
On model checking data-independent systems
with arrays with whole-array operations�
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Abstract. We consider programs which are data independent with re-
spect to two type variables X and Y , and can in addition use arrays
indexed by X and storing values from Y . We are interested in whether
a program satisfies its control-state unreachability specification for all
non-empty finite instances of X and Y . The decidability of this problem
without whole-array operations is a corollary to earlier results.
We address the possible addition of two whole-array operations: an array
reset instruction, which sets every element of an array to a particular
value, and an array assignment or copy instruction. For programs with
reset, we obtain decidability if there is only one array or if Y is fixed
to be the boolean type, and we obtain undecidability otherwise. For
programs with array assignment, we show that they are more expressive
than programs with reset, which yields undecidability if there are at least
three arrays. We also obtain undecidability for two arrays directly.
Keywords: model checking, infinite-state systems, data independence,
arrays

1 Introduction

A system is data independent (DI) [17, 12] with respect to a type if it can only
input, output, move values of that type around within its store, and test whether
pairs of such values are equal. This has been exploited for the verification of
communication networks [4], processors [14], and security protocols [2].

We consider programs DI with respect to two distinct types X and Y , which
can in addition use arrays (or memories), indexed by X and storing values from
Y . We have already shown that a particular class of programs that do not use
whole-array operations (i.e. ones that can only read and write to individual
locations in the array) are amenable to model checking [11]. In this paper, we
study what happens to these decidability results on the addition of whole-array
operations.
� We acknowledge support from the EPSRC grant GR/M32900. The first au-

thor was also supported by grants from the Intel Corporation and the EPSRC
(GR/S52759/01), the second author by QinetiQ Malvern, and the third author by
the US ONR.

�� Also affiliated to the Mathematical Institute, Serbian Academy of Sciences and Arts,
Belgrade.



Title Suppressed Due to Excessive Length 279

One motivation for considering DI programs with arrays is cache and cache-
coherence protocols [1]. Such protocols are DI with respect to the types of mem-
ory addresses and data values. Another application area is parameterised verifi-
cation of network protocols by induction, where each node of the network is DI
with respect to the type of node identities [4]. Arrays arise when each node is
DI with respect to another type, and it stores values of that type.

The techniques which we used to establish decidability of parameterised
model checking for DI programs with arrays cannot be used when whole-array
operations are introduced. The partial-functions semantics used there relied on
the fact that there could always be parts of the array that were ‘untouched’ by
the program, and can therefore be assumed to hold any required value.

In order to investigate data independence with arrays, we introduce a pro-
gramming framework inspired by UNITY [3], where programs have state and
execute in discrete steps depending only on the current state. Although data in-
dependence has been characterised in many other languages, e.g. [17, 8, 10], our
language is designed to be a simple framework for the study of data independence
without the clutter of distracting language features.

Given a DI program with arrays and a specification for the program, the
main question of interest is whether the program satisfies the specification for
all non-empty finite instances of X and Y . The class of specifications we will
be considering here is control-state unreachability, which can express any safety
property. For such specifications, we observe that the answer to the above pa-
rameterised model-checking problem for finite instances reduces to a single check
with X and Y instantiated to infinite sets.

We consider the reset (or initialiser) instruction, which sets every location in
an array to a given value. This is useful for modelling distributed databases and
protocols with broadcasts. We prove that such systems with exactly one array
are well-structured [7], showing that unreachability model checking is decidable
for them. However, we also show that for programs with just two arrays with
reset, unreachability is not decidable: this result is acquired using an emulation
by such systems of universal register machines (e.g. [5]). We further show that
unreachability is decidable for programs with arbitrarily many arrays with reset
when Y is not a type variable, but is fixed to be the boolean type. In such
programs, any boolean operation can be used, since it can be expressed in terms
of equality tests.

The study of cache protocols motivates an array assignment (or array copy)
instruction, for moving blocks of data between memory and cache or setting
up the initial condition that the contents of the cache accurately reflects the
contents of the memory. For programs with array assignment, we show that
they are more expressive than programs with reset, which yields undecidability
if there are at least three arrays. We also obtain undecidability for two arrays
by direct emulation of universal register machines.

Programs with arrays with reset are comparable to broadcast protocols [6].
The arrays can be used to map process identifiers to control states or data values,
and the broadcasting of a message, which may put all processes into a particular
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state, might be mimicked by a reset instruction. In [6], it is shown that the model
checking of safety properties is decidable for broadcast protocols. This result has
technical similarities to the decidability results in this paper. However, arrays
can contain data whose type is a parameter (i.e. an unboundedly large set),
whereas the set of states of a process in a broadcast protocol is fixed.

Our decidability results are also related to decidability results for Petri Nets.
The result for arrays storing booleans is related to the decidability of the Cover-
ing Problem for Petri Nets with transfer arcs [7]: the differences in formalisms,
especially that we have state variables which can index the arrays, make our re-
sult interesting. Programs with an array storing data whose type is a parameter
are related to Nested Petri Nets [13] with transfer arcs: in addition to formal-
ism differences, decidability of the Covering Problem for Nested Petri Nets with
transfer arcs has not been studied.

Another related technique is symbolic indexing [15], which is applicable to
circuit designs with large memories. However, the procedure relies on a case split
which must be specified manually, and only fixed (although large) sizes of arrays
can be considered.

Some of the results in this paper were announced by the authors at the VCL
2001 workshop, whose proceedings were not formally published. This paper can
be considered an abridged version of Chapters 3, 8 and 9 of [16], and readers are
advised to consult this reference for further details and full proofs.

2 Preliminaries

A well-quasi-ordering � is a reflexive and transitive relation on a set Q which
has the property that for any infinite sequence q0, q1, . . . ∈ Q, there exist i < j
such that qi � qj .

A transition system is a structure (Q,Q0,→, P, �·�) where:

– Q is the state space,
– Q0 ⊆ Q is the set of initial states,
– → ⊆ Q×Q is the successor relation, relating states with their possible next

states,
– P is a finite set of observables,
– �·� : P → P(Q) is the extensions function, so that �p� is the set of states in

Q that have some observable property p.

Given two transition systems S1 = (Q1, Q
0
1,→1, P, �·�1) and S2 = (Q2, Q

0
2,→2

, P, �·�2) over the same observables P , a relation ≈ ⊆ Q1 ×Q2 is a bisimulation
between S1 and S2 when the following five conditions hold:

1. If s ≈ t, then for every p ∈ P , we have that s ∈ �p�1 iff t ∈ �p�2.
2. For all s ∈ Q0

1, there exists t ∈ Q0
2 such that s ≈ t.

3. If s ≈ t and s →1 s′ then there exists t′ ∈ Q2 such that s′ ≈ t′ and t →2 t′.
4. For all t ∈ Q0

2, there exists s ∈ Q0
1 such that s ≈ t.

5. If s ≈ t and t →2 t′ then there exists s′ ∈ Q1 such that s′ ≈ t′ and s →1 s′.
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In this case, we can say that the transition systems S1 and S2 are bisimilar.
A state s is reachable in a transition system S = (Q,Q0,→, P, �·�) if there

exists a sequence of states s0 → s1 → · · · → sn such that s0 ∈ Q0 and sn = s.

3 Language

A type is one of the following: the booleans Bool, the natural numbers Nat,
either of the type variables X or Y , and the array types T2[T1] where T1 and T2

are non-array types.
A type context is a mapping from variables (which are just mathematical

symbols) to types. For a type context Γ we will write Γ � x : T if Γ maps the
variable x to the type T , and say that x has type or is of type T in Γ . We may
omit Γ in these notations if the type context we are referring to is obvious or
unambiguous.

A type instance for a type context Γ (or for a program with type context Γ )
gives two countable non-empty sets as instances for X and Y . We may also talk
of (in)finite type instances, which map only to (in)finite sets.

A state s of a type context Γ (or of a program with type context Γ ) together
with a type instance I for Γ is a function mapping each variable used in Γ to a
concrete value in its type. The set of all states of a type context (or of a program)
is called the state space. We may write s(a[x]) as a shorthand for s(a)(s(x)).

The instructions associated with a type context Γ are as displayed in Table
1, where T1 and T2 range over the non-array types.

Instruction Type constraints on Γ

Boolean ?b, b, b b : Bool

Data ?x, x = x′, x �= x′ x, x′ : X or Y

Array
?a[x], a[x] = y
reset(a, y), a[ ] := a′[ ]

a, a′ : T2[T1],
x : T1, y : T2

Counter inc(r),dec(r), isZero(r) r : Nat

Table 1. Instructions

The ? operator represents the selection (or input) of a value into a variable
or location. There are also guarding (or blocking) instructions such as equality
testing x = x′, that do not update the state but which can only proceed if true.
The instructions b and b can proceed only if b is respectively true or false.

The instruction reset(a, y) will implement an array reset or initialiser oper-
ation, setting every location in an array a to a particular value y. There is also
an array copy or assignment operation a[ ] := a′[ ].

Variables of type Nat can be increased by one, decreased if not zero, and
compared to zero.
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The operations of a type context Γ are generated by the grammar:

Op ::= Op;Op | Op + Op | Op∗ | I

where I is any Γ -permitted instruction. The operator combinators are sequential
composition (; ), choice or selection (+), and finite repetition (∗).

We may use syntactic abbreviations such as x := x′ for ?x;x = x′ or
while Op1 do Op2 od for (Op1;Op2)∗;¬Op1. We may use brackets (· · ·) or
indentations in programs to show precedence.

A program with type context Γ is syntax of the form init OpI repeat OpT ,
where the initial operation OpI and the transitional operation OpT are both
Γ -operations.

Given a program P = init OpI repeat OpT and a type instance I for
the program, the semantics of the program under I is the transition system
〈〈P〉〉I = (Q,Q0,→, P, �·�), where

– Q (states) is the state space of the program P with the type instance I,
– Q0 (initial states) is the set of all states that can result from the execution

of OpI from any state in Q (i.e. the variables and all locations in the arrays
can be considered arbitrarily initialised before the execution of OpI),

– → is the relation induced by the operation OpT ,
– P (observables) is the set of boolean variables used in P.
– �·� is a mapping from P to sets in Q such that �b� = {s | s(b) = true}.
P can be thought of as executing OpI once from any state to form the set of

initial states of the transition system. Given any state, executing the transitional
operation OpT once from that state yields all its successors, i.e. all states which
P can reach by one transition.

Note 1. A UNITY program over a set of variables consists of an initial condition,
followed by a set of guarded multiple assignments [3]. A UNITY program can be
expressed in our language quite naturally, although extra temporary variables
may be needed to reproduce multiple simultaneous assignment. Conversely, any
program in our language can be converted to a UNITY program which would
have equivalent observational behaviour whenever a boolean signal is true.

Further discussion of motivation and application of the language, and exam-
ple programs, can be found in [16]. 	


4 Model-checking problems

The control-state unreachability problem CU for a class of programs C is: ‘Given
any program P from the class C, any boolean b from the program P, and any
particular type instance I for P, are all states which map b to true unreachable
in 〈〈P〉〉I?’ We will write FinCU and InfCU to restrict the problem to just
finite and infinite type instances respectively.

The parameterised control-state unreachability problem PCU for a class of
programs C is: ‘Given any program P from the class C and any boolean b from
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the program P, are all states which map b to true unreachable in 〈〈P〉〉I for all
possible type instances I for P?’ We will write FinPCU to restrict the problem
to just finite type instances.

The data independence of the data types means that systems with equinu-
merous type instances are isomorphic. Therefore, InfPCU is in fact the same
problem as InfCU.

We can use the following theorem to deduce results about the parameterised
model-checking problem for all finite types from checks using just one particular
infinite type instance.

Theorem 1. Suppose we have a program P without variables of type Nat, a
boolean variable b of P, and an infinite type instance I∗ for P. Then,

b reachable in 〈〈P〉〉I∗ ⇐⇒ ∃I · b reachable in 〈〈P〉〉I .

where ∃I existentially quantifies only over finite type instances for P. 	

Corollary 1. For any class of programs without variables of type Nat, InfCU
is decidable if and only if FinPCU is decidable. 	


A DI system with arrays with reset is a program with no variables of type
Nat, which does not use array assignment, and which is of the form

init (;a?y; reset(a, y));OpI

repeat OpT ,

where y is any variable with type Y . It is sensible to assume that the program
has such a variable, otherwise it would be unable to read from or write to its
arrays. The notation (;a · · ·) means repetition of syntax, as a ranges over all
arrays.

In the above definition of DI systems with arrays with reset, the prefix of
instructions ensures that all arrays are initialised (i.e. reset) to arbitrary values.
This simplifies proofs a little.

A universal register machine (URM) is a program that may only use variables
of type Bool or Nat. The program must be of the form

init (;risZero(r));OpI

repeat OpT .

where the operation before OpI repeats isZero(r); for some complete enumera-
tion of the variables of type Nat.

5 Reset

5.1 One array storing data from a variable type

In this section we will prove that parameterised model checking of control-state
unreachability properties for systems with one array of type Y [X] with reset is
decidable. We begin with the following crucial observation.
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Note 2. Arrays are initialised at the beginning of the program, and at any reach-
able state there has been a finite number of instructions since the last reset on a
particular array. Therefore every possible reachable state will have only a finite
number of locations in each array that are different from the last reset value. 	


Let P be a DI program with only one (resettable) array, and let I∗ be an
infinite type instance for P. Let 〈〈P〉〉I∗ = (Q,Q0,→, P, �·�). To aid the following
proof, we restrict Q to contain only states that conform to the observation made
in Note 2 — that there are only finitely many different values in the array at any
time and only one of them occurs infinitely often — as other states can never
be reachable. This simplifies the presentation, although it would be possible not
to restrict Q and to just mention this at the required places in the proof.

We define some notation before giving the well-quasi-ordering on the states.

Definition 1. For a state s, a subset V of I∗(X), and a value w ∈ I∗(Y ), we
will denote the number of occurrences of w in locations V in the array s(a) as
Cs(V,w), which can be formally defined as follows:

Cs(V,w) = |{v ∈ V | s(a)(v) = w}|.
Note that the answer will be ∞ if V is an infinite set and w is the value of the
last reset, else it will be a natural number. 	


We write y :: Y to mean y is a term of type Y — that is, y is either a variable
y : Y or y is syntax of the form a[x] where x : X. We will also use:

s(: X) = {s(x) | x : X} and s(:: Y ) = {s(y) | y :: Y }.
For ease of presentation, we may also write X and Y to mean I∗(X) and I∗(Y )
when it is clear that a set is required rather than a type symbol.

Definition 2. The relation � ⊆ Q × Q is defined as s � t iff there exist bijec-
tions:

α : s(:X) → t(:X) and β : s(::Y ) → t(::Y )

such that all of the following hold:

1. s(b) = t(b) for all b : Bool.
2. α(s(x)) = t(x) for all x : X.
3. β(s(y)) = t(y) for all y :: Y .
4. For all w ∈ s(:: Y ), there are at least the same number of β(w)’s in the

array t(a) as there are w’s in s(a), excluding locations which are the terms.
Formally:

Cs(X \ s(:X), w) ≤ Ct(X \ t(:X), β(w)).

5. There exists an injection γ : Y \ s(:: Y ) → Y \ t(:: Y ) such that all other
values from the type Y not dealt with above can be matched up from s(a) to
t(a) in the manner of Condition 4 above, but with the injection γ instead of
the bijection β. Formally: for all w ∈ Y \ s(::Y ),

Cs(X \ s(:X), w) ≤ Ct(X \ t(:X), γ(w)). 	
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Example 1. We illustrate the definition of � on an example pair of states s and
t. The first three conditions say that boolean variables must be equal and the
terms must have the same equality relationship on them. We will focus of the
final two conditions, which are used to compare the parts of the array that are
not referenced by the current values of X-variables (i.e. locations that are not
immediately accessible in the current state before doing a ?x instruction).

Condition 4 says that, for each term y :: Y , there must be at least as many
t(y)’s in the rest of the array t(a) (i.e. locations not referenced by X-variables)
than there are s(y)’s in the rest of the array s(a).

Suppose s has no other location in the array holding a value equal to the
value of term y0; similarly, suppose there are four, one, and three other locations
containing the values s(y1), s(y2) and s(y3) respectively. This is represented pic-
torially as a histogram: see Figure 1 (a). Condition 4 of s �′ t holds for any t
whose corresponding histogram ‘covers’ the histogram of s.

0

1

2

3

4

y y y0 1 2 3y

(a) (b)

0

1

2

3

4

5

Fig. 1. Histogram representation of array with reset

Condition 5 says that the same relationship holds for all the other Y -values
(i.e. values not held in terms), except that we are allowed to arrange the columns
of the histogram in any way we wish. In this example we use the fact that it
is sufficient to consider the arrangement where they are sorted in reverse order,
instead of having to consider every possible permutation.

Suppose the state s was last reset to a value v0 which is not equal to a
value held in any term: the array will therefore hold an infinite number of these
values. The array may also hold a finite number of other values: suppose s(a)
also holds distinct values v1, . . . , v5 (which are different from v0 and the values
of any terms) in cardinalities five, four, four, two, and one respectively. This can
be represented as a histogram: see Figure 1 (b). Condition 5 requires that t’s
corresponding histogram covers that of s. 	


The following two propositions tell us that 〈〈P〉〉I∗ is a well-structured tran-
sition system [7].
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Proposition 1. The relation � is a well-quasi-ordering on the state set Q. 	

Proposition 2. The relation � is strongly upward compatible with →, i.e. for
all s � t and s → s′ there exists t′ ∈ Q such that t → t′ and s′ � t′. 	


Any state s can be represented finitely by a tuple with the following compo-
nents:

– the values of the boolean variables;
– the equivalence relations on the variables of type X and on terms of type Y

induced by the equality of values stored in them;
– for each y :: Y , the value Cs(X \ s(:X), s(y));
– a bag (i.e. multiset) consisting of, for each w ∈ Y \ s(::Y ), the value

Cs(X \ s(:X), w)

if it is non-zero.3

This representation yields a quotient 〈̂〈P〉〉I∗ of the transition system 〈〈P〉〉I∗ ,
which is a well-structured transition system with respect to the quotient �̂ of
the quasi ordering �. Moreover, for any state representation ŝ, a finite set of
state representations whose upward closure is ↑ Pred(↑ ŝ) is computable, and
�̂ is decidable. Therefore, control-state unreachability can be decided by the
backward set-saturation algorithm in [7].

Theorem 2. The problems InfCU and FinPCU are decidable for the class of
DI programs with reset with just one array of type Y [X]. 	


5.2 Multiple arrays storing boolean data

Here we consider DI programs that use multiple arrays all indexed by a type vari-
able X and storing boolean values. Decidability of parameterised model checking
of control-state unreachability properties for these systems follows similarly as
for systems in Section 5.1.

The following are the main differences in defining the quasi ordering:

– As the type Y used there is now the booleans, the program is no longer DI
with respect to it. Therefore, the function β must be removed (i.e. replaced
with the identity relation) from Definition 2.

– In Definition 1, redefine the Cs operator to take a vector of boolean values
w = (w1, . . . , wn) rather than a single value:

Cs(V, (w1, . . . , wn)) = |{v ∈ V | ∀i · s(ai)(v) = wi}|.
The finite representation of states is now as follows:

– the values of the boolean variables;
– the equivalence relation on the variables of type X induced by the equality

of values stored in them;
– for each w ∈ Bn, the value Cs(X \ s(:X),w).

Theorem 3. The problems InfCU and FinPCU are decidable for the class of
DI programs with arbitrarily many arrays only of type Bool[X] with reset. 	

3 There are only finitely many w’s for which this value is non-zero — see Note 2.
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5.3 Multiple arrays storing data from a variable type

We now show that unreachability model checking is undecidable with more than
one array of type Y [X]. We demonstrate that for any URM P there is a DI
program P� with just two type variables X and Y and only two arrays with
reset which has the same observable behaviour as P. We can encode the values
of the variables r : Nat as the length of a linked list in the arrays in P�.

Definition 3. The type context Γ � of P� is defined as follows, where P has type
context Γ . Γ � has the same variables of type Bool as Γ and has two arrays
Γ � � S, I : Y [X] to hold the linked lists. It also has variables Γ � � hr : X for the
heads of the linked lists representing each Γ � r : Nat, and a variable Γ � � e : X
which marks the end of all the lists. A variable Γ � � y0 : Y is used to hold
a special value which marks a location in I as being unused. The program also
makes use of temporary variables Γ � � x : X and Γ � � y, n : Y . 	

Example 2. Figure 2 shows an example state of the arrays S and I, representing
a state in the URM where its counter variables are set as follows: r0 = 0, r1 = 2
and r2 = 3.

0 4 4 5 2793

003800405

8

1h
0

hh
2

36

000

S

I

9 7 5 5

019

e

Fig. 2. Building a linked list using arrays with reset

The array I is used to give unique identifiers in Y to all of the finitely many
locations in X that are currently being used to model the linked lists. It is set to
y0 (which happens to be the value 0 in this example) at all the unused locations.
Where I is non-zero, the array S gives the identifier of that location’s successor.

Checking a register r is zero becomes a simple matter of checking whether
hr = e. We can decrease a register r by updating hr to the value x, where I[x]
is equal to S[hr], remembering to mark the old location as being now unused by
doing I[hr] := y0.

To increase r by one, we must find a brand new identifier as well as an
unused location for hr and make it link to the old location. To ensure that a
chosen identifier is new we must go through all the lists and check that it is not
being used already. We can check whether a location is being used by testing if
it is zero in I.
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Notice that there are important invariants our emulator must maintain in
addition to the requirement that the linked lists must have length equal to the
appropriate URM register.

– The identifiers should be unique so that each head has exactly one list from
it.

– Aside from the end marker e, the locations in any pair of lists are disjoint.
– I must have unused locations set to y0, of which there must always be in-

finitely many. 	

Definition 4. An instruction translator � from instructions in P to operations
in P� is shown in Table 2. The syntax (;r′ · · ·) means the repetition of syntax,
replacing r′ with a different variable of type Nat each time, all conjoined with
the ; operator. 	


I I�

isZero(r) hr = e

dec(r)
hr �= e; I[hr] := y0; y := S[hr];
?hr; I[hr] = y

inc(r)

?n; n �= y0; n �= I[e];
(;

r′ x := hr′ ;
while x �= e do

n �= I[x]; y := S[x];
?x; I[x] = y

od);
?x; I[x] = y0;
I[x] := n; y := I[hr]; S[x] := y;
hr := x

other no change

Table 2. Translating URM instructions to instructions on arrays with reset

Definition 5. Given a URM P = init oI repeat oT , the corresponding DI
program with arrays is

P� = init reset(I, y0); y �= y0; I[e] := y; o�
I

repeat o�
T .	


Let 〈〈P〉〉 = (Q,Q0,→, P, �·�) and 〈〈P�〉〉 = (Q�, Q0�,→�, P, �·��). We will
show there exists a bisimulation between 〈〈P〉〉 and 〈〈P�〉〉I∗ for any infinite type
instance I∗ for P�.

First, some shorthands. Given a state t, we will say that the inverse function
t(I)−1 : I∗(Y ) → I∗(X) is defined at a value w ∈ I∗(Y ) and is equal to the
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value v when there is exactly one value v in I∗(X) such that t(I)(v) = w. We
will use notation to compose arrays as follows: t(I)−1(t(S)(v)) may be written
t(I−1 ◦ S)(v).

We now define our correspondence relationship between the two transition
systems.

Definition 6. Define a relation ≈ ⊆ Q × Q� as s ≈ t iff

– s(b) = t(b) for b : Bool.
– For every r : Nat there exists a finite sequence vr

0 · · · vr
s(r) such that:

• For each r : Nat:
∗ vr

s(r) = t(hr),
∗ vr

i−1 = t(I−1 ◦ S)(vr
i ) for i = 1, . . . , s(r),

∗ vr
0 = t(e).

• The values of each t(I)(vr
i ) for r : Nat and i = 1, . . . , s(r) together with

t(e) are pairwise unequal. (‘Uniqueness Invariant.’)
• For all v ∈ I∗(X), we have that vr

i �= v for every r : Nat and i =
0, . . . , s(r) if and only if t(I)(v) = t(y0). (‘Unused Invariant.’) 	


Proposition 3. The relation ≈ is a bisimulation between 〈〈P〉〉 and 〈〈P�〉〉I∗ for
any infinite type instance I∗ for P�. 	


The following can be deduced from the undecidability of the Halting Problem
for URM’s and Corollary 1.

Theorem 4. The problems InfCU and FinPCU for the class of DI programs
with two arrays of type Y [X] with reset are undecidable. 	


6 Array assignment

6.1 Simulation of arrays with reset

We show that for any program P using arrays with reset, there exists a program
P� using arrays with assignment which has bisimilar semantics. This shows that,
in some sense, array assignment is at least as expressive as array reset.

Definition 7. The type context Γ � of the program P� is defined as follows. If we
assume the arrays used in P are r0, . . . , rn−1, we have arrays Γ � � a0, . . . , an−1 :
Y [X] in P�. We also have another array Γ � � A : Y [X] which we will use to
check whether locations have changed since the last reset of that array. The type
context Γ � has all the same non-array variables as Γ except that it also has extra
variables Γ � � Y0, . . . , Yn−1 : Y to store the last reset value to the corresponding
array. There are also temporary variables Γ � � ya, yA, n : Y . 	

Example 3. Here is an example state of a system using arrays with reset, together
with an emulating state from the system using array assignment.

On the left of the figure, the arrays r0 and r1 from the system with the reset
operation available are shown. It can be seen that r0 was last reset to 5 and r1
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Fig. 3. Emulating array reset with array assignment

was last reset to 0. The locations where these arrays have been changed since
their last update are emphasised with vertical bars.

On the right, the arrays a0 and a1 from the system with array assignment are
shown to be identical to r0 and r1 respectively at these locations that have been
changed (also shown within vertical bars). Places which have not been changed
since the last reset of the array are instead equal to whatever is in the array A
at those locations — the variables Y0 and Y1 can be used to find the value of
the last resets. Now the instructions translate as follows:

– When we wish to read a location ri[x] in the abstract program P, we return
ai[x] when ai[x] �= A[x], and Yi when ai[x] = A[x].

– Resetting an array can be emulated by the array assignment ai[ ] := A[ ],
while setting Yi to the value of the reset.

– When writing to an abstract location ri[x], we write instead to ai[x]. Fur-
thermore we should make sure that A[x] is not equal to ai[x]; if it is not,
we must change A[x] and any other aj [x] which is marked as unchanged by
being equal to A[x]. 	


Definition 8. An instruction translator � from instructions in P to operations
in P� is shown in Table 3. The notation (;j �=i · · ·) means repetition of syntax for
every j from 0 to n − 1 except i, all conjoined with ; in any order. 	


Definition 9. Given a DI program with arrays with reset P = init oI repeat oT ,
we can form a corresponding DI program with arrays with assignment P� =
init o�

I repeat o�
T as described above. 	


Theorem 5. Given a DI program P with n arrays of type Y [X] with reset and
a type instance I for P, there exists a DI program P� with n + 1 arrays of
type Y [X] with assignment such that there is a bisimulation between 〈〈P〉〉I and
〈〈P�〉〉I . 	
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I I�

y = ri[x]

yA := A[x]; ya := ai[x];
if yA = ya

then y = Yi

else y = ya

fi

reset(ri, y) ai[ ] := A[ ]; Yi := y

?ri[x]

?ai[x]; yA := A[x]; ?n; ai[x] �= n;
(;

j �=i
ya := aj [x];

if ya �= yA

then ya �= n
else aj [x] := n

fi);
A[x] := n

other no change

Table 3. Translating instructions for arrays with reset to instructions for arrays with
assignment

6.2 Simulation of universal register machines

By Theorem 5, any program with two arrays with reset is bisimilar to a pro-
gram with three arrays with assignment. Theorem 4 states that unreachability
is undecidable for the former class, and so it also is for the latter.

It turns out that a stronger negative result is possible. We adapt the results
from Section 5.3 about array reset to work instead with array assignment. We
show that, for any universal register machine P, there exists a DI program
P� with only two arrays with array assignment which has the same observable
behaviour as P. The proof runs very similarly, so we present only the differences.

– The variable Γ � � y0 : Y from Definition 3 is unnecessary.
– Figure 2 could be replaced by Figure 4.
– The corresponding explanation from Example 2 would be altered as follows:

Instead of I[x] being set to y0 at unused locations x, we have I[x] = S[x] to
mark a location as unused. Conversely, a location x must have I[x] �= S[x] if
it is in use to prevent it being overwritten. This had to be the case anyway
otherwise the successor of that location would be itself, and hence would be
an infinite list — except at e, whose successor is never used, so we must be
sure to have I[e] �= S[e].

– Table 2 is updated as follows:
• Remove the instruction n �= y0 in (inc(r))�. The role of y0 has been

replaced.
• Replace I[hr] := y0 with I[hr] := S[hr] in (dec(r))�. This is the new way

of marking a location as unused.



292 Ranko Lazić, Tom Newcomb, and Bill Roscoe

S

I 23384084559

7936 9

e
0

h
2 1hh

2354408557

7196

Fig. 4. Building a linked list using arrays with assignment

• Replace ?hr with ?hr; I[hr] �= S[hr] in (dec(r))�, and replace the first
occurrence of ?x (i.e. within the while-loop) with ?x; I[x] �= S[x] in
(inc(r))�. This is the new check for a used location.

• Replace I[x] = y0 with I[x] = S[x] in (inc(r))�. This tests for an unused
location.

– In Definition 5, the piece of code reset(I, y0); ?y; y �= y0; I[e] := y is used to
mark every location as unused, and to pick a non-y0 value as the identifier
for location e so it is marked as being used. This should be replaced by
I[ ] := S[ ]; ?y; y �= S[e]; I[e] := y to mark every location as unused (because
I[x] = S[x] at every location x), and then to make I[e] �= S[e] so this location
is marked as being used.

– We require a modification to the inverse function implied by an array as
used in Section 5.3. We now say that t(I)−1 is defined at a value w and
is equal to v when there is exactly one v such that both t(I)(v) = w and
t(I)(v) �= t(S)(v).

– In the definition of ≈ (Definition 6), the last condition should be that t(I)(v)
is equal to t(S)(v) instead of t(y0).

We can now state the following theorems.

Theorem 6. Given a universal register machine P there exists a DI program
P�, and two arrays of type Y [X] with array assignment, such that there is a
bisimulation between 〈〈P〉〉 and 〈〈P�〉〉I∗ for any infinite type instances I∗. 	

Theorem 7. The problems InfCU and FinPCU for the class of DI programs
with just two arrays of type Y [X] with array assignment is undecidable. 	


Note that a program with only one array with array assignment is unable to
make any use of the array assignment instruction: it can therefore be considered
not to have this instruction.

7 Conclusions

This paper has extended previous work on DI systems with arrays without whole-
array operations [9, 14, 11] by considering array reset and array assignment.
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For programs with array reset, we showed that parameterised model checking
of control-state unreachability properties is decidable when there is only one ar-
ray, but undecidable if two arrays are allowed. If the arrays store booleans rather
than values whose type is a parameter, we showed decidability for programs with
any number of arrays. The decidability results are based on the theory of well-
structured transition systems [7], whereas undecidability followed by reducing
the Halting Problem for universal register machines.

Programs with array assignment were shown to be at least as expressive as
programs with array reset. However, this yields a weaker undecidability result
than for programs with reset, but undecidability for two arrays was obtainable
directly.

Future work includes considering programs with array assignment in which
the arrays store booleans. More generally, programs with more than two data-
type parameters, multi-dimensional arrays, and array operations other than reset
and assignment should be considered, as well as classes of correctness properties
other than control-state unreachability.

We would like to thank Zhe Dang, Alain Finkel, and Kedar Namjoshi for
useful discussions.
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