Machine-Verifiable Responsiveness

J.N. Reed!, A.W. Roscoe?, and J.E. Sinclair?

! Armstrong Atlantic State University, Savannah Ga, US
Email: Joy.Reed@cs.armstrong.edu
2 University of Oxford, UK
Email: Bill.Roscoe@comlab.oxford.ac.uk
3 University of Warwick, Coventry, UK
Email: janeQdcs.warwick.ac.uk

Abstract. In a system of inter-operating components, individual com-
ponents may use services provided externally and will require assurance
both of appropriate functionality and of responsiveness. We have de-
veloped properties which capture the notion of non-blocking responsive
behaviour, together with machine-based checks implemented in the CSP
model-checker, FDR. In this paper we illustrate the use of these prop-
erties in their application to a specific example, and provide a detailed
analysis of the representation of these and similar properties. To this
end we develop a new model of CSP with respect to which they are fully
abstract.

Keywords: responsiveness, CSP, model-checking.

1 Introduction

The historic focus of formal verification of component-based systems has been
to reason about the behaviour of a system based on the collective behaviour of
its components. Typical inference rules allow the derivation of properties of an
entire system from individual properties of its components. However in certain
sorts of systems developed today, such as distributed services, it is more natural
to reason from the point of view of an individual component. In particular, we
want to reason about the effect on the behaviour of one component as a result
of its interactions with another, perhaps independently developed, component.

Our work addresses the specific issues of specifying and verifying responsiveness,
specifically, the requirement that one component will not cause another one to
deadlock by not responding to it when expected. This is not equivalent to de-
manding that the parallel combination of the two components be deadlock-free.
Rather, we require that a specific process P is itself not blocked by interact-
ing process) when P could have otherwise progressed. Ensuring responsive

t The work of authors Reed and Roscoe was partially supported by the US Office of
Naval Research.

behaviour is of particular importance in systems of a critical nature or where
guaranteed service is required.

In [RSR04], we defined a binary relationship between processes which we called
RespondsTo, which characterises a desirable and mechanically-verifiable property
of responsiveness for distributed components: () is responsive to P if and only
if () does not cause P to deadlock, and furthermore, no refinement of ¢) causes
any refinement of P to deadlock. The notation used is CSP, with model checking
provided by the FDR tool. We showed that refinement-closure of the property
is crucial. Once it is verified that @) responds to P, no further verifications of
this property need be made for any valid refinements of or P. Both P’s and
@’s developers know that any valid modifications of @ will desirably respond to
any valid modifications made to P.

The earlier paper [RSR04] concentrated on the theory of these properties in
isolation. Here we provide an example illustrating how the theory can be used in
practice, and provide a detailed comparison with some related work [FHRR04],
shedding significant new light on the latter and yielding a new model for CSP.

Section 2 provides a brief overview of CSP. Section 3 gives failures-based defini-
tions for our concept of responsiveness. In Section 4 we give an example of an
on-line shopping network. Section 5 provides the theoretical comparison. Sec-
tion 6 presents conclusions and relations to other work.

2 An introduction to CSP

CSP [Ho0a85,R0s98] models a system as a process which interacts with its envi-
ronment by means of atomic events. Communication is synchronous: an event
takes place precisely when both process and environment agree on its occur-
rence. This, rather than assignments to shared variables, is the fundamental
means of interaction between agents. An overview of the syntax of CSP is given
in Appendix A.

A related series of semantic models capture different aspects of observable be-
haviours of processes. The simplest semantic model is the traces model which
characterises a process as a set of all its finite traces, traces(P), representing
observable sequences of events it can perform. These events are drawn from a
set X, containing all possible communications for processes in the universe of
consideration. The traces model is sufficient for reasoning about safety proper-
ties, but not liveness properties. In this paper, we use the stable failures model
in which a process P is modelled as sets of traces and failures. A failure consists
of a pair (s, X) with s a finite trace of events drawn from X possibly followed
by the termination signal v’ and X a subset of events of X¥'. Here, X denotes
the set of all communication events together with v'. (In general, if A C X, then
AY will be used as an abbreviation for AU {v'}.) The pair (s, X) is a failure if

P may engage in the sequence s and then refuse all of the events in X. The set
X is called a refusal.

A process P is a refinement of process S (S C P) if any possible behaviour of P
is also a possible behaviour of S:

failures(P) C failures(S) A traces(P) C traces(S)

Intuitively, suppose S (for “specification”) is a process for which all behaviours
it permits are in some sense acceptable. If P refines S, then any behaviour of
P is as acceptable as any behaviour of S. S can represent an idealised model
of a system’s behaviour, or an abstract property corresponding to a correctness
constraint, such as deadlock freedom. A wide range of correctness conditions
can be encoded as refinement checks between processes. Mechanical refinement
checking is provided by the model-checker, FDR [For].

All our examples are divergence-free, meaning that the F (stable failures model)
representation of a process is essentially equal to that in the more usual failures-
divergences model [Ros98]. Checks for divergence-freedon can also be madein
FDR.

3 Responsiveness

In the following descriptions, P and @) represent processes, with P regarded as
the requesting (client) process which requires @ to respond in a non-blocking
manner. We use J to denote the shared alphabet of P and (), that is, the set
of events in which they must both participate. We also assume that there is
no other member of ¥ which both P and @ are capable of communicating.
Thus P |[J]| @ will, in this paper, always be the same as Hoare’s alphabetised
parallel. Where convenient we will refer to their alphabets as aP and a@, so
that J = aP NaQ.

For @) to be suitably responsive to P, whenever P requires co-operation from @
in an event j € J, must be willing to participate (after possibly completing a
sequence of its own events).) must not cause deadlock, although we allow the
possibility of P behaving as it chooses. If P is happy to engage in any one of a
set of joint events,) must be willing to engage in at least one of these.

3.1 Failures-based formulation of responsiveness properties

Our formal definition of responsiveness is given in CSP over F. It requires that,
at any point in the joint execution of P and @, if P demands participation in a
set of joint events, () complies for some non-empty subset of the events. In this
definition:

v’ is the special termination event on which all CSP parallel operators effec-
tively synchronise (distributed termination);

J¥ is the joint alphabet with the v" added;

— 4nitials(P) is the set of all initial events in which P may engage;

P/s is the process which behaves as P would after execution of trace s;

- s } A is the subsequence of s formed by restricting s to elements of set A.

Definition 1. For processes P and @) with joint alphabet J, Q RespondsTo P
iff for all s € (aPUaQ)*, X:

(s aP, X) € failures(P) A (J' Ninitials(P/s)) — X # {} =
(s aQ, (JY Ninitials(P/s)) — X) ¢ failures(Q)
O

Given any failure (¢, X) of P, the set (J¥ N initials(P/t)) — X describes a joint
event set in which P may demand participation. Thus ¢ may not refuse the
whole of this set after any trace u such that u) J¥ =t} J¥.

In [RSR04] we showed that the above property is the weakest refinement-closed
strengthening of a simpler property RespondsToLive (first investigated in [RS01])
which says that P and @ operating in parallel deadlock on their shared commu-
nications only if P could deadlock on them on its own. A binary property, H, is
refinement-closed if whenever H (P,) holds, then H(P', Q") also holds for all
refinements PC P/, Q C Q.

Definition 2.) RespondsToLive P means that for every trace s
(s,JY) € failures(P ||; Q) = (s} aP,J¥) € failures(P)
0O

An important aspect of our responsiveness properties is that they are mechan-
ically verifiable. We have shown [RSR04] that both properties RespondsTo and
RespondsToLive may be formulated as machine-checkable assertions suitable for
verification as refinements. These results have been generalised by Roscoe [Ros03]
who describes techniques for translating more-or-less arbitrary predicates on a
process into refinement checks. If a property is closed and refinement-closed it can
be formulated as a machine-checkable assertion of the form SPEC C G(P). A
distributive predicate can be captured as an assertion of the form F(P) C G(P),
again machine-checkable. Here, F' and G are CSP contexts, that is, process ex-
pressions which may involve process variable P.

Suppose process P makes a request to a server, after which P is happy to deal
with either of two different responses.

P = request — (responsel — P [response2 — P)

The [operator represents an external (deterministic) choice. Process @ offers
only the service indicated by responsel.

Q = request — responsel — @

P is prepared to accept different responses and will regard @ as a suitable
service since @ can supply one of the possible acceptable patterns. P || @ runs
successfully (that is makes progress) without deadlocking on events they have in
common: X = {request, responsel, response2}. Thus we regard) as responsive
to P. In this particular case, P is also responsive to Q.

If P makes an internal choice between the replies:

P = request — (responsel — P [| response2 — P)

then @ should no longer be regarded as responsive to P, since if P chooses only
response2, it would be forever blocked. From @’s perspective, it is also the case
that P is not responsive to it.

In general, responsiveness is not symmetric, nor does it imply that processes can
always progress. Below P is defined using internal choice. It may choose either
to engage in z or to SKIP (indicating clean termination). @ is always prepared
to offer event z.

P =(z— P) N SKIP
Q=(z— Q)

Q) is regarded as being responsive to P, because @ is always willing to engage in
z with P. However, at any time P can choose not to engage in £ when expected,
thereby blocking @. Hence P is not responsive to Q.

4 A Simple On-line Shopping Network

This example of an on-line shopping network is similar to that used by Fournet
et al. [FHRRO4]. This choice is made specifically to allow direct comparison
with the work on stuck-freeness. A Customer interacts with a trolley, which in
turn acts as intermediary among the customer, warehouse, and billing service.
We deal with behaviour of components only in terms of their communications
events.

We provide stylised FDR scripts for a network consisting of four processes:
Customer, Trolley, Warehouse, and Invoicer. Customer and Trolley commu-
nicate on shared channels belonging to CTevents defined below. Trolley and
Warehouse communicate on shared channels belonging to T'Wevents, and Trolley
and Invoicer communicate on shared channels belonging to Tlevents. For data
type T and channel ¢, ¢.T is the set of all events associated with c.

TWevents Warehouse

@ CTevents @
Iet%‘

Fig. 1. On-line Shopping Network

CTevents = {open, close, checkOut, cancel, invoice} U addItem.Item U removeltem.Item
TWevents = { commitReserve, ack, cancelOrder} U reserveltem.Item U cancelltem.Item
TIevents = processOrder. Wkorder U processInvoice.Invoice

A customer non-deterministically chooses to add or remove items from the set
Item, and at any time may terminate the session with an option of cancelling
the purchase:

Customer = open —
(Mitem: Item addItemlitem — Customer)
M (Mitem: item removeltem!item — Customer)
M checkOut — invoice?r — close — SKIP
M cancel — close — SKIP

The trolley services the customer, by reserving or unreserving requested items
from the warehouse. Upon checkout by the customer, the trolley commits to
the warehouse and requests a workorder from the invoicer, which it passes on
as an invoice to the customer. We abstract work orders and invoices with non-
deterministic choice over data types Wkorder and Invoice.

Trolley = open —
addItem?item — reserveltem!litem — Trolley
O removeltem?item — cancelltem!item — Trolley
O checkOut — commitReserve — ack —
(My: Wkorder processOrderly — processInvoice?x —
(Ma: nwoice tnwvoicelz — close — SKIP))
O cancel — cancelOrder — ack — close — SKIP)

The warehouse reserves or releases items (as directed by the trolley). It termi-
nates after receiving either a commit or cancel, which it acknowledges. A faulty
warehouse behaves similarly, but does not acknowledge a commitReserve:

Warehouse = reserveltem?item — Warehouse
O cancelltem?item — Warehouse
O commitReserve — ack — SKIP
O cancelReserve — ack — SKIP

FaultyWarehouse = reserveltem?item — FaultyWarehouse
O cancelltem?item — FoultyWarehouse
O commitReserve — SKIP
O cancelReserve — ack — SKIP

The Invoicer takes in a request to process an order, and responds back with a
work invoice:

Invoicer = processOrder?x — My, wiinvoice ProcessInvoicely — Invoicer

The shopping network is made up of the trolley, warehouse, and invoicer, with
pairwise communication on their respective shared channels:

ShopNet = (Trolley || pyepents WoreHouse) || 1yopents INVOICET

Appendix B contains the definition for G(P, Q) defined for processes P with
alphabet H and process) which synchronises with P on J. The appendix also
contains a specification SPEC defined in terms of sets H and J. @) RespondsTo
P is true exactly when the FDR validates the assertion: SPEC C G(P, Q)

This check confirms that if P is taken as Customer, () as ShopNet, H as
Customer’s events (CTevents), and J as CTevents shared between Customer
and ShopNet, then ShopNet RespondsTo Customer. Taking P as Trolley with
H as the union of CTevents, TWevents, and Tlevents, and) as the Warehouse
with J as TWewvents, a check confirms that Warehouse RespondsTo Trolley.
Analogously Trolley RespondsTo Warehouse, and Invoicer RespondsTo Trolley.
If FaultyWareHouse replaces Warehouse then ShopNet does not respond to
Customer, with FDR reporting failure. The source of the fault is revealed upon
checking that FaultyWareHouse RespondsTo Trolley, which also fails.

Invoicer is modelled as a server, which is always ready to accept requests. Trolley
does not respond to Inwvoicer, since Trolley terminates after the session with
Customer, and indeed, may never even make a request (if Customer does not
check out). Here the server is always prepared to respond to clients, but the
client is allowed to terminate at will giving no notice to the server. We could have
chosen to design and validate that the trolley and the invoicer each be responsive
to the other. The trolley could inform the invoicer before terminating, so that
the invoicer could then stop blocking on their shared channel.

Refinement-closure of RespondsTo allows developers of Trolley, Warehouse, and
Invoicer to refine their implementation without worry that a modified compo-
nent (satisfying standard refinement rules) would cause the overall system to be
non-responsive to customers. Significantly, this offers component-side develop-
ment which preserves responsiveness.

The shopping network might use distributed services, for example, the trolley
might search dynamically for the best provider of individual items. If specifica-
tions of behaviour for warehouse services are published, the trolley could validate

them on-the-fly in order to determine if their behaviours were responsive. Indeed,
the warehouse and trolley could exchange behavioural specifications and negoti-
ate before committing to interaction. Importantly it is not necessary to check the
whole network to verify responsiveness, only the relevant pairwise interactions.

5 Comparison of models

Since doing our original work on the topic of responsiveness, some similar work
by Fournet et al has appeared [FHRR04]. That work was based on a slightly
different motivation, namely ensuring that a network of processes does not reach
a state from which no further progress can be made while one of them is still
requesting something from another. Comparing our work and theirs provides a
fascinating insight into the relative qualities of CCS and CSP for specification,
as well as illustrating their similarity.

The intention in [FHRRO04] is that a combination does not terminate leaving
one partner hanging. They call the absence of such behaviour stuck-freeness. It
is noteworthy that this is not really an issue in CSP thanks to the termination
signal v': the distributed termination condition of CSP means that the network
can only seem to have terminated when they both actually have. This simply
results from Hoare’s decision to separate semantically between deadlock and
successful termination: a stuck combination will appear as deadlock, whereas a
pair that has terminated normally will have signalled v'.

It follows that the absence of the type of behaviour identified as bad in [FHRR04]
follows from a standard check for deadlock freedom (naturally, permitting pro-
cesses to do nothing further after v').! This is at the expense of signalling ter-
mination via v/, but that seems to us to be a distinction worth making.

The reason why simple termination-based reasoning will not work for RespondsTo
is that we forbid some behaviours that are not final. We forbid one process from
refusing another even when one, other, or even both processes have other things
they can do. So we mind even if the refusing process has the potential, via other
actions external to the binary parallel we are considering, to do more things and
then reach a position where it can now satisfy its partner’s request.

Nevertheless the way [FHRR04] chooses to address their issue is remarkably
similar to the way we have addressed ours. They specify that the network N
never reaches a state in which no further action can happen (i.e., it is deadlocked)
but some P € N is still offering communications to another @) € N.

! There would be one difference: the deadlock check would regard a state in which
every single component process has individually deadlocked without terminating as
incorrect even though there is no stuck-ness. This is impossible.

Over a pair of processes P | @) this is conceptually equivalent to saying that any
failure of our RespondsTo condition (in either direction) only occurs when either
P or @) has some alternative action to the interactions in this parallel.

Just as we, in [RSR04], observed that RespondsToLive is not refinement closed,
they observe that their condition cannot be specified in a refinement-closed man-
ner over the failures model. While our reaction was to strengthen the condition to
the weakest refinement-closed one which implied the original, namely Respond-
sTo, theirs was to devise a special equivalence over processes to support it. They
call this conformance and in it two processes are equivalent if they have identical
behaviours of the form (s, X, Y'), in which (s, X) is a failure where, in the same
stable state which witnesses the failure, every event from Y is available. They
restrict Y to be of size 0 or 1. Necessarily, of course, X N'Y = (.

We make two observations about the conformance equivalence.

— Firstly, if the restriction to | Y | < 1 were removed, one gets a different
congruence which is equivalent to the Ready-Sets model of Olderog and Hoare
[OHS86]. In that, processes are associated with sets of pairs (s, A) in which
s is a trace and A is the set of events which are on offer in some stable
state reachable on s. In the absence of the | Y | < 1 assumption, every triple
(s, X,Y) extends to a maximal one in which XUY = ¥, and it is clear that
the two models will then be the same identifying Y with the ready set.

— Secondly, conformance can be developed into a model which is fully abstract
with respect to properties like stuck-freeness and precise operational char-
acterisations of RespondsTo.

The stable revivals model In order to turn the idea of conformance into a
CSP model we separate the two cases of ¥ = () (only necessary for deadlock
traces) and Y = {a}. The latter can be represented as a triple (s, X,a) for
a ¢ X. Since the a represents revival from the stable failure represented by
(s, X), that is what we shall call the triple.

On the basis (already adopted in [Ros98] relating to the stable failures model)
that it is always a good idea to know a process’s traces? for reasons of safety
specification, our new model R equates a process with three components, re-
spectively

— The finite traces T (a prefix-closed nonempty subset of X*).
— The deadlock traces D (a subset of T).

2 It is possible to get a compositional version of either this model or the stable failures
model (see [Ros98]) without the trace component provided one omits the CSP in-
terrupt operator A. For this reason, the full abstraction result quoted below is only
true for the language including this operator.

— The revivals R, namely triples of the form (s, X, a) where s € ¥*, X C ¥
and ¢ € ¥ — X, such that R1: s " (a) € T, R2: (s,X,a) € Rand Y C X
implies (s, Y,a) € R, and R3: (5,X,a) € R and b € X implies that either
(s,X,b) € Ror (s,XU{b},a) € R.

This yields a model which is a congruence for CSP and which yields the natural
fixed point under subset-least fixed points, like F. It is straightforward to recover
the F representation of any process from the R one: the new one is strictly less
abstract.

The most interesting point in it being a congruence arises in hiding: the triple
(s,X,a) € revivals(P) only gives rise to a revival of P\ Y if ¥ C X (because,
analogously with the usual CSP hiding operator, P \ Y is not stable unless P
refuses V). It follows that ¢ ¢ Y and therefore is not hidden — something which
would have caused a problem as we would have lost our next step.’

That this equivalence is weaker than ready sets is demonstrated by the following
example. Let ¥ = {a,b} and let

P = (a — Stop) 1 (b — Stop)

@ =Pn (a— StopO b — Stop)

These two processes are equivalent under conformance/stable revivals semantics,
since both can refuse any subset of {a} and offer b, or vice-versa. They are not
equivalent under ready sets since @ can refuse () and offer both a and b at the
same time.

Just as the concept of v/ in CSP gives a convenient solution not available in
CCS, the nature of the parallel and restriction operators in CCS makes stuck-
freeness rather more natural to specify there. As stated in [FHRRO04], it is that
no unsynchronised label of a sort local to the network can be available when
nothing else is in a stable state: it is thus definable as a property of the process
representing the network (unrestricted) rather than of the individual network
components.

The following definition captures this CCS style in language which is also ap-
propriate to CSP.

Definition 3. The process N is R-stuck-free with respect to the set of actions
A provided it has no revival of the form (s, X — A, a) with s € (X — A)* and
a € A.

Most interestingly, the mechanisation of the RespondsToLive specification we
presented in [RSR04] used a modified parallel composition of the pair, with
3 This problem means that one cannot, for example, modify this congruence so that

it records traces of length two or less after a refusal: the result would not be com-
positional under hiding.

much in common with the ordinary CCS one: parallel processes are enabled to
perform an unsynchronised event as an alternative to parallel ones.

Exactly the same thing could be done in CSP to test stuck-freeness for networks:
simply rename all synchronised events to both themselves and a special event
stuck as an alternative, which is not synchronised. The network is then stuck-free
if it has no revival (s, X' — {stuck}, stuck) for any trace s not containing stuck.

In order to formulate RespondsTo for R we need to extend the latter to in-
clude the termination signal v'. The traces component T is extended to include
members of the form s ™ (v'), where s € X* (recall that v ¢ X). The dead-
lock component D is unchanged: still members of X* (for a terminated process
is not deadlocked). A revival is of the form (s, X, a), where s € X¥*, X C ¥
and a € X¥. In other words, v’ is not recorded in the refusal set, but can be
the successor event a. This comes from the philosophy, described in detail in
[Ros98] that termination is a “signal” event: not one the environment can refuse
or which can meaningfully be offered as an alternative to another visible event.
If s ™ (v') € T then we specify (s,X,v’) € R: this states that a process which
can terminate does not have to offer any other alternative (even 7 implicitly).

The structure expressed here allows us to decide whether a process which can
terminate after trace s can refuse to do so. For then s € D or (s, X,a) € R for
some a # v': implicitly every revival with a # v implies the refusal of v .

Note that if P = (T, D, R) is a process represented in R we can easily calculate
(bearing in mind the conventions set out in [Ros98] for F):

failures(P) = {(5,X) | X C XY As € D}
U{(s " (v),X) | X C ¥ As™ (V) € T}
U{(s,X) | (5,X,a) € R}
U{(s, XU{V} |(s,X,a) ERNa #V}

The representation in the Stable Failures Model F of P is then (T, failures(P)).

Now we have extended our model, it is capable of giving a completely precise
definition of RespondsTo.

Definition 4. We say that @) R-RespondsTo P if for every trace s, there do
not exist (s} aP,X,a) € Rp and (s} aQ,Y) € failures(Q) such that a € J*
and J¥ C Xt UY. Here, Xt = X if a= v, and X U{V'} otherwise.

This precisely captures the concept of P having a communication it wants to
make with), but them being unable to agree on any.

This implies RespondsToLive over F since if (s, JY) € failures(P|[J]| Q) is
created by the maximal failures (s) aP,X) of P and (s} aQ,Y) of @, then
if P,Q satisfy the condition above, (s} aP, X) either comes from a deadlock

trace s} aP or a revival (s} aP, X,b) with b ¢ A. In the second case, by the
healthiness condition R2 above, and) R-RespondsTo P, we get that J C X. In
either case (s} aP,J¥) € failures(P).

Our new definition is very close to the original definition of RespondsTo over F.
The old definition says that if P can refuse X and do other things in J¥ besides
X, then @ cannot refuse them. Qur new definition, in fact, says precisely the
same except that it is now able to couple the “do other things” more closely to X:
they are necessarily from the same state. With this in mind it is straightforward
to see that the definition over F implies the one over R.

Both these implications are what we might have hoped for. Furthermore, if P is
deterministic in the usual CSP sense (with each process fully characterised by
its traces), all three conditions are equivalent. Note that in practical networks,
parallel components are nearly always deterministic.

RespondsTo is both refinement-closed and distributive over R.

In this section we have shown that the concept of responsiveness can be captured
more precisely in a model we have created specially for this purpose. Indeed, this
model is fully abstract with respect to both the natural operational characteri-
sation of this or alternatively that of stuck-freeness.

The question then arises of which model we should generally choose to reason
about RespondsTo. The obvious disadvantage of creating an ad hoc model to
capture a condition is that it requires new theoretical work, new tool support,
and places a substantial burden in ensuring that the rest of one’s development is
consistent with it. It also requires significant extra understanding on the part of
anyone using it. Since we believe that in the vast majority of practical cases it will
be possible to use the F version of RespondsTo, we think that pragmatically it is
best to use that as the first line of attack, holding more sophisticated models for
the rare cases where it is inadequate. As and when there is proper tool support
for the refusal testing model of CSP [Muk93], based on Phillips’s work [Phi87],
it will make sense to reformulate our conditions in that ([FHRR04] observe that
refusal testing can capture stuck-freeness*). For R is a weaker equivalence than
refusal testing, so the latter can express our properties precisely.

This section has described how the development of a new fully abstract model
for CSP has arisen from our work on responsiveness and its comparison to stuck-
freeness. Full details of the CSP semantics for this model are beyond the scope
of this paper but can be found in [Ros05] together with justification of the claim
of full abstraction.

4 Note that R is the strongest congruence which is weaker than both ready sets and
refusal testing.

6 Further remarks

In terms of the responsiveness property, the work most closely related is that
of Fournet et al. [FHRR04] and a detailed comparison of the two approaches
has been provided in the previous section. Other related work includes that of
Treharne and Schneider [TS99,TS00] in which sufficient conditions are devel-
oped to ensure that a CSP controller successfully drives a state-based B spec-
ification. Although in a different setting, this requires the B to respond when
called upon. Bolton and Lowe [BL03] investigate a class of non-standard refine-
ment notions, one of which coincides with our formulation of RespondsTo. In
an assume-guarantee setting, Amla et al. [AENTO01] develop a rule both sound
and complete (for safety and liveness properties) for reasoning about component
decomposition. The idea of nondeterministic blocking is not at issue here. In
contrast, we treat blocking as fundamental and undesirable.

We have developed a general property characterising responsiveness of interact-
ing components formulated in CSP which can be verified using the techniques
of FDR.. As shown in [RSR04], adding components which are responsive in
our sense never introduces deadlock. These results have application both for
component-side system development and for on-the-fly conformance checking
and/or selection of distributed services.

Our comparison of the responsiveness work to the CCS-formulated stuck-freeness
property has led to the development of the new CSP stable revivals model. It has
also helped illuminate the relationship between CCS and CSP. Further details
on the stable revivals model are given in [Ros05].

Future work is planned to include a larger case study which would also address
aspects such as performance. Additional work is also required to investigate
responsiveness in other settings, such as in the presence of divergence and for
infinite traces.

Appendix A: Introduction to CSP

We use the syntax and semantics from [Ros98]. The CSP language describes in-
teracting components of systems: processes whose external actions are the com-
munication or refusal of instantaneous atomic events. All the participants in an
event must agree on its performance. The following CSP algebraic operators are
used for constructing processes.

STOP is the CSP process which never engages in any event, never terminates
(deadlock).
SKIP similarly never performs any action, but instead terminates

CHAOS(A) is the most non-deterministic, divergence-free process with alpha-
bet A.

a — P performs event a and then behaves as process P. The same notation is
used for outputs (clv — P) and inputs (¢?z — P(z)) of typed values on
named channels, with ¢.T = {c.z | z € T}.

P[1Q is nondeterministic or internal choice. It may behave as P or) arbi-
trarily.

P [1Q is external or deterministic choice. It first offers the initial events of
both P and @ to its environment. Its subsequent behaviour is like P if the
initial action chosen was possible only for P, and similarly for). If P and
() have common initial actions, its subsequent behaviour is nondeterministic
(like).

I_Iw.X P(z) and Dw'X P(z) represent generalised forms of the choice operators
‘allowing indexing over a finite set of indices where P(z) is defined for each
¢ in X. ¢?z — P is shorthand for L1 c.z — P.

P ||x @ is parallel (concurrent) composition. P and @ evolve separately, but
events in X occur only when P and @ agree (i.e. synchronise) to perform
them.

P || @ is parallel composition, with P and @ synchronising on all events, that
is, on all of X.

P ||| @ represents the interleaved parallel composition. P and @ evolve sepa-
rately, and do not synchronise on their events.

P\ A is the CSP abstraction or hiding operator. This process behaves as P
except that events in set A are hidden from the environment and are solely
determined by P; the environment can neither observe nor influence them.

P[[z := y]] is the process formed by renaming z to y in P. Whenever P would
offer xz, this process instead offers y.

Failures/Divergences Model. A process P is modelled as a set of failures
and divergences. The set X' contains all possible communications events of pro-
cesses. The set ¥ = X U {v'}, contains a special event v that signals that a
process has terminated cleanly. A failure is a pair (s, X) for s a finite trace of
events of ¥V, and X a subset of events of V. It is understood that whenever v’
appears in a trace, it is the last event in the trace. The pair (s, X) € failures(P)
means that P may engage in the sequence s and then refuse all of the events in
X. The set X is called a refusal. The set divergences(P) is the set of traces on
which P can diverge, meaning perform an infinite unbroken sequence of internal
events.

Appendix B: Mechanical verification of RespondsTo

We paraphrase results from [RSR04]. We work in the CSP failures model and as-
sume that all processes are divergence-free (which can be mechanically checked).

Assume that P is a process with alphabet H and @) is a process which synchro-
nises on set J of events. We define functions G(P, Q) and SPEC such that @
RespondsTo P if and only if the FDR-checkable assertion succeeds:

assert SPEC C G(P, Q)

Let H* and H® be distinct, disjoint copies of H. Define the lazy abstraction
[Ros98] of @ to be the process which behaves like @ except that whenever @
can perform an abstracted event the new process has the choice of either not
doing it or making it invisible:

LQ=(Q |lg_, CHAOS(Y = J)) \ (¥ = J)
P* is a copy of P which can engage in o* € H* whenever P can engage in a:
P*=Plla:=0a*| a € HJ

Pt is a process which runs P and P* in parallel, with a regulator process
Reg*. This runs P and Px in a delayed lock-step manner, also ensuring that
whenever P* has demonstrates that there is something in initialsInJ* (P), say
a, then G(P, Q) only comes up with refusal sets X not containing a so that
initialsInJ¥ (P) — X is nonempty: these being the one of interest for the condi-
tion.

Reg” = Da.H a* — ((|:|b.H b— (a == b&Reg"))
' O (a € J)&a® — STOP
where a® € H® is a further separate version of a.
Pt =((P |l P*) llzupe Reg")l[a® :==a|a € J]]
Q RespondsTo P if and only if G(P, Q) = P! ||; LQ has no deadlock after an

odd-length trace whose last member is in J*, or in other words if and only if it
refines

Spec = (Da:J a* — ((1)
(|_|b:J b — Spec)
d
(sTor1(Q, , b — Spec)))
a
@, , ¢ = (STOPT1(O, , a— Spec)))) (2)

MsTopr (3)

The above specification provides three cases: (1) after odd length traces, if the
last element is in J, then something in J (the a from PT) must be offered, and it
does not care whether anything outside of J is offered or refused, (2) after odd
length traces, if the last element is not in J, then the specification does not care
what events are offered or refused, and (3) after even length traces, deadlock is
acceptable since it means that P has reached a state for which its set of initial
events is empty.

References

[AENTO01] Nina Amla, E. Allen Emerson, Kedar Namjoshi, and Richard Trefler.

[BLO3]

Assume-guarantee based compositional reasoning for synchronous timing
diagrams. Lecture Notes in Computer Science, 2031:465+, 2001.

C. Bolton and G. Lowe. On the automatic verification of non-standard
measures of consistency. In 6th International Workshop in Formal Methods,
Dublin, July 2003.

[FHRRO04] C. Fournet, C.A.R. Hoare, S.K. Rajamani, and J. Rehof. Stuck-free confor-

[For]

[Hoa85]
[Muk93]

[OHS6]

[Phi87]
[Ros98]

[Ros03]

[Ros05]
[RSO1]

[RSRO04]

[TS99]

[TS00]

mance. In Proceedings of the 16th International Conference on Computer
Aided Verification (CAV’04), LNCS 3114, pages 242-254. Springer, July
2004.

Formal Systems (Europe) Ltd. Failures Divergence Refinement. User Man-
ual and Tutorial. http://www.formal.demon.co.uk/fdr2manual/index.html.
C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
A. Mukkaram. A refusal testing model for CSP. DPhil Thesis, Oxford
University Computing Laboratory, 1993.

E.R. Olderog and C.A.R. Hoare. Specification-oriented semantics for com-
municatiing processes. Acta Informatica, 23:9-66, 1986.

I. Phillips. Refusal testing. Theoretical Computer Science, 50:241-284, 1987.
A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1998.

A.W. Roscoe. On the expressive power of CSP refinement. In Proceedings of
3rd International Workshop on Automated Verification of critical systems
(AVo(CS08), Southampton University, April 2003.

A W. Roscoe. Revivals, stuckness and responsiveness. In preparation, 2005.
J.N. Reed and J.E. Sinclair. Combining independent specifications. In
ETAPS-FASE 2001, European Joint Conferences on Theory and Practice
of Software. Fundamental Approaches to Software Engineering, pages 45—
59, Genoa, Italy, 2001. Springer.

J.N. Reed, J.E. Sinclair, and A.W. Roscoe. Responsiveness of interacting
components. Formal Aspects of Computing, 16(4):394-411, 2004.

H. Treharne and Schneider S. Using a process algebra to control B opera-
tions. In K. Araki, A. Galloway, and K. Taguchi, editors, Integated Formal
Methods 1999, pages 437-456, York, UK, June 1999. Springer Verlag.

H. Treharne and S. Schneider. How to drive a B machine. In J.P. Bowen,
S. Dunne, A. Galloway, and S. King, editors, Proceedings of ZB2000, LNCS
1878, pages 188209, York, UK, September 2000. Springer Verlag.

