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ABSTRACT. A denota~ional semantics is given for a large subset of occam, a programming 

language for concurrent systems. ~e semantic domain used is a "failure-sets" model 

modified to algow machine staves to be properly dealt with~ The applications of the 

semantics are discussed briefly, and we see how the natural congruence induced by the 

semantics allows us to prove simple algebraic laws relating occam programs. 

O. Introduction The occam programming language [lO]was designed with the philosophy 

of eliminating unnecessary complexities, thus keeping the language simple and elegant. 

Fundamental to its design was the idea that the language should have close ties with 

formal methods of designing and verifying programs. The main aim of this paper is to 

develop a theory which will allow us to apply existing techniques of program verifica- 

tion to occam, as well as giving us a rigorous mathematical framework for developing 

new ones. 

The main difficulty in developing a useful theory of occam is the fact that it is a 

concurrent language. Indeed the idea of concurrency is central in occam, making an 

adequate treatment of concurrency essential in such a theory, There has been a consid- 

erable amount of effort expended in recent years in developing theories of concurrency° 

This subject is rather harder than the study of purely sequential computation, because 

of the emergence of such phenomena as nondeterminism, deadlock and livelock. Fortunat- 

ely occam is close in spirit to CSP [6 ], a language which has been one of the main veh- 
icles for research into concurrency, 

Since the problems of dealing with concurrency in isolation are quite considerable, many 

authors have chosen to omit several "conventional" programming constructs from the exam- 

ple languages they have used when reasoning about concurrent systems. In particular 

they have often omitted those constructs, such as assignment and declaration, which deal 

with a machine's internal state (or store). Several of the most successful theories of 

concurrency have been based on these "purely parallel" languages. To handle oecam we 

need a theory which~ while retaining its full capacity for dealing with concurrency, is 

extended to handle machine states. 

This paper presents one possible approach to this problem by constructing a mathematical 

model for communicating processes with internal states. As a basis for our treatment of 

concurrency we take the "failure-sets" (or "refusal-sets") model for communicating proc- 

esses, originally developed as a model for a purely parallel version of CSP. It was 

introduced in [4], and developed and improved in [3,5,12]. It provides a reasonably 

simple mathematical structure within which most of the important features of concurrency 

are easy to study. The fact that it was developed as a model for CSP makes it well 
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suited to occam. It is necessary to add to the model a mechanism for dealing with the 

state transformations induced by cccam's "conventional" constructs. The framework chosen 

for this is the well-known idea of regarding a program as a relation between initial and 

final states. ~s is sufficient because it turns out that knowledge of intermediate states 

is not required. One of the aims when putting these models together was that on purely 

parallel programs the results obtained would correspond closely to the old failure-sets 

model, and that on sequential programs the results would be relations on states. 

The first part of the paper is concerned with the construction of the revised model. 

The second part shows how it can be used to give a denotational semantics in the style 

of [11,13,14] to occam. The third section discusses a few applications of these semant- 

ics, and derives some algebraic laws relating occam terms. 

Throughout this paper~(X) will denote the full powerset of X (the set of all subsets 

of X), while 9(X) will denote the finite powerset of X (the set of all finite subsets 

of X). X* will denote the set of all finite sequences of elements of X. <> denotes the 

empty sequence, and <a,b,...,z> denotes the sequence containing a,b,...,z in that order. 

If s,t c X *, then st denotes the concatenation of s and t (e.g. <abc><de> = <abcde>). 

If s,t e X* then s ~t (s is a prefix of t) if there is some u c X ~ with su = t. 

i. Constr~cting the model Our semantic domain for occam is based on the failure-sets 

model for communicating processes. The following is a brief summary of its construction; 

much fuller descriptions and motivations can be found in [3,4,5,12]. The version desc- 

ribed here is that of [5]. 

The failure-sets model has as its only primitives the set ~ of atomic communications 

between processes. Communications are events which occur when the participating proc- 

esses agree to execute them. In themselves they have no direction - there is no input- 

ting process or outputting process. Input and output are modelled at a higher level by 

varying the set of a process' possible communications (an outputting process will typ- 

ically have one possible communication, while an inputting process will have many). 

Each process communicates with its environment. This might be some other process or 

processes, or it might be some external observer. No distinction is made between these 

cases. We will think of a process proceeding by accepting (i.e. communicating) symbols 

in ~ which are offered by the environment. Only one symbol can be communicated at a 

time, and only finitely many in any finite time. 

A process is modelled as a pair. The first component is a relation between the possible 

traces of the process (the elements of Z* which are the possible sequences of communica- 

tions of the process up to some time) and the sets of symbols which the process can ref- 

use to respond to after the traces (refusals). A failure of a process is a pair (s,X) 

where the process can refuse to communicate when offered the set X by its environment 

after the trace s. The first component of our representation of a process is the set 

of all its possible failures. 
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The second component is a set of traces. I~ represents the set of traces on which the 

process may diverge, that is~ engage in an infinite unbroken sequence of internal actions. 

When a process diverges, it not only never communicates with its environment again, but 

furthermore the environment can never detect that this is so. A diverging process is 

bad both practically and technically, so it is desirable to differentiate between it and 

a process which merely stops. (We can imagine the environment being able to detect the 

absence of internal activity in a process, perhaps via some light on its side. If, in 

such a state, it does not accept communications offered to it immediately, the environ- 

ment can deduce that it never will.) 

The sets of failures and divergences always satisfy the laws below (see [5]). If our 

representation of a given process P is <F,D> where F~ Z* x~(~) and D ~Z*, then 

NI) traces(P) (= {s s Z* : (s,@) eF}) is nonempty and prefix closed (i.e. traces(P) ~ @, 

and if s £traces(P) an4 t gs then t etraces(P) ); 

N2) if (s,X) E F and Y~X, then (s,Y) oF; 

N3) if (s,X) ~F and YN {a ~ Z :s<a> straces(P)} = @, then (s,XuY) E F; 

N4) if (s,Y) eF for each Y s~(X), then (s,X) oF; 

N5) if s eD and t s Z*, then st ~D; 

N6) if s eD and X~ Z, then (s,X) e F. 

The failure-sets model N is defined to be the set of all pairs <F,D> satisfying these 

laws. 

If PeN then f(P) will denote the first component of P, and d(P) the second component. 

There is a natural partial order on N given by P~ P' if and only if f(P)~ f(P') and 

d(P)~ d(P'). If P~P' then we can naturally think of P' as being more deterministic 

than P, for it has fewer possible actions. N is a complete semilattice with respect 

to ~; its minimal element is <Z* ×~(Z), Z*> (which represents the completely unpredict- 

able process) and its maximal elements are the deterministic processes. These can nei- 

ther diverge nor have any choice about whether or not to accept any communication. 

This model is adequate for modelling the behaviour of programs written in a purely par- 

allel version of CSP. All the operators in CSP translate naturally to continuous func- 

tions over N. It is well suited to reasoning about the nondeterminism which arises from 

distributed systems and to reasoning about deadlock. Axioms N5 and N6 above correspond 

to the assumption that once it becomes possible for a process to diverge we do not care 

about its subsequent behaviour. In other words divergence is something to be avoided 

at all costs. The inclusion of these laws makes for considerable technical simplific- 

ation at what does not seem to be a very great cost. Since the model has well-defined 

close links with behaviour, it is a good medium for expressing many correctness prop- 

erties of processes. 

Models whose only primitives are communications can be adequate for giving denotational 
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semantics to purely parallel languages because the only way in which one of two separate 

parts of a program can influence the behaviour of the other is via communication. One 

part of an occam program can influence another in two ways. Firstly, it can communicate 

along channels with its parallel partners. Secondly, it can, by assignment to common 

variables, influence the behaviour of its successors. Any mathematical model for occam 

will have to be able to deal with both these methods. 

One process can communicate with another at any time before it terminates, but can only 

pass on its final state when it terminates successfully. {Since the sharing of variables 

by parallel processes is not permitted, its intermediate states cannot directly affect 

another process.) Successful termination has previously been modelled in purely par- 

allel models (for example in [4,7]) by the communication of some special symbol: usually 

/ (pronounced "tick"). Thus all successful terminations looked the same. 

Perhaps the most obvious way of letting a process pass on its final state is to have 

not one but many Js - one for each possible final state. If this solution were adop- 

ted then a large proportion of our alphabet of "communications" would consist of these 

is. Noting that all elements of Z have precisely the same status in the construction 

of N, it does seem rather unnatural to include final states in this way. Besides, there 

are several specific problems which arise from this treatment. 

Firstly the degree of refinement required to correctly model ordinary communication 

seems inappropriate for the passing on of final states. It is natural to assume that 

if more than one final state is possible after some trace then the choice of which one 

is passed on is nondeterministic (i.e. outside the control of the environment). However 

the model as adapted above would contain elements which offer the environment a choice 

of final states. This would correspond to the environment controlling the internal 

workings of the process to a most unlikely degree. 

Secondly, if the number of possible states were infinite, there would be problems in 

defining a continuous sequential composition operator. When a process could terminate 

in infinitely many different states after some trace, the "hiding" of termination by 

sequential composition would yield unbounded nondeterminism. 

Finally, in a model where termination plays a more important role than before, the tech- 

nical complexities caused by allowing nonfinal ds in traces are unacceptable (as well as 

being unnatural). 

The solution we adopt is similar but avoids these difficulties. First, we remove d from 

the traces of processes (which thus only contain "real" communications). A single sym- 

bol / remains in the alphabet used for refusal sets, indicating that a process can ref- 

use to terminate successfully. The second component is expanded. Instead of just rec- 

ording the possible divergences, it now also records the possible states which result, 

from successful termination. It becomes a function from ~* to ~(S) u {~}, where S is the 

space of final states and i represents possible divergence. Thus each process is now a 

pair <F,T>, where Fg Z* x~(Zu {J}) (d ~Z) and T:Z* ~(S) U {~}. Our interpretation of 
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the behaviour of a process P = ~,T> is as follows° 

(i) F (the failures of P) lists all possible traces of the process~ together with all 

sets of communications which it can refuse on each trace. (So that if a set of commun- 

ications which is not a current refusal set is offered to the process, then it must 

accept some element.) 

(ii) One of the possible elements of the refusal sets is J - this indicates that the 

process may fail to terminate successfully (even though there may be some final states 

possible for the given trace ). Thus it is possible to discriminate between a process 

which will always terminate successfully and one which may nondeterministically deadlock 

oF terminate successfully. Termination must take place (if desired by the environment) 

only when the set {/} cannot be refused. 

(iii) Termination can take place on any trace s for which T(s) is a nonempty set of 

states. When T(s) contains more than one element the choice of which final state occurs 

is nondeterministic. (T will be referred to as the termination component of P.) 

(iv) If T(s) = ~ then the process is considered to be broken. We allow the possibility 

that it might diverge or do anything else at all. 

For a given alphabet Z and a set S of final states, the space Q of all processes is thus 

the set of all pairs P = ~,T> (Fc(Z* x~(Zu {/})), T:Z* ~(S)u {-a}) which satisfy the 

following eight laws. 

FI) traces(P) (= {s ~Z ~ : (s,¢) aF}) is nonempty and prefix closed; 

F2) ( s , X )  cF  & Y~X @ ( s , Y )  s F ;  

F3) ( s , X )  ~F & Y ~ { a  a Z : s<a> ~ t r a c e s ( P ) }  ~ ( s , X u Y )  ~F ; 

F4) i f  ( s ,Y)  EF f o r  each  Y s ~ ( X ) ,  t h e n  ( s ,X)  EF; 

TI) T(s) ~ ~ ~ s a traces(P); 

T2) ( s , X )  eF & T ( s )  = ¢ ~ ( s , X U { / } )  eF 

T3) T(S) =i & t ¢ Z* ~ T(sE) = i ; 

T4) T(s) = i & Xc ~ U {/} ~ (s,X) ¢F. 

In the above s,t range over Z* and X,Y range over ~(Z U {/}). 

These laws are just the natural extension of the laws governing N to the revised struct- 

ure. 

If P = <F~T>, then define f(P) = F and t(P) = T. We will adopt the conventions that 

A~i and A u~ =~ for all A~S, and that G E~ for all a aS. 

The new model clearly has a great deal in common with the old one. On the assumption 

that S has no important partial order of its own~ Q has a natural partial order: 

PEP' 4=> f(P)~ f(P') & ~s e Z*. t(P)s~t(P')$. 
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P~ P' can again be interpreted as meaning that P' is more deterministic than P. With 

respect to "~", Q is a complete semilattice whose minimal element is <Z* x~(Z U{J}),T > 

(denoted ~), where TA(S) =/for all s e Z*. ]-Q is the completely unpredictable proc- 

ess; it may diverge immediately. The maximal elements of Q are again the deterministic 

processes, which are divergence free and never have any internal decisions to make. A 

process P is deterministic if and only if it satisfies 

(s,X) ~f(P) ~ XN{a ¢ Z :s<a> etraces(P)} = 

and t(P)s ~ @ @ (s,{J}) ~f(P) & t(P)s is a singleton set. 

The assumption that all sets of final states are finite corresponds closely to an ass- 

umption of bounded nondeterminism. As remarked earlier, this is necessary to make sequ- 

ential composition easy to deal with. Of course, if the set S of states is finite, this 

assumption is vacuous. 

There is no concept of time in our model. Thus the occam timing constructs (NOW and 

WAIT) cannot be modelled directly. The other main feature lacking is an analogy of 

prioritised ALT: there is no way of telling from our model that a process would rather 

communicate "a" than "b" (say). It seems to be necessary to have a model which includes 

time before one can handle priority in a fully satisfactory way. One could handle time 

in the present model by adding a "clock" process to every system which processes comm- 

unicate with when they want to know the time. Unfortunately this solution does not 

prove to be fully satisfactory, and forces untidy semantic definitions which are, in 

some sense, at the wrong level of abstraction. We therefore omit timing and priority 

from our language, and pose the problem of the introduction of time as a topic for fut- 

ure research. 

2. Denotational semantics In this section we see how the model we have constructed can 

be used to give a natural denotational semantics to a large subset of occam. Having 

constructed what is essentially a hybrid model, one might expect to be able to adapt 

work on purely parallel and sequential languages. This does indeed turn out to be the 

case, as there are few parts of the language which make demands on both aspects of the 

model. 

In the previous section we discussed an abstract set S consisting of states. Nothing 

was assumed about S except (tacitly) that it did not use the space of processes in its 

definition (for then he would have required a recursive domain definition) and that it 

did not carry an important partial order with it. In devising our space of machine 

states we need to bear in mind the role they play in our model: passing on inform- 

ation from one occam process to its successor. The only way one occam process can infl- 

uence its successors is by modifying (though assignment or input) the values of variab- 

les: it cannot change the binding of identifiers in any other way. Thus our states will 

be "stores" - functions from locations to storable values. A separate environment will 

be used to map i~entifiers to locations, constants, channels, procedures and so on. 
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This distinction between environment and state is a familiar idea in dsnotational sem- 

antics; the way the present model works makes it natural to adopt the same distinction 

here. The management of environments and states relative to sequential languages is 

well understood. In translating the idea to oecam there is only one place where diff- 

iculties arise: we must decide how environments and states behave under the parallel 

operator. Parallel occam processes do not use shared variables for communication. They 

can only use global variables in a very restricted way: either only one process can use 

a given variable normally or all processes can read (but not write to) it. This idea 

corresponds to giving each parallel process a distinct portion of the state and reser- 

ving the rest as read only for the life of the parallel command. The state will be re- 

constructed at the end of a parallel construct by the "distributed termination" property 

of occam processes - a PAR construct can only terminate when each of its components can 

terminate (and thus yield its own component of the final state). 

In order to construct our model we also need to know the structure of the alphabet of 

communications between processes. In occam each communication has two components - an 

element (or word value, the same as a storable value) and a channel. We will thus post- 

ulate the existence of sets CHAN and B of (respectively) channels and elements. The 

alphabet of communications is then ~ = {X.6 : M ~ CHAN, B ~ B}. Note that we make no 

distinction between "input" and "output" communications. The fact that B is in practice 

finite is useful to us, since the semantics of h~ding (necessary for the correct defin- 

ition of PAR) are much easier in this case. We will therefore assume that 8 is finite. 

If X is any channel then X.B will denote the set {X.B : ~ ~B}. 

In the conclusion we will indicate how the semantics can be adapted to cope with an inf- 

inite ~, and also describe a way in which the model Q might be altered to take advantage 

of the special structure of the occam alphabet. 

Our language The version of oceam used in this paper differs slightly from the occam 

of [iO]. We have already remarked that we will omit timing and priority. We also omit 

certain non-central features of oecam such as those involving configuration. This part- 

icular omission is justi{ied by the argument that since the logical behaviour of a prog- 

ram is independent of izs configuFalion, so also should be its semantics. Minor omis- 

sions in the cause of simplicity are BYTE subscription, vector operations (slices) and 

vectors of constants. An additional atomic process STOP has been added, and the seman- 

tics of IF has been altered, to be consistent with the latest releases of oceam. 

The chief change we make in occam syntax is to insist that parallel processes declare 

which global channels and variables they want to use. Given the restrictions placed on 

their use this seems good practice. These restrictions (particularly where components 

of vectors are concerned) would not otherwise be syntactically checkable. Problems 

arise with the associativity of PAR (one of the most desirable algebraic laws) if these 

declarations are not made. Any truly parallel implementation of PAR will need to be 

able to determine the allocation of global variables and channels at compile-time. 
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For ease of presentation occam syntax has been linearised in this paper. For example we 

write SEQ(PI,P 2 .... ,Pn ) instead of SEQ . 

P1 

P2 

P 
n 

A detailed formal syntax of occam is given in the occam programming manual [!0]. Rather 

than duplicate the definitions of the subsidiary syntactic domains, we give instead a 

summary of the differences between the standard oecam versions and those of this paper. 

We give each syntactic domain a name and a notation for its typical element. 

Expressions (e E Exp) The syntax of these is the same as in [i0], except for the omis- 

sion of NOW and BYTE. 

Vector operations are omitted. 

Declarations (4 eDeel) The syntax of declarations is the same except for the omission 

of BYTE subscription and vectors of constants. 

Formal parameter lists (~ eForm) These are the same as in [i0]° 

Guards (g E Guard) There are no WAIT guards. For brevity all guards are assumed to 

contain a boolean expression (which could of course be TRUE). 

The following are new syntactic domains, 

Actual parameter lists (A ¢ Act) It is convenient to have a name for these objects, 

which are just lists of expressions. 

Parallel declarations (U e PD) We insist that a parallel process should declare which 

global channels it intends to use, dividing them into three categories. 

OWNCHAN means that the channel(s) are for internal use by the process. 

INCHAN means that the channel(s) are to be used by the process for inputting. 

OUTCHAN means that the channel(s) are to be used by the process for outputting. 

We also insist that the process declares which global channels it wants to assign to. 

parallel.declaration = USING({claim}) 

claim = OWNCHAN than {, than} 

I INCHAN c~n {,chan} 

I OUTCHAN chan {, chan} 

I VAR var {, v~} 

Processes (or programs) (P e Proc) The definition of our syntactic domain of processes 

is given below. The only differences from the domain defined in [i0] are those which 

have already been described. 
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process 

replicator = 

guarded.process = 

conditional 

STOP 

SKIP 

variable := expression 

channel ?variable 

channel ? ANY 

channel !expression 

channel !ANY 

identifier (actual.parameter, list ) 

SEO({process}) 

PAR({parallel.declaration :process}) 

ALT({guarded.process}) 

IF({conditional}) 

SEO replicator process 

PAR replicator parallel.declaration :process 

ALT replicator guarded.process 

IF replicator conditional 

krMILE expression process 

declaration :process 

identifier = [expression FOR expression] 

guard process 

ALT(kguarded.process}) 

ALT replicator guarded.process 

expression process 

IF({conditional}) 

IF replicator conditional 

Semantic domains The semantic domains whose existence we postulate are the ~llowing. 

8 ~ B the (finite) domain of basic storable values or elements. We assume that 

each element can be identified with some positive or negative integer. 

X e CHAN the domain of channels. 

I ~ LOC the domain of locations in store. 

p,x e IDE the (syntactic) domain of identifiers. 

There is no need in this work to suppose that any of the above domains is partially 

ordered or contains a ~'bottom" element. We will, however, need to deal with errors. 

Given any semantic domain X, we will denote by X + the domain X u {error}. If X is part- 

ially ordered then ~'error" will be incomparable with the other elements of X +. Given 

a domain X, X v will denote the domain of vectors of elements of X. We will regard an 

element of X v as being a function from {O,l~...,n-l} to X for some non-negative integer 

n (the veetor's length). If X has a partial order then vectors of the same length are 

ordered component-wise, vectors of different lengths being incomparable. 
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Given this notation we can construct a few semantic domains. 

S = LOC -, ~+ 

S is the domain of machine states. Each location is mapped either to a storable value 

or to error (perhaps indicating that the location is uninitialised). 

ENV = (IDE * D +) x LSTATUS x CSTATUS 

D = LOC + B + CHAN + NP + LOC v + CHAN v 

LSTATUS = LOC ~ {x,u,r/w,ro } 

CSTATUS = CHAN ~ {~,~,~,in,out } 

ENV is the domain of environments. The first component of each environment is a fun- 

ction from identifiers to denotable values (plus error). A denotable value (6 £ D) is 

either a single location (corresponding to a non-vector variable) or an element (corr- 

esponding to a constant) or a channel or a named process (the domain NP will be defined 

later, when it is used) or a vector of locations (corresponding to a vector of vari- 

ables) or a vector of channels. The second component of each environment gives the 

status of each location. 

means that the location is not in the environment's range; 

means that it is in the range but is unused; 

r/__~w means that it is in range and is in normal use (read~write); 

r_o_o means that it is in the range but has "read only" status. 

The third component of each environment gives the status of each channel. 

means that the channel is not in the environment's range; 

means that it is in the range but is unused; 

ud means that it is in use but has not been assigned a direction; 

i~n means that it is in use as an input channel; 

OU t means that it is in use as an output channel. 

If p EENV then Pi (i e{I,2,3}) will denot~ its ith component (so that p = <pl,p2,p3>) . 

If x £IDE then P[x~ will mean PlEX~; similarly p[l] will mean p2[k] (~ £L0C) and p[X] 

will mean P3[X] (X eCHAN). If x EIDE and 6 eD + then p[6/x] will denote the environment 

which is the same as p except for mapping x to 6. The corresponding interpretations 

will be put on p[r/h], p[r/X] and s[8/k]. 

A £Q the domain of processes is constructed as in the previous section, using S as 

the set of states and Z = {X.8 : × £CHAN, 8 £8} as the alphabet. 

A few further semantic domains will be defined later, when they are required. 

The semantics We will only give detailed definitions of the "higher level" semantic 

functions required. The other ones are all fairly standard and should not prove too 

hard for the diligent reader to define. The main semantic functions are listed below. 
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~: Proc ~ ENV . S 4 Q 

This the main semantic function~ Given a program segment~ an environment and a state 

it yields an element of Q~ In the definitions below all execution errors map a process 

to the minimal element ~Q of Q (from the point in its communication history where the 

error arises). Thus an erroneous process is identified with a diverging one. We are 

thus allowing that erroneous processes might do anything. There is no reason why more 

sophisticated semantics could not be devised which allowed for a certain amount of error 

recovery, perhaps by introducing extra elements into the semantic domain. Our present 

approach has the advantage of simplicity, though. 

~tese ~wo functions pick out the failure and termination components of ~EP~p~, so that 

D : Decl * ENV ~ ENV + 

This function carries out the modifications to the environment caused by declarations. 

When an error occurs the value produced is "error". 

: Exp ~ ENV ~ S ~ B + 

This function evaluates expressions as elements of B. The error element results when 

something goes wrong (e.g. vector subscript out of bounds). Its definition is comple- 

tely standard and is omitted~ 

Iv : Exp ~ ENV ~ S + LOC + 

cv : Exp ~ ENV ~ S ~ CHAN + 

These are important auxiliary functions which help reduce the number of cases in higher 

level definitions, iv and cv produce (respectively) the values as locations and chan- 

nels of expressions which are meant to denote them. They take value "error" when an 

expression cannot be given the relevant interpretation, iv is defined below, the def- 

inition of cv being very similar. 

IvEx~p~ = o[x~ if OKX~ ¢LOC; 

ivKx[e]~PO = pKx~(~Ke~pc) if pEx~ ~LOC v and ~Ee3po Edom(pKx~); 

ivKe~po = error otherwise. 

A few more specialised semantic functions will be defined later, when required. 

We will now concentrate on the definition of ~, the main semantic function. Each of 

the clauses is given a brief explanation. Many of the operators used are very similar 

tQ ones used over the failure-sets model in giving semantics to CSP. The construction 

of these is explained in detail in [4,5]. Many of the clauses contain one or more 

conditions ~'prou~e~ ..... " which exclude error conditions. When these conditions are 

not meZ the value of the clause is always ~Q. Several clauses are split into separate 
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definitions of ~ and ~. 

~[STOP%gS = {(<>,X) :XG ZW{/}} 

~[STOP%PS(s) = @ (for all s ~*) 

STOP never communicates or terminates. 

C ISKIP~PS = skipc , where 

It just refuses everything offered to it. 

f(skipo) = {(<>,X) : / ~X} 

t(skipo)s = {o} if s = <> 

= ~ otherwise. 

skip s 

successfully in final state s. 

C Eel := e2~PS = skips,, where 

q' = o[EEe2]PellV~el~P~] 

is the element of Q which never communicates, but which must immediately terminate 

provided 

and 

~Ee2~PO ~ error 

ivEel~PO ~ error 

P[IVIel~PS] = r/w 

This process also terminates immediately, but modifies its final state to take account 

of the assignment. 

~Eel?e2~Po = {(<>,X) :XnX.~ = ~}U {(<X.B>,X) :J CX & 8 E B} 

~Eel?e2~P~(s) = {q[B/k]} if s = <X.8> (~ eB) 

= ~ otherwise 

where × = cv~elhP~ provided cvEel~PO ~ error, ivEe2~PO ~ error, 

and k = ivEe2~Pq p[X] = r/w and p[×] = in. 

On its first step this process is prepared to communicate anything on channel X (it 

cannot refuse any element of ×.8). After communicating ×.B (8 EB) it terminates with 

8 substituted for k. 

F Ee?ANY~pa = {(<>,X) :XA×.8 = 9}u {(<X. 8>,X) :/ ~X} 

~Ee?ANY~Po(s) = {e} if s = <X.8> (8 ~) 

= 0 otherwise 

where × = cvEe2P~ provided cvEe~pc ~ error ~nd p[×] = in. 

This process is the same as the previous one except that it terminates with unchanged 

state. 

F Eel!e2~Pa = {(<>,X) :×.B#X}u {(<x.B>,X) :J ~X} 

~Eelte2~Pa(s) = {o} if s = <×.8> 

= ~ otherwise 

where 8 = ~le2~Pe provided ~e2~PO ~ error, cvEel~P~ ~ error 

and X = cvlelNPq and P[×] = out. 
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This process communicates the value of the expression e 2 along the output channel den- 

oted by el, and then terminates in an unchanged state. 

FKe!ANY~PO = {(<>,X) : X.S~X}u {(<X.B>,X) : BcB & / ~X} 

~[e!ANY~pq(s) = {s} if s = <×.8> (B eS) 

= ~ otherwise 

where X = evKe~s provided cvIe~po ~ error and P[XI = outs 

This process communicates any value at all along the output channel denoted by e. The 

choice of value is nondeterministic. (Note that the process can refuse any proper sub- 

set Of ×.B.) It then terminates with unchanged state. This definition would need to 

be changed if s were infinite, in order to satisfy axiom F4. 

Thus each primitive process has a simple interpretation in the model. 

C ESEQ(P!,P 2 ..... Pn~p~ = skips if n = O, and otherwise 

= seq(~IPI~P%C[SEQ(P 2 ..... Pn)~P)° 
Here se_.__qq is the function from Q x(S ~ Q) to Q which is defined 

f(se__qq(A,B)) = {(s,X) : (s,XU {/}) sf(A)} 

U {(su,X):~s ~. s, Et(A)s & (u,X) s f(Bs')} 

U {(su,X) :t(A)s =_L} 

t(seq(A~B))s = ~ if t(A)s =/_, or if s = uv where o'£t(A)u and t(Bc')v =3- 

= ~{t(Ba')v :~u,v,~'. s = uv & s, ~t(A)u } otherwise. 

If n = O then SEQ(PI,P2~°..,Pn) behaves exactly like SKIP (terminating immediately in 

an unaltered state). Otherwise process P1 is run until it terminates successfully, the 

final state of P1 being given as the initial state to SEQ(P2,...,Pn). Note that P1 

cannot refuse a set X of communications unless it can refuse X~ {/}; otherwise it would 

be able to terminate (invisibly) and let SEQ(P ,...,P n) take over. 

The semantics of ALT are made rather difficult by the presence of SKIP guards. This is 

because the two types of guard work in quite different ways. We need an extra semantic 

function which tells us whether any SKIP guard is ready. (In this section b,c and e 

will respectively denote boolean, channel and other expressions. G will be a typical 

guarded process.) 

~Kb &c?e P~pS = false 

~[b & SKIP P]p~ = tru___ee if ~Eb]os is "true" 

= false if ~[b~po is "false" 

= error otherwise 

~[ALT(G 1 .... %)~ps = k ~EG'~ps-= l where V is the error-strict version of the usual 

boolean "or". 

The clause for replicator guarded processes is similar. 
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It is convenient to extend the domain of 

~b &c?e P~Pq = stop 

=CESEQ(c?e,P)~P~ 

~[b &SKIP P~Du = stop 

=~EP~po 

where stop = ~ESTOP~PO 

C to include all guarded processes. 

if ~Eb~PO is "false" 

if ~Eb3po is "true" 

if ~Eb~PO is "false" 

if ~Ebhpu is "true" 

(this value is independent of p and u) 

provided in each case that -~Eb~es can be regarded as a boolean. 

F[ALT(G 1 ..... Gn)Ips : {(<>,X):]i. kEGi~PU & (<>,X) ~IG.]pa} 
1 

U {(<>,X) :Vi.q~Egi~pu & ~i.(<>,X) s ~Eei~PO} 

U {(<>,X) :~i.~[G.~pu(<>) =J_} 
l 

U {(s,X) : s ~ <> & 3i.(s,X) ~C.~po} 
1 

~[ALT(G 1 ..... Gn)~(s) = [J{~[~i~o(s) :i ~{i ..... n}} 

If any SKIP guard is ready then the process may choose (invisibly) to behave like the 

corresponding guarded process. If no SKIP guard is ready then the process must wait 

for somethin~ to be communicated to it along one of the channels of the c?e guards. 

Note that if none of its boolean expressions evaluates to "true", then ALT(GI,...,Gn) 

is equivalent to STOP. 

To allow for the possibility of nested "IF"s we need to adopt a similar technique for 

conditionals: we define a semantic function to determine whether or not a given condit- 

ional is "ready". (In this section C will denote a typical conditional.) 

Ee P~po = tru_~e if ~e~po is "true" 

= false if ~[e~pq is "false" 

= error otherwise 

EIF(C I ..... Cn)~PU = ~. ~[Ci20o (once again ~ / is error-strict), 

the clause for replicators being similar. 

CKIF(CI,...,Cn)~p~ = stop if n =0, 

= CEP~oc if C I = e P and ~[e~o is "true", 

= ~ECI~P~ if C 1 e Proc and ~ KCl~P~ = true, 

= CEIF(C2,...,Cn)~po otherwise, 

provided J EIF(C 1 ..... Cn)~pu ~ error. 

The only form of recursion allowed in oceam is the WHILE loop. The fact that the fol- 

lowing definition works, essentially only depends on the fact that seq is continuous in 

its second argument. 

CKWHILE e P~p~ = ([~ Fn(_~j)~ where F : (S ~Q) ~ (S ~Q) is the function defined 
n=O 

F(B)~' = seq(~EP~p~',B) if ~b~pu~is "true" 

= skipq, if EEb3po'is "false" 

=IQ otherwise. 
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In fact it turns out ~inat all our operators are continuous, so that there is no reason 

why these semantics should not be extended to more ambitious forms of recursion. (The 

failure-sets model has been used to reason about reeursions through parallel and hiding 

operators [4,12].) 

The parallel operator is understandably the most complicated to define. The first part 

of our definition shows how the parallel declarations are used to set up local environ- 

ments and states for each individual process. The second part shows how the processes 

interact once they are running. Overall we have 

~[PAR(UI:PI, .... Un:Pn)~pa = skipa if n =0, and otherwise 

n 
= I I  (C~P.~o .~ . ,x . )  / Y. 

i=l 1 1 1 1 

The processes are run in parallel(If) with their respective alphabets (Xi) , environments 

(pi) and states (a.). The communications local to the network are hidden (/Y). These 
1 

items are all defined below. 

The following basic semantic functions are not hard to define, but their definitions are 

omitted for brevity. 

inchans : PD e ENV ~ S * ~(CHAN) + 

outchans : PD ~ ENV ~ S ~ ~(CHAN) + 

ownchans : PD ~ ENV ~ S ~ ~(CHAN) + 

iocs : PD ~ ENV ~ S ~ ~(LOC) + 

These functions extract respectively the sets of input, output and internal channels 

and locations claimed by a parallel declaration (USING(.)). To be declared as an input 

channel by inchans~U.~ps~ X must have status ud or in in p; output channels must have 

status ud or out__; internal channels must have status u d; locations must have status r/w. 

If an undirected (u_~d) channel of p is declared as an input (output) channel by one of 

the u then it must be declared as an output (input) channel by another. In addition, 
i" 

the U. musv satisfy the following: 
z 

inchansEUz~ps n ownchans[Uj~pa = 

outehans[U. ~ps~ ownchans[U .~ps = 
z 9 

inchansKU. ~po N outchansKU. ~pa = 
l l 

inchansKUi~PS [I inehansEUj~pa = @ whenever i ~ j 

outchansEU ~poA1 outchansKUj~pa = ~ whenever, i ~ j 

locsKU ~paf]z locsKUj2pa = ~ whenever i ~ j 

We define X. = U{x.B : x a inchansKU.~peu outchansEU ~po} 
l 1 1 

and Y : t){XimXj : i ~ j}. 

(Note that the above disjointness conditions, which enforce the separation of occam par- 

allel processes, imply that XiO XjN x k =~ whenever i~j,k are all different.) 
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The first component of each Pi is the same as that of p, and 

p.[Â] = r/w if k ElocsKU.]bo 
l 1 n 

= ro if p[l] e {ro, r/w} and k ¢ ~locsIU~gpo 
-- j=± O 

= X if p[k] = x or k elocsIUj~o for some i ~ j 

{x, u} if p[k] = ~, subject to Pill] = ~ ~ pj[l] = x whenever i ~j. 

The last line says that a free location in p becomes either free in Pi or outside the 

domain of Pi' but that no such location becomes free in more than one Pi" If stores 

are infinite then we will assume that infinitely many free locations are allocated to 

each Pi" 

%[×1 : u__d 

= in 

= OUt 

{X, u} if P[×] = Z' subject to Pi[X ] = 

= ~ otherwise. 

if X eownchansKUi~Po 

if X E inchansKUi~P~ 

if X E outchans[U.~p~ 
i 

pj[×] = x_ whenever i ~ j 

If the supply of channels is infinite then infinitely many are allocated to each P . 
1 

oi[~] = ~[X] i f  ;~ ~ L]locs[U.~p~ 
j~ i  3 

= error otherwise. 

This completes the definitions of the local environments and states. The parallel oper- 

ator (If) and hiding operator (/Y) defined below are derived from the CSP operators in 
n 

[5]. (Below, Ai¢ Q, XiC_ z, X = ~X..) 
i=l i 

f(i~r]l(Ai,Xi ) ) . :  = {(s,S) :~Y1 . . . .  Yn" s e X *  & (s~Xi'Yi) ~ f (Ai )  

& Sg~(Xu{/}) = U{YiN(XiU {/}) :i e{l,2 ..... n}}} 

d{(su,S) :s ¢X* & s~X i ¢traces(A.)l & ~i't(Ai)(s[Xi) =~5 

t([~ (A~,Xi))s = _~ if there exists u~<s such that seX *, u~Xietraces(A.) for all i 
i=l ± 1 

and there is some j with t(Aj)(u[Xj) =-[, 

= {join(o I .... On) : seX* & oiet(Ai)(sFXi ) } otherwise. 

Here, sFX is the restriction of trace s to the set X, so that 

<>IX : <> and s<a>~X = s~X i f  a ~ X  

= (sIX)<a> if a ~X. 

Given states Ol,...,On, join(ol,...,qn) is the state o* such that 

q*[k] = oi[l ] whenever oi[k ] ~ error for some i 

= error otherwise. 

If s i and oj map x to different non-error values the parallel combination is broken from 

the point of this error. The disjointness constraints of PAR guarantee that this error 

cannot arise in occam. 

The parallel operator works by allowing each process to communicate only in its own dec- 
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fared alphabe~ and only allowing a given communication to occur when each process whose 

alphabet it belongs to agrees. Termination can only take place when all processes agree, 

the final state being formed by joining together the states of the individual processes. 

As soon as one prooess breaks or diverges, the whole system is considered broken. 

f(A/Y) = {(s/Y,X) : (s,XuY)~ f(A)} U {(u,X) :{sc traces(A) :s/Y4 u } is infinite } 

t(A/Y)s = _~ if {u ~traces(A) :u/Y ~s } is infinite, 

= ~{t(A)u :u/Y = s } otherwise. 

If s e ~ then s/Y is defined to be s~(~ - Y). 

The hiding operator is used to conceal the communications which are internal to the 

parallel system. The above definition is valid as a continuous function on Q when Y 

is finite (which is implied by the finiteness of 8). When 8 is infinite one can no 

longer separate the parallel (II) operator from hiding (/Y) (see Conclusions). 

/Y transforms communications in Y into internal actions which occur automatically. Thus 

A/Y cannot refuse any set X unless A can refuse X UY, as an (internal) Y action might 

bring the process into a state where it can accept an element of X. 

This completes the definition of the parallel operator PAR. 

Replicators allow us to construct (using SEQ, ALT, IF, PAR) processes from many similar 

small processes. Their semantics are of course closely related to those of the const- 

ructs they extend. As ~n example we will show how to deal with replicated SEQ. 

~ESEQ x = [e I FOR e2] P~P~ = rse_~q(81,82, k)(~[P~P') ° 

where k = new@ p~ = p[X/x][ro/k], (see below for definition of new) 

81 = ~el~Pa,  B 2 ='~[e2~P~ 

and rs~(81,82,k)Bq' = skips , if 82 40 

= seq(B~'[ejk], rseq(81+l, 82 -I,k)B) otherwise, 

provided none of new ~ ~Eel3PS~ ~[e2~Pa evaluate to error, and each of 

el" ~2+1" ... , 81 + ~2- 1 is in 8. 

Note that a replicator index is given the status of a read-only variable. This is bec- 

ause it may neither be assigned to nor used in constant definitions. 

A declaration introduces a new identifier for the process which follows it. In the 

semantics this is achieved by modifying the environment. 

where pru~ep : Q ~ Q is defined 

f(prunep(A)) = f(A) 

t( ru~nep(A))s =i if t(A)s =i, 

= {prUnep(O') : s' et(A)s} 

provided ~EA~p ~ error 

otherwise; 
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and prunep(~')[k] = o,[k] if p[k] E {ro,r/w} 

= error otherwise. 

The function prUnep makes sure that when A : p terminates it does not pass on information 

local to itself (the contents of locations corresponding to identifiers declared in A). 

The use of prunep improves the set of algebraic laws satisfied by occam. 

This completes the definition of~ except for calls of named processes. Before this 

final clause can be defined we must see how named processes are stored in the environ- 

ment by declarations. We must therefore see how the function ~ is defined. We assume 

the existence of the following semantic functions. 

new: ENV ~ LOC + newvec: N . ENV ~ (LocV) + 

newchan: ENV ~ CHAH + newchanvec: N ~ ENV , (CHANV) + 

These functions have the job of producing locations or channels (either singly or in 

vectors) which are unused (i.e. have value ~) in some environment. They give result 

"error" if the required resource is not available. For example newp is a location 

such that p[k] = ~, and newchanvec(3)p is a vector of three channels, each of which 

has value u in p. 

~VAR x~p = P[h/x][r~/w/k] where k = new p provided newp ~ error. 

[VAR x[e]~P = P[V/X][~/~o]] --. [~/V~-~ 

where 8 = max(~Ke~p~,O) (e~[~] = error for all k eLOC) 

v = newvec 8 P provided newvec~ error and ~e~pc~ error. 

~ECHAN cNp = P[×/c]~/×] where × = newchanp provided newchanp ~ error. 

where 8 = max(~Ee~p%~,O) and 9 = newchanvecSp 

provided ~Ee~p~ ~ error and newchanvecSp ~ error. 

~[DEF x = e2P = P[8/x] where 8 = ~[e~P%~ provided ~[e~po~ error. 

The evaluation of expressions in the state ~e~forces them only to use identifiers rep- 

resenting constants (for accessing a location will lead to error). 

The denotations of multiple declarations such as VAR x,y are easy generalisations of 

the above definitions. 

D EpROc P(¢)~P = P[~/p], where ~ = k<p~,p~>.kL.C[p~<~[~PlL,p~,p~> 

substitutes the denotations listed in L (c D*) into the environment comp- 

onent PI' using the identifiers listed in ¢. I~ fails (because of ~ncorrect 

length or type) then a ca~l of the procedure produces value~_Q. 

The bindings of identifiers used in the call of a procedure are the same as those at the 

point of declaration. However the state and the status part of the environment are as 

at the point of call. This last detail stops parallel processes accessing illegal var- 

iables via their procedures. The denotation of a procedure or named process is thus 
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'~ a NP = (LSTATUS×CSTATUS] ~ (D~) * ~ S ~ O (D ~ = LOC + 9 + CHAN + LOC v + CHANV)o 

We can now complete the definition of ~ by giving the clause for procedure calls. 

CEp(A)~p~ = pEp~<g2~P3>(~ A~po)~ provided ~ ~AIpa ~ error. 

Here ~: Act ~ ENV ~ S * (D~) + is a semantic function which converts syntactic actual 

parameter lists into their denotations. If a particular parameter could represent either 

an element (S) or a location~ then the location is chosen. If the evaluation of any 

element of A produces an error (or a named process) then the procedure call breaks (±Q). 

This completes the definition of our denotational semantics for occam. It gives an int- 

eresting illustration of how the domain Q defined in the first section can be used to 

model concurrent languages. Our model (sometimes with minor modifications) can cope 

with many possible extensions to the language. These include more sophisticated value 

domains~ recuzsive procedure definitions, and additional operators on processes. We 

will mention a few of the possible additional operators in the conclusion. 

3. Applications of the semantics We now have a mapping from occam to a well-defined 

mathematical model which is closely related to the behaviour of processes. This section 

outlines a few uses to which this mapping might be put. No topic is covered in detail; 

we merely identify some promising areas for future work. 

Our model~s relationship with process behaviour makes it a natural framework for expres- 

sing correctness conditions on processes. Our semantics will then provide a basis for 

proving correctness. We should therefore look at the type of correctness condition that 

is expressible by reference to the model, techniques for manipulating these conditions 

within the model, and methods (formal, and perhaps informal) of proving them of programs. 

The most natural types of correctness condition to consider are those which specify that 

every "behaviour" of a process must satisfy some predicate (related, perhaps, to the 

environment and initial state). There are essentially three different types of behav- 

iour to consider for a process <F,T> s Q. The first consists of the process' failures 

((s,X) eF); the second consists of its (successful) terminations ((s,s) with a aT(s)); 

the third consists of its divergences (s such that T(s) =j_). The predicate of behav- 

iour should tell us which of each sort of behaviour is acceptable. 

Except for specifications which are approximations to final goals one will almost always 

demand that a process is divergence-free (i.e. no divergence is a correct behaviour)° 

Divergence can arise in three distinct ways in our semantics: from a badly constructed 

WHILE loop; from a PAR construct which becomes liveloeked (an infinite sequence of inter- 

nal communications takes place without any communication with the environment); and from 

technical errors of diverse sorts (e.g. assigning to a channel identifier). 

The first type can be eliminated by familiar methods such as making sure some loop var- 

iant is decreased. On its variant becoming zero one can allow a loop either to terminate 
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or to communicate. This is because an occam WHILE loop can be correct without ever 

terminating. Proving the absence of livelock in a parallel .system will require consid- 

eration of the connection structure of that network. Freedom from livelock is establi- 

shed if (for example) no two processes are connected together, each of which has the 

ability to communicate infinitely without communicating with the external environment 

of the network. (Properties such as this can be rigorously specified and proved within 

Q.) A few simple results on the absence of liveloek for specific types of network (sim- 

ple linear arrangements, rectangular arrays and trees) can be found in [12]. Often one 

will expect the absence of divergence to be a corollary to some more specific correctness 

proof; sometimes, however, one might find that its proof is a necessary first step. 

A second type of behaviour which we will usually wish to eliminate is deadlock. A proc- 

ess deadlocks when it comes into a state where it can do nothing at all (neither commun- 

icate nor terminate successfully). Deadlock after trace s is represented by the failure 

(s,Z u {/}). The usual cause of deadlock will be a badly designed parallel network, where 

it is possible for the individual processes to reach a state where they cannot agree 

which communications to perform. Perhaps the best known example of a potentially dead- 

locked system is the five dining philosophers (this was studied relative to the failure- 

sets model in [5]). 

Once again, a proof of deadlock-freedom might be a corollary to some more specific result 

(such as congruence with some sequential program). On the other hand it is sometimes 

useful to be able to prove it in isolation. The simple way in which deadlock is repres- 

ented (as the failure (s,Z U {/})) makes our model a natural vehicle for studying it. 

Proofs will depend on the form of the network of connections between processes, and will 

often be graph-theoretic. A few simple applications of the failure-sets model to this 

problem will be found in [5,12]. There it is shown, for example, that if the intercon- 

neetion graph of a network is a tree, then the whole network is free of deadlock if it 

is locally free of deadlock (in a strictly defined sense). The phenomenon of distributed 

termination will considerably complicate the connection graphs in occam. It should be 

possible, though, to separate off the issue of termination, and so only consider the 

graphs of ordinary communications. 

In general our model gives us a rich language for specifying correctness conditions. 

Specifying which traces and terminations are allowable corresponds to safety or partial 

correctness, while divergences and refusal sets enable us to specify liuenes8 or total 

correctness. An important topic for future research must be discovering a good formal 

syntax for useful correctness conditions for occam programs. 

Another important topic will be research into formal methods for proving these properties 

of programs. Our semantics will provide the foundations for justifying such methods 

(proving them sound and perhaps complete). There are several promising approaches, a 

few of which are summarised below. 

One can regard every program as a logical formula describing the strongest predicate 



326 

satisfied by all the observations one can make of it. If a program's specification J s 

also a logical formula, describing all allowable observations~ ~hen proving a program P 

meets specification S simply requires the proof of the formula P ~ S. In [9], we show 

how every oceam program may be identified with a predicate describing its traces, refus- 

als, status (waiting, terminated or divergent) and the values (initial and final) of its 

free variables. The way this was done was based very closely on the semantics presented 

in this paper, and essentially provides an encoding of our model Q in the predicate calc- 

ulus. It should be possible to develop this approach into a very useful formal system 

for proving properties of occam programs. 

bar semantics induce a natural congruence on occam: programs P,Q are equivalent if and 

only if ~[P~pq = ~[Q~po for all p~o. Two programs are thus equivalent if they behave 

identically under all circumstances. It is convenient to strengthen this congruence a 

little: we can reasonably regard P and Q as equivalent if ~[P~po = ~[Q~pq for all 

p,o such that p has infinitely many free locations and channels, and oil] = error when- 

ever p[l] e {~,x}. These restrictions prevent "naturally equivalent" programs being dis- 

tinguished for technical reasons. Henceforth, if P,Q ¢ Proc, then P = Q will mean that 

P is congruent to Q in this sense. (This relation is indeed a congruence in the sense 

that if we replace any subprogram P of Q by p9 = p to get Q', then Q = Q'.) 

The following theorem lists a small selection of the algebraic laws which can be proved 

relating the constructs of occam. 

Theorem The following equivalences all hold between oceam programs. 

a) SEQ(PI,P2~ .... Pn ) = SEQ(PI,SEQ(P 2 ..... Pn ) ) = SEQ(SEQ(P 1 ..... Pn_l),Pn) 

b) SEQ(P,SKIP) : SEQ(SKIP,P) = P 

c) SEQ(ALT(G 1 ..... Gn),P) = ALT(GI;P ..... Gn;P) 

where the guarded processes Gi;P are defined by induction on the structure of G: 

(g  P ' ) ; P  = g S E Q ( P ' , P )  

(ALT(G{ ..... G~));P = ALT(Gi;P ..... G~;P) 

d) WHILE e P = IF(e SEQ(P,WHILE e P)~ true SKIP) 

e) PAR(UI:PI~.o.,Un:P n) = PAR(UI:PI~U~:PAR(U2;P2, .... Un:Pn)) 

where U ~ is the union of U2,~..,U n, in other words the parallel declaration which 

claims all the variables claimed by any of U 2 .... ,Un; claims as OWNCHANs all 

OWNCHANs of U2,~°,U n, as well as all channels declared both as an INCHAN and as 

~n OUTCHAN among U2,..,U ; claims as INCHANs all other INCHANs of U2,...,Un; and 

as OUTCHANs all other OUTCHANs of U2,..,U n. 

f) PAR(UI:PI,U2:P 2) = PAR(U2:P2,UI:PI) 

In [8], this list will be much extended. We will in fact show there that there are 

enough algebraic laws to completely characterise the semantics of occam, as presented in 

the present paper. We will construct a normal form for WHILE-free programs (every such 

program is equivalent to one in normal form, but no two distinct normal form programs 
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are semantically equivalent), and give enough laws to transform every such program into 

normal form. We are therefore able to decide whether any pair of WHILE-free programs 

are equivalent. The postulate that the value of any program is determined by those of 

its finite syntactic approximations then gives us an infinitary rule for deciding the 

equivalence of arbitrary programs. (This postulate is a theorem in the denotational 

semantics of the present paper.) This algebraic semantics is closely related to similar 

work on a purely parallel version of CSP in [3]. 

Several authors (for example in [1,2] and in [lSI) have given Hoare-style axiom systems 

for similar languages (usually the CSP of !6]). It should be possible to construct such 

a system for occam. Our semantics will allow the formal analysis of such a system. 

Denotational semantics should provide a standard by which to judge implementations of 

a language. Proving an implementation correct (with respect to our semantics) will 

probably require one or more intermediate levels of abstraction as bridges. A typical 

intermediate level would be an operational semantics. In [5] there is an operational 

semantics for CSP which is provably congruent to the failure-set semantics. 

4. Conclusions In building our mathematical model and constructing the denotational 

semantics we have made many decisions. In this section we will discuss a few of these, 

and see how a few of the restrictions we have imposed might be relaxed. 

Most of the major decisions come when constructing the mathematical model: once this is 

fixed, the semantics of most constructs are determined by their roles in the language. 

There are several factors which influence the choice of model. It should be at the 

right level of abstraction; it should have sufficient power to specify desired correct- 

ness properties; it should be able to cope with all the constructs of the given language; 

and it should be as simple, elegant and understandable as possible. 

It is possible to do without "states" in the model. Variables could be replaced by 

parallel processes, created at their points of declaration, with which the "main" proc- 

esses communicate when they want to read or assign. Because one can, use a "purely par- 

allel" semantic model, this approach simplifies model building. On the other hand the 

semantic definitions become more complex, and the level of abstraction seems wrong. One 

loses many of the advantages gained from the similarity with the semantics of ordinary 

languages; in particular, the semantics of a "purely sequential" occam fragment will no 

longer Sear much resemblence to a relation on states. Nevertheless, this approach 

should lead to a semantics congruent to ours on programs without free variables. 

The model Q was devised as a general purpose model for communicating processes with 

state. It is slightly too "rich" for occam, in that an occam process' refusals are 

really sets of channels, rather that sets of individual communications. The consequence 

of this is that Q contains rather more types of behaviour than are actually describable 

in occam (for example a process which is prepared to input any integer greater than 6 

on channel c). One can give a semantics for occam, congruent with our own, into a model 
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where a failure is an element of Z ~ x(~(CHAN)u {~}) rather than ~ × (~(~)0 {£}). This 

fact is illustrated by the predicate logic model in [9]. Of course, if oeeam were ext- 

ended to include '~seleetive inputs" of the type indicated above~ then the reduced model 

would no longer be sufficiently detailed. 

It seems likely that the techniques employed in this paper to combine the models N and 

~(S ×S) into Q would work for other pairs. For example one could simplify the model by 

using the traces model [7] in place of the failures model N. However the semantics would 

only be simplified in their "purely parallel" aspects; we would suffer by losing the ab- 

ility to reason about total correctness properties. If the object language contained 

jumps, there would be few problems in adapting our model for continuation semantics. 

In this paper we have been guilty of omitting part of the language, as well as making 

other simplifying assumptions. The ones which made the construction of the model easier 

were omission of timing and pr~o~{ty~ and the restriction of the set B to be finite. To 

rectify the first two will require future research, probably into timed models for comm- 

umicating processes. While the final assumption is perfectly realistic, it is unfort- 

unate from a theoretical point of view. The main problem which arises when 8 is infinite 

is that the hiding operator (/Y), used in the semantics of PAR, can yield unbounded non- 

determinism (and so discontinuity). However the restricted syntax of occam, for example 

the separation rules for channels under PAR, means that this unbounded nondeterminism 

cannot actually occur. If one were prepared to make the model Q more technical, perhaps 

by discriminating between input and output communications and restricting the circumst- 

ances under which they could occur or be refused, one could construct a satisfactory 

model for oceam with infinite B. 

On the other hated our model can cope easily with certain features not present in occam, 

such as general recursion, more elaborate types, output guards in ALTs, and multiple 

(simultaneous) assignments. The two final members of this list are useful theoretical 

additions to oecam (see [8]). 

Once the main model was decided, the majority of the semantic definitions seemed to 

follow naturally. Nevertheless there were still a few decisions made, both consciously 

and unconsciously. An example of such a decision arises in the hiding of internal comm- 

unication. In this paper the hiding has been incorporated into the definition of the 

parallel operator: we hide the internal communications of each network as it is const- 

ructed. An alternative would have been to hide the channels at their points of declar- 

ation. These two alternatives should give identical results for programs with no free 

variables that are used for internal communication. The version we have chosen does, 

however, have better algebraic properties. For example, under suitable restrictions on 

U I , U 2 , 

SEQ(x :=e, PAR(UI:PI~ U2:P2)) = PAR(UI:SEQ(c!e,PI) , U2:SEQ(e?x,P2)), 

a law which would not hold under the alternative interpretation of hiding. 
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