
The pursuit of buffer tolerance

A.W. Roscoe∗

Oxford University Computing Laboratory

May 5, 2005

Abstract

A system is buffer tolerant when buffers (namely, queues that may
be of arbitrary or varying length) may be introduced onto some or
all of its channels without introducing errors. We give formal defini-
tions of several types of buffer tolerance within the context of CSP
and its models, prove a number of results about it and discuss when
these might be useful. Most of our results apply to tree networks and
to ones where the processes involved have a property such as being
functional or confluent. We demonstrate the close connection of these
last two properties by showing that they can both be characterised as
appropriate sorts of buffer tolerance.

1 Introduction

The term buffer tolerance refers to systems into which buffers may be intro-
duced onto their channels without introducing any extra errors. It is impor-
tant in verifying real concurrent systems because it is likely to be much more
tractable to verify a system model without buffers, mainly because of the
reduction in state-space that this brings. This is certainly the case on with
the CSP refinement checker FDR [?].

The term buffer here is nearly synonymous with queue, but there is no
implication that it is unbounded. A buffer may be unbounded, but equally it

∗
bill.roscoe@comlab.ox.ac.uk

1

may refuse further input whenever it is nonempty. A nonempty buffer never
refuses output. Buffers have been studied extensively in the CSP literature,
for example [18].

Buffer tolerance is one of a number of approaches which can be used
to bring systems with buffered (and perhaps fully asynchronous) channels
within the realm of model checkers. Others typically abstract the buffers
on channels in such a way that they become finite state, perhaps through
being modelled as regular languages and related forms of BDDs [1, 2, 5].
Buffer tolerance is just one aspect of the Parameterised Verification Problem.
Where possible the prospect of eliminating buffers entirely from a system is
attractive since it has the advantages of simplicity: both conceptual and in
terms of expected state-space when we come to model-check.

Such techniques are important because buffered and asynchronous chan-
nels are found in many applications, frequently making them impossible to
model-check directly.

Buffer tolerance is a complex subject because of the number of ways it
can arise and because defining it is not nearly so clear cut as, for example,
in deadlock freedom. The author has visited this topic twice before [6, 18]
but many questions remained unanswered.

With the advantage of the specification tools and insight developed in
[20, 19] it has been possible to derive some significantly stronger results than
hitherto. This paper is in some ways modelled on the author’s similarly-
named paper on deadlock from about 20 years ago [22]. It is in two parts.
The first one sets out the basics and – like the first part of [22] – looks at
networks with no cyclic dependencies (though we do give some general re-
sults that go beyond these). The second looks mainly at a particular class of
processes: ones like buffers where the stream(s) on the output channels de-
pend monotonically on the input stream(s). We call these functional. These
are related to data flow systems: they have strong buffer tolerance properties
and we have some strong results about characterising and using them.

The rest of this paper is organised as follows: in the next section we
look at the problem of specifying buffer tolerance and we derive some basic
results. In doing so we experiment with a number of conditions on processes
such as variations on the concept of receptiveness which regulate when they
can refuse further input. We end up with a number of variants on buffer
tolerance such as weak and strong. In the following section we prove that all
chains of processes in which data flows in one direction have a form of buffer

2

tolerance, and extend this to classes of tree networks as well at looking at
more general trees. In the final section of Part 1 we examine local criteria for
buffer tolerance and seek finitary methods of discharging the preconditions
of our proof rules.

In Part 2 we examine the sort of specification which we can reasonably
hope to prove of weakly buffer tolerant systems. This leads to the ideas of
data-flow computation, and derive the natural class of trace specifications for
these processes. In the following section we define functional agents as a sub-
class of these and show how the latter can be extended to failures/divergences
specifications. We then show how networks built up from functional agents
are always buffer tolerant with respect to traces, and examine the extent to
which this idea can be extended to failures. In the next section, we show
how the concept of confluence [15] can be used to generalise the idea of re-
ceptiveness and how it gives rise to interesting buffer tolerance results in its
own right. Finally, we derive a number of characterisations of confluence and
of functional agents, some of which are both practical (being finitary) and
surprising.

A by-product of this work is a new technique for deciding whether or not
a given finite-state process has any given functional behaviour, such as being
a standard CSP buffer.

There is an appendix summarising CSP and other notation.

This paper is based on the process algebra CSP and its models. Many of
our ideas and concepts would transfer (in general terms, at least) to other
settings. The author suspects, however, that it might be difficult to trans-
fer many of our failures/divergences model results to more discriminating
equivalences such as bisimulation.

Part 1: The Basics

2 Specifying buffer tolerance

Buffer tolerance only makes sense of channels that have a definite direction,
rather than having components which convey information in both directions.
The following assumptions apply only to channels that are candidates for
buffer tolerance and global input and output channels of the same sort. In

3

other words we imagine that there may be other synchronisations in our
network. (Most of the results, and all the examples, in this paper relate to
cases where all channels are potentially buffered, however.)

While buffer tolerance could make sense for broadcast communication we
will not consider that or any other communication involving more than two
partners. It is usually convenient to assume that the communications on the
relevant channel are hidden as in the CSP chaining or piping operator >>.

Except when explicitly restricting analysis to the traces model of CSP, we
will assume that all component processes we consider are divergence free. We
will usually assume properties of these processes that will exclude divergence
in the complete network.

Let the sets of input and output channels of process P be denoted Inchans(P)
and Outchans(P) respectively1.

We also make two assumptions which reinforce the idea that channels
have direction.

Definition 2.1 We say a process P has the no-selective-input property on
input channel c if the following hold:

(i) if, after some trace s , P has the refusal X ∪{c.a}, then (s ,X ∪{| c |})
is in failures(P).

(ii) if s 〈̂c.a〉 is a trace of P , then so is s 〈̂c.b〉 for every member b of the
type of c.

These correspond to the idea that when P offers any communication on c
then it offers the environment a complete choice.

Definition 2.2 We say P is output decisive if, whenever (s ,X) ∈ failures(P)
then there is Y ⊇ X such that (s ,Y) ∈ failures(P) and, for every output
channel c, {| c |} \ Y contains at most one element. This is similar to, but
a little stronger than, the statement that a process can make an output on
c then it can offer no choice of values for the input process to select from.

We say it is strongly output decisive if, in addition, whenever s 〈̂c.x 〉 ∈
traces(P) for c.x an output action, then there is X such that (s ,X) ∈
failures(P) such that {| c |} ⊆ X ∪ {c.x}.

1As with the process alphabets of [7], it is dangerous to attempt to calculate these
from the semantics of a process. Therefore it is assumed that these are defined with the
process.

4

Any process which has no-selective-input buffers connected to its input
and output channels is (in toto) strongly output decisive and has no-selective-
input on all its input channels. We will assume that these properties hold
for each sequential component process and channel we consider.

Neither (strong) output decisiveness nor no-selective-input is a simple
behavioural property. It is, however, relatively straightforward to formulate
refinement checks for them in the style of [19, 20].2 No-selective-input and
output decisiveness are both compositional under parallel composition that
connects processes by whole channels and hides the resulting internal actions.
Strong output decisiveness is not, as witnessed by the following example.

2No-selective-input can be decided by FDR refinement checks as follows. Here we show
how to do it for all input channels: this can easily be adapted for one or several. Let OPC

be the nondeterministic process with alphabet I – the events from the input channels of
P – which can perform any trace of these events and which can refuse any set which has
no whole channel as a subset. P satisfies part (i) of the condition if and only if OPC ‖

I

P

only refuses a whole input channel when P does. This is equivalent to the statement that
F (P) ⊑ F (OPC ‖

I

P) where

F (Q) = ((Q [[i , e.c(i)/i , i | i ∈ I]]) ‖
I

ChaosI) ‖
Σ

OneE

Here, for each input event i , c(i) is its channel name, e is chosen so that each e.c is an
event not in the alphabet of P , and OneE is a process which forces the whole construct
to STOP after the first action labelled e, but before that permits any action.

For part (ii) of the condition, we suppose that there is a shadow copy c′ of each input
channel. Let One ′ be the process similar to OneE that stops after its first c′ event for any
c, and let

G(P) = P [[c, c′
/c, c]] ‖

Σ

One ′

be the process that can at any time perform c′.a where P performs c.a but which then
has to stop. Since we want to make sure that P can perform every input on each input
channel c when it performs one, we must test

G(P) ⊑T G(P)[[R]]

where R is the relation {(c.x , c.y) | c ∈ Inchans(P), x , y ∈ T (c)}. This tests precisely
what we need, and is equivalent to part (ii).

The requirements of (strong) output decisiveness can be captured using similar con-
structions.

5

Example 2.1 Consider the process

P = out!empty→ STOP 2 in?x → out!full→ STOP

P is clearly strongly output decisive, as is COPY . COPY >>P is not
strongly output decisive because it has the trace 〈in.x , out.empty〉 but no
suitable refusal. This is because after COPY has made an input but before
P has received it, P can output empty, but cannot come into a stable state
where it can do so.

Thus strong output decisiveness is not generally true of processes which
can make an output in an unstable state which is different from the values
that can be output in following stable states.

Buffers have been widely studied in CSP since its invention, since they are
practically important in their own right, provide a model on which to build
richer specifications, and have an interesting theory (see [18], for example).
The standard concept of a buffer in CSP is a process with one input channel
and one output channel (left and right, say) both of which have the same
type. It satisfies the following specification:

(i) All a buffer does is input on left and output on right . It correctly copies
all its inputs to its output channel, without loss or reordering.

(ii) Whenever it is empty (i.e., it has output everything it has input) then
it must accept any input.

(iii) Whenever it is non-empty, then it cannot refuse to output.

This can easily be translated into a specification in terms of failures and
divergences. Since a diverging process is not responding to its environment;
whether an input or output is expected of it, it is clear that we cannot
allow a buffer to diverge. We therefore stipulate that, for any buffer B ,
divergences(B) = {}. The rest of the specification is then

(i) s ∈ traces(B)⇒ s ∈ (left .T ∪ right .T)∗ ∧ s ↓ right ≤ s ↓ left

(ii) (s ,X) ∈ failures(B) ∧ s ↓ right = s ↓ left ⇒ X ∩ left .T = {}

(iii) (s ,X) ∈ failures(B) ∧ s ↓ right < s ↓ left ⇒ right .T 6⊆ X

6

These conditions simply translate the corresponding English clauses into
mathematics.

In buffer tolerance we are interested in what happens if processes such as
these are placed on some or all of the channels of a system. In fact we will
want to be slightly more general than this and have channels where there may
sometimes be buffering and sometimes not. By “arbitrary buffering” below
we will mean that the given channel is replaced by this type of behaviour.
We will give concrete implementations of it shortly.

Buffer tolerance is a property of a set of channels – maybe a single channel
or all internal channels – in the context of a network. More than that, it can
only really be judged relative to a given specification one wants to prove of
that network. To see the latter, observe that the channel in COPY >>COPY
(COPY being the standard CSP one-place buffer process) is buffer tolerant
(on its only channel) relative to the specification of being a buffer, but not
relative to it being a two-place buffer! Of course a channel may be tolerant
of some buffers (perhaps those with some bound on capacity) but not others.

This just illustrates that while the introduction of buffering may not
change the basic intuitive behaviour of a system, it is quite likely to alter
the phasing of externally visible events. Of course it is possible to avoid any
external change of this sort by using suitable flow-control such as acknowl-
edgement signals in a network (as used, for example, in the alternating bit
protocol), but we do not want to be restricted to that sort of network.

We therefore define a number of variants on buffer tolerance. Before
doing so we introduce some notation: if N is any network then buff(N)
means N with arbitrary buffering added to all external channels of N (i.e.
Inchans(N)∪Outchans(N)). inbuff(N) means N with arbitrary buffering ap-
plied to the members of Inchans(P) and outbuff(N) means N with arbitrary
buffering applied to members of Outchans(N). Assume we are examining
a set C of channels within a network process N for buffer tolerance. N ⋄C

will mean N with arbitrary buffering added to all members of C , if C is all
internal channels we write N ⋄, and if it is all internal and external channels
we write N ⋄⋄ (= buff(N ⋄)). See below for formal definitions, and more no-
tation, on the topic of “arbitrary buffering”. In the following we assume all
internal communication in N is hidden, and we are investigating a set C of
N ’s internal (and sometimes external) channels.

Definition 2.3 The following definitions can each apply to any one of the

7

standard CSP models. If, in any instance, no specific model is quoted, it will
default to the failures/divergences one – equivalent to the stable failures one
for divergence-free systems.

• The network is strongly buffer tolerant with respect to C if the intro-
duction of an arbitrary buffer does not change the overall semantics of
the system. Namely, N = N ⋄C .

• It is leftwards buffer tolerant if N ⋄C refines inbuff(N), and rightwards
buffer tolerant if N ⋄C refines outbuff(N).

• It is weakly buffer tolerant if N ⋄C refines buff(N).

• It is strongly buffer tolerant relative to a specification S if adding an
arbitrary buffer onto C cannot make N fail to satisfy S , namely N ⊒
S ⇒ N ⋄C ⊒ S .

• It is weakly buffer tolerant relative to a specification S if N ⊒ S ⇒
N ⋄C ⊒ buff(S). It is leftward or rightward buffer tolerant relative
to S if, after adding the buffers, it refines respectively inbuff(S) or
outbuff(S).

• It is locally buffer tolerant if, for each P in N , the set of states P can
reach in N ⋄C is the same that it can reach in N .

Notice that makes sense to say that a single process (as opposed to a
network) is leftward or rightward buffer tolerant. These respectively say
that inbuff(P) ⊑ outbuff(()P) or outbuff(P) ⊑ inbuff(()P), or, equivalently,
inbuff(P) = buff(P) or outbuff(P) = buff(P).

Note that N is leftward (rightward, weakly) buffer tolerant with respect
to all channels if and only if N ⋄⋄ is equivalent to inbuff(N) (outbuff(N),
buff(P)).

Local buffer tolerance is not formally weaker or stronger than the others,
since it is actually judged in a very different way (in operational rather than
abstract semantics). Its name comes from the fact that any failure is judged
in terms of a local observation of one of the constituent processes in N
rather than in terms of overall network behaviour. A network that fails it is
unlikely to have useful buffer tolerance properties, and one that does will do
so because its components’ behaviours outside the range exercised in N are

8

like those behaviours which are. There is then no hope of simulating buffered
network behaviour by unbuffered without relying on semantic properties of
the component processes. As we shall see later (Section 4), it is generally
straightforward to prove in networks with no cycles amongst the channels,
so we will not discuss it much till then.

The left, right and weak definitions, and their “relative” counterparts,
are naturally linked by the following lemma. The corresponding result for
the strong definitions is obvious.

Lemma 2.1 If N is weakly buffer tolerant (or to left or right) in respect of
channels C , then it is weakly buffer tolerant for C with respect to every
specification S (or to left or right if appropriate).

proof Suppose N ⊒ S . Then buff(N) ⊒ buff(S) by monotonicity. (We
are implicitly assuming that the direction of every channel in N is the same
as it has in S .) Hence, by weak buffer tolerance and transitivity, we have
N ⋄C ⊒ buff(S). This is what we required for the symmetric case. The left
and right cases are very similar.

We now give explicit CSP definitions for buff(P) and related constructs.
These are rather subtle: simply linking P to an appropriately named and
oriented copy of the most nondeterministic (empty) buffer BUFF〈〉 does
not achieve what we want, since it adds a buffer of length at least one
on each channel.3 Nor (even for a single channel) does the construction
P ⊓ (P >>BUFF〈〉), since once some buffering is observed on a trace, at
least a one-place buffer is always available: this construct on either chan-
nel of COPY would guarantee that as soon as two items have been in it,
inputting a second item is never refused.

The answer (like so many other difficult representation problems in CSP4)
can be found in double renaming: mapping some events to two alternatives
each. Suppose we want to add the most nondeterministic zero-or-more place
buffer to c ∈ OutChans(P). Let c1 and c2 be two new channel names with
the same type as c. Define a new process ZBs for each finite sequence s from

3In fact the corresponding construction in the traces model, namely adding an un-
bounded buffer onto each channel does work since bounds the only bounds can be detected
by the presence of a behaviour is via refusals.

4We have already used it when giving a refinement representation of no-selective-input.

9

the type of c as follows:

ZB〈〉 = (c1?x → ZB〈〉)
⊓ (c2?x → ZB〈x〉)

ZBs 〈̂y〉 = (c!y → ZBs)
2 (STOP ⊓ c2?x → ZB〈x 〉̂ s 〈̂y〉)

(ZB stands for zero buffer.) ZBs behaves exactly like BUFFs (the most
nondeterministic buffer initially containing s) from c2 to c except that when
empty it can also communicate on c1. If c is an output channel of P , this
enables us to create the process

(((P [[c1, c2/c, c]]) ‖
{|c1,c2|}

ZB〈〉) \ {| c2 |})[[c/c1]]

in which, in addition to the possibility of being buffered, communications on
c can, via the c1 option in ZB〈〉, be transmitted directly to the environment.
A symmetric construction works for input channels. We will denote the
addition of arbitrary buffering to an output channel by P⋄c>, and ⋄c> P
for an input channel. Where the channel name is obvious we will just write
P⋄> or ⋄> P as appropriate.

Applying this construction (appropriately oriented) to each of N ’s chan-
nels gives us buff(N), and to input or output channels gives us inbuff(P) and
outbuff(P).

To insert arbitrary buffering on an internal channel c of a network, simply
apply the above construction (on c) to the process outputting on c before
joining it to the inputter. The link parallel operator (see [18], for example)
between two processes can be extended to incorporate arbitrary buffering on
certain channels by replacing the a ↔ b of an unbuffered link by a ⋄→ b for
a rightwards buffer or a←⋄b for a leftwards one. So

P [a ↔ a, outp ⋄→ inq, inp←⋄outq]Q

links P and Q by three channels: one synchronised, and one buffered for
each direction.

Where the single channel connecting P is implicit as in P >>Q , we will
denote the addition of arbitrary buffering to it by P >⋄>Q .

10

It is important to realise that, because ZB〈〉 has the option always to
force synchronisation between its two sides, that all of the above construc-
tions produce a result which is refined by the corresponding system without
buffering. This property was used in the proof of Lemma 2.1. For example

N ⊒ inbuff(N) ⊒ buff(N)

(where inbuff(N) can be replaced by outbuff(N)).

ZBs is, of course an infinite-state process which means it cannot be used
directly on FDR. In Chapter 5 of [18] both upper and lower (weak) finite-state
approximations to the most nondeterministic ordinary buffer are quoted:
these can easily be adapted to ZB , as can the methods described there for
using them.

It is sometimes useful to have analogous notation for the addition of an
unbounded deterministic buffer on one or more channels. Replacing ‘⋄’ by
‘∞’ in operators such as ∞> P will have the obvious definitions, and the
corresponding version for the operators applying to all, input, and all output
channels will be buff∞(P), inbuff∞(P) and outbuff∞(P).

It is worth noting that a network can have any one of our flavours of
buffer tolerance with respect to two channels c and d individually without
being buffer tolerant with respect to {c, d}. For example c and d might be
on alternative routes for data to pass from P to Q . If buffering is placed
on one of them, it can still be possible for the delay in the data reaching Q
to be bounded, but not if infinite buffering is placed on them both. If there
were a further channel between P and Q , this might mean that an entirely
different state of one or other could be reached with two buffers that could
not be reached with either: that channel might check in some way that the
delay over the other two was bounded. In other words it might not be locally
buffer tolerant.

Before proceeding further about buffer tolerance, we will state some def-
initions which will be useful to us. In the following, we assume that the
alphabet of the process P is partitioned into inputs I and outputs O .

Definition 2.4 We say P is accepting if and only if it is deadlock free and
furthermore, if (s ,X) ∈ failures(P) and O ⊆ X , then I ∩ X = {}.

It is receptive if it never refuses any input, namely (s ,X) ∈ failures(P)⇒
X ∩ I = {}.

11

“Accepting” simply says that the process either has to offer an output or
accept any input. This is obviously related to many familiar specifications
such as that of a buffer. “Receptive” is a condition familiar in the world of
dataflow computation, e.g. [8].

Note that a process with only one input channel and which has the no-
selective-input-property is deadlock free if any only if it is accepting.

“Receptive” says that the process has an infinite appetite for inputs which
is unaffected by what does or doesn’t happen on its output channels. The
only receptive buffer is the infinite deterministic one B∞

〈〉 .

Definition 2.5 Suppose the process P cannot perform an infinite number
of inputs without performing an output (namely, P \ {| in |} is divergence
free); call this is finite input property, or FIP.

The finite output property (FOP) is the dual of this: P cannot perform
an infinite number of outputs without an input, equivalent to P \ {| out |}
being divergence free.

Note that the finite input property and being receptive are mutually incon-
sistent.

The following lemma (where (c) and (d) are results that have been known
in the CSP community for many years) shows how two of these properties
are inherited by acyclic networks from their components.

Lemma 2.2 Suppose N is a network in which all internal communications
are along directed, hidden, channels, and where there is no cycle in the
directed graph of channels. Then

(a) If all processes in P are accepting, and N is divergence free, then N is
accepting.

(b) If all processes in P are accepting, N is divergence free, and furthermore
every path from an input channel of N to an output channel contains
a receptive node, then N is receptive.

(c) If all processes in P have the finite output property, then N is diver-
gence free and has the finite output property.

(d) If all processes in P have the finite input property, then N is divergence
free and has the finite input property.

12

proof We first prove (a), by induction on the size of N . The result is
trivially true when this is one, so suppose it is true for all smaller networks.
Since the graph of channels is acyclic we may choose a process P all of whose
inputs are external; let the remainder of the network be N ′. By induction
N ′ is a accepting process. If N were not there would be a stable state it
could reach where all external outputs are refused, and some input is refused.
(Stability here comes from our assumption of divergence freedom.) Since
none of N ′’s outputs are connected to P we can guarantee that they are all
refused by N ′. It follows that N ′ is, in our state, accepting all inputs. Since
the network is stable P must be refusing all outputs (both those which are
external to N and those connected to N ′) and therefore refusing no input.
Since every input of N is one of P or N ′ it follows that no input of N is
refused, contradicting our assumption. The result follows.

For (b), suppose that N refuses an input action a0. Then the node which
is refusing this must be able to output an action a1 (as it is accepting). As the
state is stable (as any refusing state is), the inputter of a1 must be refusing
that, and so is able to output some a2, and so on. Since N is acyclic, this
sequence would eventually reach an output of N , but cannot do so because
the path eventually contains a receptive node. Since the latter cannot refuse
to input the relevant ai , we conclude that N is receptive.

(c) and (d) have symmetric proofs: we will concentrate on (c). Again
we work by induction on the size of N and again the base case is trivial.
Decomposing N into N ′∪{P} as before, we see that any behaviour of N with
a finite number of inputs can only include a finite number of outputs from P
(as all of P ’s inputs are external and P has the finite output property). Since
by induction N ′ has the property also, and all its inputs are either external or
from the finite number of outputs P produces, N ′ can only produce finitely
many outputs. As all outputs of N are outputs of P or N ′ it follows that N
has the finite output property.

That N is divergence free follows easily from the fact that any divergence
introduced by combining P and N ′ would require an infinite unbroken trace
of hidden internal actions – all outputs of P – which is impossible because
P has the finite output property.

Lemma 2.3 (a) If P is accepting, or has the finite output property, then
⋄c> P and P⋄d> have the same property for all appropriately oriented
channels.

13

(b) If P is divergence free then so is ⋄c> P ; if P has FOP, then P⋄d> is
divergence free.

proof For accepting in part (a), observe that neither ⋄c> P nor P⋄d >
can stably refuse an output when P does not; and neither can stably refuse
any input when P does not. Since P cannot do both of these two things
simultaneously, neither can either buffered process.

The result for the finite output property follows easily from the fact that
the buffering also has this property.

Note that the result is not true for the finite input property since the ar-
bitrary buffer can absorb an infinite sequence of inputs without outputting.
To make it true for that property we would need to use buffering that never
allows an infinite sequence of inputs without outputs. This would be a strict
refinement of the buffering constructions we are using and is only repre-
sentable in models that handle unbounded nondeterminism.

Part (b) is straightforward and analogous to earlier results.

The following lemma is a corollary to the previous two.

Lemma 2.4 If each process in a network N is accepting or has the finite
output property, then so does the process N ⋄⋄ in which an arbitrary selection
of the channels have had buffering added.

In receptive processes, arbitrary buffering of an input channel is equivalent
to putting an infinite buffer on that channel.

Lemma 2.5 If c is an input channel of the receptive process P then ⋄c> P =
∞c> P for c any input channel of the strongly accepting process P .

proof It is obvious that

⋄c> P ⊑ ∞c> P = (B∞
〈〉 [out↔ c]P)[[c/in]]

since the buffering on the left-hand side may choose never to refuse any input.

It is also easy to show that the traces of the two sides are equivalent.
Where, on the left-hand side, the input buffering chooses to synchronise an
input between the environment and P when its queue is empty, the right-
hand side can simulate this via the (empty) buffer inputting and immediately
outputting before any other global event has occurred.

14

As P never refuses inputs, ⋄c> P could never be stable when its input
buffer is nonempty. For it to be refusing inputs the buffer must be empty –
and P must be refusing inputs with the buffer deciding on synchronisation.
But P never refuses inputs, so we can conclude that ⋄c> P is receptive, as
indeed is ∞c> P .

It follows that the only way in which the two processes could differ would
be for ⋄c> P to have a refusal (s ,X) with X ⊆ O (necessarily with empty
input buffer) that the right-hand process does not. This cannot happen since
the difference in the input buffers neither has any direct effect on the output
refusals; nor can it affect whether the combination is stable.

We conclude this section with an important structural result about buffer
tolerance. It is directly analogous to Lemma 2.2.

Theorem 2.6 Suppose N is a network in which there are no cycles in the
directed graph of channels.

(a) If each individual process of N is leftward buffer tolerant, or each is
rightward buffer tolerant. Then N has the same property (with respect
to all channels).

(b) Suppose the subnetwork M ⊆ N is convex, meaning that any path from
one member of M to another using the directed channels lies entirely
in M , and that every path from an input to an output through N
contains a node in M . Then N is partitioned into those nodes before
M , M itself, and those after M . Suppose also that each “before” node
is leftward buffer tolerant, and that each “after” one is rightward buffer
tolerant. Then N is weakly buffer tolerant with respect to all channels
other than the internal channels of M .

proof For part (a) we prove the leftward result. The other is symmetric.

We can build N up a process at a time in such a way that if there is
a channel from P to Q then Q is added before P . Claim that each of the
resulting partial networks Ni are leftward buffer tolerant. It is plainly true
for the first such network, which consists of only one leftward buffer tolerant
process. So suppose it is true of Ni . Then, by induction, N ⋄⋄

i+1 is equivalent to

the network N †
i+1 in which there is arbitrary buffering on all input channels

of Ni and all channels of the added process P (noting that the channels from
P to Ni fall into both these categories). The associative properties of parallel

15

mean that this is equivalent to the parallel composition of buff(P) and Ni

with buffering added just to Inchans(Ni+1)∪Inchans(Ni). The leftward buffer
tolerance of P then gives us that this is equivalent to inbuff(Ni+1) as required.

Therefore inbuff(N) = N ⋄⋄, giving us the result we wanted.

Part (b) has a very similar proof, where nodes before M are added as
above, and ones after it are added so that if there is a channel from P to Q
then P gets in first.

This is evidently a rather fundamental theorem where it can be applied.
Most of the rest of this paper is devoted to establishing just when this is the
case, and finding alternative arguments when it is not.

3 The buffer tolerance of chains and trees

As shown in [22, 18] and elsewhere, in deciding deadlock freedom it is crucial
to know whether or not the target network is a tree, since it is a great deal
easier to prove the property for networks with no cycles in their (undirected)
communication graphs. In this section we will see that the same is true of
buffer tolerance.

Chains

In Chapter 5 of [18], the author showed that any network of the form P >>Q
(and therefore an arbitrary-length chain of processes) is buffer tolerant rel-
ative to the specification of being a buffer, under the assumption we are
making of no selective input. That is the result encapsulated in “Buffer Law
6”: if P and Q are processes with one output and one input channel each,
and satisfy the no-selective-input assumption we make in the present paper,
then

P >>Q is a buffer⇒ P >⋄>Q is a buffer

In this section we will examine the extent to which this property can be
extended to more general specifications. It would be nice if the following
question had the answer “yes”.

Question 3.1 Suppose C = P1 >>P2 >> . . . >>Pn where each Pi has pre-
cisely the two channels {in, out} and each Pi is deadlock-free and has the

16

finite output property. Then is C weakly buffer tolerant in respect of all its
channels?

Unfortunately the general answer to this question is “no”, as demon-
strated by the following example.

Example 3.1 Let P be the deterministic buffer which can reject an input
only when both the following two conditions are true.

• It is non-empty, and

• it has output at least two items.

And let Q be the deterministic buffer which behaves like COPY for one
cycle and then becomes the infinite buffer B∞

〈〉 . Namely the only point at
which it can refuse input is when it has one item in and has never output.

Consider P >⋄>Q . It can input three items (with no output), then refuse
to input. For P might have output two of these items to the internal buffer,
which in turn has output one to Q . All three processes are then capable of
refusing input. P >⋄>Q therefore has the failure (〈in.a, in.a, in.a〉, {| in |})
for any member a of the type being transmitted.

Now consider ⋄> P >>Q⋄>. It can, in fact, never refuse any input since
to do so P would have had to have output two things to Q , which means that
Q does not refuse to input. Therefore in any stable state beyond this point
P would have to be refusing to output, which implies that it is not refusing
to input. Since P >>Q is the infinite deterministic buffer it follows that ⋄>
P >>Q⋄> is also, and so does not have the failure (〈in.a, in.a, in.a〉, {| in |}).

Theorem 2.6 (b) means that we can conclude P is not leftward buffer
tolerant, and that Q is not rightward buffer tolerant.

However P >⋄>Q is indeed a buffer, as implied by Buffer Law 6 as quoted
above.

What we will do here is to concentrate on this type of chain with a single
channel in the direction of increasing indices from Pi to Pi+1 where the pro-
cesses have the finite output property and are deadlock-free (or, equivalently,
because of the single input channel and no-selective-input, accepting). The
following results will essentially show that examples like the above where the
buffered chain can refuse to input when buff(C) cannot are the only ways in
which weak buffer tolerance can fail.

17

Note that, by our earlier results, any chain made from deadlock-free and
FOP processes itself has those properties, which gives us a reasonably strong
liveness property in itself. The following result means that there is nothing
to do in the traces model, though P and Q of the above example show that
we cannot extend it to the stable failures or failures divergences model.

Theorem 3.2 (i) If P is any process with a single output and a single
input channel, then P is leftward buffer tolerant in the traces model.

(ii) If P is any deadlock-free, FOP process with a single input channel and a
single output channel, then P is rightward buffer tolerant in the traces
model.

(iii) Any chain of processes, each with a single input and a single output
channel, is leftward buffer tolerant, and is rightward buffer tolerant if
all the component processes are deadlock-free and FOP.

proof Note that (iii) follows directly from (i), (ii), Theorem 2.6 and Lemma
2.2, so all we have to do is to prove (i) and (ii).

For (i), what we have to prove is that P⋄> ⊒T ⋄> P . In other words
traces(P⋄>) ⊆ traces(⋄> P). To demonstrate this we show that ⋄> P can
simulate P⋄>. Suppose t is any trace of P⋄>: we can look at how this
came about by knowing there is a trace s of P⋄> without hiding the outputs
from P to the output buffer which explains t . Because we are only operating
in the traces model we can assume that s contains no zero-buffering – all
outputs from P go into the buffer strictly before being transmitted to the
outside world.

What we will do is show how to model each action of s as P⋄> follows
its trajectory (sequence of actions and operational states) by an action of
⋄> P . We do this in such a way that PS (the simulating P) follows the same
trajectory as PO (the original P from P⋄>) but and is always in the same
state or behind PO in the trajectory: specifically it is either in its initial state
or in the state where it has just performed the most recent overall output
which has appeared in t . The input buffer of ⋄> PS contains all the inputs
PO did between making the most recent output (if any, otherwise its initial
state) which has so far appeared as an overall output in t , and the present.
This description of how the simulation and original states tie together is the
coupling invariant.

18

(a) An input action (by PO) is mirrored by an input action by the buffer
in ⋄> PS .

(b) An output action by PO to its buffer does not require any fresh action
in the simulation.

(c) An output action by the buffer in PO⋄> means that PS has to advance
to the state where it can perform this action, and then perform it. It
does this by consuming (from its input buffer – hidden actions) all the
inputs PO did between its previous output (or initial state) and the
current output.

Each of these clearly preserves the coupling invariant, and the existence of
this lazy simulation proves (i).

For (ii), we have to prove the opposite containment. The condition that
P is deadlock-free and has FOP is necessary, as is demonstrated by processes
like STOP and µ p.out→ p. Neither of these can input, but obviously ⋄> P
can always choose to input.

Again suppose we are trying to simulate the trace t of ⋄> P which has
been expanded to s by un-hiding.

We set up an eager simulation of ⋄> P by P⋄> whose coupling invariant
is as follows: (i) the trajectory of PS is always a (not necessarily strict)
extension of that of PO such that PS has already input all those values input
by the input buffer in the original; (ii) up to the point where that is finished,
PS ’s trajectory follows the trajectory PO performed over the whole of s ;
(iii) the output buffer of the simulation contains all those values which PO

produced after the most recent output from P⋄> in the original and the
present (in consequence of its additional inputs over and above what PO has
seen); (iv) PO = PS (they have reached the same point in their trajectory)
if and only both their buffers are empty.

This simulation works as follows. Once again we can – and do – assume
that all inputs of the original system are actually held by the buffer at some
point.

(a) PS is initially in the initial state of P . Since this is the same as the
initial state of PO it satisfies part (iv) of the invariant.

(b) If PO performs an output o, then either (thanks to PS being ahead on
the same trajectory) that output will already be present in the output

19

buffer of PS⋄>, or PS has only made the outputs that PO has. In the
first case the simulation outputs from its buffer. In the second case,
the input buffer of ⋄> PO must be empty since otherwise PS (having
already performed these extra inputs) must have output o contradicting
the emptiness of its buffer. We can conclude that, the input buffer of
⋄> PO is empty, and so PS = PO : we can therefore simulate o by PS

performing o (either through zero buffering or input and immediately
output by PS ’s output buffer).

(c) If PO performs an input from the buffer, then because the buffer is non-
empty there is no need for PS to do anything to preserve the invariant,
and so it does not.

(d) If the input buffer of PO performs an input, then our assumptions about
P mean that, either further down the trajectory of PO or beyond it, PS

must come into a state where it can perform an input (an arbitrary in-
put by no-selective-input). We simply move PS to this state, absorbing
all outputs that appear from PS in its the output buffer.

Again, the existence of the simulation proves the required trace inclusion.
Note that (i) and (ii) together prove that ⋄> P is trace-equivalent to P⋄>
for any deadlock-free FOP process P . This concludes the proof of Theorem
3.2.

Turning to failures refinement, there are two approaches we can take:
finding out what is provable for the general case (modulo conditions like ac-
ceptingness), and identifying conditions on individual processes which make
them leftward or rightward buffer tolerant in that model, so we can use The-
orem 2.6.

Assuming deadlock freedom (equivalent here to acceptingness, a property
inherited by ⋄> P and P⋄> thanks to Lemma 2.3) has one great advantage
when considering processes with one input and one output channel. That
is, it cannot refuse both channels at once: we can thus hope to be able to
consider only failures of the form (s , {| out |}) and (s , {| in |}) and rely on
no-selective-input and output decisiveness to fill in the rest. That would be
very useful since the two sorts of refusal are going to be generated at opposite
ends of a pipeline and we would not have to align them.

Despite this, the simulations which demonstrate trace containment do
not work in many cases of failures refinement. (We will ignore divergences

20

since we will usually be assuming conditions such as FOP which eliminate
it.) Two reasons for this are:

• The output buffer can capture any output which is available from P
in P⋄> and offer that item stably and alone, even though P might
be unable to offer that output stably (it may only be offered as an
alternative to τ , or in conjunction with inputting).

• The input buffer can refuse input in ⋄> P just when P refuses it, and
since the P of P⋄> is in general at a different state as that in its lazy
simulation ⋄> P , we cannot necessarily expect their input offers to
co-incide.

Example 3.2 The process

E = inp → inp →
(outp → outp → outp → E 2 inp → E)

2 outp → inp → E

is neither leftward nor rightward buffer tolerant with respect to the fail-
ures model: (〈inp, inp〉, {inp}) is a failure of E⋄> but not of ⋄> E , and
(〈inp, inp, outp, outp, inp〉, {inp}) is one is one of ⋄> E but not of E⋄>. (In
both cases the buffers hold one item at the point of the stable refusal. This
example was discovered using FDR.)

Nevertheless there are several useful results we can obtain about buffer
tolerance in the failures model. There is no reason why we should necessarily
expect to get symmetric results for leftward and rightward buffer tolerance
in this model, because the failures behaviour of general buffering looks very
different on its two sides. This seems to mean that there is little we can
usefully say about rightwards buffer tolerance. So we will concentrate on
leftward: we might ask for what sort of P do we get ⋄> P ⊑ P⋄>?

In order to get this behaviour we need the strong form of output decisive-
ness. For example the process NOD = (out → out → COPY) � COPY is
not output decisive, and NOD⋄> has the failure (〈〉, {in}) whereas ⋄> NOD
does not: in the first the unstable offer of out by NOD is converted into a
stable one by the output buffer, which might refuse the second out .

As demonstrated in the following result, we need to strengthen this further
to state that any output can be made unconditionally (i.e. not as an option

21

with an input, though it does not ban joint offers or inputs and outputs as
additional nondeterministic choices).

Theorem 3.3 Suppose that P is a deadlock-free FOP process with one
input and one output channel, and has the property that, whenever s 〈̂o〉 ∈
traces(P) for o an output, then (s ,Σ \ {o}) ∈ failures(P) (unconditional
output). Then P is leftwards buffer tolerant in the failures and failures/div-
ergences models.

proof Both ⋄> P and P⋄> are divergence free by Lemma 2.3, and we
know P is leftward buffer tolerant in the traces model. Therefore we can
concentrate solely on the refusal components of failures. Observe that ⋄> P
itself satisfies unconditional output since it can refuse to input whenever P
does.

Suppose (s ,X) ∈ failures(P⋄>) is a maximal failure. We must show that
(s ,X) ∈ failures(⋄> P). Let us first consider the case when {| out |} ⊆ X :
in other words P⋄> is refusing to output. Deadlock freedom then implies
that X = {| out |}. This can happen only when the output buffer is empty
(because nonempty buffers cannot refuse to output). In the lazy simulation
of PO⋄> by ⋄> PS , the emptiness of the former’s output buffer means that
PS has already produced all the outputs it will by the time it reaches the
later state PO . We can therefore advance PS by having it take in the entire
contents of its input buffer, which will bring it into the same state as PO ,
without generating any external actions. (This can be achieved because of
the coupling invariant we established earlier.) We know that P is refusing to
output in P⋄>, so the same state is refusing {| out |} in ⋄> P . The state of
⋄> P is stable because P is stable and the input buffer is empty.

So we can assume that {| out |} 6⊆ X and that o ∈ {| out |} \ X is an
output that the simulation can perform after s . Then, in the lazy simulation,
either the buffer of P⋄> is nonempty after s (with first element generating
o) or it is empty and P is in a stable state ready to output. In each case
we cannot be sure that the particular trajectory T that PS is following it
the one we require. Unconditional output tells us that there is a trajectory
To where it follows exactly the same trace and then offers only o stably. So
we run the lazy simulation with T in the original and To in the simulation,
which is possible since the PS (up to the trace s 〈̂o〉) never gets past the end
of To . Just before PS communicates o in To we know that it is stable and
refusing all input. It follows that ⋄> P is stable and can refuse all input (by

22

the properties of arbitrary buffering). Since it is refusing all but o it follows
that ⋄> P has the required failure (s ,X).

The author has not been able to find any useful analogue in the other
direction: notice how the asymmetry of buffering (able to refuse input but
not output) is used crucially in the above proof.

Notice also that the proof that the case where all outputs are refused
is much easier than the other part. The only place unconditional output is
actually required is to prove that input refusals are present where necessary in
the simulation (though it might be necessary to run the simulation further to
get a stable state without it). For the output component of refusals we could
make do with the weaker condition strong output decisiveness. The following
result shows two ways of obfuscating any differences in input refusals like
those that appear in Example 3.1.

Theorem 3.4 Suppose P is a deadlock-free FOP process with one input and
one output channel, which is strongly output decisive. Then, with respect to
failures,

(i) Chaos{|in|} ‖
{|in|}

(⋄> P) ⊑ Chaos{|in|} ‖
{|in|}

(P⋄>)

(ii) ∞> P =∞> P⋄>

The second of these easily extends to any chain of processes by induction.

Corollary 3.5 If C = P1 >> . . . >>Pk is a chain processes satisfying the
above assumptions, then ∞> C =∞> C ⋄⋄.

There is a corresponding generalisation of (i), but the fact that strong
output decisiveness is not preserved by chaining means that it cannot be
proved in the same direct way. However the need for strong output decisive-
ness (as opposed to the ordinary sort) can be eliminated provided that there
is a further process in the chain.

Theorem 3.6 (a) Suppose P is a deadlock-free FOP process with one
input and one output channel, and that Q is another such process.
Then Chaos{|in|} ‖

{|in|}
(⋄> P >>Q) ⊑ Chaos{|in|} ‖

{|in|}
(P >⋄>Q)

23

(b) If C = P1 >> . . . >>Pk is a chain of deadlock-free FOP processes, then
Chaos{|in|} ‖

{|in|}
(⋄> P) >>Q ⊑ Chaos{|in|} ‖

{|in|}
(P⋄>) >>Q

(c) If C = P1 >> . . . >>Pk is a chain of deadlock-free FOP processes satis-
fying, then ∞> C =∞> C ⋄.

(b) follows inductively by (a), and the proof of (a) is via a lazy simulation
very like the ones already used. Since all output refusals are now produced
by Q , we do not need strong output decisiveness of the process (P) we are
pushing the buffer through. (c) is a variant of Corollary 3.5 where we do not
have to worry about output refusals appearing from buffers.

Trees

It seems natural to move from chains to trees: networks with no cycles in
their undirected communication graphs. To see that an undirected cycle is
important, suppose that there are two disjoint paths for data to reach Pj

from Pi . It is obvious that adding buffering can alter the order in which
information arrives over the two routes. For example, the original network
might ensure that the number on route A never exceeds the number on route
B. Pj may break if this invariant is violated, which it might easily be if
buffering were introduced on route B. Specifically, Pj may reach states with
the buffering that it can never reach without. In other words it may fail local
buffer tolerance.

Note that Theorem 2.6 covers networks with this sort of structure, but
the requirements of that result mean that behaviour like that described above
would be banned. If Pj were leftward buffer tolerant it would not maintain
#A ≥ #B , and if Pi were rightward buffer tolerant then failure of this
property of its inputs could not lead it to any new states.

Example 3.3 Trees with more than one output channel will require output
buffers: consider the network T in Figure 1.

Suppose P is a process that, takes in inputs and outputs each once along
each of the internal channels:

P = in?x → a!x → b!x → P

The other two processes are both COPY . If we place buffering on the internal
channels then there is no relationship between the number of outputs from

24

P

COPY COPY

in

a b

Figure 1: Illustrating the need for output buffers

the two COPY s. If, on the other hand, we simply place a buffer on P ’s
input channel (analogously with our chain results), the numbers of outputs
on the two channels never differ by more than 2: so it is not leftwards buffer
tolerant. If we place buffers on all three external channels then the internally
buffered version’s behaviours are all present in buff(T).

Example 3.4 Figure 2 illustrates two versions of a simple two process tree:
one with internal buffering and one with external. (Asterisks denote buffered
channels.) Process P has one input channel and two output channels, while
F has two inputs and one output (though the example would also work when
F has no output channels). P is the same as P from Example 3.3, while

F = d?x → a?y → e!x → F

So the network has input channels in and d , and output channels b and e.

In the internally buffered case it is possible for outputs on b to occur any
number of times without any inputs on d , since the outputs P makes along a
can be buffered. This is impossible in the externally buffered case since the
number of outputs on b never greater than the number of communications on
a, which is in turn never greater than the number of communications along
d .

Clearly F is not accepting, and this fact is crucial in making this specific
example work, but hopes that we might eliminate this problem by making

25

P

F

in

a

e

d

b

P

F

in

a

e

d

b

*

*

*

*

*

Figure 2: A tree network which is not buffer tolerant

processes accepting are dashed if F is replaced by F ||| RUN {|d ,a|}. This
is clearly a accepting process but in any behaviour where the number of
outputs equals the inputs on its two channels, all communication must have
been performed by the parallel component F . It follows that in any behaviour
of the externally buffered network which ultimately outputs as many things
on e as it has input on in, inputs from d must have occurred before outputs
on b.

Therefore this two process network is not even weakly buffer tolerant in
the traces model.

We therefore cannot hope to get a result which proves as much about
general trees as we have established about chains. It turns out that we can
still, however, do quite well.

What turns out to be crucial in Example 3.4 is that there are two disjoint
routes from its inputs to its outputs (namely in, b involving only P and only
F through d , e).

We can get close to our tree results if we avoid this possibility: the most
obvious way is to use only fan-in nodes (ones that have precisely one output
channel) or fan-out ones with precisely one input channel. We can generalise
respectively the lazy and eager simulations to these categories. We first deal

26

with the fan-in case.

Theorem 3.7 (i) If P is any fan-in process, then P is leftward buffer
tolerant in the traces model.

(ii) If P is any deadlock-free and FOP fan-out process then it is rightward
buffer tolerant in the traces model.

proof For part (i), the lazy simulation carries across to this case, the only
amendment being that external inputs are now made into (perhaps) more
than one buffer, and PS may have to input from more than one buffer before
it can simulate the next output.

Similarly, the eager simulation carries across for part (ii). (Recall that
under our standard assumptions a process with one input channel is deadlock
free if and only if it is accepting.)

The reasoning behind Theorems 3.3 and 3.4 also carries across to this
case, the proof being essentially the same.

Theorem 3.8 Suppose that P is a deadlock-free FOP fan-in process.

(a) If P has the unconditional output property described earlier then it is
leftwards buffer tolerant in the failures and failures/divergences model.

(b) If P is strongly output decisive and its input events are I , then

(i) ChaosI ‖
I

(inbuff(P)) ⊑ ChaosI ‖
I

(P⋄>)

(ii) inbuff∞(P) =∞> P⋄>

The analogue of Theorem 3.6 also holds, where now there may be many
P ’s: one for each input channel of Q .

We cannot expect leftwards buffer tolerance to hold for fan-out processes,
since a range of buffers on the output channels have much more freedom to
vary the order of such a P ’s communications than a single input one. For
example the latter could not interfere with the order in which P outputs
along its various channels (say alternating between two), whereas output
buffers certainly could.

For similar reasons rightward buffer tolerance does not hold for fan-in
processes. We can, however, get the following result.

27

Theorem 3.9 Suppose we have a tree network T where (i) every node has
at least one input and at least one output, is deadlock-free and FOP, and
(ii) there a node X which is on every path from an input channel T to an
output channel of T . Then T is weakly buffer tolerant in the traces model.

proof Every node reachable from X (downstream) can only have one input
channel (or else there would be a cycle in the undirected graph involving this
node and X). So it is a fan-out process. And every node from which X is
reachable (upstream) is fan-in for similar reasons. We can therefore apply
Theorem 2.6 (b) with M = {X }.

Unfortunately, Example 3.4 shows that we cannot hope to get directly
analogous results for a general network where there is both fan-in and fan-
out branching. In particular we may have to make extra inputs to buff(T) to
get the outputs which appear in T ⋄. The following result shows that this is
sufficient and that the values of the extra inputs are irrelevant. What it says
is that, provided all the nodes have a property which means that they can
always eventually make progress on each channel, and there are no cycles in
the communication graph, then every pattern of outputs which can appear
from T ⋄ can appear in buff(T) if sufficient extra inputs are entered on each
channel.

Theorem 3.10 Suppose T is a network whose undirected communication
graph is a tree and whose nodes P all have the following properties:

• Deadlock-free.

• Fairness: Every infinite trajectory of P contains infinitely many states
which can communicate on any chosen channel (input or output). Note
that this is weaker than saying that each infinite trace contains infinitely
many communications on each channel.

Suppose also that all internal communications of T are hidden. Let t be a
trace of T ⋄. Then there is a trace s of buff(T) such that

(i) For each input channel c we have t ↓ c ≤ s ↓ c. Let s ↓ c = (t ↓ c)̂ ec.

(ii) If O is the set of all output events, then s ↾ O = t ↾ O .

(iii) The truth of the above does not depend on the precise value input
during the extra inputs ec for any c, though the required number of
subsequent additional inputs required may change.

28

proof The proof of this result is via another ‘eager’ simulation. In this we
will make sure that every node is always at least as far advanced along its
trajectory (or beyond it) as is in the original trace t of T ⋄. We can again
use the output buffers of outbuff(T) to hold all outputs until the correct
time to release them (or not at all if they were output after the outputting
node went beyond the end of its trajectory in t). The only difference with
the simulation used in the proof of Theorem 3.7 is that this time, in order
for one node P making an output to advance, it may be be necessary for
the node Q which absorbs that output to move into a state where this can
happen.5 This might well mean that Q needs further inputs. The following
is a sketch of the proof.

The result (and in effect the simulation) is built up inductively over the
structure of T , adding on a node at a time in such a way that the new
node has no input channels from the ones that are already there. What we
prove for each of these subnetworks S is that, for arbitrary nc ∈ N for each
c ∈ Inchans(S):

• outbuff(P) can simulate S ⋄’s behaviour along T in such a way that each
of its nodes is always at least as advanced as the corresponding node
in S ⋄, and such that at least nc additional inputs of whatever values
we please have been accepted on each c ∈ Inchans(S).

• The outputs in the simulation follow the same pattern as in t , but some
inputs may have been advanced to before the corresponding point in t .

This is trivial for a single node: once the end of its t-trajectory is reached
the condition above implies that it will accept any number of inputs we wish
on each channel, and since we may hold any post-trajectory outputs in the
output buffers of outbuff(P) there is no need for them to appear externally.

So suppose it holds for the S to which we wish to add a new node P to
get S+. Note that

• The input channels of the combination are those of P plus all those of
S that are not connected to P .

5This does not arise in the lazy simulations of Theorems 3.2 and 3.8, because there
the simulations are driven by demand for outputs, and each P only has one. It happens
only trivially in Theorem 3.7, since the conditions imply that we can always advance the
recipient node without it accepting inputs from anywhere else.

29

• The output channels of the combination are all those of S plus all those
of P that are not connected to S .

• The components Sc of S attached to different output channels c of P
are otherwise all distinct (and disjoint).

Suppose we have requirements nc for each of the input channels of S+.
For each of the channels c that connects P to S , inductively construct the
simulation for the component Sc of S that is connected to c, using nc = 0
and all other nd being inherited from the main problem. Let mc be the
actual number of inputs consumed on c in this simulation, maximised over
all choices of input values.6

Then we can (by fairness) run P beyond the end of its trajectory in t so
that it exceeds nb for each of its input channels b and has produced at least
mc more outputs than in t on each of its output channels c that is connected
to S .

If P has produced more than outputs on some c than are required, then
the simulation in Sc can be re-worked so that they are all consumed. It is
vital here that the Sc are all different so that no contradictory requirements
are generated.

The outputs produced by this can be absorbed by the output buffers and
produced when required.

4 Model checking properties of buffer toler-

ant systems

When it comes to the crunch, the real objective of this paper is finding
practical ways to verify systems containing arbitrary buffering. In this section
we provide some results and techniques that do this.

The following are corollaries to the simulation produced for Theorem 3.10,
observing that the external buffers of buff(T) do not change what states can
be reached by T and its nodes. They show that for an important but re-
stricted class of specifications, the fairness principle and the lack of cyclic
dependencies amongst the channels are sufficient to give strong buffer toler-
ance with respect all a network’s channels.

6That such a maximum exists follows from König’s Lemma.

30

Theorem 4.1 Suppose the network T satisfies the conditions of Theorem
3.10. Then, if P is one of the nodes of T which can reach state Q in T ⋄,
it can also reach Q in T (i.e. the network without any buffering). In other
words, N is locally buffer tolerant.

Theorem 4.2 Suppose the network T satisfies the conditions of Theorem
3.10. Then if in some run of T ⋄ the nodes Pi can attain (respectively) the
states Qi in some order, then the same is true of T (though not necessarily
in the same order).

In FDR, reachability conditions are usually couched in terms of indicator
events flagging a particular state. Since the above results apply to the states
of individual processes in the network, they correspond to indicator events
that are not synchronised between the processes. These results are so direct
and simple that there is a substantial incentive to couch specifications in this
form if possible.

Frequently, however, this cannot be done. However results in the previous
section are nearly as useful. They imply a number of variations on weak buffer
tolerance of different types of tree network (though not for the input refusals).
Now observe that Lemma 2.1 allows us to conclude that, if S ⊑ N and is
weakly, leftward, or rightward buffer tolerant in one of the standard models,
then N ⋄ refines a version of the specification S with appropriate external
buffering. This means that a finite-state check has verified that a potentially
infinite state process meets a potentially infinite-state specification.

This leaves us with three difficulties:

• Theorem 3.10 falls short of weak buffer tolerance, even in the traces
model, meaning that the above observation does not apply to networks
where nodes have both fan-in and fan-out branching. We can address
trace specifications which are relevant to just one input or to just one
output by cutting down the network to that part which feeds, or is fed
by, the relevant channel (namely, cutting it down to a network meeting
the conditions of Theorem 3.8 or 3.7. To complete this we abstract (by
hiding) all the channels of the cut down network that are (respectively)
outputs or inputs whose other ends have been removed.

• None of the results allow us to say much about the input refusals of
our network. However we do have Lemma 2.2 which contains useful

31

information about these, and is frequently sufficient, as does the result
(see [18] for example), that any tree of processes where each adjacent
pair are connected by a single no-selective-input channel is deadlock
free if its component nodes are.

• It is perhaps not always obvious what the buffered specification means
intuitively. We will go some way to understanding this problem in the
first sequel to this paper.

Applications

The above discussion tells us that if Pi are deadlock-free FOP processes and
C = P1 >> . . . >>Pn then

S ⊑T C ⇒ ⋄> S ⊑T C ⋄

This extends Buffer Law 6 from [18], quoted earlier, to any trace specification
such that ⋄> S = S . Some examples of such specifications are:

• P is a bag (multi-set): it outputs each input once, but is allowed to
re-order.

• Every output value of P was also an input value.

• Over the natural numbers, the output is always less than or equal to
the sum of the inputs.

• The value error is never output.

Examples of systems to which we might apply the chain result include:

• Long-distance network communications where data is passed over a
chain of nodes, possibly being modified or blocked. It is of course
natural for buffering to be used in such cases.

• A pipeline operating on a stream of data, each passing its outputs on
to the next. For example we might be applying various operations such
as filtering and clipping to an audio or visual signal.

32

• Layered protocols, which can be represented (as discussed in [18]) by
networks of the form

T1 >> . . .Tk >>M >>Rk >> . . . >>R1

in which the pairs (Ti ,Ri) are complementary. Even when the overall
effect is not a buffer (the case discussed in [18]) the entire system is
now known to be buffer tolerant.

A stack process operates on the Last-In-First-Out (LIFO) principle as
opposed to a buffer’s FIFO. Imagine a series of buffers and stacks connected
together in a pipeline: trying to think about what effects this might have on
an input stream is somewhat baffling! The fact that it trace-refines just the
stacks with arbitrary buffering added at the front (a consequence of Theorem
3.2) would certainly help given specific stacks.

The fan-in result can be used to reason about tree networks where a
variety of inputs contribute to a single output. For example, it could apply
to a network of merging or multiplexing processes, or to a pipeline which can
take inputs at more than one point.

An example of the latter is a pipelined system which has an interrupt
signal that is accepted by one or more of its processes, which causes it to
go back to some state specified by the signal. Our analysis shows that the
system with internal buffering refines the one where there are buffers on the
main input channel and all the interrupt signals: see Figure 3.

The fan-out result works on the opposite sort of network, for example
consisting of demultiplexers, and Theorem 3.9 can be used to handle networks
where information is brought together to a single point and then distributed
again, for example multiplexers followed some chain and then demultiplexers.
Note that it can be combined with Lemma 2.2 to give liveness results for T ⋄.

For an example of Theorem 3.10, consider the network in Figure 4. Here,
there is a controller node C which inputs data and, on the basis of it, decides
what is to happen to all the items passing down a number of data streams.
Assume that a control signal appears on each output channel of C after every
input it makes, and that the processing nodes Ni satisfy the fairness condition
(and all are deadlock free). We can use Theorem 4.2 to show, for example
that illegal combinations of states cannot be reached in the processes Mi .

33

* * **

* * * * *
*

T

Figure 3: Interruptable pipeline.

C

N N N N

M M M M

1 2 3 4

4321

Figure 4: Process controlling multiple pipelines

34

Part 2: Functional and Confluent Behaviour

5 Specifying weakly buffer tolerant processes

Remembering that leftward and rightward buffer tolerance both imply weak
buffer tolerance, many of the results in Part 1 were directed towards proving
that N ⋄ or similar refines buff(Spec) by proving that N refines Spec.

This begs the question of what buff(Spec) means for our specification Spec:
when is it a useful thing to prove that N ⋄ refines it? Another way to look
at this is to ask for what specifications S can we find Spec (hopefully finite
state) such that S = buff(Spec), since it is only these specifications that we
can hope to prove that a weakly buffer tolerant system (containing buffering)
meets. We first identify some things that S cannot do:

• It cannot specify that an input event on channel in1 occurs before
another one on channel in2, since buff(Spec) can perform these in either
order.

• It cannot specify that an output event on channel out1 occurs before
another one on channel out2 since, whenever these two outputs can
emerge from Spec, the buffers of buff(Spec) can produce them in either
order.

• If s 〈̂o, i 〉̂ t ∈ traces(S) for o an output and i an input then s 〈̂i , o 〉̂ t ∈
traces(S) since the relevant input buffer can accept i just before the
output if it can accept it just after.

• It can never limit what inputs can happen since these can always be
accepted by the input buffers.

It follows that the traces of buff(Spec) are closed under reordering of (i)
inputs on distinct channels, (ii) outputs on distinct channels, (iii) moving
an input to before an output and (iv) adding arbitrary inputs at the end
of a trace. These are exactly the conditions identified by Josephs in [8] as
the ones which apply to the traces of a data-flow process (ones in which an
infinite unbounded buffer is assumed on every channel). This is not in the
least surprising since we may, of course, put such an infinite buffer onto the
channels of N ⋄. However our failures specification will in no way imply that
infinite buffering is actually present.

35

This leads us to two observations which relate Joseph’s work to our own
and which are true at the level of trace equivalence:

(A) The trace specifications which make sense for weakly buffer tolerant
networks are precisely the members of the semantic model for data-flow
processes; one might therefore contemplate writing them in Joseph’s
version of CSP which makes explicit allowance for the closure conditions
(i–iv).

(B) The members of the data-flow semantic model for traces are precisely
buff(P) as P varies over the ordinary traces model. (This was estab-
lished by Josephs, Hoare and He in [9].)

We also observe that, for networks whose design is buffer tolerant in our
sense, our work gives a model (namely the network with no buffering) for
data-flow processes that can probably be used to model-check them, since it
is likely to be finite state.

The above properties suggest that we might examine predicates which
apply to the collection of input and output streams that a process has (i.e.
the sequences of values that have passed along its channels). So suppose
we have a trace predicate that can be written R(is1, . . . , ism , os1, . . . osn) (isi
and osj respectively being input and output streams) and which is closed
under extension in input streams and prefix in output streams: is ′

1 ≥ is ∧
. . . ∧ is ′

m ≥ ism ∧ os ′
1 ≤ os1 ∧ . . . ∧ os ′

n ≤ osn and R(is1, . . . , ism , os1, . . . osn)
implies R(is ′

1, . . . , is
′
m , os ′

1, . . . os
′
n). Suppose also that R(〈〉, . . . , 〈〉). Then R̃,

the largest prefix-closed set of traces which all satisfy it, trivially satisfies
the conditions to be a (trace) data-flow process.7 It follows that any trace
property which can be written in the form R̃ for such an R is one we can
hope to prove of a weakly buffer tolerant process since buff(R̃) =T R̃. Let’s
call these properties stream predicates.

We should note that many stream predicates R will give rise to infinite-
state CSP processes, which means it is not attractive to use them as specifi-
cations for FDR. What we know from Part 1, however, is that we can prove
them for any weakly buffer tolerant network including buffering by proving
that the network without buffering refines any (not necessarily data-flow)
CSP process S such that R̃ ⊑T S .

7It is tempting to think that the reverse is true, namely that every data-flow process
can be written as such a predicate. To see this is not true, consider the following processes

36

Note that the closure of stream predicates under extensions of input traces
and prefixes of output traces mean that all they can constrain is what outputs
are justified by some prefix of the current inputs. They must allow any input
at any time and performing an extra input cannot ban a previously legal
output.

6 Functional agents

Though much of what follows can probably be modified to encompass more
general forms of stream predicate, it is interesting to concentrate on the sub-
case in which all of the output streams are in effect functions of the input
streams. These cover a wide variety of applications and are conceptually
simpler.

The relations they are based on will not be functions in the usual sense in
which relations are considered to be functions, namely with each set of inputs
corresponding to one sequence for each output channel. For we know they

P and Q (when there is only one input event i and one output event o):

P = (o → i → i → P ′) 2 (i → P1)

P1 = (o → i → P ′) 2 (i → P2)

P2 = (o → P ′) 2 i → P2)

P ′ = i → P ′
2 o → IN

IN = i → IN

Q = i → Q1

Q1 = (o → Q ′) 2 (i → Q1)

Q ′ = (o → IN) 2 (i → Q ′)

Each of P and Q satisfies all the conditions for being a data-flow process: applying
arbitrary buffering to either side of either of them makes no difference. The standard
distributivity properties of CSP operators imply that the same is true of P ⊓ Q .

Notice that in P the first output is available immediately, but the second one is not
available until after two inputs; whereas in Q both outputs become available after a single
input. Each of P and Q can be represented by a stream predicate, but P ⊓ Q (also a
data-flow process, since these are easily seen to be closed under nondeterministic choice)
cannot. Clearly the predicate R would have to pass the traces 〈o〉, 〈o, i〉 and 〈i , o, o〉; but
the streams of the last are the same as those of 〈o, i , o〉. Since these streams are what
determines R, and since all the prefixes of 〈o, i , o〉 also satisfy R, it follows that this trace
belongs to R̃. But this trace does not belong to P ⊓ Q .

37

have to be prefix-closed in outputs and extension-closed in inputs. Rather,
we will specify that for each set of inputs there is a single set of notional
outputs of which the actual outputs are prefixes.

If is1, . . . , ism are the input streams, there will thus be a function fd(i1, . . . , ik)
for each output channel d ∈ Outchans (corresponding to osr , say) such that

R(is1, . . . , osn) ≡ ∀ d ∈ Outchans.osk ≤ fd(is1, . . . , ism)

(Here, s ≤ t is the prefix order on traces: s is an initial subsequence of t .)
For this to make sense we require that all of the functions are monotonic,
namely whenever isr ≤ is ′

r for all r then fd(is1, . . . , ism) ≤ fd(is ′
1, . . . , is

′
m) for

all d .

This concept makes sense if we were to allow fd(is1, . . . , isk) sometimes to
be an infinite sequence. This corresponds to a system that can generate an
infinite number of outputs for a finite set of inputs. Of course if this value is
infinite then extending the isj will not, thanks to monotonicity, change the
output available on d .

A stream predicate will be said to be functional if it is based on such
a relation, and weakly functional if it is the subset of such a relation. For
any weakly functional predicate there is a least system of functions (i.e. one
whose results are always prefixes of all the others) which determines it.

As far as traces are concerned, we will say that a process is a functional
agent (or just functional) if its traces all satisfy some functional stream pred-
icate. (Note that since traces cannot express liveness properties, it does
not make sense to differentiate between the weak case and the full case of
functionality.)

Normally, of course, such agents will have at least one each of input and
output channels, but the definitions we state do make sense when there are
none of one or the other.

There is a natural way to turn this property of processes into a failures
specification which is related to the standard specification of a buffer:

(A) If, for the given trace t , at least one of the output streams is incomplete,
namely t ↓ d < fd(is1, . . . , ism), then (t ,O) 6∈ failures(P). In other
words, if according to the functions some output is pending then the
process cannot refuse to output.8

8On balance this definition seems preferable to insisting that the particular output

38

(B) If, for the given trace t , t ↓ d = fd(is1, . . . , ism) for all d , then (t , I) 6∈
failures(P). In other words inputs on at least one channel are accepted
when no outputs are possible.

We will, in fact, tend to be more specific than (B) here about what inputs
are accepted.

The following are some examples illustrating functional agents.

(i) Notice that a process with one input and one output channel is a buffer
(in the usual CSP sense) if and only if it is functional using the identity
function.

(ii) A process with one input and one output channel which duplicates each
input is described by the function f (〈〉) = 〈〉, f (〈a 〉̂ s) = 〈a, a 〉̂ f (s).

(iii) A process which alternately merges two input channels into one is de-
scribed by

f (〈〉, t) = 〈〉 f (〈a 〉̂ s , t) = 〈a 〉̂ f (t , s)

(iv) A process which splits its input stream into two is described by the
pair of functions odds and evens defined:

odds(〈〉) = evens(〈〉) = 〈〉

odds(〈a 〉̂ s) = 〈a 〉̂ evens(s)

evens(〈a 〉̂ s) = odds(s)

(v) A binary comparator, which inputs values on two input channels, com-
pares then, and outputs the greater and lesser respectively on its two
output channels, is a functional agent, as are elements like multiplexers
and de-multiplexers.

An obvious hope is that any network composed of functional agents is
functional. We must break this up into two parts: networks with directed
cycles and ones without. It is obvious that any network of the latter (acyclic)
sort is trace functional if all its components are: the function simply being

channel cannot be refused: we allow the process to decide what order to produce its
pending outputs in.

39

the composition implied by the way the network together of the functions
underlying its components.

It is also fairly obvious that any general network of functional agents
(one which might have cycles) always has traces on each internal and output
channel which are prefixes of the least fixed point of the monotone function
from tuples of traces to tuples of traces which the structure of the network
determines, for the particular set of input channel values we are given. In
other words, if is1, . . . , isn are the sequences of values available on the net-
work’s input channels (all necessarily input channels of individual processes
within it), and cs1, . . . , csm are the rest of the channels, we know that each
node, Pi determined by functions fi ,1, . . . , fi ,r for its r outputs, forces

cssi,j ≤ fi ,j (dsi ,1, . . . , dsi ,si)

for each cssj which is an output of Pi , where the di ,j are those isa and csb
which are the inputs to Pi . If the inequalities above are turned into equations
we get one equation for each internal channel: that channel is a monotonic
function applied to a number of other internal and input channels. Standard
fixed point theory then says that this system of equations has a least solution
in the space of assignments of the internal channels to finite and infinite
sequences, ordered by prefix. It is an easy induction on the construction of
the fixed point and the evolution of the network that at all times the value
of each internal channel is a prefix of this least fixed point. This is the same
construction that is used in Kahn-MacQueen networks [10, 11], which are
of course very similar. (The adherence of networks of this type to the least
fixed point is sometimes called the Kahn principle.) One way of looking at a
functional agent is as a functional node in such a network which is not forced
to accept all possible inputs.

For any network of functional agents, we define its principal functions to
be the functions, one for each output channel, of the input streams, generated
by the composition or least fixed point described above.

Without any further restriction on the way the component processes be-
have even the acyclic case may well fail the failures specification of func-
tionality. Consider, for example, the following processes which implement
examples (iii) and (iv) above:

Merge = a?x → out !x → b?x → out !x → Merge

Split = in?x → odd !x → in?x → even!x → Split

40

If these are connected by synchronising a with odd and b with even then
they implement the expected identity function. If, on the other hand, we
synchronise a with even and b with odd then the combination deadlocks
rather than computing the principal function which is a delay-by-one of the
identity function.

The conclusion is that in order to get functional behaviour in the acyclic
case we must do enough to prevent the network from deadlocking, though
that is not always sufficient since complex patterns of dependency can arise.
This topic is closely related to the study of deadlock more generally. We leave
a detailed study to a later date, but conclude this section with the following
results, most of which are related to the author’s earlier work on deadlock.

Recall that a accepting process is one which in any stable state can ei-
ther output or accept input on every input channel. This is by no means
a universal property, but when true it is very useful. For example, while a
non-accepting process may be functional with respect to two different sets
of functions (which differ on input combinations that the process does not
accept), a accepting one uniquely determines its functions provided it has
the finite output property (meaning that it never gives an infinite sequence
of outputs for a finite input).

Theorem 6.1 Suppose N is a network of functional agents which are all
accepting and satisfy the finite output property. Suppose also that it is
either acyclic or has the following properties.

• It has no cycles of ungranted output requests. In other words it cannot
get into a state where each of a cycle of processes is each waiting to
output to the next and has no external output. The concept of cycles of
ungranted requests, together with many techniques for avoiding them,
are discussed in [22, 18], for example.

Then N is accepting and is functional with respect to its principal functions.

proof Since the acyclic case trivially implies that there is no cycle of un-
granted output requests, we will consider only the general network case.

We establish a lemma, namely that, in any state where the overall network
refuses all outputs, all constituent processes are (a) accepting all inputs and
(b) refusing to output. Note that the assumption and (a) together imply
(b) since if a node accepts an output then either the overall network does or

41

there is an internal (τ) action available since the internal recipient accepts
the output. We need therefore prove only (a).

If (a) does not happen then the node refusing some input must (as it is
accepting) offer an output on some channel c0. Necessarily c0 is internal since
the network offers no output. It follows that the internal recipient must be
refusing c0, and hence offering output on some channel c1. Evidently we can
continue this selection inductively, and it eventually repeats to create a cycle
of ungranted output requests, which we have assumed to be impossible. So
the lemma is proved.

It immediately follows that the network is accepting. It also follows that
in any stable state either the network is prepared to output or for every
single node in the network each of its output streams actually equals the
corresponding function of its input streams. (If one of them were not equal,
the failures specification of a functional agent says the node can output.)

In the case of an acyclic network, this trivially shows that the output
streams of the network equal the composed functions of the input streams
whenever output is being refused. In the case of the general network, it
shows that the values of the streams represent a fixed point of the system
of equations the network represents. As argued above this is necessarily the
least fixed point.

In either case the network cannot refuse to output until the complete set
of functional values we have predicted is output. This completes the proof.

This result begs the question of how to avoid cycles of ungranted out-
put requests. This problem is very similar to that of avoiding cycles of
ungranted requests in deadlock freedom (see [22, 18], for example). Many
of the techniques used there, such as variant functions, should apply to this
more restricted case. One obvious rule which guarantees their absence is
provided by the following result. Here, a pair of concyclic channels are an
input and an output channel of the same node that appear in the same cycle
in our network.

Proposition 6.2 Suppose N is a network of accepting functional agents.
Suppose furthermore that whenever i and o are respectively input and output
concyclic channels of a single node, then that node (operating independently
of the network) has never output more items on o than it has input on i .
Then N is free of cycles of output requests.

proof If such a cycle existed then we could immediately say that the

42

streams on all the channels involved in the cyclic have the same length,
as these lengths are non-increasing round the cycle. But then each node is
(in itself) able to make a further output, contradicting the assumption.

It is interesting to ask what would happen in non-accepting networks. We
have already seen (in Split and Merge in their reverse connection network)
that deadlock can arise when a pair of channels join two processes in an
acyclic network, but it is also possible when there is just one channel per
pair. Imagine three left-hand nodes L0,L1,L2, each with one input and two
outputs, and three right-hand nodes R0,R1,R2, each with two inputs and one
output. There are channels from Li to Ri and Ri⊕1. On receiving a value
from its input channel Li outputs it to Ri and Ri⊕1 in that order and goes
back to its initial state. Ri expects values from Li⊖1 and Li in that order and
outputs the one from Li before returning to its initial state. Functionally, this
network should map a triple of input streams to the same triple truncated
to the length of the shortest. In fact it accepts one input on each and then
deadlocks. A cycle of ungranted requests forms around the Li and Ri . (This
example was adapted from one in Chapter 13 of [18].)

Even in cases where deadlock is impossible, the network may not be
functional and, if it is, it may be with respect to functions that sometimes
deliver proper prefixes of the ones predicted by composition or least fixed
points.

7 Are networks of functional agents buffer

tolerant?

If P is a functional agent with respect to a particular set of functions, it is
reasonably obvious that P⋄c> is also for any output channel c of P (with
the same set of functions). This is because the combination can only refuse
to output when the buffer is empty and P refuses to output. In the case
of a non-accepting P , the same may not be true (in the failures model) for
an input channel since the buffer may accept inputs which P could refuse
for some time, during which time the outputs owed from these extra inputs
could be refused.

Since we can build the internally buffered network N ⋄ by adding buffering
onto all the internal output channels, it follows that N ⋄ is also a network of
functional agents following the same functions as in N .

43

It immediately follows that N is strongly buffer tolerant with respect to
the trace specification of being a functional agent with respect to the principal
functions represented by N .

Theorem 6.1 also tells us that if our network is acyclic and composed of
accepting processes then the same is true in the failures model.

The situation with networks where there is no cycle of output requests
is not so straightforward, since adding buffers can actually allow such cycles
where there were none before. This can occur, for example, because inserting
buffering on one of several paths from one process P to another one Q can
cause Q to be able to reach control states not reachable without the buffering.
Q may then resolve the nondeterminism available to it (in the definition of
a functional agent) differently.

However there are some circumstances in which we can guarantee that
networks of accepting functional agents will be failures buffer tolerant. For
example, since the addition of buffering does not affect whether a functional
agent satisfies the preconditions of Proposition 6.2 it follows that we can add
arbitrary buffering to such networks without losing the result.

In [22, 18], the idea of variant functions is introduced as a tool for proving
deadlock absent. The idea is that for each component process of a network
we find a function that maps its states into some order (usually the real
numbers) such that whenever P has an ungranted request to Q then P ’s
variant is greater than (sometimes weakened to greater than or equal to)
Q ’s. In any cycle of ungranted requests the variant would have to decrease
all the way round, so unless they are all equal (if the result permits this)
the cycle cannot exist. Importantly for us, the ordering across ungranted
requests is judged of the two processes running together as a pair, not in the
context of the overall network.

Now consider how this is affected if there is a buffer on the channel. For
simplicity we will consider only the case where there is at most one channel
between two given processes: let’s suppose the channel leads from P to Q . If
the request is from P⋄> to Q then P may have advanced beyond the point
where it wanted to output to Q because the output may now be queued in
the buffer. P may however be waiting in a subsequent state for the buffer to
accept a subsequent output, while the buffer is waiting for Q .

If the request is from Q to P⋄> then Q is waiting for input from P⋄>.
In that case the buffer is certainly empty so this is a combination of states
that could have been reached in the binary combination of P and Q without

44

buffering, though not necessarily on the same trace (which the buffering
might have affected).

It follows that in any cycle of ungranted requests in N ⋄ each ungranted
request over a buffered channel can either occur in the corresponding pair
of processes, or the requesting process has gone beyond a point where the
ungranted request could have so occurred, and the target of the request
has not moved. With a general system of variants this tells us nothing,
but if the variants are all non-decreasing (namely, a process communicating
never decreases its variant) then we can guarantee the absence of cycles of
ungranted requests. This, of course, proves the absence of cycles of output
requests. It proves that N is strongly buffer tolerant with respect to the
specification of being deadlock free. (This is a general result that does not
depend on the nodes being functional agents.)

It is interesting that the examples with nondecreasing variant functions
in [22, 18] are all analogues of systolic circuits, namely networks where each
node communicates precisely once on each of its channels on every cycle in
some fixed order except that they are allowed to perform groups of them in
parallel (i.e. offering all members of the set, gradually decreasing until each
has happened once). Following [18] (where they were generalised from [3])
we will call these Cyclic Communication Networks, or CCNs.

The results of [3, 22] show that any deadlock-free connected CCN has a
non-decreasing system of variant functions. We obtain the following result
as a corollary.

Proposition 7.1 CCNs are strongly buffer tolerant with respect to the
specification of being deadlock free.

Except for nodes with just one input channel, these cannot in principle be
accepting, as accepting processes do not constrain the order of their inputs.
They may fail to be functional agents with respect to the principal network
functions since the order in which internal communication takes place can
delay outputs being available beyond where these functions predict. For
example if, in the network in Figure 5, the process A cyclically inputs, then
outputs to B and then to C ; and B inputs externally before inputting from
A, then each output from C can be delayed by B waiting for its external
input, though this is not reflected in the principal function for C ’s output.

Such networks are, nevertheless, functional agents with respect to perhaps
different functions where each output is computed from all inputs in the same

45

A

C B

ina

inb

outboutc

ac ab

Figure 5: Inputs can delay the functional properties of CCN’s

component of the network, not just those from which there is a direct input
to output path. So in the above example, B ’s external input would be one
of the streams computing C ’s output. For each individual output by any of
the nodes in our network we can say exactly which overall inputs it depends
on:

• All external inputs made by the same node prior to the output, and

• the union of all those sets of inputs which the sending of all its prior
internal inputs depended on. (One communication does not precede
another if they occur in parallel in a node.)

For a given set of input streams in a deadlock-free CCN, the output streams
which are available will be precisely those prefixes of the principal functions
such that all the inputs required for these outputs are present in the input
streams. So in our example, since the first communication on outc depends
on the first in inb by the above rules, the function associated with outc will
give the empty sequence unless the input on inb is nonempty.

The addition of arbitrary nondeterministic buffering may mean that,
while N remains trace functional with respect to the principal functions and

46

deadlock free, it may cease to be a functional agent itself (though outputs
can still be guaranteed up to the limits calculated above). For example if
arbitrary buffering were placed in our example between A and B , it becomes
nondeterministic whether our network can or cannot output on outc before
inb.

8 Confluence

A process or computation is said to be confluent if, whenever a state has
two alternative actions α and β, then performing either of them does not
preclude the other and furthermore performing them in either order leads
to equivalent states. The idea of confluence is closely related to the ideas
behind the Church-Rosser theorem in λ-calculus and was introduced into
process algebra by Milner [15, 16].

In CSP terms any process defined without any choice operator (namely
prefix-choice, channel input, external choice, internal choice, time-out and in-
terrupt), the constant Chaos , nondeterminism-introducing parallel operators
or renamings which are not bijective is naturally confluent. In other words
one is allowed to use single-event prefixing, SKIP , STOP , RUN A, sequenc-
ing, alphabetised parallel (P X‖Y Q) and hiding, plus recursion. However
in the spirit of CSP it is sensible to specify that hiding and recursion do not
introduce divergence in order to simplify the theory. We can call this subset
of the language confluent CSP.

The trace sets of confluent processes satisfy the following law: if s , t ∈
traces(P) then s (̂t − s) ∈ traces(P). Here t − s is t with elements from s
deleted according to mulitplicity, earliest first. Thus 〈a, c, b, a〉 − 〈b, a, d〉 =
〈c, a〉.

A set of traces is said to be confluent if it satisfies this property, which can
be proved by induction to be equivalent to the following apparently weaker
one:

• If s 〈̂a 〉̂ t and s 〈̂b〉 (with a 6= b) are both in T , so is s 〈̂b, a 〉̂ (t − 〈b〉).

There is a close correspondence between confluent trace sets and Mazurkei-
wicz traces [14] in which independence relations are between numbered events
(e.g. the 4th a is independent of the 3rd b).

47

Furthermore, subject to being divergence free, confluent processes are de-
terministic in the usual CSP sense of not being able either to accept or refuse
the same trace. They are thus, like all deterministic processes, completely
described by their traces. (Milner makes a similar observation.)

One of the most interesting features of confluent processes is that hid-
ing does not introduce nondeterminism into them, except by the possible
introduction of divergence.9

It is helpful to liberalise the definition of confluence a little, recognising
the difference between communication on a channel and the value that is
passed down it. Specifically we will call a value-passing process channel-
confluent if the result of applying the abstraction which forgets all the data
components of channels is confluent in the above sense. In other words its
pattern of communication is independent of which data it is sent and is
confluent.

Notice that all CCN network components are channel confluent by defini-
tion, and hence (thanks to the confluent processes being closed under parallel
and hiding) so are networks composed of them. In fact networks of sequen-
tial channel-confluent processes are essentially the same as CCN’s, if we allow
infinitely long “cycles” in the latter!

It has been observed in various places (for example [4, 3]) that networks of
different sorts of confluent and deadlock-free processes are themselves dead-
lock free if there is no cycle of dependencies amongst its communications,
where one communication (say (c, 3), the third occurrence of c) depends on
another (say (d , 4)) if there is a component with both events in its alphabet
which forces the fourth d to be before the third c. This is closely related
to the observation that was made by Dijkstra and Scholten about sequen-
tial CCNs in [3] and that by the author about general CCNs in[22]. Any
such cycle-free (channel-)confluent network satisfying one additional condi-
tion (see below) will, by the same construction used in [22], have an increasing
system of selective variant functions in the sense of Deadlock Rule 11 of [18]:

• The transitive closure of the union of the partial orders on numbered

9Those familiar with the standard model of cryptographic protocols will recognise that
the standard model of the intruder is confluent. They might also recognise that the partial-
order reduction operation chase which is used to great effect in implementing the intruder
is always safe to use on confluent processes (including the results of applying hiding to
other confluent processes, where divergence-free) is always semantics-preserving because
these processes are always deterministic.

48

events (a,n) represented by the individual components is (by the ab-
sence of cycles) irreflexive and hence a partial order.

• This order can be extended (like all partial orders) to a linear order.

• Like any countable linear order, it can be embedded in the interval [0, 1]
(a subset of the real numbers). Let ρ(a,n) be the number associated
with the event (a,n).

• If the component process Pi has terminated, give it variant 2. If it has
not terminated, its variant is the least ρ(a,n) amongst the events it
can do next. It selects the process with which it shares that event.

• Now, whenever process Pi is waiting for process Pj , Pj cannot have
terminated thanks to the following additional condition:

If a is an event shared by two processes, then if either of them
has a finite bound on the number of times it communicates
a, then the other has the same bound.

• If neither have terminated and (a,n) is Pi ’s selected event, then Pj

must be waiting for an event that precedes (a,n). Hence Pj ’s variant
is strictly less than Pi ’s.

• If Pi has terminated then it simply waits for the others to terminate
and cannot, by the above, be part of any cycle of ungranted requests.

We can conclude10 the following by our earlier remarks about variants.

Proposition 8.1 Every channel-confluent network is strongly buffer toler-
ant with respect to deadlock freedom.

It is worth noticing that any fixed-size deterministic buffer is channel conflu-
ent, but that any buffer which is either nondeterministic or can ever reduce
in capacity is not. (The only way in which the latter could manifest itself in a
deterministic process would be a buffer which could accept some input before
a particular output but not after it, in direct contradiction to the definition
of confluence.)

10This result follows straightforwardly from the properties of confluent systems alone
if we restrict the scope to the insertion of only confluent buffers on channels. There are,
however, many non-confluent buffers.

49

The above result is similar to one in [13].

The work so far shows how useful the idea of acceptingness can be. Un-
fortunately it is by no means always a natural property for a functional agent
to have. If the role of the function is, for example, to pair off the values that
it inputs on two channels, then we can only make our process accepting by
giving it an unbounded memory for the excess inputs it might have received
on one or other. In this section we seek to generalise it in a way that retains
some of its useful properties, especially those that motivate the next section.

What we want to specify is that, within some given programme of inputs
which may well allow considerably fewer all orders, the process it obliged to
accept in any order. In other words any sequence of inputs consistent with
the programme Ξ (a prefix-closed set of sequences of input channels) should
be accepted. For reasons which will become apparent in the next section we
will want the programme to have the following two properties:

• It must be exhaustive, namely the process never accepts a sequence of
inputs outside the programme.

• It must be confluent, as described above.

Definition 8.1 We will say that a process P is accepting relative to the
input schedule Ξ provided that schedule is exhaustive for P , and whenever
(s ,O) is a failure, and ins(s) is the sequence of input channels in s , P can
refuse no input on any channel c such that ins(s)̂ 〈c〉 ∈ Ξ.

Note that being accepting is equivalent to being so with respect to the
set of all sequences of input channels, and that a deadlock-free process which
has a single pre-determined order of inputs is accepting with respect to the
schedule of all prefixes of that order.

Any node of a CCN is accepting relative to a schedule which is of this
latter form except that any parallel inputs introduce confluent branching
within each cycle.

Note that any schedule described as the set of traces of some CSP process
formed from the syntax of confluent CSP discussed above is automatically
confluent.

The condition of inputting acceptingly with respect to some confluent Ξ
is a much weaker condition than acceptingness, since it allows the process to
completely prescribe its sequence of inputs. More generally it allows them
to input on any channel for which they are “ready” in some sense.

50

9 Checking functionality and confluence via

determinism

In the preceding sections we have seen that functional and confluent processes
play natural roles in for buffer tolerant systems. In many cases it will be
obvious from how a process is written that it is meant to be a functional or
confluent, but we should still check that it is. In other cases the property
might be almost accidental and emerge naturally as a consequence of aiming
for buffer tolerance. In any case it would be useful to have a way of checking
to see if a given process is a functional agent.

In the functional case, even if the function itself is known (which it may
not be) this is not an easy problem, since the most general functional agent
with respect to any given function is almost always infinite state and therefore
problematic to check using tools like FDR.

Fortunately we can develop some of the ideas presented in [20] to provide
some striking, and importantly finitely checkable, characterisations of these
types of process. They are closely related to the way developed there of
checking if a process is a buffer. They are especially relevant to the present
paper since they both take the form “If P has an appropriate buffer-tolerance
property, then P is confluent/deterministic”.

9.1 Characterising confluent behaviour

We first remark that if we can check confluence then we can easily also
check for channel confluence and being accepting relative to a confluent input
schedule. The first of these is as a result of the following straightforward
proposition.

Proposition 9.1 The process P is channel confluent if and only if P [[F]] is
confluent, where F is the forgetful renaming that removes the data compo-
nents of all channels.

The second follows from:

Proposition 9.2 The FOP process P is accepting relative to some conflu-
ent input schedule if and only if (P \ O)[[F]] is confluent, where O is its set
of outputs and F is as above.

51

So we will concentrate on characterising the basic property of confluence.
Recall that confluent processes are deterministic, and if they are combined
(in a divergence-free way) using constructors from confluent CSP, then they
remain confluent.

Suppose P is confluent, that a is one of its events and that a ′ is an event
not used by P . Then

CP(a, a ′) = a → a ′ → CP(a, a ′)

is confluent, as is

C (a,P) = (P [[a
′
/a]] ‖

{a ′}
C (a, a ′)) \ {a ′}

It follows that C (a,P), in which the communicating of a is given an inwards
buffer of size one from the environment to P , is deterministic. This makes
quite a subtle observation about the nature of communication by confluent
processes.

Just how subtle is demonstrated by the following result.

Theorem 9.3 Suppose that either of the following holds:

(i) C (a,P) is deterministic for all events a of P .

(ii) C ∗(P) = C (a1,C (a2,C (...,C (an ,P)...))) is deterministic, where a1 . . . an

are all the events of P . (Note that the value of C (P) does not depend
on the order of ai , but that it is important that each event is listed
exactly once.)

Then P is confluent.

proof Suppose first that condition (i) applies. We will first prove that P
is deterministic, and then that its trace set is confluent.

If P were not deterministic, then it would have a trace s after which it
could both accept and refuse some event a. After s 〈̂a〉, C (a,P) can accept
a (via the final a of s 〈̂a〉 going into the buffer, being accepted by P , and a
further a being accepted by the buffer) or refuse a (the final a of s 〈̂a〉 stays
in the buffer because P refuses it). So both C (a,P) is then nondeterministic
too, in contradiction to our assumption.

52

We also remark that if P is nondeterministic in the manner above then
so is C (b,P) for any b 6= a via an even easier argument. It follows that, in
general, if P is nondeterministic then so is any C (a,P). We will use this fact
in the proof of (ii) below.

Now suppose (in the proof of (i)) that P does not have a confluent trace
set. Then it has traces s 〈̂a〉〈t〉 and s 〈̂b〉 for a 6= b, but not s 〈̂b, a 〉̂ (t−〈b〉).

Observe that C (b,P) has the trace s 〈̂b, a 〉̂ (t − 〈b〉) since the buffer can
take in a b at the relevant point and communicate it to P at the point of the
first b (if any) of t . (At all other times the buffer just passes b’s directly to
P at the points in the trace where a b occurs. Let’s call this execution α.

It can also communicate the trace s 〈̂b〉 via the buffer passing all actions
directly on to P (i.e. P performs the same trace). Following on from this
experiment, we can try to get P to perform the various members of 〈a 〉̂ (t −
〈b〉) in turn (inputting b’s into the buffer and immediately outputting them).
At some point, because s 〈̂b, a 〉̂ (t − 〈b〉) is not a trace of P , it will refuse
the next event. We can assume that at this point it has performed u <
〈a 〉̂ (t − 〈b〉) and that the next event in 〈a 〉̂ (t − 〈b〉) is c. Let’s call this
execution β.

There are two cases to consider. If c = b then we know that it is accepted
by the buffer, so β can be extended by a b. However a second b is offered
(i.e. a b after s 〈̂b 〉̂ u 〈̂b〉) it is refused. In α, we know that b is not the first
b in t , since that is deleted by t −〈b〉, and that therefore the buffer is empty
after s 〈̂b 〉̂ u. Since P does not, in α, refuse b at this point out it follows
that C (b,P) can perform s 〈̂b 〉̂ u 〈̂b, b〉 contradicting the determinism of this
process.

If c 6= b then since the buffer never accepts c it follows that C (b,P) can
also (in β) refuse c after s 〈̂b 〉̂ u. In α we know that c will be accepted after
the same trace, again menaing that C (b,P) is nondeterministic.

So we conclude that condition (i) is indeed sufficient to prove confluence.

For condition (ii), we know that if P is confluent then C ∗(P) is deter-
ministic: note that the hiding involved here can never introduce divergence,
and the same holds for C (a,P). If P is not confluent we know that C (b,P)
is nondeterministic for some b. It follows (by the remark above that C (a, ·)
preserves nondeterminism) that applying all the other C (a, ·) operators re-
quired to build C ∗(P) creates a nondeterministic process. So (ii) is proved
also.

53

What the above result shows is that confluent processes are completely
characterised by deterministic under a particular sort of transformation. The
version of the result with C ∗(P) demonstrates that there is a single trans-
formation which captures the property. This result has obvious relationships
with the characterisation of noninterference in [23, 17, 18] (namely the ab-
sence of information flow from a user of P with alphabet H to one with
alphabet L) as the determinism of LH (P), the lazy abstraction of P .

Since C ∗(P) will have more states than any particular C (a,P), it is not
clear which of the two criteria in the above result will be more efficient to
check on FDR.

We now give an alternative method of checking for confluence which is
based on the idea of [19]. It is less elegant but probably more efficient.

A divergence-free and deterministic process P fails to be confluent if and
only if there are traces s 〈̂b〉 and s t̂ (where t may be empty or begin with b)
such that, after s 〈̂b〉, P will not refuse any of the events of t −〈b〉 presented
in order.

Therefore we can test for confluence by checking for determinism of P
and running two copies of P in parallel, synchronising for any number of
initial events and with the ability, at any time, to fix a communication b of
one of the copies (P1, say), and observe all communications of P2 which are
then, apart from the first b, passed on to P1. If this passing-on fails at any
stage (by deadlock) then P is not confluent; otherwise it is. All of this can be
done by double renaming all the events of P1 and P2 to two events each (one
copy in common, the others disjoint between P1 and P2), and then putting
their parallel combination in parallel with a suitable regulator.

9.2 Characterising functional behaviour

It is possible to get a similar characterisation for functional agents, though
the proof is harder. The first thing we do is to define an abstract property
which is something that all functional agents always have.

Definition 9.1 Suppose the alphabet of the divergence-free process P is
O ∪ I , where O represents outputs and I inputs, each consisting of the
events associated with one or more channels. Then P is output deterministic
(OD) provided, for all s ∈ traces(P) and c.x , c.y ∈ O :

(i) If s 〈̂c.x 〉 ∈ traces(P) then (s ,O) 6∈ failures(P).

54

(ii) If s 〈̂c.x 〉, s 〈̂c.y〉 ∈ traces(P) then x = y .

In other words if an output is possible then (i) the process cannot refuse all
outputs and (ii) any other output on the same channel must be the same.

Note that this is a slightly changed definition from that used in [20]: that
one was aimed at processes with a single output channel, and only a form of
(ii) applied there. Note that the above definition still allows a considerable
amount of nondeterminism: not only whether inputs are accepted but also
over which channel the process outputs on.

Definition 9.2 If s ∈ traces(P), we say that s is output maximal if, for
all t ≤ s , such that either t = s or there is i ∈ I with t 〈̂i〉 ≤ s , we have
(t ,O) ∈ failures(P).

If u ŝ ∈ traces(P), we say that u ŝ is output maximal after u if, for all
t ≤ s , such that either t = s or there is i ∈ I with t 〈̂i〉 ≤ s , we have
(u t̂ ,O) ∈ failures(P).

Thus a trace is output maximal if inputs only occur when all outputs are
exhausted, and also outputs are exhausted at the end of the trace.

Lemma 9.4 Suppose P is accepting relative to Ξ and FOP, that s ∈ traces(P)
and ι is a sequence of input events such that chans(s ι̂) belongs to Ξ. Then
there is a maximal trace t ∈ (O ∪ I)+ such that (i) s t̂ is output maximal
after s and (ii) t ↾ I = ι. (Here, chans(s) returns the sequence of channels
of the events in s .)

If P is OD and has only one output channel then that trace t is unique.

proof We build s t̂ a step at a time starting from a state on which P has
done s . At each point one of the following three holds

• An output event o is possible. If so, add it to t .

• O is a refusal after the current trace s t̂ and ι is non-empty. By ac-
ceptingness the trace s t̂ 〈̂i〉 belongs to P , where i is the first member
of ι. If so add i to t and delete it from ι.

• (s t̂ ,O) ∈ failures(P) and ι = 〈〉. If so we are finished.

55

Clearly this procedure is guaranteed to terminate by FOP and generates
an output maximal trace after s .

If P has only one output channel and is OD then (i) if there is an output
event possible it is unique and (ii) the output event is only available when
(s t̂ ,O) 6∈ failures(P). It follows that at every stage there is no choice over
how to carry out the above procedure.

We showed earlier how to add arbitrary buffering (meaning length 0 or
more, with nondeterministically varying length) onto any channel of a net-
work. That definition can trivially be adapted to add a 0/1-buffer which
varies nondeterministically between lengths 0 and 1 onto a channel. Unlike
the general construction, this modified one is finitary.

Definition 9.3 If P is any process, let ∆(P) be P with a 0/1-buffer on each
input channel and which is constrained so that no more than input item in
total is buffered during its entire history. This, in some sense, represents the
smallest possible non-trivial amount of input buffering for P

Theorem 9.5 Suppose P is a process which is FOP and is accepting with
respect to the confluent schedule Ξ. Then the following are equivalent.

(1) ∆(P) \ (O \ {| d |}) is OD for all d ∈ Outchans(P).

(2) buff(P) \ (O \ {| d |}) (and hence all its refinements) are OD for every
d ∈ Outchans(()P).

(3) buff∞(P) is deterministic.

(4) P is a functional agent.

proof The result will be proved if we can show (2) ⇒ (1), (3) ⇒ (2),
(4)⇒ (3), and (1)⇒ (4).

(2)⇒ (1) is trivial since ∆(P) \ (O \ {| d |}) ⊒ buffP \ (O \ {| d |}).

It is interesting to note that the ∆(P) \ (O \ {| d |}) all being OD is a
strictly stronger statement that saying the same thing without the hiding.
For an example, consider the process

(a!1→ b!2→ STOP) 2 (b!1→ a!2→ STOP)

56

This is not functional but is output deterministic in each of its two out-
put channels. However hiding either channel means it is no longer output
deterministic.

We now turn to (3) ⇒ (2). We will show that if one of the processes of
(2) fails to be OD then that of (3) fails to be deterministic. Suppose the
relevant output channel is d . Observe that buff∞(P) has all the traces of
buff(P) \ (O \ {| d |}) since all outputs on other channels can be absorbed
by the output buffers on those channels. The output buffer of d will always
contain just what the one in buff(P) \ (O \ {| d |}) does. Furthermore, if
buff(P) \ (O\{| d |}) is stable after trace s , then so can be buff∞(()P) with P
being in the same state. For, thanks to the hiding, no output can be available
to any of the non-d output buffers in a state where buff(P) \ (O \ {| d |}) is
stable.

buff(P) \ (O \ {| d |}) can fail to be OD after some trace s in two ways:

• Both s 〈̂d .x 〉 and s 〈̂d .y〉 may be traces for x 6= y and hence also traces
of buff∞(P). In this case, since the events d .x and d .y are both offered
in the latter process by an output buffer which never offers a choice of
output, it follows that buff∞(P) is nondeterministic.

• (s ,O) may be a failure of buff(P) \ (O \ {| d |}) and s 〈̂d .x 〉 a trace.
In the state where the failure occurs we know that the d output buffer
of buff(P) \ (O \ {| d |}) is empty and that P refuses all outputs. It
follows that the same two things are true when the same stable state
is reached in buff∞(P) after s . Hence the latter process refuses all
outputs on d (though maybe not others). But this process can also
communicate s 〈̂d .x 〉, meaning it is nondeterministic.

So (3)⇒ (2) is proved.

Now suppose that buff∞(P) is nondeterminstic. To establish (4) ⇒ (3)
we will show that P is not a functional agent. Suppose for contradiction
that it is and the function predicting output on each channel d is fd . By
construction the nondeterminism in buff∞(P) cannot arise from it refusing
an input. It follows that there is some output d .x which, after trace s ,
buff∞(P) can both accept and refuse. There are two possibilities to consider:
either it refuses d .x because it is offering a different value d .y on the same
channel, or it refuses d .x because P is refusing every output (noting that if P

57

offered anything the buffers would absorb it, creating a τ), and every input
from available from input buffers that are consistent with Ξ.

If the first of these two possibilities had occurred then P will have ab-
sorbed trace is1 of inputs to generate d .x and is2 of inputs to generate d .y .
(In both cases the sequence of input values in is1 and is2 on a given channel
c are prefixes of the sequence of values on c in s .) It is, however, a prop-
erty of confluent schedules that there are extensions is ′

1 and is ′
2 of is1 and is2

which contain the same values on every input channel. The acceptingness
and FOP of P means that these extensions can respectively be accepted from
the points at which is1 and is2 have been. Necessarily the sequences of values
predicted by fd from the inputs is ′

1 and is ′
2 are the same, but this contradicts

the fact that after is1 and is2 P had produced incomparable output sequences
along d .

The second route to nondeterminism cannot occur either, for similar rea-
sons. Necessarily the functional agent P will have absorbed more inputs on
at least one input channel c than it did in refusing all outputs. But in the
second case the extra input on each such c is available in the relevant buffer
to P , and properties of confluent schedules imply that at least one of these
must be accepted by P , giving a contradiction to the fact that buff∞(P) is
stable when it refuses O . We can conclude that (4)⇒ (3).

It remains to prove (1) → (4). So suppose P satisfies the conditions set
out in (1). P is itself OD: if it were not then it would fail on some output
channel d . It is easy to see that then P \ (Σ \ {| d |}) would not be OD, and
that this process refines ∆(P) \ (O \ {| d |}).

Lemma 9.4 then allows us to build the functions fd which we will show
define P ’s functional behaviour. Plainly there is only a need to define fd
for those sets of inputs represented by a trace in Ξ: for any other the value
of fd is calculated from a trace within Ξ that maximises inputs along each
channel. We know that the channel sequences are then uniquely defined.

We first define the fd relative to the traces of inputs consistent with Ξ.
In other words we will create fd as a function from these traces to the output
stream on d . We will later show that they only depend on the sequences of
value on the input channels.

So suppose v = 〈i1, . . . , in〉 is a sequence of inputs consistent with Ξ (i.e.
the sequence of channel names is in Ξ.) fd(v) then equals t ↓ d where t is
the unique output maximal trace produced by Lemma ?? relative to input
sequence v starting from the empty trace.

58

Suppose there were two input trace s and t in which all the individual
channel sequences were the same but for which fd(t) and fd(s), as defined
above, are different. We may assume that s and t (necessarily the same
length) are as short as possible and furthermore have, subject to this, as
long a common prefix as possible. We can write s = u 〈̂a 〉̂ v and t = u 〈̂b 〉̂ v ′

for some a 6= b. Observe that s ′ = u 〈̂b, a 〉̂ v ′ is consistent with Ξ where
v ′ = v−〈b〉, and so is s ′′ = u 〈̂a, b 〉̂ v ′ by applying the definition of confluence
to s 〈̂a〉 and s ′. The fact that s ′ and s ′′ agree with t and s for as long as
they do implies that fd(s ′) = fd(t) and fd(s ′′) = fd(s).

Now observe that if we run ∆(P) \ (O \ {| d |}) with the inputs s ′ then
it can produce either fd(t) or fd(s) as outputs, with the inputs of b then a
being consecutive events. The first is because the buffer may choose to pass
all inputs directly to P , which executes exactly the sequence of behaviours
it does in computing fd(s ′). The second is because the buffer might hold the
value b until immediately after P inputs a, so that the trace P executes is
the same as in calculating fd(s ′′).

In these two behaviours, the OD process ∆(P) \ (O \ {| d |}) has exactly
the same trace until the input of b then a in these two behaviours, and after
that the behaviours are output maximal driven by the rest of the inputs in
s ′: the output maximal continuation of the trace u 〈̂b, a〉 is not unique. this
contradicts Lemma ??, proving that the fds do indeed depend on only the
various input sequences, not the order of their interleaving.

In order to show that P is functional we need show that after a general
trace s ,

• P can only output values d .x which are predicted by the corresponding
fd , and

• can only refuse to output when all the outputs predicted by all the fd ’s
have appeared.

It is sufficient to prove this for an arbitrary P \ (O \ {| d |}), since if
ever P can refuse to output when there is output pending on some channel d
then this hidden process has the same property. So we only have to address
this case.

It is easily shown to be equivalent the statement (*) that after every trace
s , if no further inputs are offered, P \ (O \ {| d |}), is prepared to output
precisely the balance of fd(s).

59

Again, if there were a trace s after which the above failed for P \ (O \ {|
d |}), there would be one with as few as possible events in before an output-
maximal tail. In other words, s = u 〈̂a 〉̂ v where a is the last input made
before it is forced (i.e. there is an output d .x available at the same point),
and subject to this u is as short as possible. Let w be the unique output
maximal extension of this trace for no further inputs: so u 〈̂a 〉̂ v ŵ is output
maximal beyond the a.

We can construct the unique output maximal trace of P starting from u
based on the inputs in 〈a 〉̂ v , and it will take the form u 〈̂d .x 〉̂ t . As earlier,
we observe that after ∆(P) \ (O \ {| d |}) has performed u (with nothing
ever buffered) and then a, and then an output maximal trace from there on:

• It might perform v ŵ because the buffer may pass a straight to P .

• It might perform 〈d .x 〉̂ (t − 〈a〉) because the buffer might hold a until
the point where it is input in t .

Uniqueness of output-maximal traces tells these two are the same.

Note that in performing u 〈̂d .x 〉̂ t , ∆(P) \ (O \ {| d |}) can only perform
unforced inputs within u, and therefore its non output-maximal prefix is too
short for it to be a counter-example to (*). It follows that the outputs of
〈d .x 〉̂ t are precisely the balance of fd(s); but we have already shown that
these are precisely the outputs of v ŵ , contradicting our assumption that it
is a counter-example to (*). Therefore (*), and (1)⇒ (4), are proved.

The great virtue of alternative (1) in the above theorem is that if P is
finite-state then this criterion can be checked finitely using a tool like FDR.
Of course the minimalist buffering used should help limit the state space
explored. An FDR check for the property of being output deterministic
follows essentially the lines set out in [20], which itself followed the check for
determinism in [12]. The following works for the case we need, namely with
a single output channel, but at the expense of a little more complexity it can
be adapted to the multiple case. We simply run two copies of P in parallel,
synchronising on inputs and not outputs, but forcing the two copies to make
the same output and deadlocking otherwise. To help in this the outputs o
of one of the P ’s are renamed injectively to disjoint events o ′. The property
is then equivalent to this combination refining the most nondeterministic

60

process than never deadlocks after the first of a pair of outputs: if

Spec = STOP ⊓ i?I → Spec
⊓ o?O → o ′ → Spec

Imp = (P ‖
I

P [[o
′
/o | o ∈ O]]) ‖

O∪O ′

Reg

Reg = o?O → o ′ → Reg

then P being OD is equivalent to Imp failures refining Spec.

9.3 Applications

It is obvious that we can use the characterisations of confluence and func-
tional behaviour above to check if a given process has one of these properties.

We now have the ability to tell if a given process (accepting wrt some
confluent Ξ) is functional without knowing the function(s) fd in advance. Of
course we may very well want to prove that some P is functional with respect
to a given set of fd . For example we can prove a process with one input and
one output channel is a buffer by showing it is functional with respect to the
identity function.

For any confluent schedule Ξ and any single function fd on the relevant
input streams, we can build the urgent implementation of fd , parameterised
by the various input streams, the sequence of input channels to date and the
output stream to date:

U (fd , is1, . . . , isn , i , o) =
d !(head(fd(is1, . . . , isn)− o))→

U (fd , is1, . . . , isn , o 〈̂head(fd(is1, . . . , isn)− o)〉)
<I fd(is1, . . . , isn) 6= o>I

2{cj?x → U (fd , is1, . . . , isj 〈̂x 〉, . . . , isn , i 〈̂c〉, o) | i 〈̂c〉 ∈ Ξ}

This is always a deterministic process, and for many functions it can be
simplified considerably. For example, for the identity function of one channel,
the initial state where all the sequence parameters are empty is equivalent
to COPY .

If P is FOP, accepting wrt Ξ and functional with a single output channel
d with function fd then

U ′(fd) = U ′(fd) ‖
Σ

P

61

where U ′(fd) = U (fd , 〈〉, . . . , 〈〉, 〈〉, 〈〉). This is because P must always be
prepared to communicate everything U ∗(fd) can on all traces allowed by the
latter.

We can extend this to a check on the function of P by extending U ′(f)
by allowing outputs when they are not wanted by f :

U +(fd , is1, . . . , isn , i , o) =
d !(head(fd(is1, . . . , isn)− o))→

U +(fd , is1, . . . , isn , o 〈̂head(fd(is1, . . . , isn)− o)〉)
<I fd(is1, . . . , isn) 6= o>I

(2{cj?x → U +(fd , is1, . . . , isj 〈̂x 〉, . . . , isn , i 〈̂c〉, o) | i 〈̂c〉 ∈ Ξ}

2 d?x → STOP)

U ∗(fd) = U +(fd , 〈〉, . . . , 〈〉, 〈〉, 〈〉)

We then get the following proposition, because every value that P outputs
is then known to be one consistent with fd . The extra option in U ∗(fd) means
that on the right hand side P is allowed to produce extra outputs at any stage
that are beyond those called for by fd . If the two sides are equal we know
that such outputs never appear.

Proposition 9.6 Suppose P is functional, FOP, accepting with respect to
confluent Ξ and has the single output channel d . Then the function of P is
f if and only if

U ′(f) = U ∗(f) ‖
Σ

P

We can check the functions of a functional agent with multiple output
channels by using the above on all the processes P \ (O \ {| d |}) for
d ∈ Outchans(P).

So if we define

COPY ∗ = (in?x → out !x → COPY) 2 (out?x → STOP)

we now know that in general a process P is a buffer if any only if both the
following hold:

• ∆(P) is output deterministic.

62

• COPY = COPY ∗ ‖
Σ

P .

This is a rather better finitary test for being a buffer than that in [20],
though it is related.

10 Conclusions

We have shown that there is a deep relationship between buffer tolerance and
functional agents. They are natural target specifications for weakly buffer
tolerant networks since if we can show (for such a network that N refines
some functional agent, then N ⋄ refines the most nondeterministic functional
agent for the same set of functions. We showed that networks of these agents
have a number of natural buffer tolerance properties, and finally showed that
they are essentially the only processes that are tolerant, with respect to the
property of being output deterministic, of the addition of input buffering.
This shows these are the only specifications sufficiently strong to specify
when output can appear and what value will appear on each channel, which
we can hope to prove of weakly (or leftwards) buffer tolerant systems.

We have also shown how deep inductive proofs can be used to demonstrate
a finitary characterisation of functional agents. These results bear compari-
son with the characterisations of noninterference given in [23, 17, 18], where
it is shown that deciding if a process can pass information between users can
be reduced to checking the determinism of a modified process. In that case
we check the determinism of the process with the most general model of a
high-level user in order to see if the nondeterminism it creates can be visible
to a low level one. In this paper the check is that the addition of arbitrary ex-
ternal buffering does not create nondeterminism in the relationship between
inputs and outputs.

The latter is obviously an appealing concept in the world of buffer tol-
erance, so the fact that it characterises functional agents simply emphasises
the importance of these.

The finitary check provided by Theorem 9.5 will be useful if checking that
a sequential component process, created in a language like CSP which does
not guarantee functional behaviour, actually has it. It will also be useful in
checking that a parallel composition of processes also has this property.

63

Recall that we showed how, if a network N had been proved deadlock
free using nondecreasing variant functions, then N ⋄ is also deadlock free. It
will be interesting to see if this has applications outside the world of CCNs.

11 Conclusions

In Part 1 of this paper we studied the definition of buffer tolerance and
discovered a variety of conditions on processes that are useful for reasoning
about it. We have a general result – Theorem 2.6 – about constructing
buffer tolerant networks and seen that it can naturally be applied to chains
and certain forms of tree network.

Theorem 2.6 requires rightward or leftward buffer tolerance. Rightward
buffer tolerance is not something we should expect to be true for the gener-
ality of processes with more than one input channel since having buffers on
the left will tend to make for a wider range of orders of inputs than when
they have been moved to the right. (This is not true of accepting processes.)
The same is true of processes with more than one output channel for leftward
buffer tolerance.

We showed in Part 2 that there is a deep relationship between buffer
tolerance, functional agents and confluence. Functional agents are natural
target specifications for weakly buffer tolerant networks since if we can show
(for such a network that N refines some functional agent, then N ⋄ refines
the most nondeterministic functional agent for the same set of functions.
We showed that networks of these agents have a number of natural buffer
tolerance properties, and finally showed that they are essentially the only
processes that are tolerant, with respect to the property of being output
deterministic, of the addition of input buffering. This shows these are the
only specifications sufficiently strong to specify when output can appear and
what value will appear on each channel, which we can hope to prove of weakly
(or leftwards) buffer tolerant systems.

We also showed how Milner’s concept of confluence was related to buffer
tolerance, both because confluent systems have natural buffer tolerance prop-
erties and because the idea allows us to take proper control of the idea of
functional agent.

As will be apparent from this paper’s bibliography, authors from a number
of communities have noticed aspects of the relationships between functional

64

behaviour and confluence with buffering and deadlock freedom. The author
has no doubt that there is more literature that he has not discovered. What
we have sought to do here is to systematise these ideas with the specific
objective of buffer tolerance in mind, and to bring it all firmly within the
process algebra framework.

We have also shown how buffering ideas can used to demonstrate a finitary
characterisations of confluence and of functional agents. These results bear
comparison with the characterisations of noninterference given in [23, 17, 18],
where it is shown that deciding if a process can pass information between
users can be reduced to checking the determinism of a modified process. In
that case we check the determinism of the process with the most general
model of a high-level user in order to see if the nondeterminism it creates
can be visible to a low level one. Both of our checks also took the form of
showning that placing the process under examination into an appropriate
context yields a deterministic (selectively so in the function case) process.

The failures divergences model is known [21] to be fully abstract with
respect to deciding if a process is deterministic. Therefore the results alluded
to in the previous paragraph, as well as the natural specification that model
provides of a buffer, indicate that it is a very natural home for reasoning
about buffer tolerance, and functional and confluent behaviour viewed in an
extensional as opposed to intensional way.

The fact that CSP models have a theory of refinement was important in
the way we defined buffer tolerance, but it may well be possible to reformulate
it without: for example weak buffer tolerance might become N ⋄⋄ ∼= buff(N).

There is almost certainly a lot more to discover about buffer tolerance, in
particular about the ways and pragmatics of using it in practice. This will
have to be the subject of future work.

Appendix: Notation

This paper follows the notation of [18], from which most of the following is
taken.

65

N natural numbers ({0, 1, 2, . . .})
Σ (Sigma): alphabet of all communications
τ (tau): the invisible action
Στ Σ ∪ {τ}
A∗ set of all finite sequences over A
〈〉 the empty sequence
〈a1, . . . , an〉 the sequence containing a1,. . . , an in that order
aω the infinite trace 〈a, a, a, . . .〉
s t̂ concatenation of two sequences
s \ X hiding: all members of X deleted from s
s ≤ t (≡ ∃ u.s û = t) prefix order

66

Processes:
µ p.P recursion
a → P prefixing
?x : A→ P prefix choice
P 2 Q external choice

P ⊓ Q , ⊓S nondeterministic choice

P ‖
X

Q generalised parallel

P \ X hiding
P [[R]] renaming (relational)
P >>Q chaining
P ⊲ Q “time-out” operator (sliding choice)
P [x/y] substitution (for a free identifier x)

Transition Systems:

P
a
−→ Q (a ∈ Σ ∪ {τ}) single action transition

P
s

=⇒ Q (s ∈ Σ∗) multiple action transition with τ ’s removed

P
t
7−→ Q (t ∈ (Στ))∗) multiple action transition with τ ’s retained

Buffering:

COPY deterministic one-place buffer
BUFF〈〉 the most nondeterministic buffer process
ZB〈〉 the most nondeterministic zero-buffer process
Inchans(P) input channels of P
Outchans(P) output channels of P
P⋄c> adds arbitrary buffering to output channel c
⋄c> P adds arbitrary buffering to input channel c
P⋄c> adds arbitrary buffering to unique output channel
⋄c> P adds arbitrary buffering to unique input channel
P∞c> (etc) adds unbounded buffer to (output channel c)
P >⋄>Q adds arbitrary buffering to chain operator
inbuff(P) adds arbitrary buffering to all input channels
outbuff(P) adds arbitrary buffering to all output channels
buffP adds arbitrary buffering to all (external) channels
N ⋄C adds arbitrary buffering to all channels in C
N ⋄ adds arbitrary buffering to all internal channels C
N ⋄⋄ adds arbitrary buffering to all internal and external channels C

67

Acknowledgements

This work was inspired by Philippa Hopcroft and Guy Broadfoot who per-
suaded me it was needed from a practical standpoint, and by Mark Joseph’s
lecture on asynchronous CSP at the 25 years of CSP meeting in July 2004.
Both he and Samson Abramsky helped me out with pointers to related work.
It was funded by a grant from US ONR.

References

[1] B. Boigelot, P Godefroid, B.Willems and P. Wolper, The power of
QDDs, Proceedings of SAS 1997.

[2] B. Boigelot and P. Wolper, Verifying systems with infinite but regular
state spaces, Proceedings of CAV 1998.

[3] E.W. Dijkstra and C.S. Scholten, A class of simple communication pat-
terns EWD643 in ‘Selected writings on computing’, Springer-Verlag
1982.

[4] Formal Systems (Europe) Ltd, FDR2 user manual and tutorial,
www.fsel.com/documentation/fdr2/html.

[5] M.C.W. Geilen and T. Basten, Requirements on the execution of Kahn
process networks, Proc. ESOP 2003, LNCS 2618

[6] P. Godefroid and D.E. Long, Symbolic Protocol Verification with Queue
BDDs Formal Methods in System Design 14, 3, pp257-271, 1999.

[7] M.H. Goldsmith and A.W. Roscoe, Transforming occam programs, in
The Designs and Application of Parallel Digital Processors, IEE Con-
ference Publication 298, 1988.

[8] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall 1985.

[9] M.B. Josephs, Receptive Process Theory, Acta Informatica 29, pp 17–31
(1992).

[10] M.B. Josephs, C.A.R Hoare and He Jifeng, A theory of asynchronous
processes, PRG-TR-6-89, Oxford University Computing Laboratory
1989.

68

[11] G. Kahn, The semantics of a simple language for parallel programming,
Information Processing ’74, pp 471–475, North-Holland 1974.

[12] G. Kahn and D.B. MacQueen, Coroutines and networks of parallel pro-
cesses, Information Processing ’77, pp 993–998, North-Holland 1977.

[13] R.S. Lazić, A semantic study of data independence with applications to
model checking, Oxford University D.Phil thesis 1999.

[14] R. Manohar and A. Martin, Slack elasticity in concurrent computing,
Proc. MPC ’98, LNCS 1422, 1998.

[15] A. Mazurkiewicz, Concurrent program schemes and their interpretation,
TR DAIMI PB-78, Aarhus University 1977,

[16] R. Milner, A calculus of communicating systems, LNCS 92, 1980.

[17] R. Milner, Communication and concurrency, Prentice-Hall 1989.

[18] A.W. Roscoe, CSP and determinism in security modelling, Proc. IEEE
Symposium on Security and Privacy, IEEE Computer Society Press,
‘995.

[19] A.W. Roscoe, The theory and practice of concurrency, Prentice-Hall,
1998.

[20] A.W. Roscoe, On the expressiveness of CSP refinement checking, To
appear in FAC (special issue related to AVOCS ’03).

[21] A.W. Roscoe, Finitary refinement checks for infinitary specifications,
Proceedings of CPA 2004 (IOS Press).

[22] A.W. Roscoe, Revivals, stuckness and responsiveness, available from
www.comlab.ox.ac.uk/oucl/work/bill.roscoe/pubs.html.

[23] A.W. Roscoe and N. Dathi, The pursuit of deadlock freedom, Information
and Computation 75, 3, pp 289-337 (1987).

[24] A.W. Roscoe, J.C.P. Woodcock and L. Wulf, Non-interference through
determinism, JCS 4, 1, pp 27–54, 1996. (Revised from LNCS 875, Proc
ESORICS 94).

69

