to the size of the input is provided for each example program.

Six programs—some of which are commonly used as performance benchmarks in the
logic programming community—are featured in the comparison. The initial three pro-
grams considered are not explicitly compositional in nature but are concerned with com-
positionality since the order of evaluation of the literals in the body of their clauses is
crucial for efficient computation. The final three programs are simple compositional ones
that serve to illustrate the complexity of executing this style of program.
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6.1 Reversing lists

The task of reversing a list, using the standard ‘naive’ algorithm, is a classic benchmark
for logic programs in the literature. The program for reversing a list is repeated below
for convenience.

reverse nil nil :− .

reverse (A : X ) Y :− reverse X Z , append Z (A : nil) Y .

Figure 6.1 depicts the graph of performance of the four interpreters for calls to reverse
that have their first argument bound to a ground list and their second argument free.
The graph charts the number of resolution steps taken by each interpreter against the
length of the list.

In the case of Prolog, we can see from the graph that, for lists of length n, calls
to reverse perform O(n2) resolution steps. Furthermore, notice that the graphs for Pro-
log and prioritised resolution coincide exactly. The reason for this is that termination
analysis succeeds for calls to reverse that have their first argument instantiated enough
with respect to the term-size norm. Thus, prioritised resolution is able to evaluate such
queries without making any fair resolution steps, as described in the previous chapter.
By coincidence, the order of literals selected in the prioritised resolution is the same as
in Prolog. On the other hand, the same calls to reverse using fair SLD-resolution with
the breadth-first computation rule perform O(n4) resolutions. It appears from the graph
that fair OLDT-resolution takes a constant factor of ten times as many resolutions as
Prolog.

Consider, this time, calls to reverse with the argument bindings swapped; the perfor-
mance of the interpreters is shown in Figure 6.2. The order of literals in the body of the
second clause for reverse forces Prolog to loop infinitely and is consequently not repre-
sented in the graph. In this reversed direction of executing reverse, fair SLD-resolution
takes a number of resolution steps proportional to the cube of the length of its second
list. Although prioritised resolution is unable to determine that calls of the current na-
ture terminate, the strategy nevertheless executes more efficiently than any of the other
strategies. The reason for this is that the call set for prioritised resolution contains all
the terminating instantiation patterns of append . So, each fair resolution step of reverse
introduces a terminating call to append which is subsequently selected and, thus, restores
efficient computation. OLDT-resolution performs only a constant factor of two worse
than prioritised resolution.

6.2 The frontier of a binary tree

The predicate frontier , considered in Example 3.3, relates a binary tree to its frontier by
way of a post-order traversal:

frontier (tip A) (A : nil) :− .

frontier (bin S T ) Z :−
frontier S (A : X ), frontier T (B : Y ), append (A : X ) (B : Y ) Z .

In that example, we saw that fair SLD-resolution constructed an impractically large search
tree for literals of frontier whose first argument was free and whose second argument was
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Figure 6.1: The execution of reverse with the first argument bound to a ground list and
the second argument free.
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bound. The redundant resolution of many instances of the same literal were responsible
for this poor behaviour. In this section, we revisit the original example to identify how
the other strategies deal with this situation.

The execution of calls to frontier with only the second argument bound to a ground
term is illustrated in Figure 6.3. Fair SLD-resolution enumerates the first few binary trees
before generating such a large search space that the computation is rendered infeasible in
practical terms. The execution of Prolog and prioritised resolution are, again, identical
even though calls of the current form are not contained in the call set of prioritised
resolution. Given a frontier list of length n ≥ 1, the Catalan numbers (Hilton & Pedersen
1991) predict the number of binary trees with that list as its frontier according to the
following formula:

C (n) =

(
2n
n

)
n + 1

.

Despite the exponential number of solutions, OLDT-resolution achieves huge efficiency
gains over the other strategies by reusing tabled resolutions. Nevertheless, the imple-
mentation of tabling presented in Chapter 3 is naive—table access and the generation of
solutions from the table takes time—incurring overheads that result in noticeably slow
execution. In addition, OLDT-resolution reports answers for a query only once every
answer has been computed.

Alternatively, reversing the bindings of the arguments to frontier , such that the first
argument is a ground binary tree, results in the performance shown in Figure 6.4. Prolog
suffers again from the ordering of subgoals in the body of the second clause for frontier
and fails to terminate for all calls. Termination analysis determines that the current calls
to frontier terminate, allowing prioritised resolution to proceed efficiently. Fair OLDT-
resolution and prioritised resolution perform the same number of resolutions even though
the selected literal in each resolution is different. Finally, OLDT-resolution performs
slightly under double the number of resolutions of the prior two strategies.

6.3 Permuting lists

Permuting lists is another standard program for assessing termination behaviour of res-
olution strategies. The following predicate perm permutes a list:

perm nil nil :− .

perm (A : X ) Y :− perm X W , append U V W , append U (A : V ) Y .

A list of length n has n! permutations. The performance of the interpreters using predi-
cate perm, with its first argument bound to a ground list, is illustrated in Figure 6.5. Pro-
log and prioritised resolution share the same efficiency behaviour, with OLDT-resolution
performing fractionally better, owing to the use of tabled resolutions. Fair SLD-resolution,
on the other hand, performs twice as many resolutions as the other strategies.

In the other direction, where the second argument is bound to a ground list and
the first is free, Prolog loops infinitely. Restoring termination in Prolog for such calls
requires reversing the order of the literals in the body of the second clause for perm.
However, rewriting programs according to the context in which they are used defeats
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the purpose of declarative programming. The remaining interpreters have their efficiency
behaviour documented in Figure 6.6. Prioritised resolution is unable to prove that these
calls to perm terminate but, nevertheless, still performs the same number of resolutions
that Prolog would, given the aforementioned redefinition of perm. Fair SLD-resolution
quickly becomes intractable, whereas OLDT-resolution, as in the case for frontier , per-
forms efficiently again owing to the benefits of tabling.

6.4 Sorting lists of natural numbers

The example in this section initially considers a compositional program to compare Peano
natural numbers as a first step towards sorting lists of naturals. The Ruby relations that
compare natural numbers—originally presented in Section 1.2—are used in the following
definition of insert from Section 2.3.4:

insert A nil (A : nil) :− .

insert A (B : Y ) (A : B : Y ) :− leq A B .
insert A (B : Y ) (B : Z ) :− gt A B , insert A Y Z .

Lists of natural numbers are sorted using the implementation of insertion sort below.

isort X Y :− foldr insert nil X Y .

The higher-order function foldr is defined as

foldr F C nil C :− .

foldr F C (A : X ) D :− F A B D , foldr F C X B .

A combinator approach to programming encourages reuse of code which is evident in
the definition of isort above. Moreover, the declarative underpinnings of a compositional
logic language frees the programmer from the often difficult job of ensuring a sequential
ordering of program components. Indeed, in the case above, Prolog already fails to
terminate for the expected finite calls to both leq and gt .

Consequently, Prolog does not terminate for any calls to isort for two reasons: the
first is due to the use of the comparison relations leq and gt and the second is due to the
ordering of the literals in the body of foldr . The major advantage of the novel resolution
strategies presented in this thesis is that their efficiency behaviour is largely independent
of subgoal order. In turn, the programmer is relieved from considering such operational
details. Let us now consider the execution of calls to isort .

Fair SLD-resolution makes no practical headway in the execution of isort for any ar-
gument instantiations. The performance of the remaining two interpreters for calls having
their first argument bound to ground, unsorted list of naturals is shown in Figure 6.7.
The list comprised repetitions of naturals descending from 9. Termination analysis in
prioritised resolution proves termination for all calls to isort , other than those with both
arguments not instantiated enough with respect to the term-size norm, and calls of the
current form execute efficiently. Despite this, OLDT-resolution performs better once
again because of the benefits of tabling.

Indeed, the same is true, though even more markedly, in the opposite direction when
the second argument bound to a sorted ground list (depicted in Figure 6.8). Calls of
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this form, with a sorted list of length n, have n! solutions. Prioritised resolution, in this
case, again performs in accordance with the factorial growth in the number of solutions,
without the need for any fair resolution steps.

Moreover, consider the following ‘mixed-mode’ query

# :− isort (4 : A : C : 6 : B : 5 : nil) (1 : 2 : 3 : Y ) . (6.1)

The answer substitutions to this query bind Y to the list 4 : 5 : 6 : nil and the variables A,
B , and C to the appropriate permutations of 1, 2, and 3. Query (6.1) is executed
efficiently under prioritised resolution, even though both arguments are not instantiated
enough with respect to the term-size norm (from Example 5.1). The reason for this
behaviour is that, at some stage in the resolution, subgoals are introduced that are
callable and are thus executed efficiently. On the other hand, as explained in Section 4.3,
OLDT-resolution fails to terminate for query (6.1), as does Prolog. Moreover, although
fair SLD-resolution is guaranteed to construct a finite SLD-tree for (6.1), the tree is, in
practice, so large that fair SLD-resolution is unable to solve it.

6.5 Reversing lists in Ruby

In this example, the performance of the interpreters is scrutinised when executing Ruby
specifications. In particular, the task of reversing lists is revisited, this time using a more
compositional program than before which is built solely from Ruby combinators. Using
the Ruby combinators defined in Section 1.2, a list may be reversed using the program:

rev X Y :− rdr (swap $comp apr) (pair X nil) Y .

An instance of rev as a Ruby circuit is shown below where each node represents the
relation swap $comp apr , which simply reorders wires since swap and apr are Ruby
primitives.

For calls to rev with the first argument bound to a ground list and the second argument
free, Prolog does not terminate. However, the remaining three interpreters perform within
a small constant factor of each other, as is shown in Figure 6.9. Prioritised resolution
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is unable to determine that any calls to rev terminate and, moreover, actually performs
marginally more resolutions than both of the two other strategies.

With the bindings to arguments reversed, Prolog is still unable to terminate. The
graph comparing the results of each of the other interpreters for queries of this form is
illustrated in Figure 6.10. Here, it is clear that OLDT-resolution once again outstrips the
other strategies in terms of resolutions performed.

In the previous examples, prioritised resolution performed efficiently in all directions
since termination analysis generated a sufficiently comprehensive set of callable literals
in each case. However, as witnessed here, prioritised resolution can regress back to
the poor efficiency behaviour of fair SLD-resolution should its set of callable literals be
insufficient. The disappointing performance of prioritised resolution in this example is due
to the limitations of the implementation of termination analysis. In particular, constraint
analysis is unable to infer constraints for a large proportion of predicates which makes
their proof of termination impossible.

Moreover, the inability to prove termination for some predicates in a program often
cascades down the predicate dependency graph which results in a large portion of pred-
icates in a program having no terminating instantiation patterns. This deficiency with
the termination analysis is fortunately not intrinsic: as outlined in Section 5.8, alter-
native constraint analyses are able to infer the constraints necessary to prove that calls
to rev terminate. A prototype implementation of the termination analysis in Section 5.6
that permits the manual insertion of the constraints inferred by other constraint anal-
yses verifies this hypothesis and restores efficient computation of rev using prioritised
resolution.

6.6 Sorting lists of natural numbers in Ruby

A compositional style of logic programming relies heavily on the underlying computa-
tion strategy of the language to ensure efficient execution and termination of programs.
Moreover, unravelling a hierarchy of combinators into a corresponding procedural logic
program, amenable to execution in Prolog, can be a non-trivial undertaking. Indeed, this
observation is corroborated by the fact that, even after reordering literals in the body of
some clauses, Prolog is still unable to terminate for almost all Ruby programs.

The Ruby comparison operator cmp from Section 1.2, that sorts pairs of natural
numbers is no exception to this poor behaviour of Prolog. The performance of each
remaining interpreter when executing cmp is shown in Figure 6.11. There, it can be
seen that each interpreter performs within a constant factor of one other. However, the
execution of sort , again from Section 1.2, is not possible in practice for any permutation of
argument instantiations when using any strategy other than fair OLDT-resolution. Fair
OLDT-resolution is able to sort a ground list of naturals and also permute a sorted such
list. Prioritised resolution of sort is unable to prove termination for any instantiation
pattern of sort for the reasons given in Section 6.5.

6.7 Summary

In this chapter, several logic programs, ranging from standard ones to compositional
ones, were executed in four different logic programming interpreters to assess the extent
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Figure 6.9: The execution of rev with the first argument free and the second argument
bound to a ground list.
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Figure 6.11: The execution of cmp with the first argument free and the second argument
bound to a ground list.
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to which each was able to support compositionality. Each interpreter employed a different
operational strategy using one the following: SLD-resolution (Prolog), fair SLD-resolution
using the breadth-first computation rule, fair OLDT-resolution, and prioritised fair SLD-
resolution. The performance of each interpreter was compared against one another by the
number of resolution steps taken to complete the evaluation of each example program.

Prolog is only able to execute carefully constructed programs that pander to the
left-to-right computation rule. Consequently, compositional programs invariably fail to
terminate in Prolog often without producing any solutions. The left-to-right computation
rule effectively prohibits Prolog from executing most programs in more than one direction.
Fair SLD-resolution partially overcomes these limitations by allowing the termination
of simple programs in a variety of directions. However, fair SLD-resolution exhibits
efficiency behaviour that is difficult to predict in practice and, consequently, identifying
the programs it can execute in reasonable time is difficult. Indeed, more often than
not, fair SLD-resolution using the breadth-first computation rule results in exponential
execution time.

The two novel computation strategies presented in this thesis provide a better foun-
dation for executing compositional programs than either Prolog or fair SLD-resolution.
In the majority of the examples of this chapter, fair OLDT-resolution performs far fewer
resolutions than any other strategy. The main reason for this efficiency is the elimination
of redundant computation. The price paid for such desirable efficiency is the loss of the
termination guarantees of fair SLD-resolution. Also, the local scheduling of answers in
fair OLDT-resolution, as described in Section 4.2, means that solutions to a query are re-
ported only once all of them are determined. Therefore, if an infinite number of solutions
exists for a query then fair OLDT-resolution will be unable to report them.

Prioritised fair SLD-resolution provides the most promising basis for executing compo-
sitional programs: it restores the termination properties of fair SLD-resolution abandoned
by fair OLDT-resolution and also executes more efficiently than fair SLD-resolution. Pri-
oritised resolution relies on termination analysis for its efficiency behaviour since each
callable literal will be executed efficiently. Even in cases when some literals are unable
to be proved terminating, prioritised resolution still performs efficiently. The reason for
this favourable behaviour is that floundered goals—those that do not contain any callable
literals—can introduce callable literals after a fair resolution step and hence restore effi-
cient computation. However, the reliance on termination analysis means that any of the
limitations it may suffer from are subsequently reflected in prioritised resolution. Indeed,
the termination analysis presented in Chapter 5 does have a few limitations as discussed
in Section 5.7, the most detrimental being the constraint analysis it adopts. Fortunately,
more comprehensive constraint analyses exist that allow termination analysis to prove
the termination of many more programs. In turn, prioritised resolution is able to execute
more efficiently.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Relational program derivation has gathered momentum over the last decade with the
development of many relational calculi. However, executing relational expressions in
existing programming languages requires a high degree of care to ensure that they avoid
entering an infinite loop. Consequently, prototyping specifications becomes a difficult
undertaking, hindering an understanding of why some relational transformations lead to
an efficient program and others do not.

This thesis has contributed a compositional style of logic programming, largely un-
available to programmers until now, in which relational specifications can be phrased
naturally. Elements of functional programming style have been translated into the logic
paradigm, consequently enriched with the extra expressiveness fostered by nondetermi-
nism, logic variables, and program converses. In itself, compositionality facilitates greater
code reuse and encourages more abstraction than currently practised in the logic com-
munity. Moreover, compositional programs are amenable to the formulation of results
regarding their equivalence, allowing transformations to be safely applied to them. How-
ever, the compositional style of programming advocated in this thesis proves difficult to
execute in existing logic languages.

The pivotal contributions of this thesis are the development of the language features
necessary to support compositional logic programming: a higher-order framework that
facilitates the description of relational specifications; and a fair resolution strategy that
guarantees the termination of programs whenever possible. Moreover, this thesis provides
several operational semantics, presented as interpreters, that permit the efficient, direct
execution of relational specifications for the first time.

From the outset, this thesis identifies a fundamental distinction between ‘program-
ming’ languages and ‘specification’ languages: the former providing efficient execution
of carefully phrased algorithms, and the latter the execution of high-level specifications
devoid of algorithmic instruction. It is precisely this latter category that enhances the
intrinsic declarative nature of the logic paradigm and captures the essence of prototyp-
ing relational specifications without the consideration of evaluation order imposed by a
language, often essential in languages like Prolog, Mercury, and λProlog. This thesis
identifies a collection of desiderata for a compositional logic language, against which the
suitability of existing languages for supporting compositionality can be gauged. Without
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such a study, making comparisons between incarnations of compositional languages is
difficult.

For example, existing logic languages have, to some degree or another, addressed
matters of syntax for the support of higher-order programming constructs, a necessity for
compositionality. However, a compositional logic language requires greater powers of ex-
pression than a higher-order syntax alone. The majority of methods adopted in existing
languages to support compositionality manifest themselves as little more than conve-
nient syntactic notations. Indeed, the endeavour of becoming truly declarative requires
a compositional language to cast off the shackles of a predetermined evaluation order:
an observation corroborated by the fact that existing logic languages seldom permit the
direct execution of compositional programs. The vital criterion for compositionality, lack-
ing in all existing logic languages, is the notion of fair evaluation which is identified in this
thesis as the critical requirement for supporting declarative, compositional programming.

The perpetrator of the poor behaviour of existing logic languages is the inflexible left-
to-right computation rule pervasive in almost all logic languages including the functional
logic ones. As is well-known amongst logic programmers (O’Keefe 1990, Clocksin &
Mellish 1987), the left-to-right computation rule often necessitates multiple versions of
the same predicate, depending on which of its arguments will be instantiated. However,
rewriting a program according to the context in which it is used defies the very notion of
compositionality.

It is for the above reason that existing languages are unsuitable for the compositional
style of programming advocated in this thesis. Nevertheless, fairness alone is unable to
institute compositionality in a programming language: without appropriate considera-
tion, fair evaluation can be so inefficient that even logically elementary computations fail
to terminate within acceptable time. The fair strategies presented in this thesis address
this problem and restore acceptable efficiency behaviour to compositional programs.

We summarise the characteristics of the languages considered in this thesis in the
following table.

Language Syntax Fairness Efficiency
Prolog × × X
λProlog X × X
Fair SLD X X ×
Fair OLDT X X× X×
Prioritised SLD X X X

In the table above, the columns are interpreted as follows: Syntax records whether the
language allows higher-order programming constructs to be introduced without the need
for extra-logical predicates; Fairness records whether a program executed in the language
is guaranteed to terminate within the confines of SLD-resolution; and Efficiency records
whether the execution efficiency of a program is simple to predict. The symbols ‘X’
and ‘×’ in a column indicate that the language feature is present or absent, respectively.
Both symbols appear in the Fairness column for fair OLDT-resolution since its notion of
fairness does not encompass that of fair SLD-resolution but, nevertheless, its termination
behaviour is independent of the way in which a program is composed. The appearance
of both symbols in the Fairness column for fair OLDT-resolution results from the fact
that it can be difficult to determine whether a given query will terminate when executed
using fair OLDT-resolution (though we remark in the subsequent section about how this
may be rectified).
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Existing languages

The study of compositionality in this thesis began with the examination of existing lan-
guages according to a set of desiderata, deemed essential for compositional programming.
The first desirable feature of a compositional language is that it should naturally embrace
the expression of high-level specifications. This criterion also judges how declarative a
language is, i.e., the degree of attention that a programmer must pay to the execution
order of the language. Ideally, in a compositional language a programmer should be
oblivious to any optimisations made during the execution of a program, but still retain
confidence in the operational characteristics of the language. In particular, assurances
must be made to the programmer about the termination properties of a program and the
likelihood of its efficient execution. These desiderata for compositionality facilitated the
following assessment of existing languages.

First-order logic programming, using Prolog, requires the use of extra-logical predi-
cates, e.g., the call and apply predicates, to facilitate higher-order programming. In turn,
the aesthetic benefits of specifications were lost during their conversion to programs. The
use of apply in favour of call was suggested by (Naish 1996) since it provides a more
faithful analogy to higher-order features found in functional languages.

When programming with combinators in an untyped logic language, it can often be
difficult to spot errors caused by composing combinators of incompatible type, which
commonly results in the failure of queries. On the other hand, strongly typed languages
can detect all type errors in a program before it is executed. Therefore, augmenting a
compositional language with a strong type system, either as an integral component or as
an optional tool, is desirable from the point of view of developing error-free programs.
However, the apply predicate cannot be given a strong type in, say, the type system
of λProlog; ideally, the type of apply should be (A → B) → A → B , permitting values
of any kind to be returned. However, λProlog assigns the primitive ‘return’ type o to
each predicate, as discussed in Section 2.4.3. Therefore, the only plausible type for apply
in λProlog is (A → B → o) → A → B → o. Then, for a predicate such as add of
type nat → nat → nat → o, literals like apply add 1 P are ill-typed.

The cumbersome method of writing higher-order programs in Prolog can be attributed
to the lack of appropriate theoretical foundations with respect to this style of program-
ming. Alternatively, the higher-order logic language λProlog (Nadathur & Miller 1988)
was designed with exactly such principles in mind. Consequently, λProlog allows speci-
fications to be represented naturally as programs. However, the trade-off for naturality
of programming is the adoption of higher-order unification which is an undecidable pro-
cedure. However, in Section 3.1, this thesis identified that the adoption of a curried
representation of terms facilitated precisely the same higher-order constructions provided
by the call primitive, but without requiring its use or that of higher-order unification. In
addition, curried terms provide a much less obtrusive syntax than that of Prolog with no
adverse impact on the underlying resolution strategy whatsoever.

In Chapter 2, a partial solution was offered in λProlog to rectify the shortcomings
of the left-to-right computation rule confined to the domain of executing Ruby pro-
grams (Jones & Sheeran 1990). The trick was to encode two alternative definitions of
sequential composition: the definitions being logically equivalent but with the order of
the two conjuncts in their bodies reversed. Then a heuristic method selected the most
appropriate definition of composition, based on the context in which it was used. Es-
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sentially, this procedure simulated the notion of fairness in an elementary way. Such
heuristics, however, failed to generalise to arbitrary compositional programs. Moreover,
the solution presented required extra-logical annotations to the program which affected
its declarative nature. Furthermore, the extra-logical predicates used are unavailable in
other logic languages.

Flexible computation rules

The comparison described in the previous section concluded that, although logic pro-
gramming provides a promising starting point for executing compositional programs,
the inflexible left-to-right computation rule requires attention. The logic programming
community has acknowledged the limitations of a predetermined computation rule and
suggested coroutining (Lüttringhaus-Kappel 1993, Naish 1992, Naish 1985), discussed in
Section 3.5, that permits the dynamic selection of literals in a goal according to some
criteria. The criterion adopted by (Lüttringhaus-Kappel 1993) is that literals can be
selected if they have a finite SLDF-tree. The notion of a finite SLDF-tree, however, is
weaker than that of a finite SLD-tree, and termination of an SLDF-resolution provides lit-
tle guarantee about its completeness. In particular, it is possible for the SLDF-resolution
of a goal to flounder when some SLD-resolution would find solutions for it.

Although coroutining often executes efficiently, it suffers from several important weak-
nesses within the domain of compositionality. Firstly, the syntactic construct of when-
declarations (Definition 3.10), that provide the conditions under which literals in a goal
may be selected, are somewhat limited. Indeed, all too often the SLDF-resolution of
a literal will terminate only if at least one of its arguments is finite. However, when-
declarations are inherently unable to represent such generalisations over the shape of
terms.

Moreover, the algorithm used to generate when-declarations automatically for a pro-
gram (Figure 3.5) is heuristic in nature. In particular, depth-bounds are used to restrict
the size of terms in a when-declaration and also to determine whether such terms have a
finite SLDF-tree. As a consequence, the computed set of when-declarations often poorly
approximates the actual literals in a program that have finite SLDF-trees. Furthermore,
the computed set is often unsafe in the sense that an SLDF-resolution using an unsafe
call set may terminate for some goal but may flounder or loop for an instantiation of it.
The above factors culminate in a computation strategy for which predicting whether a
query will execute efficiently or not is difficult, in turn contravening a vital criterion for
compositionality.

Fair SLD-resolution

Heuristic attempts to rectify the problem of non-termination caused by the left-to-right
computation rule are unsatisfactory for at least two reasons. First and foremost, heuristics
are unable to guarantee termination for arbitrary programs. Secondly, heuristic methods
of altering the flow of control in a program, like that for λProlog presented in Section 2.4.3,
tend not to generalise to other programs. Worse, the programmer is responsible in such
cases for effecting changes to heuristic implementations which eradicates the principal
benefit of declarative programming.

For these reasons, this thesis rediscovered fair SLD-resolution from the logic com-
munity as a method of ensuring termination of logic programs whenever any other SLD-
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resolution would terminate. The notion of fairness was originally introduced by (Lassez &
Maher 1984) to provide a theoretical basis for SLDNF-resolution (Lloyd 1987). There,
(Lassez & Maher 1984) showed that fair SLD-resolution was complete with respect to
finite failure. In this thesis, that result was extended in Lemma 3.3 to prove that fair
SLD-resolution is also complete with respect to finite success. The implication of this
result is that fair SLD-resolution guarantees the termination of a query, i.e., the construc-
tion of a finite SLD-tree, whenever possible.

At this point, it is important to reiterate the difference between a ‘computation rule’
and a ‘search strategy’ in the resolution process. The computation rule selects literals
in a goal for resolution and the search strategy selects clauses from the program to
resolve against the selected literal. In standard logic programming parlance, ‘breadth-
first’ and ‘depth-first’ search refer to the search strategy: the method of traversing the
SLD-tree which is altered by varying the order in which clauses are chosen from the
program. Crucially, whilst breadth-first search guarantees the enumeration of all possible
solutions in an SLD-tree and depth-first search does not, it is the computation rule that
determines the overall shape of the tree. In other words, only a change in computation
rule can convert an infinite SLD-tree to a finite one. Indeed, the choice of search strategy
is orthogonal to the choice of computation rule in resolution.

Nevertheless, some compositional programs are inherently infinite, e.g., those that
exhibit unbounded nondeterminism, and the use of a fair computation rule is unable to
translate these evaluations into terminating ones. Therefore, a complete search strategy,
like breadth-first search, is essential in such cases to enumerate the variety of solutions.
Despite this observation, depth-first search was chosen for the interpreters presented in
the appendices since it exhibits better space efficiency that breadth-first search. Despite
this decision, in Section 3.3 an alternative complete search strategy is discussed, called
depth-first iterative deepening, that overcomes the space problems of breadth-first search.

The most elementary way to achieve fairness in resolution is through the use of a
queue-based computation rule, rather than the left-to-right one. (A queue-based compu-
tation rule is sometimes called a breadth-first computation rule, though this overloading
of notation should not be confused with a breadth-first selection strategy.) However,
fair SLD-resolution using this computation rule often exhibits poor efficiency behaviour,
rendering computations intractable in practical terms.

Previously, though entirely independently, (Janot 1991) proved a similar result re-
garding the termination properties of fair SLD-resolution and also investigated the im-
plementation of fair SLD-resolution, albeit with a different emphasis than in this thesis.
There, two versions of fair SLD-resolution are suggested in an effort to overcome the
deficiencies of the breadth-first computation rule: the more efficient of the two being
indexed fair SLD-resolution (Section 3.2). However, without a declarative style in mind,
the solution is tailored to individual programs; each literal in a program requires ex-
plicit annotation with an integer index, whose actual value is the responsibility of the
programmer. Moreover, empirical study of each program and its query is often essential
to determine appropriate indices. Even then, the heuristic nature of selecting indices
provides no guarantee of efficient execution. The main contribution of Janot’s work is
the evidence that new forms of fair SLD-resolution can be implemented efficiently in a
particular Prolog abstract machine (Bekkers, Canet, Ridoux & Ungaro 1986) with only
a small constant factor overhead.
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Tabled evaluation of logic programs: fair OLDT-resolution

Over the last decade, proponents of tabled evaluation of logic programs have demon-
strated that such systems, e.g., XSB (Sagonas et al. 1994), provide better termination
behaviour than SLD-resolution (Chen et al. 1995, Warren 1992, Tamaki & Sato 1986).
Indeed, a tabling system is guaranteed to terminate if an SLD-resolution, using the
same computation rule, would make only finitely many different calls and generate only
finitely many different answers. For example, tabling techniques overcome the classic
non-termination of left-recursive predicates in logic programs. Despite this improved ter-
mination behaviour, tabling has been considered in the literature only for the left-to-right
computation rule. Consequently, such tabling systems inherit all the problems prevalent
in the earlier discussion.

Tabling is reformulated in this thesis for any ‘arbitrary’ but ‘fixed’ computation rule
(Definition 4.1), allowing a tabled evaluation to be envisaged as the resolution of individ-
ual subgoals in a goal. An additional contribution made in this thesis is the generalisation
of the new formulation of tabling to include a notion of fairness. The resulting tabling
strategy, called fair OLDT-resolution (Definition 4.7), is more flexible than any existing
tabling implementation. Indeed, fair OLDT-resolution will terminate for every program
that either Prolog or XSB terminates for. Furthermore, fair OLDT-resolution terminates
in practice more often than fair SLD-resolution by eliminating redundant subcomputa-
tions and, hence, restores efficient evaluation of compositional programs. Evidence of
this performance enhancement was shown in Chapter 6 where the fair OLDT-resolution
interpreter performed fewer resolutions, and terminated more frequently, than any other
strategy.

The drawback of using an arbitrary but fixed computation rule is that the termination
property of fair SLD-resolution is lost since the Switching Lemma—(Lloyd 1987) and
Lemma 3.2—can no longer be applied arbitrarily. Nevertheless, the practical performance
of fair OLDT-resolution, as outlined in Chapter 6, demonstrates that fair tabling provides
a realistic operational basis for a compositional logic language.

Prioritised fair SLD-resolution

Although fair OLDT-resolution executes efficiently and terminates in practice for a num-
ber of compositional programs, its use of an arbitrary but fixed computation rule results
in the loss of the desirable termination properties of fair SLD-resolution. These properties
are reinstated by another contribution of this thesis: the marriage of coroutining and fair
SLD-resolution to form prioritised fair SLD-resolution (Definition 5.9). Prioritised reso-
lution shares a similar philosophy to coroutining in that literals in a goal are selected for
resolution based on some property they satisfy. In the case of SLDF-resolution the prop-
erty is that a literal has a finite SLDF-tree; the problems associated with this strategy
were discussed earlier.

Alternatively, prioritised resolution selects literals in a goal if their SLD-resolution is
known to terminate with respect to a particular arbitrary but fixed computation rule.
The crucial component of prioritised resolution is the novel static analysis of a program
to determine its set of terminating literals. The static analysis—presented in Chapter 5
with the algorithm depicted in Figure 5.1—makes critical use of termination analysis for
logic programs. Termination analysis has been developed over the past decade but has
been formulated only for the left-to-right computation rule.
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The novel contribution of Chapter 5 is the adaptation of the termination analysis
by (Lindenstrauss & Sagiv 1997) to employ the computation rule of prioritised resolu-
tion. Subsequently, the new termination test is used to generate the call set for prioritised
resolution. Prioritised resolution improves on fair SLD-resolution by ‘eagerly’ evaluat-
ing literals whose resolution is known to terminate at the expense of any others. In the
cases where a goal is floundered, a fair resolution step is performed using the breadth-
first computation rule (Definition 3.4) which ensures that prioritised resolution is fair.
Since termination analysis is undecidable, termination analysis may be unable to prove
termination of an arbitrary literal, the same being true for the less sophisticated notion
of termination adopted by coroutining. In the latter case, coroutining terminates un-
successfully in such instances, whereas prioritised resolution may be able to transform
a floundered goal using a fair resolution step into one that can be evaluated efficiently
again. Prioritised resolution overcomes all the problems associated with coroutining that
were discussed earlier.

7.2 Future work

Higher-order unification in compositional logic languages

In this thesis, we have proposed a style of compositional logic programming that allows
the use of higher-order programming constructs but adopts first-order unification in the
underlying operational model. The compositional programs presented throughout the
thesis have all been executed within the confines of first-order unification: the use of
higher-order unification was unnecessary. Although we have yet to discover a convinc-
ing example compositional program that makes essential use of higher-order unification,
it may be the case that such a class of compositional programs exists. Therefore, an
exploration of possible alternative notions of compositional logic programming may be
desirable which could possibly uncover novel applications of the compositional program-
ming paradigm. One clear starting point is to integrate a fair computation rule into a
higher-order language, like λProlog.

Fair OLDT-resolution

In Chapter 6, we noted that the fair OLDT-resolution of a query is guaranteed to termi-
nate if a corresponding SLD-resolution of the query makes only finitely many different
calls and generates only finitely many different answers. Consequently, fair OLDT-
resolution can permit this class of left-recursive programs to terminate whilst SLD-
resolution cannot. Despite the advantage that fair OLDT-resolution has over fair SLD-
resolution, fair OLDT-resolution is unable to terminate for other kinds of query for which
fair SLD-resolution does.

In particular, the fair OLDT-resolution of a query is guaranteed to terminate only
whenever the OLDT-resolution of it using any arbitrary but fixed computation rule (of
which the left-to-right one is an example) would also terminate. Therefore, one deficiency
with fair OLDT-resolution is determining how the class of programs for which it termi-
nates relates to the class for which fair SLD-resolution terminates; the two classes clearly
intersect, although the class for fair OLDT-resolution is not a strict subset of the class
for fair SLD-resolution since fair OLDT-resolution is able to terminate for left-recursive
programs that are infinite under fair SLD-resolution. As yet, we have been unable to
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define the boundaries between the two classes of programs and further exploration of this
issue would be valuable.

Prioritised fair SLD-resolution

The implementation of prioritised resolution could be further developed beyond that of
the prototype presented in Appendix C; for reasons associated with any prototype imple-
mentation, omissions and simplifications exist in it. One way to improve the execution
efficiency of prioritised resolution would be to use the information gleaned during ter-
mination analysis to predetermine the order in which literals are selected in a goal. By
doing so, the current run-time overhead observed in the interpreter of Appendix C caused
by searching each goal for a terminating literal can be avoided. Thus, the overheads in-
troduced by the dynamic computation rule may be eliminated.

The performance of prioritised resolution could potentially be improved further by
adopting a new constraint analysis in the termination test of Chapter 5. New constraint
analyses use linear inequality constraints and can often generate more comprehensive
constraints than the constraint analysis of Section 5.6.4, which uses monotonicity con-
straints. Such additional constraints can help prove termination for literals that our
analysis currently cannot. Fortunately, the termination analysis of Chapter 5 is able to
represent such constraints as arcs in a mapping and the integration of new constraint
analyses is a natural area of further research.

Another possible way to increase the efficiency of prioritised resolution is to employ
alternative termination analyses in our algorithm of Section 5.5 which automatically
generates the call set for a program. The description of the algorithm is essentially
independent of the actual method of testing termination of literals and, recently, new
termination analyses have been implemented that appear to be faster than the one of
Chapter 5. However, such tests are currently formulated only for the left-to-right com-
putation rule and it is unclear whether they can be adapted to use the computation rule
of prioritised resolution. An investigation into this aspect would be desirable.

Termination analysis has recently been implemented in the Mercury programming
language to verify the termination of both user programs and compiler generated opti-
misations (Speirs et al. 1997). However, in this thesis, termination analysis is used for
the first time to improve the efficiency of programs by selecting literals whose evaluation
terminates over those that do not. Therefore, as in the case for prioritised resolution,
languages like Mercury may be able employ the new algorithm of Section 5.5 to find
automatically a terminating order of literals in clauses and, consequently, improve the
execution efficiency of programs. Examining the feasibility of such an integration would
be a suitable area of further work.

Choice of norm in termination analysis

The description of termination analysis in Chapter 5 used the term-size norm to determine
whether terms were instantiated enough. However, the use of the term-size norm can
restrict the number of programs for which termination can be shown. For example,
consider the following query:

# :− append (1 : A : 3 : nil) X (B : 2 : 3 : 4 : nil) .
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Neither of the three arguments to append are instantiated enough with respect to the
term-size norm and, therefore, termination analysis would be unable to indicate that such
queries terminate.

However, it is possible to prove that such queries do, in fact, terminate with respect
to the list-size norm since it ensures all finite lists are instantiated enough irrespective of
the nature of their elements. The problem with the term-size norm here is that it is too
specific for append in the sense that it considers the instantiation state of each element
in a list, which is irrelevant for the proof of termination of append .

Thus, one possible area of future work is to determine the ‘most general’ norm to use
during the termination analysis of a predicate. Most general norms are characterised by
the fact that if a predicate can be proven to terminate using a most general norm then it
can be proven to terminate using all ‘related’ norms. One possible starting point is to try
to infer automatically the most general norm of a data type from its actual declaration.
An initial attempt to define the most general norm of a data type is given below.

Definition 7.1 (Most general norms). Let X be the declaration of a regular data
type with components of the form f β1 . . . βn , where f is a constructor, and β1, . . . , βn

are types, for n ≥ 0. Then, the most general norm for the type X , written || ||X , contains
an equation

||f T1 . . . Tn ||X = n +
n∑

i=1

||Ti ||βi

for each component of X , where T1, . . . ,Tn are terms. Moreover, the norm || ||X contains
the equation

||Y ||X = Y

where Y is an arbitrary variable. ♦

As an example, it is easy to see that the above rules define the most general norm for
the list data type to be that of the list-size norm.

The concept of most general norms in termination analysis centres around using the
inferred type of a predicate to guide the selection of the norm to use during its proof of
termination. So, for example, if the type of append was inferred as list α → list α →
list α → o, then the termination analysis of append would use the most general norm
associated with the list data type during its termination proof. The details of these ideas
remain to be worked out and, as yet, it is unclear whether unique most general norms
always exist for regular data types.

Integrating tabled and prioritised resolution

As we explained in Chapter 4, OLDT-resolution can be viewed as a natural precursor to
prioritised resolution: OLDT-resolution evaluates each subgoal simultaneously until the
first completely evaluated, i.e., finite, one is discovered. Only then are its answer sub-
stitutions returned to the remaining subgoals. In other words, OLDT-resolution naively
searches for terminating subgoals at run-time by evaluating all literals, even the infinite
ones. On the other hand, prioritised resolution uses information gleaned from a compile-
time termination analysis of the program to select at run-time a single subgoal whose
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resolution is known to terminate, rather than by exhaustive search as in the case of fair
OLDT-resolution.

However, OLDT-resolution has the advantage of tabling the answers of each ter-
minating literal and, consequently, eliminating their redundant evaluation. Prioritised
resolution is, nevertheless, amenable to the integration of this form of tabling since each
terminating literal can be tabled in the same way as in OLDT-resolution. The subtle
reason for this is that no fair resolution steps need to be made during the prioritised
resolution of a terminating literal—a point discussed in Section 5.4—which means that
the computation rule is fixed. As explained in Chapter 4, this is the crucial requirement
for a computation rule to allow tabled evaluation.

One remaining question is whether the additional termination property of OLDT-
resolution, i.e., it terminates for all left-recursive programs that make only finitely many
different calls and produce only finitely many different answers, can be integrated into pri-
oritised resolution. The difficultly here is that termination analysis is currently designed
only for SLD-resolution and it is unclear whether termination analysis can be modified
to determine termination of programs that use tabled evaluation.

Applications

The design of a compositional logic programming language in this thesis was motivated
by a desire to execute high-level relational specifications, like those presented by (Bird &
de Moor 1996). Their relational calculus contains powerful primitive constructs like
relational division which permits the expression of specifications that contain universal
quantification, and ‘ΛR’ which converts a relation R to its isomorphic representation as
a set-valued function. Recently, (Seres & Mu 2000) have presented an implementation of
a subset of this calculus in Prolog; it uses the call and bagof extra-logical predicates and
is carefully crafted to avoid non-termination. An intriguing area of further work would
be to translate their implementation into the compositional language presented in this
thesis and augment it, if possible, with the remaining operators of the calculus.

The definitions of these operators make essential use of relational negation. Capturing
relational negation in a logic language requires the use of negation-as-failure (Lloyd 1987)
which is commonly implemented by the extra-logical predicate ‘not’. As stated at the
outset, we have not considered this component of logic programming in this thesis since
extending a logic language with negation-as-failure is straightforward; for example, the
standard way to achieve this is to employ a safe computation rule (Lloyd 1987) to ensure
that a negative literal is selected for resolution only if it is ground. (The interpreter
presented in Appendix A has been trivially extended to implement negation-as-failure in
this way.)

Once negation-as-failure is integrated into our compositional language, relational
negation can be implemented as follows:

negate R A B :− not (R A B).

The expressive power of the resulting compositional language can be exemplified by spec-
ifying the longest up sequence of a list. An up sequence of a list of natural numbers is a
subsequence of the list that is sorted in ascending order. Assuming the definitions of the
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standard relational operators of composition, union, intersection, converse, and relational
fold, we begin by implementing the relational division operator over in the following way:

over R S A B :− negate ((negate R) $comp (conv S )) A B .

The gist of the specification is to generate a subsequence of the list, ensure that it is
ordered, and then select the minimum subsequence with respect to length. The higher-
order predicate min performs the latter task and is defined below.

min R S A B :− (S $cap (R $over (conv S ))) A B .

Using relational folds, we can implement two simple relations that respectively relate lists
to their subsequences, and to their lengths:

sub X Y :− fold nil (cons $cup outr) X Y .

length A Y :− fold 0 (succ $comp outr) A Y .

Next, we define the preorder len, that relates lists to those ones shorter than it:

len X Y :− ((conv length) $comp (leq $comp length)) X Y .

The longest up sequence of a list can then be specified as

lup X Y :− min (conv len) (ordered $comp sub) X Y .

where the relation ordered is the identity on ascendingly sorted lists. Therefore, we can
query

# :− lup X (4 : 5 : 2 : 3 : 5 : 6 : 2 : 7 : nil).

which succeeds with the single answer X = (2 : 3 : 5 : 6 : 7 : nil). Although specifications
like lup contain such little algorithmic information that their execution is markedly inef-
ficient, the ability to run such high-level specifications is extremely useful, especially for
prototyping relational program transformations.
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Implementing fair SLD-resolution

In this appendix, we present the implementation of a simple logic programming interpreter
that uses fair SLD-resolution, as described in Section 3.2. This implementation serves
as a precursor to the two interpreters developed in the subsequent appendices. The
language used for all implementations in these appendices is Caml-light and we assume
considerable familiarity with it in what follows. The main reasons for selecting Caml-
light as the implementation language are that it comes equipped with extensive libraries
that prove useful for interpeter writing, and it is sufficiently high-level enough to permit
algorithms to be implemented without regard for low-level details.

The actual program code is presented for each interpreter in an effort to formalise
the important algorithms and to provide a platform from which more efficient versions
may be launched. The programs presented are primarily meant to be understood rather
than executed and, consequently, many optimisations in both data representation and
algorithms could be made to these programs. The implementation in this appendix
commences with the introduction of terms and substitutions, followed by the unification
algorithm. Each of these elements will be used pervasively in the later interpreters.

A.1 Terms

The first departure from traditional logic programming is the adoption of a curried form
of terms, suggested in Definition 3.1. We allow variables to appear as the head of terms,
in addition to constants, which allows us to dispense with the use of meta-level predicates
to deal with calls to instantiated higher-order variables. The definition of terms in Caml-
light is as follows:

type term =
Const of string
| Var of string
| App of term * term ;;

Pleasingly, the change to a curried term syntax facilitates most of the desired higher-order
programming constructs without complicating the details of unification and resolution.
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A.2 Substitutions

Substitutions can be implemented directly from their abstract representation given in
Definition 2.4, i.e., a substitution is a function mapping a variable to a term:

type substitution == string → term ;;

However, the alternative representation of a singleton substitution {X 7→ t}—mapping
the variable X to the term t and all other variables to themselves—as an association
pair of type string * term will prove useful in the unification algorithm, presented in the
next section. We construct the elementary substitution {X 7→ t} from the association
pair (X , t) using the function single : string * term → substitution as follows.

let single (x,t) y = if x = y then t else Var y ;;

The identity substitution ι, presented in Section 2.3.1, maps all variables to themselves
and is implemented by the function idsub : substitution as follows:

let idsub = Var ;;

So each (string) argument to idsub is wrapped up with the constructor Var to form a
variable term.

For a given substitution φ, we implement the ‘apply’ operator [φ], of Definition 2.5,
via the function apply : substitution → term → term by case analysis on the structure of
terms:

let rec apply phi = function
Const c → Const c
| Var x → phi x
| App (f,g) → App (apply phi f, apply phi g) ;;

We deviate slightly from Definition 2.5 since terms are curried: to determine the instance
of an application of terms, we recursively apply the substitution over both subterms.

We use compose : substitution → substitution → substitution to implement the com-
position of two substitutions and its definition follows directly from Definition 2.5.

let compose phi sigma x = apply phi (sigma x ) ;;

The abstract representation of a substitution as a function allows for a natural translation
from specification to implementation.

The function add : string * term → substitution → substitution augments a substi-
tution with a new binding for a variable:

let add (x,t) = compose (single (x,t)) ;;

Substitutions are constructed from the composition of many singleton substitutions and,
therefore, the application of a substitution over a term can become an inefficient oper-
ation. Indeed, this representation of substitutions is undesirable other than for illustrative
purposes. Nevertheless, we find the case for clarity of algorithms more convincing than
for speed of execution.
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A.3 Unification

The process of unifying two terms results in a substitution, called the most general unifier,
if the terms are unifiable. In the case where the terms are not unifiable, we must indicate
failure of their unification in some way. In terms of the Caml-light implementation, we
raise the exception

exception No unifier ;;

to signal the lack of a unifier for two terms.
Such a case arises when a variable is unified with a term in which it is itself contained.

The so-called ‘occurs check’ identifies whether a particular variable is contained in some
term and is implemented by the function occurs : string → term → bool using recursion
over the structure of terms:

let rec occurs x = function
Const c → false
| Var y → x = y
| App (f,g) → occurs x f | | occurs x g ;;

Historically, most logic programming languages exclude the occurs check from the uni-
fication algorithm which may, in certain cases, introduce unsound proofs of programs
in favour of their efficient execution. As always, we base our implementation decisions
on theoretical rather than practical considerations and include the occurs check in the
unification algorithm below.

We follow the abstract algorithm of Figure 2.1 to unify two terms, representing sets as
lists in Caml-light. We make frequent use of the function map single : string * term →
(term * term) list → (term * term) list to apply a singleton substitution, represented as
an association pair, over each pair of terms in the list we are unifying.

let map single (x,t) =
let phi = single (x,t) in
map (fun (u,v) → (apply phi u, apply phi v)) ;;

The function unify : term → term → substitution—whose implementation is shown in
Figure A.1—returns the most general unifier of the two terms, if it exists, otherwise the
exception No unifier is raised. We begin by creating the singleton list comprising the
paired terms we wish to unify and follow the algorithm of Figure 2.1 almost identically.
The main difference is that compound terms are replaced by the application of two terms;
the unification of two such terms proceeds by unifying the corresponding components of
the two applications.

A.4 Fair SLD-resolution

The proof of a goal proceeds by constructing an SLD-tree, searching it for refutations. A
goal, in Caml-light, is a list of terms

type goal == term list ;;
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let unify u v =
let ps = ref [ (u,v) ] and p = ref (u,v) and phi = ref idsub in
while !ps <> [ ] do

p := hd !ps; ps := tl !ps;
match !p with

(Const a, Const b) →
if a <> b then raise No unifier

| (App (f,g), App (h,k)) →
ps := (f,h) :: (g,k) :: !ps

| (Var x, Var y) →
if x <> y then begin

ps := map single (x,Var y) !ps; phi := add (x,Var y) !phi
end

| (Var x, t) →
if not occurs x t then begin

ps := map single (x,t) !ps; phi := add (x,t) !phi
end else raise No unifier

| (t, Var x ) →
ps := (Var x, t) :: !ps

| → raise No unifier
done;
!phi ;;

Figure A.1: The implementation of the function unify .

and a refutation is an empty list, corresponding to the empty goal # :−. A program
clause is a pair whose first component is the head of the clause, i.e., a term, and the
second is the body of the clause, i.e., a goal. The type of a clause is as follows:

type clause == term * goal ;;

The function clauses : term → clause list , whose definition we omit, takes a term and
returns the appropriate list of clauses for the predicate of the term.

As discussed in Section 2.3.3, we have a choice of how to construct the SLD-tree for a
goal: the computation rule may select any literal from a goal and the search strategy may
use any program clause to resolve with the selected literal. According to Definition 2.7, a
resolution step involves matching the selected literal with a variant of a program clause.
By variant, we mean that the logic variables contained in the clause must be distinct from
all others in the SLD-tree. The function fresh : clause → clause performs this operation
by canonically renaming all variables in a program clause:

let fresh (l,ls) =
let freshen = apply (fun x → Var (x ^ string of int !count)) in
incr count ; (freshen l, map freshen ls) ;;

The global variable count : int ref generates a unique integer that is concatenated to the
end of each variable and so ensures that each clause contains unique variable names.

The choice of search strategy dictates which parts of the SLD-tree are constructed
first and, hence, schedules the nodes in the tree that are pending resolution. A depth-
first search strategy can record the current state of an SLD-tree by maintaining only
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one node for each level in the tree. In fact, depth-first search can be organised simply
using a stack of nodes where the head of the stack is the current, unexplored node in the
SLD-tree. Recall from Definition 2.10 that a node in the SLD-tree is labelled with a goal,
and followed by a number of branches to child nodes, where each branch is obtained by
resolving the selected literal of the goal with an appropriate program clause and labelled
with the substitution of the resolution.

Therefore, the current state of a node can be captured sufficiently from the current
goal, the clauses remaining to be resolved with the selected literal, and the answer sub-
stitution of the derivation. We arrive at the following type definition for a node in an
SLD-tree:

type SLD node == goal * substitution * int

The data type invariant for a node is that a node ([ ], theta, i) is a refutation with answer
substitution theta whilst for a node (l :: ls, theta, i), l is the selected literal and i ≥ 0 is
the number of program clauses already resolved against l in the resolution. Furthermore,
if cls = clauses l and i < list length cls, then the clause nth list i cls is used next for
resolution with l .

We utilise the Caml-light library module stack and define an SLD-tree as

type SLD tree == SLD node stack t ;;

We construct an SLD-tree from a goal using mk SLD tree : goal → SLD tree:

let mk SLD tree gs =
let tree = stack new () in stack push (gs,idsub,0) tree; tree ;;

The abstraction functions for an SLD-tree are defined simply from the standard stack
operators:

let complete = stack empty
and current = stack pop
and sprout = stack push
and replace = stack push ;;

The function sprout : SLD node → SLD tree → unit is used to schedule a child node in
the SLD-tree. On the other hand, the function replace : SLD node → SLD tree → unit
is used to position a node at the current location of the SLD-tree such that, for a node N
and a tree T , immediately after the operation replace N T , then N = current T . The
provision of these functions aids the implementation of alternative search strategies by
allowing nodes to be scheduled in different ways. For example, we could implement
breadth-first search using the Caml-light queue library as follows:

let mk SLD tree gs =
let tree = queue new () in queue add (gs,idsub,0) tree; tree ;;

let complete = queue empty
and current = queue take
and sprout = queue add
and replace = queue addhead ;;

where queue addhead adds an item to the head of a queue rather than to the tail.
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Abstracting over the type of an SLD-tree allows us to change search strategy without
altering the code for the resolution function resolve : goal → unit . The goal supplied
to resolve is executed by repeatedly sprouting its SLD-tree by performing resolution steps
at the current node. If a refutation is discovered, the corresponding answer substitution
is printed by the function report solution : substitution → unit . The definition of resolve
is presented below.

let resolve gs’ =
let tree = mk SLD tree gs’ in
while not complete tree do

let (gs,theta,i) = current tree in
match gs with

[ ] → report solution theta
| l :: ls →

let cls = clauses l in
if i < list length cls then

let (l ’,ls’) = fresh (nth list i cls) in
replace (goal, theta, i+1) tree;
try

let phi = unify l l ’ in
sprout (map (apply phi) (ls @ ls’), compose phi theta, 0) tree

with No unifier → ()
done ;;

The computation rule can be altered by ammending the expression ls @ ls’ in the body
of resolve. Currently, new subgoals are introduced at the end of the pending goal, thus
implementing a fair computation rule. Alternatively, the expression ls’ @ ls implements
a stack of subgoals and, therefore, mimics the left-to-right computation rule of Prolog.
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Implementating fair OLDT-resolution

In Chapter 4, we defined fair OLDT-resolution and, although it does not guarantee the
construction of a finite search tree, showed that it can improve upon the termination be-
haviour of fair SLD-resolution for a number of example compositional programs. However,
at any stage in an OLDT-resolution there may be several possible transformations to ap-
ply to a node in a tree. Without directing the search, we could continue to generate trees
whose answers are not required for the computation. Although fairness guarantees that
no such tree will be developed indefinitely, this concept introduces a potential inefficiency
when considering an implementation of fair resolution. In particular, some partially com-
puted trees in fair resolution may become disconnected from the main OLDT-tree. In
this appendix, we introduce data structures and algorithms that eliminate these prob-
lems. Although cycle detection is important in a tabled interpreter since more programs
would terminate than in SLD-resolution, we will present a version here that does not
employ cycle detection to keep the implementation simple.

B.1 Tables

As a consequence of active nodes depending on their corresponding answer nodes, we
require an efficient way to access answer nodes and, moreover, to determine if a particular
literal already appears as the root of an OLD-tree. We do this by creating a table that
maps terms to values of some sort. In fact, tables are pervasive in the interpreter since
they also facilitate quick lookup for terms. We specify the type of a table, and its
associated operations, in the interface to the table module, given below.

type ’a t ;;

value new : unit → ’a t
and clear : ’a t → unit
and add : term → ’a → ’a t → unit
and find : term → ’a t → ’a ;;

We create a table using the function new : unit → ’a t , the polymorphic type ’a being
the target of the table, i.e., the entry in the table associated with a term. Since table
access and updates will occur frequently, we must ensure that the above operations are
efficient. One efficient method of indexing terms is by using generalised tries, an idea
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suggested in (Ramakrishnan, Rao, Sagonas, Swift & Warren 1995). In this section, we
study the implementation of tries of terms.

Tries are multiway branching trees, classically applied to the problem of lexicographic
searching. The underpinning technique of tries is to fragment canonically a large data
structure into smaller parts that can collectively be used to index the entire structure
incrementally. So, in the case of dictionary words, each character of the word is used to
index a branch in a node of the trie. With respect to logic programming terms, we can
use each constant symbol and variable name to index branches. The fragments of the
indexing data structure are sequenced using a list; consequently any data type having
such an interpretation can form the index of a trie. We call the list representation of the
data structure the key of the trie.

Our logic programming terms have a straightforward representation as a list: terms
can be thought of themselves as trees and the inorder traversal of this tree can be used
to convert terms to keys. We must, however, make a simple observation to discriminate
completely between the various possible occurrences of constants and variables in a term.
Since our terms are of a curried nature, the same constant or variable could quite possibly
appear in a different term with a different number of arguments. To distinguish such
occurrences, we augment each component of a term’s key with the number of arguments
it has. The function flatten : int → term → term * int list transforms a term into its
unique representation as a list, the integer argument being the number of arguments of
the given term.

let rec flatten n = function
App (e1,e2 ) → flatten (n+1) e1 @ flatten 0 e2
| e → [e,n] ;;

The function unflatten : term * int list → term satisfies the identity

unflatten · flatten 0 = id

and can be defined straightforwardly, although we omit its definition here.
Owing to the fact that tries can share common portions of keys, a terminal node in

a trie cannot simply be identified by a node that has no branches. A terminal node can
appear anywhere in a trie and we must, therefore, explicitly distinguish them from other
nodes in the trie. A node in a trie comprises: a key field; a data field (to record whether
it is a terminal node); and a pointer to the next part in the trie. In fact, the data field
allows us to use tries as tables since we can assign an arbitrary value to this field of a
terminal node. Of course, since only some nodes in a trie terminate a key, we employ
the maybe data type to distinguish terminal nodes from other nodes:

type ’a maybe =
Nothing
| Just of ’a ;;

A non-terminal node has its data field set to Nothing . The type of a trie is given by
the mutually recursive data type

type (’a, ’b) node =
{ mutable key : ’a;

mutable data : ’b maybe;
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mutable next : (’a, ’b) trie }

and (’a, ’b) trie =
{ mutable trie : (’a, ’b) node list } ;;

parametrised by the type of the key, ’a, and the type of the target entries, ’b. We could
employ data structures other than lists to represent the collection of nodes in a trie:
representations like balanced binary trees or hash tables could allow more efficient access
to the node associated with a particular key. We develop the following programs to
abstract over the actual choice of data structure.

An empty trie is created using the function new : unit → (’a,’b) trie, defined as

let new () = { trie = [ ] } ;;

and the function mk node : ’a → (’a,’b) node creates a new node with the given key:

let mk node k = { key = k ; data = Nothing ; next = new () } ;;

A node is inserted into a trie using insert : (’a,’b) node → (’a,’b) trie → unit , whose side-
effect is to update the list of nodes in the trie, defined as:

let insert v ({ trie = vs } as trie) = trie.trie ← v :: vs ;;

The function assoc : ’a → (’a, ’b) trie → (’a, ’b) node finds the node with the given key
field in a trie:

let assoc p { trie = vs } =
let rec assoc’ p = function

[ ] → raise Not found
| u :: us → if p = u.key then u else assoc’ p us

in
assoc’ p vs ;;

If no such node exists, the build-in Caml exception Not found is raised.
New keys are inserted into a trie, after being converted into their list representation,

using the function add : ’a list → ’b → (’a,’b) trie → unit . We assume that the key we
are inserting does not already occur in the trie:

let rec add (k :: ks) item trie =
let u =

try assoc k trie with Not found →
let v = mk node k in
insert v trie; v

in
if ks = [ ] then u.data ← Just item else add ks item u.next ;;

The function find : ’a list → (’a,’b) trie → ’b takes the list representation of a key,
and returns its associated value in the trie. If the key does not exist in the trie, we raise
the exception Not found .

let rec find (k :: ks) trie =
let u = assoc k trie in
if ks = [ ] then

match u.data with
Nothing → raise Not found
| Just item → item

else find ks u.next ;;
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Now we can implement the table module by the program

type ’a t == (term * int, ’a) trie ;;

let new = trie new
and clear tbl = tbl.trie ← [ ]
and add l = trie add (flatten 0 l)
and find l = trie find (flatten 0 l) ;;

As well as using tables to implement association mappings for terms, we will also use
them to implement sets of terms; in particular, tables facilitate efficient membership tests
for sets of terms. In this case, a set of terms is a table whose target is of type bool :

type term set == bool table t ;;

The function mem : term → term set → bool tests membership of a set of terms and is
defined below.

let mem l set = try find l set with Not found → false ;;

In the following section, we describe the computer representation of OLD-trees.

B.2 OLD-trees

In this section, we present the implementation of the type of OLD-trees, and its associated
operations, after discussing the requirements for the data type. Recall from Definition 4.5
that an OLD-tree is rooted at a node that contains a single literal and has a number of
branches equal to the number of program clauses for that literal. A branch connects to
a child node that contains a number of subgoals. Each subgoal in a child node can be
considered the root of its own OLD-tree; from this, we can form the forest of OLD-trees
that comprise an OLDT-tree.

The first aspect of an OLD-tree we consider is the representation of its children. As
answers are returned to a goal, we create new subgoals to develop and so, in the repre-
sentation of an OLD-tree, we must maintain the current state of the children of the tree.
For example, consider the abstract representation of an OLD-tree depicted in Figure B.1;
the completion of the subgoal arc a Z in node 2 provides two answer substitutions that
update node 2 to nodes 3 and 5; we only represent the current, uncompleted children
in an OLDT-tree. So, the current children of this tree are the nodes 1 and 5. Notice
that since node 3 is completely evaluated and that node 2 has been updated, neither is
represented as a current child.

Each child in an OLD-tree must record the substitution of the OLD-resolution, θ that
annotates the arc connecting the child to its parent node. From an implementation point
of view, it is useful for each OLD-tree to record the initial answer substitution χ of the
current derivation, such that the entire computed answer thus far is θ ◦ χ. The final
pieces of information that an OLD-tree maintains are the number of program clauses
tried for it and a list of the ‘answers’ discovered so far in its resolution, the type of which
we will introduce later.

Another consideration for OLD-trees is the order in which to develop them. For this
purpose, it is instructive to conceptualise a fair OLD-tree as a process that can spawn
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0*. # :− path a Z .

1. # :− path a Y , path Y Z .

{Z 7→ d}

5. # :− terminal d .

4. # :− .

2. # :− arc a Z , terminal Z .

3. # :− terminal b.

{Z 7→ b}

Figure B.1: An example OLD-tree.

child processes where each child process is itself an OLD-tree. We have a choice of how
to develop these child processes; we can develop them eagerly, i.e., as soon as they are
created, or, in the case of fair OLDT-resolution, we can impose a fair selection of child
processes such that a particular child is not further developed until its parent process has
sprouted all of its child processes. The latter procedure creates a ‘frontier’ of OLD-trees
that can each be developed one resolution step at a time to maintain fairness.

Each leaf OLD-tree in the frontier requires the construction of a child using either
program or answer clause resolution, depending on whether it is an answer or active node,
respectively. Locating leaf nodes in the OLDT-tree is not as simple as one might perhaps
imagine. Unfortunately, it is not enough simply to record the leaves in the expanding
frontier since the frontier changes dynamically as leaves become completely evaluated
and their answers are returned to goals. Rather, we must locate leaves by traversing the
OLDT-tree in some fashion, e.g., by a depth-first traversal, examining each branch in the
tree until we encounter a leaf. After performing a computation step, we backtrack to the
last partially explored branch of the tree and attempt to find subsequent leaves.

As the forest of OLD-trees grows, so does the number of OLD-trees we must traverse
until we find a leaf. Consequently, the traversal of the OLDT-tree can be quite time
consuming if we have to visit each OLD-tree in the forest. Fortunately, it is not necessary
to visit all the OLD-trees in the forest, only those that present a choice of paths to
traverse. A path is a sequence of connected OLD-trees and is unique when the current
child of each OLD-tree contains only one subgoal. Such a path is called a spine of the
tree. The plan is to collect those OLD-trees in the forest that chart unique paths in the
tree. This way, we can limit the number of OLD-trees we must visit in order to locate a
leaf. To illustrate, consider the goal

# :− add 100 100 200.

that produces the spine shown in Figure B.2. In this spine, each node forms the root
of an OLD-tree. We can collect all these trees in a sequence such that its frontier leaf is
the head of the sequence. In many derivations, the length of a spine can be considerable
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Fail

Fail

Fail

Fail

# :− . Fail

...

# :− add 100 100 200.

# :− add 99 100 199.

# :− add 1 100 101.

# :− add 0 100 100.

Figure B.2: The spine formed by # :− add 100 100 200.

and, as we shall see shortly, representing parts of the OLD-tree forest using spines allows
us to access the current leaf in time independent of the length of the spine.

From all the requirements discussed above, we arrive at the following mutually recur-
sive data type declaration for OLD-trees:

type old tree =
{ label : term;

answer : substitution;
answers : answers;
program clause : int ;
mutable children : (forest list * substitution) list
}

and forest =
{ first : old tree;

mutable spine : old tree list
} ;;

The data type invariant for a forest F , is that F.spine contains at least one OLD-tree,
and that F.first is the the last OLD-tree in F.spine. Also, each OLD-tree in F.spine
has only one subgoal in its current child. Finally, for a spine [t0; t1; . . . ; tn ], we have the
relationship, for n ≥ 0 and each 0 ≤ i < n:

ti = hd (fst ti+1.children)

for consecutive OLD-trees in the spine.
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An OLD-tree is constructed using mk tree : substitution → term → old tree which
takes the answer substitution computed so far for the derivation and the root label of the
tree. The function mk forest : old tree → forest generalises a leaf OLD-tree to a forest:

let mk forest t = { root = t ; spine = [t ] } ;;

and the function sprout : forest → unit ensures that the given forest adheres to the data
type invariant. Its definition is

let sprout forest =
match children forest with

([forest ’] , ) :: → forest.spine ← forest ’.spine @ forest.spine
| → () ;;

The accessor function children : forest → (forest list * substitution) list returns the chil-
dren of the last OLD-tree in the forest as

let children forest = (hd forest.spine).children ;;

and the function current goal : forest → forest list returns the current goal of the last
OLD-tree in the given forest

let current goal forest =
match children forest with

[ ] → [ ]
| ch :: chrn → fst ch ;;

B.3 Variants of terms

A common operation on literals is to check whether it is a ‘variant’ of another, i.e., if they
are identical up to the renaming of variables. We create a variant of a literal by replacing
its variables with a canonical choice of identifier. The function variant : term → term
performs this replacement. So, if we have two terms u and v that are identical up
to the renaming of variables, then variant u = variant v . We retrieve the variables
from a term by an inorder traversal of its abstract representation as a tree using the
function set of vars : term → string list . Each variable in the list is associated with a
canonical identifier using the function new vars : string list → string * string list , de-
fined as follows:

let new vars ys =
fst (it list (fun (xs,n) x → ((x, " V " ^ string of int n) :: xs, n + 1))

([ ],0) ys) ;;

Using this association list, we create the canonical representation of a term via the
function rename : string * string list → term → term,

let rec rename xs = function
Const c → Const c
| Var x → Var (assoc x xs)
| App (f,g)) → App (rename xs f, rename xs g) ;;

and define variant in terms of these functions

let variant t = rename (new vars (set of vars t)) t ;;
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B.4 Traversing OLDT-trees

An OLDT-tree is simply the forest of OLD-trees that develops from the root OLD-tree.
The distinguished root for a query # :− A1, . . . ,An is an OLD-tree with a special label
and only one child node whose subgoals are A1, . . . ,An . As mentioned earlier, we develop
the OLDT-tree by visiting each leaf in the tree, performing a computation step on it. The
only obligation that we must adhere to during a traversal is that, after a finite number
of steps, every leaf must be selected for resolution so that we maintain fairness.

The manner in which this traversal is performed dictates how the OLDT-tree is gen-
erated. Naturally, many different methods of traversal are possible, like depth-first and
breadth-first. Moreover, alternative traversal strategies, like bounded depth-first search,
could employ heuristics to obtain good efficiency behaviour in practice. We delay the
discussion of this point until later and opt for depth-first traversal of the tree.

Earlier, we stipulated that only one variant of a subgoal, called the answer node,
should be developed using program clause resolution whilst all others, called active nodes,
should perform answer clause resolution. Deciding on when active nodes can begin to
perform answer clause resolution is one choice that influences the efficiency of OLDT-
resolution. In our implementation, we allow active nodes to receive answers only once
their corresponding answer node is completely evaluated, known as local scheduling of
answers. Local scheduling helps restrict the size of the OLDT-tree by preventing the
return of many meaningless answers to a goal. If an answer node depends on an active
node, i.e., if there is a cycle in the OLD-tree, then the active node must receive answers,
otherwise the answer node can never become completely evaluated. For example, this
situation arose with node 1 in Figure 4.2.

We record the active nodes encountered during the traversal of an OLDT-tree using
the global set answer nodes : term set :

let answer nodes = table new () ;;

In fact, we store variants of literals in the set to avoid distinguishing between literals
identical up to the renaming of variables.

As we traverse the OLDT-tree, it can change dynamically as completely evaluated
subgoals return their answer substitutions to a goal. As these substitutions are applied
over a goal, new subgoals are created and the old subgoals are discarded. We can deter-
mine if the current child of a tree has been updated by the completion of a subgoal by
checking to see if the number of the subgoals in a goal has decreased since the last visit
to this goal. The traverse function performs a backtracking traversal of an OLD-tree,
maintaining the state of the traversal on the stack path that contains the subgoals left
to examine in the current traversal. The stack path : (forest * (int * int)) stack t holds
pairs of the form (forest, (i,n)), where

n = list length (current child forest)

and 0 ≤ i ≤ n. Moreover, for successive elements (forest , (i ,n)) and (forest ′, (i ′,n ′))
on path, we have that

forest ′ = nth list (i − 1) (current child forest).

When n = 0 for forest ′, then hd forest .spine is a leaf node. The memoisation of the num-
ber of subgoals of a child n is used to determine if the OLDT-tree has been dynamically
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let traverse path root active table =
let traverse’ path active table =

let current = ref (fst (peek path)) and found = ref false in
while not !found do

let (forest, (i,n)) = stack pop path in
let n’ = list length (current goal forest) in
if n = 0 then found := true
else if n <> n’ then stack push (forest, (0,n’)) path
else if i < n then begin

let child = nth list i (current goal forest) in
let l = variant child.root.label in
push (forest, (i+1,n)) path;
try table find l active table; () with Not found →

table add l true active table;
push (child, (0,list length (current goal child))) path

end;
current := forest

done;
( (if empty path then Nothing else Just (peek path)), !current)

in
try traverse’ path active table with Empty →

table clear active table;
stack push (root, (0, list length (current goal root))) path;
traverse’ path active table ;;

Figure B.3: The definition of the function traverse.

updated by a completely evaluated literal; should this number decrease on backtracking,
then a completely evaluated literal has updated the child and we can then recommence
the examination of the new subgoals for leaf nodes.

The function traverse returns a leaf of the forest and the parent of the leaf if it has
one. When there are no more leaves left to visit, the exception stack Empty is raised. As
we progress with the traversal, we record the selected literals, i.e., the answer nodes, in
the table answer nodes and skip any subsequent subgoals corresponding to active nodes.
The definition of traverse is given in Figure B.3.

B.5 Answers

The pervasive operation in the tabled interpreter is the return of answers for a subgoal
to a goal. Each OLD-tree records its own computed answers which, in turn, depend on
the answers computed for each subgoal in the child of the tree. An OLDT-refutation can
contain a considerable number of OLD-trees and so answers substitutions are proportion-
ally comprised of long compositions of unifiers. Unfortunately, our current representation
of substitutions as finite mappings becomes inefficient owing to the large number of ap-
plications we must perform as we return answers. Nevertheless, this is the only area
in the implementation where performance suffers due to the representation of substitu-
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tions. Rather than adopting a new representation for substitutions universally, we instead
employ a new data structure for answers in isolation.

Recall that the answer substitution for a refutation is the composition of all the
substitutions of the OLD-resolutions along the refutation. Each OLD-tree corresponding
to the resolutions along a derivation records its own substitution so we can adopt a
representation of answer substitutions as a trail of lists of variable/term pairs, where
each variable is explicitly associated with its binding term. A trail is implemented as a
linked sequence of such lists, the link being made to next completed OLD-tree in the trail
and a terminal node in a trail indicated with the maybe constructor Nothing . We define
the following:

type answer == (string * term) list ;;

type trail == answer * old tree maybe ;;

The answers for an OLD-tree are a list of such trails in the table. We could implement
a trail more efficient using lookup tables instead of linked lists but, again, to keep the
implementation descriptive rather than efficient, we will use the linked list implementa-
tion. One further requirement for answers is that we must be able to determine duplicate
solutions, so answers also contain a set of the answer terms, themselves.

type answers =
{ list : trail list ;

set : bool table t
} ;;

The function apply answer : answer → term → term takes an association list rep-
resentation of a substitution and applies it over the given term, in analogy with the
function apply : substitution → term → term. The definition of apply answer is given
below.

let rec apply answer chis = function
Const c → Const c
| App (f,g) → App (apply answer chis f, apply answer chis g)
| Var x → try assoc x chis with Not found → Var x ;;

The job of insert answers : substitution → old tree → bool is to update the answers
of the OLD-tree by inserting the substitution, if it is not a duplicate. The boolean valued
result of insert answers is false if the answer was a duplicate and true otherwise.

let insert answer phi tree =
let l = variant (apply phi tree.label) in
try not table find l tree.answers.set with Not found →

table add l true tree.answers.set ;
tree.answers.list ←

(map (fun x → (x, apply phi (Var x ))) tree.vars, Nothing) :: tree.answers.list ;
true ;;

The subtle point with insert answer is that the answer we insert is terminal in terms of
the trail; such answers are immediately generated by successful resolution of facts, for
example, and thus do not link to answers of child subgoals.
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Once an OLD-tree has been completely evaluated, we place it in complete nodes so
that subsequent calls may be retrieved from the table. The answers will, however, be
stored as a trail in the table and we must convert this into a list of substitutions. The
function gather answers : old tree → answer list produces a list of all the alternative rep-
resentation answer substitutions for an OLD-tree by traversing the trail and accumulating
the answers.

let rec gather answers tree = flat map (get answers tree) tree.answers.list

and get answers tree = fun
(chis, Nothing) → [ chis ]
| (chis, Just child) →

let phiss = gather answers child in
let compose chis phis = map (fun (x,t) → (x,apply answer phis t)) chis in
map (fun phis → compose chis phis) phiss ;;

The function compose : answer → answer → answer , which is defined in get answers,
composes two answers and returns a tabled answer, restricted to the variables of tree.
Although gathering the answer from a table is an efficient operation and, moreover, is only
carried put once tabled answers are actually required, we could record the substitutions
we derive to avoid having to recompute them. Such an extension to the data type of
answers is simple but we do not implement this optimisation.

The function tabled answers : old tree → string list → substitution list takes a tree
and collects all its answers. The slight complication is that the variables in the domain
of the answers returned are those of the tabled tree. Naturally, we wish to apply the
answers to literals in a goal with different variable names. We cope with this requirement
by passing a list of variables to tabled answers that replace the variables in the domain
of each answer.

let tabled answers tree xs =
let mk sub xs chis =

list it unify add (combine (xs, map snd chis)) idsub
in
map (mk sub xs) (fresh (gather answers tree)) ;;

The child of an OLD-tree must be updated whenever answers are returned from
one of its subgoals. Given three substitutions (φ, θ, χ), mk child (φ, θ, χ) : child list →
(forest list * substitution) list creates a new child as follows: the substitution φ is the
returned solution which is applied over each subgoal in the goal, θ is the existing substi-
tution of the OLD-resolution for the child, and χ is the computed answer thus far in the
current derivation. Therefore, the new substitution of the OLD-resolution is φ ◦ θ and
the answer of each new subgoal is the composition φ ◦ θ ◦ χ.

let mk child (phi,theta,chi) goal =
let chi ’ = compose phi (compose theta chi) in
(map (fun subgoal → mk tree chi ’ (apply phi subgoal.root.label)) goal,
compose phi theta) ;;

In the following section, we present the procedure that embodies fair OLDT-resolution.
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B.6 OLDT-resolution

We use the function mk root : term list → forest to create a special OLD-tree, called the
root, from a given query.

let mk root ls =
let l = it list (fun x y → App (x,Var y)) (Const "# ") !vars in
let tree = mk tree idsub l in
tree.children ← [ (map (fun l → mk forest (mk tree idsub l)) ls, idsub) ];
let root = mk forest tree in sprout root ; root ;;

So, for a query # :− A1, . . . ,An , where n ≥ 1, we create the OLD-tree labelled with
the special term # :− X1 . . . Xm , where the variables X1, . . . ,Xm , for m ≥ 0, are the
distinct variables of A1, . . . ,An . We create this ‘dummy’ term so that we can avoid
reporting duplicate solutions, as we shall see shortly.

From the root, we repeatedly traverse the tree, locating leaves and performing either
program clause resolution or answer clause resolution. The latter case arises when a vari-
ant of the label of the current leaf OLD-tree already occurs in the table complete nodes.
In this instance, we immediately return all answers from the table to the goal and traverse
any new leaves. In the former case, the current leaf does not appear in the table and
our action depends on the state of its current child. If it has no children, then we check
to see if it is completely evaluated. If so, we can enter it in the table and update the
forest by returning answers to the appropriate goal. If it is not completely evaluated,
then we must perform a resolution step with a previously untried program clause. In
the case where there are no literals in the child, then we have found a refutation and we
report the solution if it is not a duplicate. In the final case, we ensure that the data type
invariant for the forest is maintained by sprouting the current forest.

In the case where the current leaf OLD-tree has already been completely evaluated,
we take its computed answers from the table and return them to its containing goal,
removing that literal from the new goal and applying each answer substitution over the
remaining subgoals. The action taken depends on whether the completed leaf OLD-tree
is the only member of the spine, in which case, we must update the parent forest, or
update the previous tree on the spine.

let return answers completed tree = function
Nothing → ()
| Just (forest, (i, )) →

let tree = hd forest.spine in
let (goal,theta) :: chrn = tree.children in
let (subgoal,goal ’) = (nth list (i−1) goal, drop nth (i−1) goal) in
let phis = tabled answers completed tree (set of vars subgoal.root.label) in
tree.children ←

map (fun phi → mk child (phi,theta,tree.answer) goal ’) phis @ chrn;
sprout forest ;;

The side-effect of return answers is to update the head node of the parent spine, ensuring
that the data type invariant for the forest is maintained.

In the case where the parent is another OLD-tree on the spine, we delete the head of
the spine in addition to returning the solutions.
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let update spine forest =
let (child, tree) = (nth list 0 forest.spine, nth list 1 forest.spine) in
let ([ ],theta) :: chrn = tree.children in
let thetas = map (fun x → (x, apply theta (Var x ))) (set of vars tree.label) in
forest.spine ← tl forest.spine;
tree.answers.list ← (thetas, Just child) :: tree.answers.list ;
tree.children ← chrn ;;

The spine itself traces the path of the trail and the answer we insert in tree depends on
the answers for child . Therefore, we create a link in the trail that will allow us to recover
the entire answers for tree at a later date.

The function resolve : term list → unit takes a goal, converts it into the special root
OLD-tree, and performs fair OLDT-resolution on it until completely evaluated. The
condition for this is given by the function completely evaluated : old tree → bool , defined
as

let completely evaluated tree =
let i = tree.program clauses in
tree.children = [ ] && i <> list length (clauses tree.label) ;;

where the function clauses : term → clause list returns the program clauses from the
database for the predicate of the given term.

We commence the resolution by creating the root OLD-tree for the query, the path
stack, and the active nodes table. We repeat the traversal of the forest of OLD-trees
until the root OLD-tree is completely evaluated.

let resolve ls =
let root = new root ls
and path = stack new () and active nodes = table new () in
while not completely evaluated root.first do

let (parent,forest) = traverse path root active nodes
and finished = ref false in

If the root OLD-tree is not completely evaluated, there must be at least one leaf node
in the tree. Once we have located the first unexamined leaf in the inorder traversal, we
may be able to perform several computation steps. We introduce another while loop
that terminates when the current leaf OLD-tree has been fully processed. The first step
in the loop is to check whether the leaf OLD-tree has already been evaluated.

while not !finished do
let leaf = hd forest.spine in
let tabled = try Just (find (variant leaf.label) complete table) with

Not found → Nothing in

If leaf has been previously evaluated, the action taken depends on whether its parent
OLD-tree is contained on forest.spine or in the parent structure returned by traverse.
The latter case arises when forest.spine contains only leaf . Here, return answers returns
all the answers from the completed OLD-tree to the goal containing leaf as a subgoal.
This operation updates the goal, providing new subgoals to traverse. Therefore, we
terminate the inner loop and traverse the new subgoals in the updated goal.

if tabled <> Nothing && parent <> Nothing && singleton forest.spine
then

let (Just tabled tree) = tabled in
return answers tabled tree parent ; finished := true
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In the case where other OLD-trees occupy forest.spine, we remove leaf from the spine
and return its tabled answers to its parent tree. Since the parent tree is on the spine,
we know that there will only be one subgoal in its current goal, namely leaf . We re-
use return answers, ensuring that the invariant pertaining to the second argument is
satisfied.

else if tabled <> Nothing && not singleton forest.spine then
let (Just tabled tree) = tabled in
forest.spine ← tl forest.spine;
return answers tabled tree (Just (forest,(1,1)))

Returning solutions in this case may result in a refutation for the spine, the effect of
which is captured below. Therefore, we iterate round the loop again with forest updated.

Should leaf not be previously evaluated, we examine its current child. If leaf has no
children then we begin by checking whether it is completely evaluated. If so, we add the
label of leaf to complete nodes and, again, distinguish the cases where leaf is the only
member of forest.spine and where other trees exist on the spine. In the latter case, we
use update spine to ensure that the trail of answers for the spine is maintained correctly.

else match leaf.children with
[ ] →

if completely evaluated leaf then begin
table add (variant leaf.label) leaf complete nodes;
if singleton forest.spine then begin

return answers leaf parent ; finished := true
end else update spine forest

In the case of leaf having program clauses left to resolve with, we perform a resolution step
with a previously untried clause. The function new clause : old tree → clause returns
such a clause from the database.

end else begin
try

let (l,ls) = new clause leaf in
let phi = unify leaf.label l in
let chi = compose phi leaf.answer in
leaf.children ← [ map (fun l → mk tree chi (apply phi l)) ls, phi ]

with No unifier → ()
end

A resolution step may result in the immediate subrefutation of a literal. This situation
is identified by the current goal of leaf being empty. Here, we insert the substitution of the
OLD-resolution into the answers of the OLD-tree and, furthermore, report the solution
if appropriate. Explicitly, we report the solution if leaf is, in fact, the root OLD-tree and
the solution is not a duplicate, or if the first OLD-tree on forest.spine is the root and the
current answer of the OLD-refutation is not a duplicate.

| ([ ],theta) :: chrn →
let inserted = insert answer theta leaf in
leaf.children ← chrn;
if parent = Nothing then

let chi = compose theta leaf.answer in
if (leaf == root.first && inserted) | | insert answer chi root.first
then report solution chi
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The definition of report solution : substitution → unit is omitted.
The final case for the inner loop simply ensures that the data type invariant for forest

is maintained.

| (ls, ) :: chrn → sprout forest ; finished := true
done

done ;;

This completes the implementation of OLDT-resolution.



Appendix C

Implementing prioritised fair
SLD-resolution

In this appendix, we present an implemention of prioritised fair SLD-resolution. The
implementation is intricate owing to the plethora of graph algorithms used and, therefore,
it is instructive to present the actual algorithms in full. A similar structure to that
of Chapter 5 is followed by first introducing symbolic norms and then implementing
instantiation analysis. Following this, the pivotal data structure of a graph is given from
which the definition of a mapping is obtained. Next, constraint analysis is implemented
followed by the construction of query-mapping pairs. After all these components are in
place, the implementation of the termination test ends the appendix.

C.1 Symbolic norms

A symbolic norm is a polynomial expression comprising an integer constant and a number
of variables with integer coefficients. The size of a symbolic norm for a term is propor-
tional to the number of distinct variables in that term. Since the number of distinct
variables in a term is likely to be small, a symbolic norm is implemented as an associa-
tion list of variable/coefficient pairs. A variable is a string and a coefficient is an integer.
The type definition is as follows.

type symbolic norm == (string * int) list ;;

The empty string is conveniently associated with the constant term since the empty vari-
able cannot occur in a program. For example, the symbolic norm 2+X +3Y corresponds
to the Caml association list [ ("",2) ; ("X ",1) ; ("Y ",3) ].

The data type invariant of a symbolic norm is that pairs with a zero coefficient do
no appear in the association list and each variable in the domain of the list occurs in
only one pair. Consequently, the empty association list represents the symbolic norm 0.
Since they are used regularly during the construction of arcs in a mapping, definitions
of the symbolic norms 0 and 1 are given below to allow the abstraction over their actual
representation.

let norm zero = [ ] and norm one = [ "",1 ] ;;

When traversing a path in a mapping, a common operation is to sum or subtract
the symbolic norms of each node in the path. These simple arithmetic operations are
implemented by the function combine norms : (int → int → int) → symbolic norm →
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symbolic norm → symbolic norm. The first argument to combine norms, which may
be prefix + or prefix −, allows the respective addition or subtraction of its two ar-
guments. The data type invariant for symbolic norms is enforced by combine norms
such that each string occurs in only one pair in the list and that zero-valued associations
are deleted.

let combine norms f ms ns =
let combine ms (s,n) =

try let m = assoc s ms in m := f !m n; ms with
Not found → (s,ref (f 0 n)) :: ms

in
let add ref = map (fun (s,n) → (s,ref n)) in
let del ref = map (fun (s,ref n) → (s,n)) in
let rem zeros = filter (fun ( ,0) → false | → true) in
rem zeros (del ref (it list combine (add ref ms) ns)) ;;

For reasons of efficiency, references play a crucial role in combine norms to update a
variable’s coefficient without alteration to the structure of the list. The final step is to
remove association pairs with zero coefficients from the list. Both of these steps ensure
the data type invariant is maintained.

The function mk norm : string * int list → symbolic norm converts a list of vari-
able/integer pairs to a symbolic norm. Although association lists are likely to be a
reasonably efficient representation of symbolic norms, the provision of mk norm facili-
tates the abstraction over the actual representation of symbolic norms. For example,
an alternative association representation, like a hash table, could be adopted later to
improve efficiency.

let mk norm = combine norms (prefix +) norm zero ;;

The call to combine norms in the body of mk norm ensures that the data type invariant
is satisfied for the newly created symbolic norm.

Common operations on a symbolic norm are those that test whether it is zero, posi-
tive, negative, or an integer constant, each of type symbolic norm → bool . The following
functions provide this information:

let zero norm = prefix = norm zero ;;
let integer norm = fun [ "", ] → true | ns → zero norm ns ;;

let cmp norm cmp ns =
not zero norm ns && for all (fun (s,n) → cmp n 0) ns &&
exists (fun ("", ) → true | → false) ns ;;

let positive norm = cmp norm (prefix >)
and negative norm = cmp norm (prefix <) ;;

The functions above break the data abstraction for symbolic norms since equality is most
efficiently defined in terms of the actual structure of the association list. Also, let us
mention in passing that the comparisons made by cmp norm are likely to be reasonably
efficient since the Caml logical operators ‘&&’ and ‘| |’, used in the definitions of the
library functions for all and exists, are non-strict.
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Recall from Definition 5.2 that a norm is a function mapping terms to symbolic norms
which corresponds to the following type synonym:

type norm == term → symbolic norm ;;

The function termsize norm : norm calculates the term-size norm, from Example 5.1,
for a given term. Recall that the term-size norm associates a value to each constructor
equal to the number of arguments it has; for an arbitrary term, the number of its ar-
guments can be determined from its ‘spine’ representation which is obtained using the
function spine : term → term list :

let rec spine = function
App (f,g) → spine f @ [g ]
| f → [f ] ;;

The definition of termsize norm is as follows:

let termsize norm t =
let rec normify (e :: es) =

(match e with Const c → ("",list length es) | Var x → (x,1)) ::
flat map (fun e → normify (spine e)) es

in
mk norm (normify (spine t)) ;;

The function ie : norm → term → bool takes a symbolic norm and a term, and de-
termines whether the term is instantiated enough with respect to the norm. From Defi-
nition 5.3, a term is instantiated enough if its norm is an integer:

let ie norm t = integer norm (norm t) ;;

The functions above capture the main operations on norms that are used in the remainder
of the section. Next, an implementation of instantiation analysis is presented.

C.2 Instantiation analysis

The programs of this section are introduced following the notation of its counterpart,
Section 5.6.2. Before giving an implementation of the abstraction function α for terms,
necessary type definitions are given to describe the abstract forms of terms and clauses.
The first of these is instantiation patterns (Definition 5.4) which essentially provide an
account of whether or not each argument in a term is instantiated enough.

type instantiation pattern == bool list ;;

The value true corresponds to an argument being instantiated enough, i.e., the special
term ie, and false otherwise, i.e., the special term nie. Given two instantiation pat-
terns, a useful operation is to determine whether the first pattern subsumes the sec-
ond, given in Definition 5.6. The implementation of subsumes : instantiation pattern →
instantation pattern → bool is as follows:

let subsumes ip ip’ =
let subsume = fun (false, true) → false | → true in
for all subsume (combine (ip,ip’)) ;;
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This function is used frequently in the implementation of termination analysis.
An abstract form of a literal, with respect to some norm, is implemented as a tuple

whose first component is the predicate name and whose second is the instantiation pattern
of its arguments.

type abs term == string * instantiation pattern ;;

Therefore, the tokens ie and nie from Definition 5.5 are replaced by true and false, re-
spectively. The abstraction function α for terms is implemented by alpha : norm →
term → abs term which takes a norm and a literal, and converts the literal into its ab-
stract form by applying the function ie to each of its arguments. The spine representation
of the literal provides a simple method of accessing each argument.

let alpha norm t = let (Const p :: es) = spine t in (p, map (ie norm) es) ;;

The instantiation analysis of a predicate proceeds by generating every special in-
stance of its program clauses. For a clause that contains n distinct variables, recall
from Section 5.6.2 that 2n instances of the clause are constructed by either substitut-
ing each variable with the special token ie or by leaving the variable unchanged. The
function instances : clause → clause list builds a list of 2n substitutions that performs
this task; we use the special constant term Const " ie " (that cannot occur naturally in
the program) to represent the abstract token ie. After creation of the list of substitutions,
each one is applied over the original clause to create the abstract clauses. The definition
of instances is given below.

let instances (l,ls) =
let xs = nub (flat map set of vars (l ::ls)) in
let phis xs =

let ie term = Const " ie " in
let f x phis = phis @ (map (add (x, Const " ie ")) phis) in
list it f xs [ idsub ]

in
map (fun phi → (apply phi l, map (apply phi) ls)) (phis xs) ;;

So, instances is used to create the special instances of a clause and, according to
Section 5.6.2, each instance is transformed into an abstract clause by applying alpha to
each literal in it. The type of an abstract clause is

type abs clause == abs term * abs term list ;;

The function abstract cl : clause → abs clause takes a clause and transforms it into its
abstract form, as follows:

let abstract cl norm (l,ls) = (alpha norm l, map (alpha norm) ls) ;;

The following example demonstrates how the above programs correspond to Example 5.5.

Example C.1. Suppose the following instance of the second program clause of append
has been created by the function instances.

append (A : ie) ie (A : ie) :− append ie ie ie.
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The abstract clause for this instance is obtained by an application of abstract cl producing

append nie ie nie :− append ie ie ie.

That is, ( ("append", [false; true; false]), [("append", [true; true; true])] ) in the Caml-
light implementation where the boolean values true and false correpond to the special
tokens ie and nie, respectively. ♦

Instantiation analysis is a bottom-up process that examines the literals in the body of
a clause in order to infer instantiation patterns for its head. Therefore, when analysing a
given predicate, it is advantageous to perform instantiation analysis first on the predicates
that preceed it in the topological ordering of the predicate dependency graph of the
program. By doing so, each predicate in the body of a clause can be assumed to have
been previously analysed. The definition of dependency analysis is omitted and we assume
that instantiation analysis is performed according to this order.

During the instantiation analysis, the instantiation patterns inferred so far for a pred-
icate are constantly accessed. For reasons of efficiency, this information is recorded in a
hash table that takes predicates to their inferred instantiation patterns. Indeed, a sub-
stantial quantity of information will be inferred for each predicate during the course of
termination analysis. So, rather than maintaining multiple incarnations of such tables, a
single hash table is generalised to record all of a predicate’s pertinent information. The
following type definition stores this information:

type predicate data =
{ mutable ips : instantiation pattern list ;
} ;;

The field ips records the instantiation patterns determined for a predicate by instantiation
analaysis.

The hash table predicate database : (string, predicate data) hashtbl t , whose defini-
tion is given below, maps predicates to their associated data:

let predicate database = hashtbl new 997 ;;

The value 997 denotes the initial size of the hash table. The accessor functions for this
table are

let find ips = find data (fun data → data.ips) ;;
let add ips hashtbl c ips =

let data = find hashtbl c in data.ips ← nub (data.ips @ ips) ;;

The predicate data type will be enhanced with extra fields as the need arises later in the
section.

Instantiation analysis first analyses the facts of a predicate—a fact contains no literals
in its body—to determine the initial bottom-up instantiation patterns. Therefore, a
predicate’s abstract clauses are seperated into facts and the remaining clauses. The
function facts cls : abs clause list → abs clause list * abs clause list performs this task:

let facts cls =
let oplus (cls1,cls2 ) cl =

if fact cl then (cl :: cls1, cls2 ) else (cls1, cl :: cls2 )
in it list oplus ([ ],[ ]) ;;
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Given an abstract clause, the instantiation pattern of its head is inferred only if the
pattern of each literal in its body has already been inferred. The function analyse :
abs clause → instantiation pattern list takes a clause and returns the singleton list con-
taining the instantiation pattern of its head if appropriate, otherwise it returns the empty
list.

let analyse ((c,ip),ips) =
if for all (fun (c’,ip’) → mem ip’ (find ips predicate database c’)) ips
then [ip] else [ ] ;;

The function instantiation analysis : norm → string → unit takes a norm and the
name of a predicate, and performs instantiation analysis of the predicate. The side effect
of instantiation analysis is to update the global hash table predicate database with the
computed instantiation patterns.

let instantiation analysis norm c =
let (facts,cls) = facts cls (flat map instances (clauses c)) in
let abs facts = map (abstract cl norm) facts
and abs cls = map (abstract cl norm) cls in
let (cls’,pending) = (ref abs cls,ref abs cls) in
add ips predicate database c (flat map analyse abs facts);
while !pending <> [ ] do

match analyse (hd !pending) with
[ ] → pending := tl !pending
| [ip] →

add ips predicate database c [ip];
cls’ := exceptq (hd !pending) !cls’;
pending := !cls’

done ;;

The instantiation patterns inferred for a predicate are retrieved frequently, and the hash
table predicate database provides constant time access to this information. In the next
section, the fundamental graph data structure, forming the backbone of termination
analysis, is presented.

C.3 Graphs

The pervasive data structure in termination analysis is the mapping (Definition 5.10).
The majority of the computational effort expended during termination analysis involves
the manipulation of mappings. Therefore, an efficient representation of a mapping must
be selected, tailored to the particular requirements of termination analysis. In terms of
computer representation, a mapping is essentially a directed weighted graph.

Abstractly, a directed, weighted graph G is a set of vertices V and a set of arcs A
with three functions: src : A → V and tgt : A → V that identify the source and target
of an arc, respectively; and wgt : A → N, where N is the set of natural numbers, which
returns the weight of an arc. For each vertex v ∈ V , there is an associated set Av ⊆ A
such that Av = {a | a ∈ A∧ src a = v}. The definition a directed, weighted graph can be
reformulated to make explicit the connection between a vertex and the arcs that leave it.
Given the same V and A, the set {(v ,Av ) | v ∈ V } of adjacency pairs is defined, each
pair associating a vertex v with the arcs having v as their source. A graph is implemented
as this set of adjacency pairs, using an efficient representation of the set.
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The type of an arc in Caml is parametrised by both the type of the target and the
type of the weight of the arc:

type (’a,’b) arc =
{ tgt : ’a;

weight : ’b
} ;;

Parametrising the data type in this manner provides the flexibility to adopt different
representations of the target of the arc. For example, the target of an arc could be a
unique identifier that facilitated efficient table lookup of the corresponding vertex, or a
reference to the actual location in memory of the vertex. An arc is constructed by the
function mk arc : ’a → ’b → (’a,’b) arc:

let mk arc id ns = { tgt = id ; weight = ns } ;;

An adjacency pair is given by the type synonym

type (’a,’b) adj == ’a * ’b list ;;

again parametrised by the types of a vertex and an arc. The various components of an
adjacency pair are accessed using the functions adj vertex : (’a,’b) adj → ’a and adj list :
(’a,’b) adj → ’b, defined simply as

let adj vertex = fst and adj list = snd ;;

A graph is specified by functions mk graph : (’a,’b) adj list → (’a,’b) graph and its
inverse graph adjs : (’a,’b) graph → (’a,’b) adj list such that the following identity holds:

mk graph · graph adjs = id . (C.1)

The function graph adj : int → (’a,’b) graph → (’a,’b) adj selects an adjacency pair from
a graph G according to the following specification:

graph adj n G = nth list n (graph adjs G). (C.2)

The set of adjacency pairs is implemented as a vector—the Caml terminology for an
array—of such pairs:

type (’a,’b) graph == (’a,’b) adj vect ;;

Conveniently, the specifications of (C.1) and (C.2) are easily satisfied by the following
function definitions:

let mk graph = vect of list
and graph adjs = list of vect
and graph adj n graph = graph.(n) ;;

The implementation of a graph as a vector suggests a refinement to the set of ver-
tices V = {v0, . . . , vn−1} of a graph. The following set is constructed that associates a
unique integer i with each vertex in V :

V ′ = {(vi , i) | vi ∈ V ∧ 0 ≤ i < n},

Unsurprisingly, the following equivalence is identified:

vi ≡ adj vertex (graph adj i G) (C.3)

Operationally, a vertex can be looked-up in constant time using graph adj and adj vertex .
In the following section, graphs are used to implement mappings.
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C.4 Mappings

Before giving the type of a mapping, let us settle on the type of a node. Recall from
Definition 5.10 that a node consists of a label (a term) and whether or not it is instantiated
enough with respect to some norm. From an implementation point of view, recording
the symbolic norm of the label and the name of the associated predicate is useful. The
refinement to the graph data type, introduced in (C.3), associates a unique integer to
each vertex to facilitate their efficient lookup. Consequently, a node also contains this
identifier. The type definition of a node is as follows:

type node id == int ;;

type node =
{ id : node id ;

name : term;
label : term;
norm : symbolic norm;
mutable bound : bool
} ;;

A node is constructed by the function mk node : node id → term → term → node, de-
fined below.

let mk node k u t =
{ id = k ;

name = u;
label = t ;
bound = ie termsize norm t ;
norm = termsize norm t
} ;;

To simplify the implementation, the term-size norm is favoured in the remainder of the
section. However, the use of other norms in termination analysis is discussed further in
Section 7.2.

Abstractly, a mapping is a graph whose vertices are nodes and whose arcs have a
norm as their weight and a node as their target. However, since each node is uniquely
identified according to (C.3), the target of an arc in a mapping is the unique identifier of
the actual node rather than the node itself:

type mapping arc == (node id, symbolic norm) arc ;;

In addition to efficient access of vertices, using an integer identifier means that copying
arcs becomes a matter of copying integers rather than nodes.

Each subgoal in the body of a clause has a corresponding list of nodes in its mapping
representation. Specifically, consider a clause A :− B1, . . . ,Bn , for n ≥ 1 and suppose
some subgoal Bi = f t1 . . . tm , where m ≥ 0, f is a constant, and t1, . . . , tm are
terms. The nodes corresponding to t1, . . . , tm form the subgoal Bi in the mapping. In the
implementation, individual subgoals are accessed regularly to create query-mapping pairs,
infer constraints, and so on. However, the vector implementation of a graph does not
provide enough structure to record this information. Therefore, a mapping is augmented
with a list subgoals : node list list such that, for some i and j , the node corresponding to
argument tj of Bi can be obtained by nth list j (nth list i subgoals).
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So, a mapping is a graph coupled with the list subgoals. In fact, the type of subgoals
can be refined to that of lists of node identifiers rather than nodes themselves. Then the
type definition of a mapping becomes

type mapping =
{ adjs : (node, mapping arc) graph;

subgoals : (node id list) list
} ;;

The various parts of a mapping are accessed using the functions

let mapping adjs mapping = graph adjs mapping.adjs ;;
let mapping adj n mapping = graph adj n mapping.adjs ;;
let mapping adj id v = (adj vertex v).id ;;

The type subgoal is identified as a list of adjacency pairs which corresponds to a subgoal
in the mapping:

type subgoal == (node, mapping arc) adj list ;;

The function mapping subgoal : int → mapping → subgoal returns the appropriate sub-
goal in the mapping and is defined below.

let mapping subgoal n mapping =
map (fun k → mapping adj k mapping) (nth list n mapping.subgoals) ;;

The function mk mapping : clause → mapping converts a clause into its representa-
tion as a mapping. The process is relatively intricate and we proceed towards its imple-
mentation in stages. First, the adjacency pairs for each subgoal in the clause must be
created. The function l2adjs : node id → term → subgoal converts a literal into a list of
adjacency pairs, where each pair initially has an empty adjacency list. The first argument
to l2adjs is the initial identifier from which to label the successive nodes of the literal.
The definition of l2adjs is given below.

let l2adjs n l =
let (e :: es) = spine l in
fst (list it (fun e’ (adjs,i) → (mk adj (mk node i e e’) :: adjs, i − 1))

es ([ ], n + list length es − 1)) ;;

Given a clause A :− B1, . . . ,Bn , the next step is to construct the sequence of sub-
goals [A,B1, . . . ,Bn ], converting each one into a list of adjacency pairs using l2adjs. The
complication is to ensure that the identifier for each node satisfies the invariant for a
graph. The function mk adjs : term list → subgoal list performs this transformation it-
eratively.

let mk adjs ls =
fst (it list (fun (adjss,n) l →

let adjs = l2adjs n l in (adjss @ [adjs], n + (list length adjs)))
([ ],0) ls) ;;

The adjacency list of each pair is initially empty and must be updated with the ap-
propriate arcs (Definition 5.10). The function connect : (node, mapping arc) adj list →
(node, mapping arc) adj list takes the list of adjacency pairs, examining each one in turn,
and inserts arcs into any node that has a comparable norm to any other node.
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let connect adjs =
let visit adjs adj =

new adj (adj vertex adj )
(flat map (fun adj ’ →

let (w,v) = (adj vertex adj, adj vertex adj ’) in
let ns = combine norms (prefix −) w.norm v.norm in
if mapping adj id adj ’ <> mapping adj id adj && accept norm ns
then [ mk arc v.id ns ] else [ ])
adjs)

in
map (visit adjs) adjs;;

The function mk mapping : clause → mapping builds a mapping by translating the
clause into a list of subgoals, from which the list subgoals can be obtained. The next step
is to make the graph from the adjacency pairs:

let mk mapping (l,ls) =
let adjs = mk adjs (l :: ls) in
let kss = map (map mapping adj id) adjs in
new mapping kss (mk graph (connect (concat adjs))) ;;

In the remainder of this section, implementations are presented for the various operations
on mappings, like inferring new arcs and bindings. Many of these operations share a
similar traversal pattern of a mapping: each node is visited in turn and its adjacency
list is traversed with some operation performed of the target nodes. Therefore, generic
algorithms are given when possible.

The function insert arc : node id → mapping arc → mapping → unit inserts an arc
into the identified adjacency pair of the mapping. The arc is only inserted if it does not
already exist in the adjacency list. The side-effect of insert arc is to update physically
the mapping argument.

let insert arc k arc mapping =
let adj = mapping adj k mapping in
let duplicate arc = exists (fun arc’ → arc.tgt = arc’.tgt) (adj list adj ) in
if not exists (fun arc’ → arc.tgt = arc’.tgt) (adj list adj ) then

update adj k (mapping.adjs) (new adj (adj vertex adj ) (arc::adj list adj )) ;;

The generic way of traversing a mapping is to visit each adjacency pair in sequence
and, for each pair, traverse each arc in the adjacency list, performing some operation
on the target node of the arc. The function do mapping f : mapping → unit implements
the generic traversal above, applying the function f : mapping arc list ref → mapping →
node id → mapping arc → unit to each applicable node. The first argument to f is a
reference to the list of arcs yet to be examined; the second argument is the mapping
being traversed; the third argument is the identifier of the current node being visited;
and the final argument is the arc currently being examining. The definition of do mapping
is given below.

let do mapping f mapping =
do list (fun root →

let pending = ref (adj list root)
and visited = ref [mapping adj id root ] in
while !pending <> [ ] do
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let arc = hd !pending in
pending := tl !pending ;
if not mem arc.tgt !visited then begin

visited := arc.tgt :: !visited ;
f pending mapping (mapping adj id root) arc

end
done) (mapping adjs mapping) ;;

The function do mapping physically updates its mapping argument and is used to infer
arcs and bindings for a mapping, and also to test whether a positive-weight cycle exists
in a mapping.

Inferring arcs is similar to taking the transitive closure of a mapping except Defi-
nition 5.12 determines whether two nodes are connected. In particular, an arc can be
inserted between two nodes connected by either a zero-weight path if no non-zero weight
arc exists in the path, or a positive-weight path. Given a source node and an arc that
leaves it, the target of the arc is first considered. For each arc that leaves that node, an
arc is inferred from the source node to the new target node, if appropriate. An inferred
arc must itself be traversed so the pending list is reset on each iteration of the loop; the
function do mapping ensures that revisiting nodes is avoided. The definition of infer arcs
is given below.

let infer arc pending mapping src arc =
do list (fun arc’ →

if arc’.tgt <> src then
let ns = combine norms (prefix +) arc.weight arc’.weight in
let new arc = mk arc arc’.tgt ns in
let unlabelled arc = positive norm arc.weight | | positive norm arc’.weight in
if (zero norm ns && not unlabelled arc) | | positive norm ns then

insert arc src new arc mapping)
(adj list (mapping adj arc.tgt mapping));

pending := adj list (mapping adj src mapping) ;;

We use do mapping to define the function infer arcs : mapping → unit that infers all
possible arcs in a mapping:

let infer arcs = do mapping infer arc ;;

Given a node in a mapping and an arc that has that node as its source, the following
function is used to infer whether either the source or target node is instantiated enough,
according to Definition 5.14:

let infer binding mapping src arc =
let src node = adj vertex (mapping adj src mapping)
and tgt node = adj vertex (mapping adj arc.tgt mapping) in
if src node.bound | | tgt node.bound then

if zero norm arc.weight then
(src node.bound ← true; tgt node.bound ← true)

else if positive norm arc.weight then
tgt node.bound ← true ;;

An application of do mapping allows all bindings in a mapping to be inferred.

let infer bindings = do mapping infer binding ;;
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In a similar vein, a subgoal in a mapping may be instantiated with some instantia-
tion pattern. The function instantiate : instantiation pattern → int → mapping → unit
takes the index of a subgoal in a mapping and carries out this operation.

let instantiate ip k mapping =
let instantiate node = fun (true, node) → node.bound ← true | → () in
let nodes = map adj vertex (mapping subgoal k mapping) in
do list combine instantiate node (ip, nodes); infer bindings mapping ;;

The final operation is to determine whether or not a mapping is consistent, i.e.,
contains a positive-weight cycle. Such mappings cannot occur in the SLD-tree and,
therefore, such mappings can be discarded. We make use of Caml-light exceptions to
abort further computation in the event of a positive-weight cycle being discovered in a
mapping. We declare the exception

exception Inconsistent ;;

For a mapping with all inferred arcs, a cycle exists in the mapping if, from any node, the
target of an arc leaving that node itself contains an arc to the original node. Moreover,
the cycle has a positive weight if the sum of the weights of the two arcs in question are
of positive weight.

let positive cycle mapping src arc =
do list (fun arc’ →

if arc’.tgt = src &&
positive norm (combine norms (prefix +) arc.weight arc’.weight)

then raise Inconsistent)
(adj list (mapping adj arc.tgt mapping)) ;;

The function consistent : mapping → bool then determines whether a given mapping con-
tains a positive cycle:

let consistent mapping =
try do mapping positive cycle mapping ; true with Inconsistent → false ;;

In this section, the machinery to create and manipulate mappings according to the
important definitions of Section 5.6.3 has been presented. Mappings are pervasive in
the remainder of the implementation and the functions above are used frequently in the
remainder of the implementation. In the following section, mappings are used to infer
the constraints between arguments in a predicate.

C.5 Constraint analysis

Constraint analysis is an involved process that is implemented using backtracking. The
difficulty stems from computing the fixed-point of the immediate consequence operator
in Section 5.6.4. Therefore, as new constraints are inferred, previous clauses must be
reconsidered since any new constraint may allow further ones to be inferred from the old
clauses. As usual, we begin by introducing the relevant data types.

Following Definition 5.15, a constraint is a subgoal with arcs restricted to only those
between the nodes of the subgoal:

type constraint == subgoal ;;
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The data type invariant for a constraint is enforced by restricting the arcs that appear
in an adjacency list to those with particular targets. The function restrict adjs : bool →
mapping → node id list → subgoal → subgoal carries out this task. The boolean argu-
ment to restrict adjs indicates whether positive-weight arcs that do not connect two black
nodes should be deleted, a requirement for constructing a summary mapping (Defini-
tion 5.18). The remaining arguments are: the mapping whose adjacency pairs are being
restricted; a list of node identifiers that are allowable targets of arcs; and the list of
adjacency pairs to be restricted. The definition of restrict adjs is given below.

let restrict adjs constraint mapping ks =
map (fun adj →

let arcs =
it list (fun arcs arc →

let tgt node = adj vertex (mapping adj arc.tgt mapping) in
let src bound = (adj vertex adj ).bound in
if mem arc.tgt ks &&

(zero norm arc.weight | |
positive norm arc.weight && (src bound | | constraint))

then
(if zero norm arc.weight then arc else mk arc arc.tgt norm one) ::
arcs

else arcs)
[ ] (adj list adj )

in new adj (adj vertex adj ) arcs) ;;

A common operation is to merge a constraint with a particular subgoal in a map-
ping, as discussed in Definition 5.13. Each adjacency pair in the constraint is merged
with the corresponding adjacency pair in the subgoal, ensuring that arcs in the con-
straint correspond to arcs in the subgoal. In particular, the node identifiers of arcs in the
constraint may not match those in the subgoal. The function merge adj : mapping →
(node id * node id) list → (node id, mapping arc) adj * (node id, mapping arc) adj →
unit updates the given mapping by merging the two adjacency pairs. The second argu-
ment is a list of node identifier pairs that associates the identifiers of the nodes in the
constraint to their corresponding nodes in the subgoal.

let merge adj mapping new ids (adj1,adj2 ) =
let (node1, node2 ) = (adj vertex adj1, adj vertex adj2 ) in
node2.bound ← node2.bound | | node1.bound ;
do list (fun arc →

let arc’ = mk arc (assoc arc.tgt new ids) arc.weight in
insert arc (mapping adj id adj2 ) arc’ mapping)
(adj list adj1 ) ;;

The function merge : subgoal → int → mapping → unit utilises the function merge adj
to merge the given subgoal with the kth subgoal of the mapping. The mapping is physi-
cally updated by merge.

let merge subgoal k mapping =
let subgoal ’ = mapping subgoal k mapping in
let new ids =

zipWith (fun (adj1,adj2 ) → (mapping adj id adj1, mapping adj id adj2 ))
(subgoal,subgoal ’)
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in
do list combine (merge adj mapping new ids) (subgoal,subgoal ’);
infer arcs mapping ; infer bindings mapping ;;

The function mk constraint : mapping → constraint extracts the constraint, if any,
from the head of the given mapping.

let mk constraint mapping =
let mapping ’ = copy mapping mapping in
let adjs = mapping subgoal 0 mapping ’ in
let ks = map mapping adj id adjs in
do list (fun adj → let node = adj vertex adj in node.bound ← false) adjs;
restrict adjs true mapping ’ ks adjs ;;

A copy the mapping is made since each node is reset to ‘white’, i.e., not instantiated
enough, following the procedure of Definition 5.15. The efficiency obtained in the im-
plementation by using destructive updates is traded against the fact that a mutable
structure cannot be safely shared since any changes are reflected in every reference to it.
The boolean argument to restrict adjs is true to keep arcs that do not connect pairs of
black nodes.

At this point, the algorithm to compute the constraints for a given predicate can be
presented. The complication is that all clauses for a predicate must be retried for each
new constraint inferred, ensuring that at least one recursive occurrence of the predicate in
the body of a clause receives the new constraint. This enterprise ensures that redundant
computation is avoided. The function recursive subgoals takes a predicate and one of its
mappings, and returns the mapping coupled with a pair of integer lists; the first list gives
the index of recursive calls to the predicate, and the second the remaining subgoals.

let recursive subgoals c mapping =
let (js ks, ) =

it list (fun ((js,ks),n) subgoal →
if c = subgoal name (mapping subgoal n mapping)
then ((n::js,ks), n+1)
else ((js,n::ks), n+1)) (([ ],[ ]),1) (tl mapping.subgoals)

in
(mapping, js ks) ;;

Recall from Section 5.6.4 that the first step of constraint analysis is to infer constraints
from the facts of a predicate; facts have no literals in their body and the immediate
consequence operator begins with the empty set of constraints. The constraints are
stored in the predicate database hash table, by augmenting the type with

mutable cns : constraint list ;

and the accessors

let find cns = find cns ;;
let add cns table c cns =

let data = hashtbl find table c in data.cns ← data.cns @ cns ;;

We initialise predicate database for a given predicate using the function
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let initialise cns c =
let facts = filter fact (clauses c) in
let cns = map (fun cl → mk constraint (mk mapping cl)) facts in
add cns predicate database c cns ;;

Every permutation of constraints is inserted into the subgoals of a mapping. In each
case, if the resulting mapping is consistent, then the constraint for its head is inferred
as a new constraint. Constraint analysis maintains a stack of mappings that require
a constraint to be inserted for each subgoal. Formally, the stack contains tuples, each
tuple having four components: (1) the current mapping; (2) the index of the current
subgoal that requires insertion of a constraint; (3) the indices of the subgoals pending
insertion of a constraint; and (4) the constraints yet to be inserted for the selected sub-
goal. For a stack s of tuples above, the function push constraints s : constraint list →
mapping * (int list * int list) → unit pushes onto s a mapping paired with the appro-
priate indices, such that the properties above are satisfied. In particular, if the map-
ping has no recursive subgoals, then the newly selected subgoal receives its constraints
from predicate database. Otherwise, for each recursive subgoal, the mapping is pushed
onto s with that subgoal selected and using constraints from the first argument rather
than from the table. By doing so, redundant computation of constraints is avoided. The
definition of push constraints follows.

let push constraints stack new cns = function
(mapping, ([ ],k :: ks)) →

let u = subgoal name (mapping subgoal k mapping) in
stack push

(copy mapping mapping,k,ks,find cns predicate database u) stack
| (mapping, (js,ks)) →

do list (fun j →
stack push (copy mapping mapping,j,except j (js@ks),new cns) stack)
js ;;

The function constraint analysis : string → unit , shown in Figure C.1, computes the
constraints for a predicate. The side-effect of constraint analysis is to update the hash
table predicate database with the constraints inferred for the given predicate. The algo-
rithm terminates when no new constraints are inferred for a predicate using the current
constraints.

C.6 Query-mapping pairs

Recall from Definition 5.19 that a query-mapping pair consists of a query pattern and
a summary mapping. Let us begin by first giving the type of a query pattern, from
Definition 5.17:

type query pattern == subgoal ;;

The function mk qp : int → mapping → query pattern takes the index of a subgoal and
a mapping, and creates a query pattern for that subgoal.

let mk qp k mapping =
let subgoal = mapping subgoal k mapping in
restrict adjs false mapping (map mapping adj id subgoal) subgoal ;;
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let constraint analysis c =
let mappings = map (recursive subgoals c) (find mappings predicate database c) in
let aug graphs = ref [ ] and new cns = ref [ ] and finished = ref false in
initialise cns c;
new cns := find cns predicate database c;
while not !finished do

let pending = stack new () in
do list (push constraints pending !new cns) mappings;
new cns := [ ];
while not empty pending do

match stack pop pending with
( , , ,[ ]) → ()
| (mapping, k, ks, cn :: cns) →

stack push (copy mapping mapping, k, ks, cns) pending ;
merge cn k mapping ;
if consistent mapping then

match ks with
[ ] →

let new cn = mk constraint mapping in
if not empty cn new cn && not exists (eq cn new cn)

(!new cns @ find cns predicate database c)
then new cns := new cn :: !new cns

| j :: js →
let p = subgoal name (mapping subgoal j mapping) in
stack push

(copy mapping mapping,j,js,find cns predicate database p) pending
done;
if !new cns=[ ] then finished := true else add cns predicate database c !new cns

done ;;

Figure C.1: The function constraint analysis.

The type of a query-mapping pair is as follows:

type qmpair =
{ query : query pattern ;

mapping : mapping
} ;;

The two components of a query-mapping pair are accessed by the functions qm query :
qmpair → query pattern and qm mapping : qmpair → mapping . The mapping compo-
nent of a query-mapping pair has both a range and domain, as defined in Definition 5.19.
Each of these is accessed from the mapping using the functions domain : mapping →
subgoal and range : mapping → subgoal . The implementations of these functions are
given below.

let qm query qm = qm.query and qm mapping qm = qm.mapping ;;
let domain = mapping subgoal 0 and range = mapping subgoal 1 ;;
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According to Definition 5.20, a query pattern is used to generate new mappings
from which query-mapping pairs can be constructed. The function generate mappings :
query pattern → mapping list performs the first of these tasks.

let generate mappings qp =
flat map (fun mapping →

let mapping ’ = copy mapping mapping in
try merge qp 0 mapping ’; [ mapping ’ ] with Inconsistent → [ ])
(find mappings predicate database (subgoal name qp)) ;;

Each mapping returned by generate mappings is consistent. For each such mapping,
a query-mapping pair is constructed from it by forming the summary of its head and
one subgoal. The function mk qmpair : int → mapping → qmpair takes the index of a
subgoal in the given mapping and returns a query-mapping pair by restricting the nodes
of the mapping to those of only the head and indicated subgoal. The arcs from these
nodes are restricted to only those between these nodes. Furthermore, non-zero arcs that
connect nodes other than black ones deleted. The definition of mk qmpair follows.

let mk qmpair qp n mapping =
let mapping ’ = copy mapping mapping in
let (d,r) = (mapping subgoal 0 mapping ’, mapping subgoal n mapping ’) in
let ks = concat (map (map mapping adj id) [d ; r ]) in
let m = list length d in
let n = mapping adj id (hd r) − m in
let new adjs = map (update id (prefix −) m n) in
let restrict = restrict adjs false mapping ’ ks in
new qmpair qp (new adjs (restrict d)) (new adjs (restrict r)) ;;

The complication with mk qmpair is that the range of the query-mapping pair, pro-
duced by restrict adjs, cannot be converted to a mapping straight way. The reason is
that, for some node v in the subgoal, adj vertex (nth list v .id adjs) 6= v since the node
identifiers in the range are unlikely to be valid. To reinstate the data type invariant
for the mapping, the nodes in the range must have the correct identifiers and the tar-
gets of all arcs must be consistent with this. The arithmetic juggling is carried out
by update id : node id → int → (node, mapping arc) adj → (node, mapping arc) adj
which takes a node identifier i , an integer n, and an adjacency pair adj , and returns a
new adjacency pair in which the node and the target of each arc in the adjacency list,
with an identifier strictly greater than i , have n subtracted from it. This results in the
definition:

let update id f m n adj =
let new index m’ = f m’ n in
let new node =

let node = adj vertex adj in
if node.id > m then begin

let node’ = mk node (new index node.id) node.name node.label in
node’.bound ← node.bound ; node’

end else node
in
let arcs = map (fun arc →

if arc.tgt > m then mk arc (new index arc.tgt) arc.weight else arc)
(adj list adj ) in

new adj new node arcs ;;
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As outlined Section 5.6, the composition of query-mapping pairs is the fundamental as-
pect of termination analysis. Two query-mapping pairs are composable (Definition 5.21)
if the range of the first is identical to the query pattern of the second. This condition is
embodied in the function composable : qmpair → qmpair → bool .

let composable qm1 qm2 =
eq qp (mk qp 1 (qm mapping qm1 )) (qm query qm2 ) ;;

The function eq qp : query pattern → query pattern → bool tests equality of two query
patterns and is defined simply as eq qp = eq cn.

Given two composable pairs, compose qm : qmpair → qmpair → qmpair computes
their composition. The idea behind compose qm is to construct a new mapping by ‘glu-
ing’ the two mapping parts of the query-mapping pairs together: zero-weight arcs are
inserted between corresponding nodes in the range of the first pair and domain of the
second. The function glue : mapping → subgoal * subgoal → unit carries out this task.

let glue mapping =
do list combine (fun (adj1,adj2 ) →

let (node1, node2 ) = (adj vertex adj1, adj vertex adj2 ) in
insert arc node1.id (mk arc node2.id norm zero) mapping ;
insert arc node2.id (mk arc node1.id norm zero) mapping) ;;

The main complication when constructing the new mapping is to ensure that the data type
invariant is maintained; the identifiers of the nodes and arcs in the second mapping will re-
quire updating. The function compose mappings : mapping → mapping → mapping re-
labels all the nodes and arcs in the second mapping with appropriate identifiers:

let compose mappings M1 M2 =
let n = list length (mapping adjs M1 ) in
let update adj = update id (prefix +) (−1) n in
let adjss = map (map (fun k → update adj (mapping adj k M2 ))) M2.subgoals in
let kss = M1.subgoals @ map (map mapping adj id) adjss in
let M = new mapping kss (mk graph (mapping adjs M1 @ concat adjss)) in
glue M (mapping subgoal 1 M, mapping subgoal 2 M );
infer arcs M ; infer bindings M ; M ;;

If the resulting mapping is consistent then a new query-mapping pair is generated with
the last subgoal as its range. If the mapping is inconsistent, an exception is raised.

let compose qm qm qm’ =
let (qm,qm’) = (copy qmpair qm, copy qmpair qm’) in
let mapping = compose mappings (qm mapping qm) (qm mapping qm’) in
if consistent mapping then

mk qmpair (qm query qm) 3 mapping
else raise Inconsistent ;;

The remaining operation is to check whether a query-mapping pair has a circular
variant (Definition 5.22) and, if so, whether the variant has a forward positive cycle. The
following exception is introduced to indicate that the circular variant does not have a
forward positive cycle.

exception Non termination of qmpair ;;
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A variant is checked for a forward positive cycle using the following algorithm: zero-weight
arcs are inserted between corresponding arguments in the variant and then all arcs are
inferred. Naturally, the variant will likely be inconsistent so no check for consistency
is made. The function check variant : qmpair → qmpair is the identity on all query-
mapping pairs other than those that have a circular variant without a forward positive
cycle. In this case, the exception Non termination is raised.

let check variant qm =
if eq qp (qm query qm) (mk qp 1 (qm mapping qm)) then

let qm’ = copy qmpair qm in
let M ’ = qm mapping qm’ in
glue M ’ (domain M ’, range M ’);
infer arcs M ’;
if forward cycle qm’ then qm else raise (Non termination qm)

else qm ;;

So, the variant has a forward positive cycle if it contains a positive-weight arc from
the domain to the range, with no similar arc in the opposite direction. The following
function forward cycle : qmpair → bool makes this determination.

let forward cycle qm =
let M = qm mapping qm in
let positive arc mapping src tgt =

exists (fun arc → arc.tgt = tgt && positive norm arc.weight)
(adj list (mapping adj src M ))

in
exists (fun (adj d,adj r) →

let (node1,node2 ) = (adj vertex adj d, adj vertex adj r) in
positive arc M node1.id node2.id && not positive arc M node2.id node1.id)
(combine (domain M, range M )) ;;

All that remains is to provide an implementation of the termination test itself in the
following section.

C.7 Termination analysis

In Chapter 5, we adapted the termination analysis of (Lindenstrauss & Sagiv 1997) to use
a new computation rule and described its novel application to the automatic generation
of a call set for prioritised fair SLD-resolution (Definition 5.9). In this appendix, we
provide algorithms to implement the adapted termination test.

When performing termination analysis, it is desirable to follow the topological order-
ing of the predicate dependency graph of a program. By doing so, we can assume that
each predicate in the body of a clause will have been previously analysed. Again, we
update the predicate database table, this time with the two fields

mutable tips : instantiation pattern list ;
mutable analysed : bool ;

The job of tips is to record the terminating instantiation patterns and analysed to record
whether the predicate has been analysed for all possible instantiation patterns.
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The first stage in implementing the new termination test is to find a method of mimick-
ing of the computation rule used in the actual prioritised SLD-resolution. The following
few functions perform this duty. The function terminates : subgoal → bool takes a sub-
goal, and determines whether its instantiation pattern is known to terminate, using the
information in predicate database.

let terminates subgoal =
mem (subgoal ip subgoal) (find tips predicate database (subgoal name subgoal)) ;;

The function select terminating : mapping → int list → int maybe takes a mapping and
a list of indices of subgoals not yet selected in the termination analysis of the mapping.
The result of select terminating is an index from its second argument of the first subgoal
with a known terminating instantiation pattern. If no such literal can be selected, the
result is Nothing .

let rec select terminating mapping = function
[ ] → Nothing
| j :: js →

if terminates (mapping subgoal j mapping) then Just j
else select terminating mapping js ;;

The function select subgoal : mapping * int list → int maybe takes a mapping and a list
of indices of subgoals already considered in the analysis, and proceeds as follows. We find
the indices js of subgoals yet to be considered. Using this list, we select the leftmost,
known terminating subgoal according to select terminating . If no such literal exists, we
select the leftmost literal of a predicate that has yet to be completely analysed since the
current termination pattern of it may terminate. This case deals with predicates that
appear in the same strongly connected component of the predicate dependency graph.
Finally, if we cannot select such a literal then we assume that the goal is floundered.

let select subgoal (mapping,ks) =
let js = subtract (enum 1 (list length mapping.subgoals − 1)) ks in
match select terminating mapping js with

Just k → Just (k,true)
| Nothing →

match select leftmost mapping js with
Nothing → Nothing
| Just k → Just (k,false) ;;

The function enum : int → int → int list takes two integers m and n, and returns the
list [m, . . . ,n]. We select the leftmost unexplored literal using the following function.

let rec select leftmost mapping = function
[ ] → Nothing
| k :: ks →

let u = subgoal name (mapping subgoal k mapping) in
if not find analysed predicate database u then Just k
else select leftmost mapping ks ;;

Termination analysis maintains a stack of mappings from which to generate query-
mapping pairs, corresponding to the exploration of each branch in the actual SLD-
tree. The stack contains tuples, each with the following four components: (1) mapping :
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mapping , the current mapping being considered in the termination test; (2) js : int list ,
the indices of the subgoals in mapping already identified as terminating; (3) selected :
(int * bool) maybe, such that if selected is the value Just (k,terminates), then the cur-
rently selected subgoal is mapping subgoal k mapping , and terminates is true if the sub-
goal is already known to terminate; and (4) ips : instantiation pattern list , the untried
instantiation patterns for the selected subgoal.

For a stack s of tuples above, push mappings s : mapping * int list → unit pushes a
mapping with its already analysed subgoals onto s such that the properties above are
satisfied.

let push mapping stack (mapping,qp,ks) =
match select subgoal (mapping,ks) with

Nothing → stack push (copy mapping mapping,qp,ks,Nothing,[ ],[ ]) stack
| (Just (k,terminates)) as selected →

let subgoal = mapping subgoal k mapping in
let u = subgoal name subgoal in
let ips = subsuming ips u subgoal in
let cns = find cns predicate database u in
stack push (copy mapping mapping,qp,ks,selected,cns,ips) stack ;;

Moreover, each constraint for the selected subgoal is inserted into the mapping before
pushing it onto s; if there are no constraints—constraint analysis is an optional part of
termination analysis—then the mapping itself is pushed onto the stack.

The crux of termination analysis is to generate all query-mapping pairs for a query and
check that those with circular variants contain a forward positive cycle. Consequently,
the majority of computation involves composing existing query-mapping pairs with new
ones. In terms of efficiency, we maintain two hash tables, each taking predicates to query-
mapping pairs; one table maps predicates to pairs whose query pattern is labelled by that
predicate, and the second to pairs whose range is so labelled. Both tables are required
to facilitate constant time access to the current set of query-mapping pairs since every
possible composition must be considered. The sundry functions to access the tables are
trivial and their definitions are omitted.

The function termination test : query pattern → bool , shown in Figure C.2, tries to
determine whether the query pattern terminates. The test begins by generating all the
initial mappings for the query pattern, storing them on the pending stack. The algorithm
continues until pending is empty or a circular variant is discovered that does not contain
a forward positive cycle. On each iteration of the loop, the selected literal of the cur-
rent mapping is considered: for each of its subsuming binding patterns, the mapping is
instantiated appropriately and placed onto pending , unless the selected literal is the last
remaining one.

If the selected literal is not known to terminate, then the query-mapping pair is
constructed for the mapping and the selected literal. If the resulting pair is new, further
mappings are generated from its range query pattern. The function generate qm takes
the stack, the two query-mapping pair hash tables, and the new query-mapping pair, and
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let termination test qp’ =
let qm domain = hashtbl new 997 and qm range = hashtbl new 997
and okay = ref true and pending = stack new () in
do list (fun mapping → push mapping pending (mapping,qp’,[ ]))

(generate mappings qp’);
while not empty pending && !okay do

let (mapping,qp,ks,selected,cns,ips) = stack pop pending in
match selected with

Nothing → okay := false
| Just (k,terminates) →

let subgoal = mapping subgoal k mapping in
let u = subgoal name subgoal in
begin match ips with

[ ] →
if cns <> [ ] then

let ips = subsuming ips u subgoal in
stack push (mapping,qp,ks,selected,tl cns,ips) pending

| →
stack push (copy mapping mapping,qp,ks,selected,cns,tl ips) pending ;
if list length (k ::ks) <> (list length mapping.subgoals − 1) then

let aug mapping = copy mapping mapping in
try

if cns <> [ ] then merge (hd cns) k aug mapping ;
instantiate (hd ips) k aug mapping ;
push mapping pending (aug mapping, qp, k ::ks)

with Inconsistent → ()
end;
if not terminates then

let new qm = mk qmpair qp k mapping in
match generate qm pending qm domain qm range new qm with

Nothing → ()
| Just qm → okay := compose all qms qm domain qm range qm

done;
!okay ;;

Figure C.2: The function termination test .
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implements the above tasks.

let generate qm stack qm domain qm range qm =
if mem qm qm domain qm then begin

Nothing
end else

let new qp = mk qp 1 (qm mapping qm) in
add qm qm domain qm range qm;
if not mem qp qm domain new qp then begin

do list (fun mapping → push mapping stack (mapping,new qp,[ ]))
(generate mappings new qp);

end;
Just qm ;;

A new query-mapping pair is composed with all existing query-mapping pairs and any
circular variants are checked for forward positive cycles. The function compose all qms
takes the two tables and a query-mapping pair, and performs all applicable compositions
of pairs.

let compose all qms qm domain qm range qm1 =
let new qms = stack new () and okay = ref true in
stack push qm1 new qms;
while not empty new qms && !okay do

let qm2 = stack pop new qms and pending = stack new () in
stack push ([qm2 ], find qp qm domain (mk qp 1 (qm mapping qm2 ))) pending ;
stack push (find qp qm range (qm query qm2 ), [qm2 ]) pending ;
while not empty pending && !okay do

match stack pop pending with
([ ], ) → ()
| ( ,[ ]) → ()
| (qm :: qms, qm’ :: qms’) →

stack push (if qms = [ ] then ([qm],qms’) else (qms,[qm’])) pending ;
if composable qm qm’ then

try
let new qm = check variant (compose qm qm qm’) in
if not mem qm qm domain new qm then begin

add qm qm domain qm range new qm;
stack push new qm new qms;

end
with

Inconsistent → ()
| (Non termination qm) → okay := false;

done
done;
!okay ;;

Any newly created pairs are added to the tables and then each pair is composed in
the same fashion. The intricate point is that each new query-mapping pair is added
immediately to the tables and is, therefore, guaranteed to be composed with all any
remaining new pairs at a later date. This subtlety is a product of performing both left
and right compositions in compose all qms. The implementation of termination analysis
is now complete.
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