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Abstra
tTerms su
h as 
onversational and stateless are widely used in the taxonomy ofweb servi
es. We give formal de�nitions of these terms using the CSP pro
ess al-gebra. Within this framework we also de�ne the notion of Servi
e-Oriented Ar
hi-te
ture. These de�nitions are then used to prove important s
alability propertiesof stateless servi
es. The use of formalism should allow re
ent debates, 
on
erninghow and whether web servi
es provide standardized a

ess to state, to progress morerigorously.1 Introdu
tionThere is 
urrently a debate within the web servi
es and Grid 
ommunities overwhether, and how, web servi
es should allow for a

ess to state. One view is \webservi
es. . . have no notion of state" [Vog03℄ while others have argued that the 
riti
alrole that state plays in distributed systems requires that it be addressed within theweb servi
es ar
hite
ture [FKNT02℄.The debate is hindered by a la
k of formality and 
larity in its dis
ourse. Thispaper 
ontributes by de�ning some of the key terms used in the debate, withinthe Communi
ating Sequential Pro
esses (CSP) [Hoa85℄ formalism. We hope moreprin
ipled 
omparisons between di�erent proposals to standardize a

ess to state 
anbe made in the light of these de�nitions.1.1 OverviewIn se
tion 2 we quote the existing natural language de�nitions used in the taxonomy ofweb servi
es. The following se
tion gives a series of de�nitions in CSP 
ulminating ina formal version of the same taxonomy. Se
tion 4 dis
usses some of the impli
ations ofthis formalized taxonomy. Se
tion 5 
on
ludes with a summary of the main �ndings.The �rst appendix presents our de�nitions in an alternative form that 
an be usedwith the CSP model 
he
ker, FDR. The se
ond appendix presents proofs of theoremsused in the paper.2 A taxonomy of state and servi
esIn [FFGT03℄ the following taxonomy of web servi
es is given:� A stateless servi
e implements message ex
hanges with no a

ess or use of infor-mation not 
ontained in the input message. A simple example is a servi
e that
ompresses and de
ompresses do
uments, where the do
uments are provided inthe message ex
hanges with the servi
e.� A 
onversational servi
e implements a series of operations su
h that the resultof one operation depends on a prior operation and/or prepares for a subsequentoperation. The servi
e uses ea
h message in a logi
al stream of messages todetermine the pro
essing behaviour of the servi
e. The behaviour of a givenoperation is based on pro
essing pre
eding messages in the logi
al sequen
e.Many intera
tive Web sites implement this pattern through use of HTTP ses-sions and 
ookies. 1



� A servi
e that a
ts upon stateful resour
es provides a

ess to, or manipulatesa set of logi
al stateful resour
es (do
uments) based on messages it sends andre
eives.[FFGT03℄ 
ontinues:When we talk in the third model about a servi
e that a
ts upon statefulresour
es we mean a servi
e whose implementation exe
utes against dy-nami
 state, i.e., state for whi
h the servi
e is responsible between messageex
hanges with its requesters. A servi
e that a
ts upon stateful resour
esmay be des
ribed stateless if it delegates responsibility for the manage-ment of the state to another 
omponent su
h as a database or �le system.Substantial modi�
ations of the wording used in the de�nitions o

urred betweenv1.0 and v1.1 of [FFGT03℄, perhaps indi
ating the diÆ
ulty of de�ning these 
on
eptsin natural language.A related de�nition is that of a servi
e in the 
ontext of Servi
e-Oriented Ar
hi-te
ture (SOA). [PWWR03℄ gives the following:A servi
e is a well-de�ned set of a
tions, it is self-
ontained, stateless,and does not depend on the state of other servi
es. . .Here, stateless means that ea
h time a 
onsumer intera
ts with a WebServi
e, an a
tion is performed. After the results of the servi
e invo
ationhave been returned, the a
tion is �nished. There is no assumption thatsubsequent invo
ations are asso
iated with prior ones.[W3C℄ adds:The des
ription of a servi
e in a SOA is essentially a des
ription ofthe messages that are ex
hanged. This ar
hite
ture adds the 
onstraint ofstateless 
onne
tions, that is where all the data for a given request mustbe in the request.3 Web servi
es in CSPIn this se
tion a series of de�nitions is given whi
h builds our model of web servi
esand their taxonomy.De�nition 3.1. Stateless 0(P), 8 s : tra
es(P) � P = P=sOur �rst attempt to de�ne the notion of statelessness of a pro
ess P says thatafter 
ommuni
ating any events, the pro
ess returns to its initial state.This de�nition is satisfa
tory only so long as a typi
al request-response operationis modelled as a single event. But we want to 
onsider the intera
tion of the serverwith ba
k-end stateful resour
es, whi
h usually o

urs between the request and re-sponse messages and therefore have to model the request and response as separateevents.
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3.1 ThreadsWe �rst de�ne a CSP pro
essW , whi
h is willing to a

ept any events on the 
hannelsresponse and request , provided the events alternate between request and response andbegin with request.De�nition 3.2. W = request?x !W 0W 0 = response?y !WWe also de�ne for 
onvenien
e �W as all request and response events.De�nition 3.3. �W = fjrequest ; repsonsejgWe now de�ne a thread.De�nition 3.4. Thread(P), P = P j[�W ℄jW ^initials(P) � fjrequest jgThus if a pro
ess P is a thread, it alternates between request and response events,and 
an do nothing until its �rst request is re
eived. Other than that, events mayo

ur at any time.3.2 Stateless ThreadsOur de�nition of a stateless thread is as follows, where where last(s) returns the lastevent in the tra
e s .De�nition 3.5.Stateless(P), Thread(P) ^8 s : tra
es(P) j last(s) 2 fjresponsejg � P=s = PThus a thread P is stateless if it always returns to its initial state after 
ommu-ni
ating a response event.3.3 S
alable ThreadsWe de�ne a further property threads may exhibit we refer to as s
alability.De�nition 3.6. S
alable(P) , Thread(P) ^P = (P jjj P) j[�W ℄jWThis says in the presen
e of W , whi
h has the e�e
t of limiting the number ofoutstanding requests to one, two 
opies of P behave like a single one.In B.8 we show that it follows from this de�nition that P = (P jjj P jjj P)j[�W ℄jW .Indeed when an arbitrary number of P 's are interleaved in the presen
e of W theresulting 
ombination is identi
al to P 3



We also show in B.6 that Stateless(P)) S
alable(P). Interestingly the 
onversedoes not hold. Consider:P(n) = request :up ! response:ok ! P(n + 1)2(n > 0)&request :down ! response:ok ! P(n � 1)P(0) is s
alable but not stateless. We note that although P(0) = (P(0) jjj P(0)) j[�W ℄j P(0), a request to the interleaved 
ombination must be forwarded to the rightthread i.e. the one whi
h 
an a

ept the event, and this feature of the interleavingoperator seems hard to realize in pra
ti
e. Of 
ourse if P is stateless, requests 
anbe forwarded to either thread, sin
e both always a

ept the same events.3.4 ExamplesThe following de�nes a pro
ess P for whi
h Stateless(P) holds:P = request?name ! if Cleared(name) then(store:name ! response:ok ! P)2(full ! reponse:failed ! P)else response:failed ! PThis pro
ess models a thread used in a very simple airline booking system. A bookingrequest is made with the passenger's name, then a se
urity 
he
k is made with thefun
tion Cleared . If the passenger 
lears se
urity, an attempt is made to add themto the passenger list (an auxiliary pro
ess), via the event store:name, otherwise theyare reje
ted. The passenger 
an still be reje
ted if the 
ight is full.The following de�nes a pro
ess P(0) for whi
h Thread(P(0)) holds, butStateless(P(0)) does not:P(x ) = request?n ! if Cleared(name) then((x < MaxPassengers)&response:ok ! P(x + 1))2((x = MaxPassengers)&reponse:failed ! P(x ))else response:failed ! P(x )This pro
ess models the same booking system, but with no need for an auxiliarypro
ess to keep tra
k of bookings. This pro
ess is not s
alable: a single 
opy of P(0)permits only MaxPassengers su

essful bookings whereas two 
opies of P(0) mightpermit more.3.5 Servi
esWe now build a model of servi
es. We will assume that the set Session 
ontainsa number of session identi�ers. Compared to to a single thread, every request andresponse to a servi
e 
ontains the session identi�er as an additional parameter. If Pis a thread, we form a servi
e made of threads with P 's behaviour by de�ning thefun
tion Servi
e. 4



De�nition 3.7.Servi
e(P) = jjj s : Session � P [request  req :s ; response  resp:s ℄Our model is deliberately simplisti
 in that we do not show how 
lients a
quiresessions. We also assume there is a thread available for ea
h session, so that 
lientsnever blo
k waiting for available threads whi
h is possibly unrealisti
. An extra layer,modelling how sessions are assigned and limits on the number of 
on
urrently a
tivesessions 
ould easily be added but is beyond the s
ope of this paper.If P is s
alable, then an obvious 
onsequen
e is Servi
e(P) is s
alable in the sensethat: Servi
e(P) = (Servi
e(P) jjj Servi
e(P)) j[ fjreq ; respjg ℄j Servi
e(W )where Servi
e(W ) models the 
onstraint that there is never more than one requestoutstanding per session.In our example airline booking system (Se
. 3.4) we 
an see that building a servi
ewith the stateless thread version would be advantageous if the fun
tion Cleared takes
onsiderable resour
es; the workload 
an be spread a
ross multiple servers.We model the stateful resour
es upon whi
h a servi
e may a
t simply as anotherpro
ess whi
h is forbidden to 
ommuni
ate dire
tly with 
lients. The following pred-i
ate determines if a pro
ess R is a resour
e.De�nition 3.8. Resour
e(R), Chaos(� � fjreq ; respjg) v R(where � denotes the set of all events.)The following diagram shows the 
ommuni
ation 
hannels and 
omponent pro-
esses in our general model of a a servi
e that a
ts upon stateful resour
es
Resource

.

.

.

Presp.n

req.n

Presp.2

req.2

Presp.1

req.1
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3.6 Formalized taxonomyUsing our pre
eding de�nitions of thread, stateless thread, servi
e, and stateful re-sour
e, we rede�ne the [FFGT03℄ taxonomy of web servi
es formally.� A stateless servi
e is a servi
e made of stateless threads.� A 
onversational servi
e is a servi
e made of threads (stateless or not).� A stateless servi
e that a
ts upon stateful resour
es is a stateless servi
e inparallel with one or more stateful resour
es.� A 
onversational servi
e that a
ts upon stateful resour
es is a 
onversationalservi
e in parallel with one or more stateful resour
es.This taxonomy 
an be made disjoint, by de�ning ea
h 
ategory to ex
lude theones whi
h pre
ede it in the above list. e.g. a 
onversational servi
e is a servi
e madeof threads whi
h are not stateless.We 
an also formalize the de�nition of servi
e in the 
ontext of Servi
e-OrientedAr
hite
ture given in [PWWR03℄, [W3C℄. Su
h servi
es 
orrespond to stateless ser-vi
es and stateless servi
es that a
t upon stateful resour
es (the �rst and third typesin the above taxonomy).4 Dis
ussionKey to our distin
tion between stateless servi
es that a
t upon stateful resour
esand 
onversational servi
es that a
t upon stateful resour
es, is that the threads fromwhi
h they are 
omposed are not aware of whi
h session they serve. That is although,ea
h 
lient makes requests of the form req :s :x , where s identi�es the session, only thex 
omponent of the event is passed to the re
eiving thread. Suppose alternativelythat s is also passed to the thread, so that the session 
an be identi�ed. The threadsfrom whi
h a 
onversational servi
e is 
omposed, 
an be modi�ed to load their state(indexed by ea
h session s) from ba
k-end stateful resour
es immediately after re
eiv-ing a request, and to save their state to stateful resour
es immediately before ea
hresponse. Thus (under our extra assuption), for every 
onversational servi
e thata
ts upon stateful resour
es there exists a stateless servi
e that a
ts upon statefulresour
es with the same behaviour.In fa
t this is a well-known te
hnique for a
hieving what is in e�e
t a 
onversa-tional servi
e in the 
ontext of Servi
e-Oriented Ar
hite
ture, known as 
ontextual-ization [PWWR03℄: every message passed between the servi
e and its 
lient 
ontainsa unique 
ontext identi�er.This being the 
ase we may ask is if the distin
tion we draw matters? As a `bla
kbox' there is little between a stateless servi
e that a
ts upon stateful resour
es and a
onversational one. However, a stateless servi
e has important `white box' propertiesthat the 
onversational servi
e does not: the ability to repli
ate its stateless front endto a
hieve s
alability. The use of stateless servi
es may also improve the modularityof a design.We note also, that statelessness is not preserved by re�nement e.g.P = request?x ! (response:1! Puresponse:2! P)6



is a stateless thread, whilst:P 0 = request?x ! response:1! request?x ! reponse:2! P 0is not, even though though P 0 re�nes P . We argue that one should be 
on
erned onlywith the statelessness of spe
i�
ations and not implementations. For suppose SPECis a stateless thread and IMPL is a re�nement of it, whi
h is not stateless. Although(IMPL jjj IMPL) j[�W ℄jW 6= IMPL in general, it still holds (by monotoni
ity) thatSPEC v (IMPL jjj IMPL) j[ �W ℄jW . IMPL still has the property that it 
an berepli
ated as required for s
alability whilst satisfying its spe
i�
ation.5 Con
lusionWe have given formal de�nitions of stateless and 
onversational servi
es and Servi
e-Oriented Ar
hite
ture, and explained their relationship. If 
ontextualization is per-mitted, the distin
tion between stateless and 
onversational servi
es, that a
t uponstateful resour
es 
annot be determined by external behaviour; rather is it an inter-nal property that 
an be used to a
hieve s
alability. Finally we have explained how,in the presen
e of non-determinism, it is possible to have a stateful implementationof a stateless servi
e spe
i�
ation, and thus it is only whether a servi
e's spe
i�
a-tion is stateless that matters. We hope the ongoing debate into servi
es and state isinformed by these observations.Referen
es[FFGT03℄ I. Foster, J. Frey, S. Graham, and S. Tue
ke. Modelling stateful resour
eswith web servi
es. Computer Asso
iates International, Fujitsu Limited,IBM, The Hewlett-Pa
kard Development Company, The University ofChi
ago, 2003.[FKNT02℄ I. Foster, C. Kesselman, J. Ni
k, and S. Tue
ke. The physiology of thegrid: An open grid servi
es ar
hite
ture for distributed systems integra-tion, 2002.[Hoa85℄ C. A. R. Hoare. Communi
ating Sequential Pro
esses. Prenti
e-Hall,1985.[PWWR03℄ S. Parastatidis, J. Weber, P. Watson, and T. Ris
hbe
k. A grid ap-pli
ation framework based on web servi
es spe
i�
ations and pra
ti
es.North East Regional e-S
ien
e Centre, S
hool of Computing S
ien
e,University of New
astle, UK, 2003.[Ros98℄ A. W. Ros
oe. The Theory and Pra
ti
e of Con
urren
y. Prenti
e-Hall,1998.[Vog03℄ Werner Vogels. Web servi
es are not distributed obje
ts. IEEE InternetComputing, 7(6):59{66, 2003.[W3C℄ Web servi
es ar
hite
ture. W3C. http://www.w3.org/TR/2003/WD-ws-ar
h-20030808/.
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A Che
king thread properties with FDRWe have used in our de�nition of threads and stateless threads properties whi
h 
an-not be readily 
he
ked with the FDR model 
he
ker for CSP. We here give alternativede�nitions whi
h 
an.To 
he
k initials(P) � fjrequest jg we 
an ask FDR:request?x ! RUN� vT PWe now 
onsider how to 
he
k 8 s : tra
es(P) j last(s) 2 fjresponsejg � P=s = P .Without loss of generality we assume to
k is an event in the alphabet whi
h is notused by the pro
ess P . (We 
an always enlarge the alphabet with a spare event ifrequired.) We de�ne: S = ?x : (�� fjresponsejg)! S2?x : fjresponsejg ! to
k ! STOPThus Q = P j[��fto
kg ℄jS behaves like P up to and in
luding the �rst responseevent, and then be
omes to
k ! STOP . So the pro
ess (Q j[ fto
kg ℄j to
k ! P) nfto
kg similarly behaves like P up to and in
luding the �rst response event, and thenbehaves like P . Thus we 
he
k whether P is stateless by 
he
king P is a thread, andthen asking FDR if: (Q j[ fto
kg ℄j to
k ! P) n fto
kg = PB Proofs of theoremsLet P be a thread.The following predi
ate holds exa
tly when pro
ess X 
an diverge immeadiately.De�nition B.1. diverges(X ) , X = X u divLemma B.2. 8 s : tra
es(P) � #s � fjrequest jg � #s � fjresponsejgProof. This is an easy 
onsequen
e of Thread(P).De�nition B.3.Write Qs for P=s if s : tra
es(P) ^ #s � fjrequest jg = #s � fjresponsejgWrite Rs for P=s if s : tra
es(P) ^ #s � fjrequest jg > #s � fjresponsejgLemma B.4. initials Qs \ fjresponsejg = ;initials Rs \ fjrequest jg = ;8



Proof. This is an easy 
onsequen
e of Thread(P).Convention B.5. The interfa
e of the parallel operator (k) is �W unless stated oth-erwise. The interleaving operator (jjj) binds more tightly than than the paralleloperator. e.g. P jjj P kW stands for (P jjj P) j[�W ℄jWTheorem B.6. Stateless(P)) S
alable(P)Proof. Suppose Stateless(P). We show that under our assuptions, for every tra
e tof P jjj P kW and every tra
e t of P :(P jjj P kW )=t = (P=t) jjj P kW = P=tif t = hi _ last(t) 2 fjresponsejg(P jjj P kW )=t = (P=t) jjj P kW 0 = P=totherwiseand hen
e (P jjj P) kW = P , i.e. S
alable(P).To prove the above equality, we show that the initials, refusals and initial di-vergen
es of the terms are equal, and that after ea
h initial event the result statesare also equal if we assume the above statements. This 
an be formally justi�ed byreferen
e to the theory of 
onstru
tive re
ursions and unique �xeds points (UFPs) inCSP [Ros98℄.We note that due to Stateless(P) if x 2 fjresponsejg then Qsahxi = Qhi.Case (i) P1 = Qhi ^ P2 = Qhi jjj Qhi kW .initials(P1) = initials(P2)refusals(P1) = refusals(P2)diverges(P1), diverges(P2)8 x : initals(P1) � P1=hx i = Rhxi8 x : initials(P2) � P2=hx i= (Rhxi jjj Qhi kW 0) 2 (Qhi jjj Rhxi kW 0)= Rhxi jjj Qhi kW 0Case (ii) P1 = Rs ^ P2 = Rs jjj Qhi kW 0.initials(P1) = initials(P2)refusals(P1) = refusals(P2)diverges(P1), diverges(P2)8 x : initals(P1) � P1=hx i =if x 2 fjresponsejg then Qsahxi else Rsahxi =if x 2 fjresponsejg then Qhi else Rsahxi8 x : initials(P2) � P2=hx i =if x 2 fjresponsejg then Qsahxi jjj Qhi kWelse Rsahxi jjj Qhi kW 0 =if x 2 fjresponsejg then Qhi jjj Qhi kWelse Rsahxi jjj Qhi kW 09



Theorem B.7. P jjj P jjj P kW = P jjj (P jjj P kW ) kWProof. The proof of this theorem is based on the a similar te
hnique to the previousone. We 
over all rea
hable states by showing the following equalities:Qs jjj Qt jjj Qv kW = Qs jjj (Qt jjj Qv kW ) kWRs jjj Qt jjj Qv kW 0 = Rs jjj (Qt jjj Qv kW ) kW 0Qs jjj Rt jjj Qv kW 0 = Qs jjj (Rt jjj Qv kW 0) kW 0Qs jjj Qt jjj Rv kW 0 = Qs jjj (Qt jjj Rv kW 0) kW 0That is, we show the initials, refusals and initial divergen
es of the terms are equaland that the result states are also equal if we assume the above statements.Case (i) P1 = Qs jjj Qt jjj Qv kW ^ P2 = Qs jjj (Qt jjj Qv kW ) kW .initials P1 = initials Qs [ initials Qt [ initials Qv = initials P2refusals P1 = refusals Qs \ refusals Qt \ refusals Qv = refusals P2diverges P1, diverges Qs _ diverges Qs _ diverges Qv , diverges P28 x : initials P1 � P1=hx i =u i : fs ; t ; vg j x 2 initials(P=i) �if x =2 fjrequest jg then(i = s)&(Qsahxi jjj Qt jjj Qv kW )2(i = t)&(Qs jjj Qtahxi jjj Qv kW )2(i = v)&(Qs jjj Qt jjj Qvahxi kW )else (i = s)&(Rsahxi jjj Qt jjj Qv kW 0)2(i = t)&(Qs jjj Rtahxi jjj Qv kW 0)2(i = v)&(Qs jjj Qt jjj Rvahxi kW 0)8 x : initials P2 � P2=hx i =u i : fs ; t ; vg j x 2 initials(P=i) �if x =2 fjrequest jg then(i = s)&(Qsahxi jjj (Qt jjj Qv kW ) kW )2(i = t)&(Qs jjj (Qtahxi jjj Qv kW ) kW )2(i = v)&(Qs jjj (Qt jjj Qvahxi kW ) kW )else (i = s)&(Rsahxi jjj (Qt jjj Qv kW ) kW 0)2(i = t)&(Qs jjj (Rtahxi jjj Qv kW 0) kW 0)2(i = v)&(Qs jjj (Qt jjj Rvahxi kW 0) kW 0)10



Case (ii) P1 = Rs jjj Qt jjj Qv kW 0 ^ P2 = Rs jjj (Qt jjj Qv kW ) kW 0.initials P1 =(initials Rs [ initials Qt [ initials Qv )� fjrequest jg =initials P2refusals P1 =fr : refusals Rs j r � fjrequest jg 2 refusals Qt \ refusals Qvg =refusals P2diverges P1,diverges Rs _ divergesQt _ divergesQv ,diverges P28 x : initials P1 � P1=hx i =u i : fs ; t ; vg j x 2 initials(P=i) �if x =2 fjresponsejg then(i = s)&(Rsahxi jjj Qt jjj Qv kW 0)2(i = t)&(Rs jjj Qtahxi jjj Qv kW 0)2(i = v)&(Rs jjj Qt jjj Qvahxi kW 0)else (Qsahxi jjj Qt jjj Qv kW )8 x : initials P2 � P2=hx i =u i : fs ; t ; vg j x 2 initials(P=i) �if x =2 fjresponsejg then(i = s)&(Rsahxi jjj (Qt jjj Qv kW ) kW 0)2(i = t)&(Rs jjj (Qtahxi jjj Qv kW ) kW 0)2(i = v)&(Rs jjj (Qt jjj Qvahxi kW ) kW 0)else (Qsahxi jjj (Qt jjj Qv kW ) kW )Case (iii) P1 = Qs jjj Rt jjj Qv kW 0 ^ P2 = Qs jjj (Rt jjj Qv kW 0) kW 0.initials P1 =(initials Qs [ initials Rt [ initials Qv )� fjrequest jg =initials P2refusals P1 =fr : refusals Rt j r � fjrequest jg 2 refusals Qs \ refusals Qvg =refusals P2diverges P1,diverges Rs _ divergesQt _ divergesQv ,diverges P2
11



8 x : initials P1 � P1=hx i =u i : fs ; t ; vg j x 2 initials(P=i) �if x =2 fjresponsejg then(i = s)&(Qsahxi jjj Rt jjj Qv kW 0)2(i = t)&(Qs jjj Rtahxi jjj Qv kW 0)2(i = v)&(Qs jjj Rt jjj Qvahxi kW 0)else (Qs jjj Qtahxi jjj Qv kW )8 x : initials P2 � P2=hx i =u i : fs ; t ; vg j x 2 initials(P=i) �if x =2 fjresponsejg then(i = s)&(Qsahxi jjj (Rt jjj Qv kW 0) kW 0)2(i = t)&(Qs jjj (Rtahxi jjj Qv kW 0) kW 0)2(i = v)&(Qs jjj (Rt jjj Qvahxi kW 0) kW 0)else (Qs jjj (Qtahxi jjj Qv kW ) kW )Case (iv) P1 = Qs jjj Qt jjj Rv k W 0 ^ P2 = Qs jjj (Qt jjj Rv k W 0) k W 0.Similarly.Corollary B.8. S
alable(P) ) P = P jjj P jjj P kWProof. S
alable(P) ) P = P jjj P kW = P jjj (P jjj P kW ) kWP jjj (P jjj P kW ) kW = P jjj P jjj P kWS
alable(P) ) P = P jjj P jjj P kW
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