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Abstract

XML and Web Services security specifications define elements to incorporate
security tokens within a SOAP message. We propose a method for mapping such
messages to an abstract syntax in the style of Dolev-Yao, and in particular Casper
notation. We show that this translation preserves flaws and attacks. Therefore
we provide a way for all the methods, and specifically Casper and FDR, that have
been developed in the last decade by the theoretical community for the analysis of
cryptographic protocols to be used for analysing WS-Security protocols. Finally,
we demonstrate how this technique can be used to prove properties and discover
attacks upon a proposed Microsoft WS-SecureConversation protocol.

1 Introduction

Web Services is an XML-based architecture that has been developed in order to make
the coupling between distributed components looser. In the last few years, with the
growth of the popularity and importance of the Web Services architecture, more and
more standards have been defined for extending the functionality and for dealing with
different concerns. Due to its growing importance and the uses to which it is put, Web
Services requires rigorous security.

A common way of achieving security is relying on a secure transport layer, typically
SSL as was studied and analysed in [7]. Apart from the fact that this technique provides
security only in a secure channel (and not in files or databases), it does not correspond
with the WS architecture in which the intermediaries can manipulate the message on
its way. Once using a secure transport layer intermediaries are not able to control the
messages.

A more suitable way is using the WS-Security specification [4] that by using the
XML-signature [10] and XML-encryption [11] specifications, deals with and defines stan-
dards and ways of securing SOAP messages [9] without relying on a secure transport
layer. In effect it creates a new sphere for cryptographic protocols in terms of design
and implementation.
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In [14] we claimed that in the Dolev-Yao [12] model the syntax of the SOAP message
has relatively! little effect on the security of the protocol and therefore that an abstracted
view of the protocol, taken that it encapsulates all the security elements, provides an
accurate model. We suggested a mapping function ¢ (see Appendix I of the full paper
[15] for details)? from SOAP messages to Casper [20] input, such that if a WS-Security
protocol contains the messages mi, mo..., m, then,

1. If an attack is found on ¢(my), p(ma), ..., ¢(m,) then a corresponding attack can
be reproduced on mq,mo,...,Mmy.
2. If an attack exists on mq, ma, ..., m, then it also exists on ¢(my1), p(mz2), ..., ¢(my,)

We demonstrated how, using property (1) of ¢, we could use Casper [20] and the FDR
refinement checker [22] to find two attacks on WSS protocols proposed by Oasis in [19].

In this paper we prove property (2) of ¢ and confirm our last claim. We then
demonstrate how we can use this property together with the Data Independence and in-
ternalising techniques of [8] to provide general proofs of Web Services Security protocols
as well as finding vulnerabilities.

The contribution we make is a formal translation of WS-Security protocols to tradi-
tional cryptographic protocols, ensuring that flaws and attacks are preserved. Therefore
we provide a way for all the methods, and specifically Casper and FDR, that have been
developed in the last decade by the theoretical community for the analysis of crypto-
graphic protocols to be used for analysing WS-Security. We also prove (Lemma 2) that,
in the case of any addition of deductive rules to the traditional model for encapsulating
additional capabilities of the intruder, ¢ continues to satisfy property (2). Finally, we
create a framework in which the addition of rules for manipulating XML elements can
be proven to not detract from the correctness of property (2) of ¢ (see section 5 for
example). To the best of our knowledge, ours is the first work proving the relationship
between WS-Security protocols and traditional security protocols.

Our paper is structured as follows. In Section 2 we give a short overview of the CSP
model of traditional security protocols. In Section 3 we indicate how the traditional
model can be extended to encapsulate WS-Security protocols. In Section 4 we prove
that ¢’s property (2) holds. In Section 5 we show how to produce a general proof of
correctness of WS-Security protocol using our technique and in particular we prove some
properties of a Microsoft protocol based on the WS-SecureConversation [2] specification,
we then reveal some flaws letting an intruder exercise different sort of attacks. Finally
we conclude and give the outline of our planned future work in this area.

This paper is an outline of [15], where many details omitted here can be found.

2 Modelling traditional security protocols in CSP

In this section we describe how a security protocol is modelled using CSP and how the
model allows us to reason about it.

1We showed a case in which SOAP can help, but in fact this just increases the faithfulness of the
translation.

2The definition of ¢ in the full paper is more elaborated than the one in the original paper and it
aims to support any WSS protocol



2.1 The Message datatype

The datatype Message represents the messages exchanged between the different agents.
It is based on a set atoms called Atom where the sets Key (contains all the cryptographic
keys), Nonce, Text and Password are defined to be subsets of the atom set (KeyC Atom,
NonceC Atom and PasswordC Atom). In addition, we define HashFn to be the set that
contains all the available cryptographic hash functions. The datatype Message is com-
posed of sequencing, referencing, encrypting and hashing the atomic value in Atom and
defined by:

Message = ENCRYPT.Key.Message |
HAsH.HashFn.Message |
REFERENCE. Key |
SQ.Message™ |
ATOM. Atom
In this paper we will use the Casper notation of writing {m}; for ENCRYPT.k.m. We
will use g(|m|) for HAsH.g.m, R(K) for modelling a reference to a key K and finally will

abbreviate SQ.( my,...,m,) to ( my,...,my). For example, we will denote the construct
ENCRYPT.k.(SQ.(a,n,)) by {a,n, }x.

2.2 Trustworthy agents

Every agent taking a part in the protocol is modelled as a CSP process (An agent can
also be internalised in the intruder deduction set [8] but for now we will assume that
all the honest agents are implemented as CSP processes.) We define the process Py
denoting agent A, using the following events:

e send.A.B.M - symbolises agent A sending message M to agent B.
e receive.A.B.M - symbolises agent B receiving message M apparently from A.

In addition we define the following events for delineating specifications for the pro-
tocol we want to analyse. See [20] for more details about how these events are used to
express properties of security protocols.

o claimSecret.A.B.M symbolises that A thinks that message M is a secret shared
only with agent B.

e running.A.B.{Mj,..., M, } symbolises that A thinks he started a new run of the
protocol with B where {Mj,...,M,,} represent some details of this run.

e finish.A.B.{Mj,... , M, } symbolises that A thinks he has just finished a run of the
protocol with B where {Mj,...,M,,} represent some details of this run.

For more information regarding the translation of a protocol description to a CSP
representation see [25].



2.3 Modelling the intruder and putting the network together

Based on the Dolev-Yao model [12] we allow the intruder to have the following abilities
when attacking a set T" of trusted agents: (i) overhearing all the messages flowing through
the network, (ii) intercepting messages, (iii) faking messages based on what he knows
limited only by cryptography, and (iv) behaving as would any agent outside of T'. We
first define the rules that allow the intruder to construct new messages. The definition
is based on the relation - which characterises deduction rules by which the intruder can
deduce new messages. We say that B - M if message M can be deduced from the set
of messages B.

member Be M= BFM

sequencing BF {Mi,...,M,} = (My,...,M,)

splitting BF(...,M,...) =B+ M

encrypting B+ M ABFATOM K ANK € Key= B+ {M}g
decrypting BF {M}x ABFAToM K~! = BFM
hashing BF M Ag € HashFn = Bt g(|M])

referencing B+ KAK € Key= BF R(K)

Informally, the intruder can form an encryption when he knows the message and the
key. He can decipher an encryption for which he knows the inverse of the key, create a
reference to a key that he knows, hash every message he knows and can both break up
and form sequences.

Since by the Dolev-Yao model the intruder should be able to overhear, intercept and
block each message, the intruder process also models the communication medium.

The process representing the intruder is parameterised by X, which ranges over sub-
sets of Message, and represents all the facts the intruder has learned. In this model
the intruder gets every message sent by the honest agents or by the server via the send
channel. He then can pass it to the agents via the appropriate receive channel unless he
decides to block it or fake a new message instead.

Intruder(X)= DMeMessagesend?A?B!M — Intruder(X U {M})
O
DMeMessag&XkMreceive?A?B!M — Intruder(X)
U
DMEMessage,Xleeak.M — Intruder(X)
The initial state of the intruder is Intruder(II1K) where IIK is the Intruder Initial
Knowledge. The complete system is then?:

3For clarity this model is abstracted. In the model generated by Casper each fact is modelled as a
process parallelled with the entire fact space. This technique reduced dramatically the state space that
FDR needs to explore (see [25] for more details).



SYSTEM = (||‘A€H0nestPA) || INTRUDER(IIK)

2.4 Specifying Protocol requirements

The requirements of the protocols are encapsulated by trace specifications.

Secrecy Asmentioned before, when agent A performs the event claimSecret.A.B.Secs
it means that we believe, at this point in the protocol run, that the values in the set
Secs are secret and shared only with agent B. It expresses the expectation that the
intruder cannot be in possession of values from Secs, i.e. the intruder should not be able
to perform leak.M where M€ Secs.

Authentication We first introduce the finish and running events (see [25] for more
details)*. The finish event is performed by the honest agents when they complete a
protocol run and the running event should be performed before the last send event.

We will use the following definition [21] which is one of the more common forms of
authentication:

If A thinks he has completed a run of the protocol, apparently with B, then
B has previously been running the protocol, apparently with A, and both
agents agreed as to which roles they took, and both agreed as to the values
of the variables v, ..., v,, and there is a one-one relationship between the
runs of B and the runs of A.

The following specification corresponds to this definition®:

~

AgTeementAgreementSet (tT‘)
VA € Agent; B € Honest; Ms € AgreementSet e
tr | finished.A.B.Ms < tr | running.B.A.M s

3 Creating a CSP model of WSS Protocols

In order to analyse Web Services Security protocols we have to extend the model that
was described in Section 2. We will later use the new extended WSS model to prove
Property (2) of ¢.

The WSS model is similar to the one in Section 2. There are essentially has dif-
ferences. Firstly, we need to replace the Message datatype with a new datatype which
encapsulates SOAP messages. Secondly, a new set of deductions must be added to
the intruder’s deduction set to enable him to “understand” the XML tagging system
underlying the SOAP messages.

“notice that [25] refers to these events as Running and Commit
5The binary operator | (tr] e) represents the number of occurrences of event e in a trace tr



3.1 The Envelope datatype

The FEnwvelope datatype represents the SOAP messages that are sent and received by
the agents. Similarly to the Message datatype, Envelope will be based on the Atom set
where KeyCAtom, NonceCAtom, AgentC Atom, TimeStampC Atom, PasswordCAtom
and on HashFn, the set that contains all the cryptographic hash functions. In addition,
we define HeaderApp to be the set of all the applicative SOAP headers, BodyApp to be
the set of the applicative sub-element of the Body element, Id is the set of all the unique
ids and Element to enclose all the valid SOAP elements. Some sample clauses from the
definition of Enwvelope follow. The complete definition of Envelope is presented in the
full paper.

FEnvelope = <Envelope. Attributes.>. Envelope Content.< /Envelope>
EnvelopeContent ::= Header | Body | (Header, Body) | (Header, EncryptedData)
Header = <Header.Attributes.>. HeaderContent.< /Header>
HeaderAtom = Security | HeaderApp |

EncryptedData
HeaderContent ::= SQ.HeaderAtom™*
Security = <Security. Attributes.>.Security Tokens.</Security>
SecurityToken =  UsernameToken |

BinarySecurityToken | Signature | ReferenceList |
EncryptedKey | EncryptedData | SecurityTokenReference
SecurityTokens ::= SQ.SecurityToken*

The Envelope datatype illustrates the SOAP messages almost down to the last detail.
However, we make some abstractions in order to make it more concise, and clearer:
details may be found in the full paper.

3.2 The intruder

The Intruder’s definition in the WSS model is very similar to the one in the traditional
model and is still based on the basic seven deduction rules presented in Section 2. The
following is an some example of the added deductions (called WS*) that provide the
intruder the ability to manipulate the SOAP’s XML-based elements (for the complete
set see the full paper [15]).

WSEncryptedKeyl B F <EncryptedKey. Attributes.>.
(<KeyInfo>.R(K;).</KeylInfo>,
<CipherData>.{Ks}xk,.</CipherData>,
SQ.Element*
)
</EncryptedKey> =
B+ {KQ}Kl ABHF R(Kl)



The complete WSS system is then similar to the one presented in Section 2:
SYSTEMiwss = (|||actonestPa) | INTRUDER(IIKyyss)

We remark that our reason for building a full CSP model of WSS is primarily to
allow the abstract analysis rather than to check it directly with FDR.

4 Proving property (2) of ¢

We can now give a formal definition of the function ¢ : Envelope — Message. We are
aiming to use he result of [17]. Therefore ¢ is designed as close as possible to the idea
of renaming transformation defined there.

Note that since the Envelope datatype definition uses the Message datatype defini-
tion, ¢ might be applied to Message. In that case according to the definition of ¢ (see
full paper), ¢ behaves like the identical function, i.e. returns its input.

¢ is defined over the events of SY ST FE My gs as follows:

send.A.B.Envelope)

( send.A.B.¢(Envelope)
(receive.A.B.Envelope)

(

(

receive.A.B.¢(Envelope)
claimSecret.A.B.¢(Envelope)
running.A.B.¢(Envelope)
finished.A.B.¢(Envelope)

claimSecret.A.B.Envelope)
running.A.B.Envelope)
¢(finished.A.B.Envelope)

¢
¢
¢
¢
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and over traces by:

oltr) = (g(e) | e —tr)

Applying ¢ to the trustworthy agent processes (¢(P4) | VA € Honest) is implicitly
defined since in CSP, the renamed process f(P) is the process that behaves like P
except the fact that every event e in P is renamed to f(e).

Finally, we apply ¢ to the whole system:

(b(SYSTEMwss) = (|HA€Honest¢(PA)) H [NTRUDER((b(IIKwSS))

4.1 Fault-Preserving renaming transformations

In [17] Hui and Lowe prove that if SYSTEM is transformed into SYSTEM' in the
following way:

SYSTEM' = (||| actonestf(P4)) || INTRUDER(IIK')

where ITK’is the new initial knowledge that was given to the intruder in the transformed
system, then f is fault-preserving if it satisfies the following two conditions:

1. VB € P(Message); M € Messagee BUIIK FM = f(B)UIIK'F f(M)

2. f(IIK)C IIK'



Informally, if the intruder can deduce a message in the original SYSTEM he must be
able to deduce the equivalent message f(M) in the corresponding SYSTEM’, in this case
we say that function f satisfies the distribution property. Secondly, the corresponding
messages of all of the intruder’s initial knowledge in the original SYSTEM must be
possessed by the intruder in SYSTEM'.

The proof of this result does not rely on the structure of the Message datatype or
the deduction set of the intruder. In other words, the result is valid regardless of the
type of messages the agents exchange and of the deductions the intruder has. Thanks
to this fact we can apply this result to the WSS model. Therefore, in order to prove
property (2) of ¢, it is enough to prove that:

1. VB € P(Envelope); E € Envelope @ BUIIK 55 - E = ¢(B)UIIK,ss F ¢(E)
2. Q(I1Kuyss) C P11 Kypss)

The second condition is obviously satisfied. What remains to be proven is that ¢ satisfies
the distribution property which we prove by structural induction over the deduction set
of the intruder.

4.2 Proving ¢ satisfies the distribution property

For proving the distribution property we need the following Lemma taken from [17]

Lemmal BFEABCB = B FE
BFEABU{E}FE = BFE.

We start by proving that ¢ satisfies the distribution property for all the deductions
taken from the original system.

Lemma 2 For every intruder’s deduction taken from the traditional system, ¢ satisfies
the distribution property.

Proof: If B-M = B F M for every M, M’ € Message and for every deduction rule
from the traditional system, then by the inductive hypothesis, BUIIK,ss - ¢(M) =M
and by the original deductive rule = BUIIK s - M = ¢(M') = BUIT K55 E (M)

O

We complete the proof by proving that ¢ satisfies the distribution property for the
deductions added to WSS model. An example is given below, the rest of the clauses
may be found in the complete paper.

WSEncryptedKeyl If SE = <EncryptedKey>.
(<KeyInfo>.R(K;).</Keylnfo>,
<CipherData>.{Ks}k, .</CipherData>,
SQ.Element*
).
</EncryptedKey>
and B SE, then by the inductive hypothesis, ¢(B) U [ K55 - ¢(SE) =
{K2}g(<Keymfo> R(K1).</KeyInfo> ENC), ¢(<KeyInfo>.R(K1).</KeylInfo>) = {Ks }k, , R(K)
(b({K?}Kl)a(b(R(K)) = ¢(B) U TTKyss = (b({KQ}Kl) N (b(B) U T Kyss - ¢(R(K)>



4.3 Agreement authentication property

We now prove that property (2) of ¢ is valid with respect to the agreement property as
well. In [17], it is proven that if the following condition is satisfied:

VEs € AgreementSet; Es' € Envelope @ Es # Es' = f(Es) # f(Fs') then

—Agreement agreementset (t7) = —Agreement ¢ agreementset) (f (1))

Unfortunately, ¢ is not injective when applied to the KeyInfo, EncryptedData and
EncryptedKey if we use the usual equality over the datatype Envelope. Moreover,
SecurityTokenReference can often be replaced by the element it points to and by
that to create two different SOAP messages in which their ¢ transformation is identical.
For those reasons, it looks that ¢ does not satisfy the latter condition. It can however be
shown that all equivalence classes of messages which map to the same image over ¢ are,
so far as security it concerned, entirely equivalent and in particular the authentication
properties carried by any one of them is carried by them all. So we can proceed as if
this property did hold. See the full paper for more details.

4.4 Ramifications

We have established that ¢ is safe with respect to both secrecy and authentication under
the WSS model. If one extends the WSS model by adding more deduction rules, then
the proof can be extended as well (see Section 5).

Since ¢ transforms the Envelopes into Messages, we don’t need the added deduction
rules from section 3 for analysing a protocol after it was transformed by ¢. Therefore
a WSS protocol can be analysed in the traditional model after it was transformed by ¢
without the worry of generating false proof of correctness.

We would like to emphasise that although this proof is based on the theory of CSP,
it is valid for any tool regardless of its underlying theory. Consequently, any established
tool for analysing security protocols can use ¢ for analysing WSS protocols.

¢’s input is the SOAP messages of the protocol to be analysed. This fact allows the
non-specialist user to analyse complex WSS protocols in a few minutes. We have tested
our automated version of ¢ on various WSS protocols had received satisfying results.
We will introduce a new tool in the future for analysing WSS protocols either using
Casper and FDR or (subject to adaptation) by other available tools.

As a result of Lemma 2 any extension of the intruder abilities made in the traditional
protocol model can be used when analysing WSS protocols transformed by ¢.

We saw in 4.3 that if there are two semantically equivalent but syntactically different
WSS protocols then ¢ will transform them to the same traditional protocol. Due to this
character of ¢ it was suggested that ¢ can be used for making the semantics of WSS
clearer.

5 Proving the correctness of a WS-SecureConversation
based protocol

In the previous sections we presented our method of analysing WS-Security Protocols.
We have also implemented ¢ so that together with Casper and FDR it makes a tool for



analysing WS-Security protocols. However, the framework that we created can be used
for extending ¢ to encapsulate elements defined and by new Web Services specifications
by local protocol designers.

In this section we give an example of extending ¢ to analyse a WS-SecureConversation
based protocol taken from WSE [23] (See the full SOAP messages’ description in the full
paper). We demonstrate how the extension can be proven using the model we presented
in Section 3 and provide a general proof of correctness of this protocol using Casper and
FDR.

5.1 Background

The Web Services Security specification defines security tokens to provide secrecy, au-
thentication, integrity and other security properties to the claims that these token en-
capsulate. Yet, the process of verifying these tokens against the security policy has to be
repeated for each SOAP message. This is obviously problematic performance-wise, for
example an EncryptedKey element might be used in each message instead of agreeing
upon a session key once. WS-SecureConversation[2] addresses this issue. It builds upon
WS-Security and WS-Trust [3] to allow a requester and a Web Service to set up a mutu-
ally authenticated security context that can be used by two parties as their session key
or for deriving new keys. WS-Trust defines three different ways for establishing secu-
rity contexrt. In the end of each following procedure a SecurityContextToken element
(SCT) is created and the new security context is associated with it.

1. Security Context Token is created by a security token service (STS) -
The context initiator sends a security token service (STS) a RequestSecurityToken
(RST) request, if the policy permits and the requester’s requirements are met,
a RequestSecurityTokenResponse (RSTR) is returned. The RSTR contains
RequestedSecurityToken specifying a new SCT and a RequestedProofToken
pointing to a “secret” to be assigned to the SCT. The newly created security
token is distributed to other parties by the STS in a similar way (via RSTR).

2. Security Context is created by one of the agents and propagated with a
message - If an entity is trusted by other parties then it can create an SCT and
send a signed unsolicited RSTR to the other parties. Once again, the RSTR con-
tains RequestedSecurityToken specifying a new SCT and a RequestedProofToken
pointing to a “secret”.

3. Security Context created by negotiation - WS-Trust defines ways for nego-
tiating or exchanging sequence of messages on the contents of the SCT (e.g. the
shared secret) when it is needed. The negotiation is done by the parties sending
each other challenges before establishing the Security contert. WS-Trust defines
a variety of challenges for example one party might specify a fact and expect the
other party to returned it signed.

After the security context establishment, the parties may use this shared secret with
WS-Security for signing and encrypting messages. However, it is recommended by the
WS-SecureConversation specification that derived keys will be used for these purposes.
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In this case the DerivedKeyToken can be used for indicating which derivation is used
within a given message.

5.2 Modelling WS-SecureConversation

In this section we show how to create the necessary extension to ¢ for analysing the
WSE’s WS-SecureConversation based protocol. For brevity we don’t present here the
complete extension for dealing with collections of tokens and negotiation although such
an extension can made and proven. Below just two of the extensions are given, rest of
them, and the proof that the extension keeps ¢ safe, can be found in the full paper.

5.2.1 RequestSecurityToken

The RequestSecurityToken element (RST) is defined in the WS-Trust specification and
is used by the WS-SecureConversation specification for requesting security context token
(SCT)S. The context attribute is an optional URI specifies a context for the request.
All subsequent RSTR elements relating to this request must carry this attribute.

o ((RequestSecurityToken Context = “Con”)...(/ RequestSecurityToken)) = ¢({Base)...(/ Base)),
o((Supporting)...(/ Supporting)), ¢({ Entropy)...(/ Entropy), “Con”)

When LifeTime is a child of the RequestSecurityToken element, it is abstracted
away since the responder’s decision and she may ignore the LifeTime in the request.

5.2.2 Entropy

The Entropy element allows a requester and a responder to specify entropy that is to
be used in creating a key.

e If BinarySecret is the child of Entropy then
o((Entropy)...(/ Entropy)) = K ¢((Entropy)...(/ Entropy), “Key”) = K
Where K = ¢((BinarySecret)...(/ BinarySecret)) is an abstracted secret in BinarySecret.

o If EncryptedKey is the child of Entropy then

o((Entropy)...(/ Entropy)) = ¢({EncryptedKey)...(/ EncryptedKey))
o((Entropy)...(/ Entropy), “Key”) = ¢((EncryptedKey)...(/ EncryptedKey), ENC')

Finally if ¢ get the Entropy element and a context name as a parameter then ¢ creates
a context that can be extracted later by related RSTRs using :
o({Entropy)...(/ Entropy), “Con”) =
¢((Entropy)...(/ Entropy)), Context(“Con”, ¢({Entropy)...(/ Entropy), “Key”))

Since RequestSecurityToken can be used for requesting any Security Token, when used in the
WS-SecureConversation context it should contain a TokenType element indicating that this is an SCT
request.

11



5.3 Analysing the protocol
We applied ¢ to the WSS protocol (see Appendix III of the full paper) and obtained:

MSG 1. A—B: RST, UMI1, anonymous, B, tsl,
{shal(ts1), shal(SecurityToken-b8... {K1}px(B)),

shal(RST), shal(UMI1), shal(anonymous), shal(B)}, shai(pass(A),Na+ts1)s

shal(password(A),Na,tsl), Na, ts1,{Ki}pg(m)

MSG 2. B—A: RSTR, UMI2, UMI1, anonymous, ts2,
{shal(RSTR), shal(UMI2), shal(UMI1), shal(anonymous),
(shal(ts2),shal(uuidl, ts2’, {Ka}k, ) }ox(py,uuidl, ts2’, {Kao}k,

MSG 3. A—B: UMI3, anonymous, B, ts3, (uuidl, ts2’), {shal(UMI3), shal(anonymous),

Shal(B)7 Shal(tS?)), shal (bOdyl)}p—shal(Kl,Kg)7{b0dy1}p—sha1(K1,K2)

MSG 4. B—A: UMI4, UMIS3, A, ts4, (uuidl, ts2’),{shal(UMI4), shal(UMI3), shal(anonymous),

shal(ts4),shal(body2)},-sha1 (K1, K2) A POAY2} pshal (K1, k)

After applying some Simplifying Transformations[17] for making it clearer we got the
following protocol:

MSG 1. A—B: UMII, {UMIL B, {Kl}PK(B))}p—sha,l(paSS(A),NA)a
shal(password(A),N4) ), Na, {Kl}PK(B)

MSG 2. B—A:  {UMIL, UMI2, {Ks}x, }g(p)uuidl, {Ka )}k,

MSG 3. A—B: {UMI3, B, bOdyl}p—shal(Kl,Kg)a{bOdyl}p—shal(Kl,Kg)

MSG 4. B—A: {UMI?), -Ul\/[147 bOdy2}p—sha1(K1,K2)7{b0dy2}p—sha1(K17K2)

We analysed this protocol using the Data Independence technique for modelling in-
finite runs of the protocol with the following Casper specifications:

Secret(A,bodyl, [B]) Secret(A,pass(A), [B])
Secret(B, body2, [A]) Agreement(A, B, [bodyl, K1])

These specify that agent A’s password and the body elements sent by both parties are
secret at the end of the protocol run. In addition, they specify that bodyl and the
client (A) entropy correctly authenticated to the server (B). We checked the data-
independent model of this protocol on FDR and it failed to find any attacks. Since ¢
is safe, by the properties of the data-independent models we have therefore proved that
this protocol is satisfies these specifications for arbitrarily many runs in an arbitrarily
large implementation.

However, when analysing the protocol with the following Casper authentication spec-
ification an attack was found.

Agreement(B, A, [body2, K3))

This specifies that if A thinks he has successfully completed a run of the protocol with
B, then B has been previously running the protocol apparently with A and B was the
one who sent Ky and body2. The following attack is found by FDR:

12



MSG la. A —Ig : UMIL, {UMIL B, {Kl}PK(B))}p—shal(pass(Alice),NA)7
shal(password(Alice),N4) ), Na, {Ki}pr(p)

MSG ].,8 I—B : UMIl, {UMI]., B, {Kl}PK(B))}p—shal(pass([),NA)7
shal(password(I),Na) ), Na, {Ki}px(B)

MSG 28. B —1 : {UMIL, UMI2, {Ka}k, } sk (p),uuidl {Ka} x,

MSG 2a. Ig — A : {UMIL, UMI2, {Ka}k, } sk (p),uuidl {Ka} x,

MSG 3a. A — Ig  : {UMI3, B, bodyl}, shai(ky,K2)1POAY 1} pshai (K1, Ks)

MSG 33. I— B  : {UMI3, B, bodyl}, shai(ky,K2)1POAY 1} pshat (K1, Ks)

MSG 43. B —1 : {UMI3, UMI4, body2}, sha1(k,,K2),1POAY2} p-shal (K1, Ko)

MSG 4a. IB — A {UMI3, UMI4, bOdy2}p—sha1(K1,K2)7{b0dy2}p—sha1(K1,K2)

At the end of the protocol run, A believes she has completed a run of the protocol
with B using data items body2 and Ky where clearly B wasn’t aware she was trying to
communicate with him. This attack is possible on the original protocol only if messages
3 and 4 are sent before the time stamps expire (¢s2',ts3,ts4.)

The protocol in question binds messages to agents by by signing the WS-Addressing
[1] elements. The problem is that the latter specification allows to identify endpoints as
“anonymous” instead of giving them meaningful URIs. Since this is how the client (A)
is identified by the WS-Addressing in this protocol, the second message is not bound
properly to her. This flaw can be fixed, by including the client’s identity in the signatures
of message 2.

Still, even if instead of “anonymous” the correct identity of the client is signed, when
analysing the WS-Trust of the protocol (First two messages) with the following Casper
authentication specification an attack was found by FDR.

Agreement(A, B,[Na, UMI1])

This specifies that if B thinks he has successfully completed a run of the WS-Trust part
of the protocol with A, then A has been previously running the protocol apparently
with B and A was the one who sent Ny and UMII.

An intruder can intercept MSG 1 of a valid run of the protocol between the service
and a honest agent. The intruder can then re-send the message large number of times to
the service before the time stamp expires, making the service allocate enormous number
of security contexts. Using this method the intruder accomplishes a denial-of-service
attack forcing the service to allocate all his resources and not being able to serve other
agents.

It should be pointed out that the WSE platform has a “detect replay” mechanism
which prevents two RST messages from the same client. We were able to exercise this
attack since this mechanism was set off as a default. We argue as follows that the
solution to this flaw should be a correct authentication of N4 and UMI1 rather than
mechanisms in the style of the detect replay mechanism.

1. Careless use of this protocol makes it prone to DOS attacks. An unexperienced
user might not be aware of the implications of the detect replay mechanism, leave
it off and make his implementation vulnerable.

2. In case of an implementation with two servers (B), if a client (A) sends MSG 1 to
one of the servers the other server should be informed and reject any attempt of
connection by the same client.
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3. The use of the detect replay mechanism suggests that every valid agent can have
only one session with the service. It may be the case that an implementor would
want his service to open several sessions with the same client. If authentication of
the RST was correct it would not be an issue.

4. The detect replay mechanism in the WSE framework only works for UsernameToken
and will be extended to Kerberos ticket in the next version. In addition the WSE
can be configured with a custom replay detection mechanisms. A correct protocol
would work for any type of authentication without the need of tailoring the detect
replay mechanism.

A close inspection reveals that the WS-SecureConversation part of the protocol (last
two messages) suffers from the same flaw. The WS-SecureConversation was designed
such that infinite messages can be exchanged after the security context establishment.
In this case the same type of attack can be exercised and the detect replay mechanism
cannot, prevent it.

One possible solution for fixing the flaw without the detect replay mechanism is to
bind the RST message to the client using negotiation in the following way:

MSG 1. A—B: Session Request

MSG 2. B—A: UMIO

MSG 3. A—B: {UMIO7 UMIL, B, {Kl}PK(B))}p—shal(pass(A),NA)7
shal(password(A),Na), Na, {Ki}pg(p)

MSG 4. B—A: {UMIl, UMIQ, A, {KZ}Kl }SK(B),uuidl,{Kg}Kl

MSG 5. A—B: {UMIQ, UMI3, B7 bOdyl}p—shal(Kl,Kg)7{b0dy1}p—sha1(K1,K2)

MSG 6. B—A: {UMI?), UMI4, bOdy2}p—sha1(K1,K2)7{b0dy2}p—sha1(K1,K2)

Alternatively a third message can be added in the original protocol, in which the client
(A) signs UMI2.

5.4 Reflections

It looks like it is impossible to authenticate correctly the RST when trying to stick to
the two step protocol run as is suggested in the WS-Trust specification. This may be
the reason that the WSE team developed the detect replay mechanism, believing that
it is more important to stick to the specification than having the protocol fixed in a
conventional way.

The latter example suggests that WS-Trust should be mended or at least a cautionary
note ought to be added indicating the possible vulnerability of the two step Security
Context establishment.

A close look at the former attack indicates that perhaps it is due to incorrect im-
plementation rather than mistaken design. The designers understood the importance
of binding and therefore the WS-Addressing fields were signed. Ever since the flawed
implementation of APM [26] of a protocol proven correct by Paulson [24], one of the
goals of the formal verification community was to make it possible to analyse the im-
plementation rather than the design. This work was the first step of achieving it in the
Web Services world.
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6 Related Work

Gordon and Pucella [16] proposed a security abstraction to RPC services in which
requests and responses are encoded as SOAP messages. This abstraction is modelled
using an object calculus which its semantics is defined by pi-calculus. This approach is
currently limited to checking authentication properties.

Bhargavan, Fournet, Gordon and Pucella developed a tool (TulaFale [18]) based on
the Blanchet’s ProVerif [5]. The tool compiles a description of SOAP-based security
protocol and its properties into the pi-calculus and then runs ProVerif to analyse it.
At present it relies on a hand-coded description of a protocol: there is no front end
comparable to our function ¢ and its automation. They choose to verify web service
protocols at what it effectively a lower level, with their models being implemented at a
level of abstraction something like our Envelope type.

In [6] TulaFale specification language was extended for modelling WS-Trust and
WS-SecureConversation based protocols. The authors point out measures to be taken
for correctly secure such protocols, some are similar to the flaws found in this paper
(i.e. binding properly the messages to the sender and detect replay messages.) Using
our technique however, it was possible to find the subtle flaw of binding the message
using the WS-Addressing elements and automatically detect the “replay” attack.

Damiani et al [13] propose an access control model for flexible access to SOAP based
services, relying on a secure channel such as TLS/SSL.

7 Conclusion

That part of SOAP Message Security which lies outside of any cryptographic operators
may be constructed at will by any user, trustworthy or malicious. There is nothing
secret about it. So its purpose must be setting the parts of messages which convey
actual security in context, namely allowing the receiver to see details of what the bit
strings constituting signatures, encryptions, hashes etc are meant to be.

Since Kerckhoff’s Known Design Principle is adopted by most if not all crypto-
analysts, the extra information about the structure of the messages given by the XML-
tagging is assumed anyway in abstract models used for the analysis of security protocols.
In other words the tagging provides an implementation of what this style of work as-
sumes, usually implicitly. What we have provided is an automated way of moving from
the specific XML tagging structure to familiar abstract protocols in a way such that

attacks can be translated to and forth.

We have already shown in [14] that there are some interesting ways in which SOAP
can assist security by providing degree of protection against type flaw attacks. In future
work we hope to provide a more precise characterisation of this.
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