
APC 2005

Confluence thanks to extensional determinism

A.W. Roscoe 1,2

Oxford University Computing Laboratory
Wolfson Building, Parks Road

Oxford OX1 3QD, UK

Abstract

A process is extensionally deterministic if, after any trace s and given any event a,
it is either certain to accept or certain to refuse a (stably) after s. We show how
several process algebras are capable of expressing this property and how they agree
on the equivalence of deterministic processes. A number of important properties of
processes P , including confluence, can be captured in terms of the determinism of
some context C [P ].

Key words: determinism, confluence, process algebra, CCS, CSP

1 Introduction

The first reaction of those used to thinking operationally about processes will
naturally be to try to understand questions about them in that way. Op-
erational semantics explain naturally how nondeterminism arises in process
algebra: either through the uncertainty caused by the availability of τ actions
or through ambiguous branching on actions. It is therefore natural to come up
with an operational characterisation of determinism, examples being the ban-
ning of τ actions and ambiguous branching, and Milner’s concepts of confluent
and weakly determinate processes.

Process algebraists are familiar with the issue of deciding just when two
nondeterministic processes are equivalent: one of our problems has been the
tremendous range of congruences that make sense for that purpose. This short
paper shows that we can agree about the rest of the processes, namely the
deterministic ones, and gain insight in one formalism from the results and
definitions known about another.

1 The work reported in this paper was supported by a grant from US ONR
2 Email: bill.roscoe@comlab.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Roscoe

CSP has long (e.g., [1],[2]) provided what we can term an extensional
definition of a deterministic process: one that is divergence-free, and never has
both the trace s 〈̂a〉 and the failure (s , {a}). Under a standard interpretation
of what it means to interact with an LTS, this precisely corresponds to the
statement that, after any trace s and for any event a, if {a} is offered, that
either it is certain a will occur or it is certain it will be refused stably. It is
most naturally decided in terms of the failures-divergences representation of a
process. There are several algorithms for deciding whether or not a finite-state
process is deterministic: see [6],[7]. The failures-divergences model is [8] fully
abstract with respect to the question of whether a process is deterministic.

This definition of determinism transfers to any language with an LTS-
based semantics since the sets of failures and divergences of a process are
easily calculated from the LTS. In particular it makes sense for CCS, or more
comfortably CCS in which unguarded recursions are banned, or are (following
Walker [11]) labelled ⊥ and treated as divergent. It also translates into the
language of testing [3]: a process P is deterministic if and only if

P may t ⇔ P must t

if t is of the form s 〈̂ω〉, for s a finite trace and ω the “success” flag. It is
straightforward to verify that, over LTS’s, these two definitions are equivalent.
Both support the informal description of determinism as the property of being
reliably testable: the same test on different occasions will yield the same result.

They are a little different from Milner’s concept of weak determinacy [4],[5],
which is that if P

s
=⇒ Q and P

s
=⇒ Q ′ then Q and Q ′ are weakly bisimilar.

But not much different: if P is divergence-free then this is equivalent too.

It is well known in both process algebras that two deterministic/weakly
determinate processes are equivalent/weakly bisimilar if and only if they have
the same set of traces. We can conclude that in CSP and CCS:

• The sets of extensionally deterministic processes (namely the deterministic/
divergence-free weakly determinate ones) are in effect the same.

• Both process algebras are capable of identifying them, and have (perhaps
modulo an initial τ) the same equality theory for them.

We exploit this “confluence” of CCS and CSP in the rest of this paper.

2 Security

[10],[6] identified the provable lack of information flow from H to L (sets that
partition P ’s alphabet) with the determinism of the lazy abstraction LH (P)
(where the events of H are concealed but made available to P nondeterminis-
tically rather than eagerly as they are in conventional hiding). A natural way

2



Roscoe

of describing LH (P) is as (P ‖
H

ChaosH ) \ H , where

ChaosH = STOP u ?x : H → ChaosH

is the most nondeterministic divergence-free process over H . We always as-
sume P is divergence free in this section.

The strict treatment of divergence in CSP causes a problem: if an infinite
sequence of H events occur without an L event it throws the value of the CSP
term above to bottom. The solution to this in CSP has been to postulate
the divergence to be absent, for example by using the stable failures model to
calculate the above value. There is an alternative arising from the confluence
of process algebras.

Proposition 2.1 The lazy abstraction LH (P) is deterministic if and only
if the process (P ‖

H
ChaosH ) \ H (interpreted in the standard operational

semantics of CSP) is weakly determinate.

For various reasons ChaosH cannot, in CCS, be said to be the most non-
deterministic process. It would be interesting to investigate whether the ab-
straction definition (P ‖

H
ChaosH ) \ H (either with the above or some CSP-

equivalent but CCS-inequivalent definition of ChaosH ) has properties in CCS-
style equivalences which are analogous to the other uses lazy abstraction has
in CSP (see Chapter 12 of [6]).

3 Confluence and functionality

In [4],[5], Milner introduced the idea of a confluent process: P such that if

P
s

=⇒ Q1 and P
t

=⇒ Q2 then there exists R with Q1
t−s
=⇒ R and Q2

s−t
=⇒ R

where s − t is the trace consisting of s with the events of t deleted according
to multiplicity from the beginning. For example

〈a, b, c, c, b, a〉 − 〈d , c, b, a, c〉 = 〈b, a〉

We may clearly broaden this to encompass the two R’s being different but
weakly bisimilar. Confluence is easily seen to imply weak determinacy. This
means

• Two confluent processes are weakly bisimilar if and only if they have the
same traces.

• A process is confluent if and only if it is weakly determinate and has a
confluent trace set (namely one which has s (̂t − s) if it has s and t).

Confluent processes have many attractive properties. In [9] the author
established that they are useful tools in the area of buffer tolerance (the study

3



Roscoe

of when we can establish properties of buffered systems by checking their
buffer-less analogues). The following proposition is taken from there.

Proposition 3.1 The process P is confluent and divergence-free if and only
the process C ∗[P ], in which a one-place inwards-pointing buffer is placed on
every individual event of P, is extensionally deterministic.

The “only if” part of this result is a straightforward consequence of stan-
dard properties of confluent processes (in fact, if P is confluent, then so is
C ∗[P ]). The “if” part consists of showing first that P itself is deterministic,
and then showing that its trace set is confluent: any failure of this generates
a piece of externally-visible nondeterminism in C ∗[P ]. The correspondence of
CCS and CSP for extensionally deterministic processes easily establishes that
the above also holds in CCS. In fact the proof can be adapted to establish the
following slightly stronger result.

Proposition 3.2 P is confluent if and only if C ∗[P ] is weakly determinate.

In [9] the author derived a similar result for functional processes: ones
where each output stream is a prefix of a function of the input streams, which
cannot refuse to input when there is no output pending and which cannot
refuse to output when there is. It was shown there that (modulo a requirement
that its structure of inputs is confluent) a process is functional if and only if
putting an unbounded deterministic buffer (this time appropriately oriented)
on each input and output channel creates a deterministic process. A finitary
characterisation in terms of output determinism, where the ability to output
and the value of each channel’s output is completely determined by the trace,
was also given. For example, a process P with two channels is a buffer (in the
usual CSP sense [6], which makes sense widely) if and only if

BT [P ] = COPY and COPY >>P is output deterministic.

where COPY is a one-place buffer and BT [P ] places P in parallel with a pro-
cess that transmits external inputs to P and P ’s outputs to the environment,
ensuring that the lengths of its input and output traces differ by at most 1.
This is straightforward in CSP thanks to the presence of many-way synchro-
nisation. However the following definition works (up to syntax translation) in
both CCS and CSP.

BT [P ] = P [left ↔ a, right ↔ b]T

T = left?x → a!x → b?y → right !x → T

2 b?y → right !x → left?x → a!x → T

BT [P ] = COPY shows that the function that P computes (which exists by
the output determinism condition) is the identity function. The role of the

4



Roscoe

second clause in T (in the context of the check) is to ensure that P never
outputs more than one item per input. This gives a very finitary check of an
infinitary specification, which works equally well in CSP and CCS.

References

[1] Brookes S.D., C.A.R. Hoare and A.W. Roscoe, A theory of communicating
sequential processes, Journal of the ACM 31, 3, 560–599, 1984.

[2] Brookes, S.D., and A.W. Roscoe, An improved failures model for CSP,
Proceedings of the Pittsburgh seminar on concurrency, Springer LNCS 197,
1985.

[3] de Nicola, R., and M. Hennessy, Testing equivalences for processes, TCS 34,
1, 83–134, 1987.

[4] Milner R., “A calculus of communicating systems”, Springer LNCS 92, 1980.

[5] Milner R., “Communication and concurrency”, Prentice Hall, 1989.

[6] Roscoe, A. W., “The Theory and Practice of Concurrency,” Prentice Hall
Series in Computer Science, Prentice Hall Publishers, London, New York
(1998), 565pp. With associated web site
web.comlab.ox.ac.uk/oucl/publications/books/concurrency/.

[7] A.W. Roscoe, Finitary refinement checks for infinitary specifications, Proc
CPA 2004. Obtainable from
web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/96.pdf.

[8] A.W. Roscoe, Revivals, stuckness and reponsiveness, Unpublished manuscript
(2005) Obtainable from
web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/105.pdf.

[9] A.W. Roscoe, The pursuit of buffer tolerance, Unpublished manuscript (2005)
Obtainable from
web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/106.pdf.

[10] A.W. Roscoe, J.C.P. Woodcock and L. Wulf, Non-interference through
determinism, Journal of Computer Security 4, 1, 27–54, 1996.

[11] D.J. Walker, Bisimulation and divergence in CCS, Information and
Computation 85 pp202–241 (1990).

5

http://web.comlab.ox.ac.uk/oucl/publications/books/concurrency/
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/96.pdf
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/105.pdf
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/106.pdf

	Introduction
	Security
	Confluence and functionality
	References

