Programming Research Group

A TAXONOMY OF WEB SERVICES USING CSP

Lee Momtahan, Andrew Martin and A. W. Roscoe

PRG-RR-04-22

EE DO) IMA
& JJ
-ey'

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD

Abstract

Terms such as conversational and stateless are widely used in the taxonomy of
web services. We give formal definitions of these terms using the CSP process al-
gebra. Within this framework we also define the notion of Service-Oriented Archi-
tecture. These definitions are then used to prove important scalability properties
of stateless services. The use of formalism should allow recent debates, concerning
how and whether web services provide standardized access to state, to progress more
rigorously.

1 Introduction

There is currently a debate within the web services and Grid communities over
whether, and how, web services should allow for access to state. One view is “web
services. .. have no notion of state” [Vog03] while others have argued that the critical
role that state plays in distributed systems requires that it be addressed within the
web services architecture [FKNT02].

The debate is hindered by a lack of formality and clarity in its discourse. This
paper contributes by defining some of the key terms used in the debate, within
the Communicating Sequential Processes (CSP) [Hoa85] formalism. We hope more
principled comparisons between different proposals to standardize access to state can
be made in the light of these definitions.

1.1 Overview

In section 2 we quote the existing natural language definitions used in the taxonomy of
web services. The following section gives a series of definitions in CSP culminating in
a formal version of the same taxonomy. Section 4 discusses some of the implications of
this formalized taxonomy. Section 5 concludes with a summary of the main findings.
The first appendix presents our definitions in an alternative form that can be used
with the CSP model checker, FDR. The second appendix presents proofs of theorems
used in the paper.

2 A taxonomy of state and services

In [FFGTO03] the following taxonomy of web services is given:

o A stateless service implements message exchanges with no access or use of infor-
mation not contained in the input message. A simple example is a service that
compresses and decompresses documents, where the documents are provided in
the message exchanges with the service.

e A conversational service implements a series of operations such that the result
of one operation depends on a prior operation and/or prepares for a subsequent
operation. The service uses each message in a logical stream of messages to
determine the processing behaviour of the service. The behaviour of a given
operation is based on processing preceding messages in the logical sequence.
Many interactive Web sites implement this pattern through use of HTTP ses-
sions and cookies.

o A service that acts upon stateful resources provides access to, or manipulates
a set of logical stateful resources (documents) based on messages it sends and
receives.

[FFGTO03] continues:

When we talk in the third model about a service that acts upon stateful
resources we mean a service whose implementation executes against dy-
namic state, i.e., state for which the service is responsible between message
exchanges with its requesters. A service that acts upon stateful resources
may be described stateless if it delegates responsibility for the manage-
ment of the state to another component such as a database or file system.

Substantial modifications of the wording used in the definitions occurred between
v1.0 and v1.1 of [FFGTO03], perhaps indicating the difficulty of defining these concepts
in natural language.

A related definition is that of a service in the context of Service-Oriented Archi-
tecture (SOA). [PWWRO03] gives the following:

A service is a well-defined set of actions, it is self-contained, stateless,
and does not depend on the state of other services. ..
Here, stateless means that each time a consumer interacts with a Web
Service, an action is performed. After the results of the service invocation
have been returned, the action is finished. There is no assumption that
subsequent invocations are associated with prior ones.

[W3C] adds:

The description of a service in a SOA is essentially a description of
the messages that are exchanged. This architecture adds the constraint of
stateless connections, that is where all the data for a given request must
be in the request.

3 Web services in CSP

In this section a series of definitions is given which builds our model of web services
and their taxonomy.

Definition 3.1.
Stateless'(P) < Vs : traces(P) @« P = P/s

Our first attempt to define the notion of statelessness of a process P says that
after communicating any events, the process returns to its initial state.

This definition is satisfactory only so long as a typical request-response operation
is modelled as a single event. But we want to consider the interaction of the server
with back-end stateful resources, which usually occurs between the request and re-
sponse messages and therefore have to model the request and response as separate
events.

3.1 Threads

We first define a CSP process W, which is willing to accept any events on the channels
response and request, provided the events alternate between request and response and
begin with request.

Definition 3.2.
W = request?z — W'
W' = response?y — W
We also define for convenience a W as all request and response events.

Definition 3.3.
aW = {request, repsonsel}

We now define a thread.
Definition 3.4.

Thread(P) & P =P [[aW] W A
initials(P) C {request}

Thus if a process P is a thread, it alternates between request and response events,
and can do nothing until its first request is received. Other than that, events may
occur at any time.

3.2 Stateless Threads

Our definition of a stateless thread is as follows, where where last(s) returns the last
event in the trace s.

Definition 3.5.

Stateless(P) < Thread(P) A
Vs : traces(P) | last(s) € {response} ® P/s = P

Thus a thread P is stateless if it always returns to its initial state after commu-
nicating a response event.

3.3 Scalable Threads
We define a further property threads may exhibit we refer to as scalability.

Definition 3.6.

Scalable(P) < Thread(P) A
P=(P||P)laW] W

This says in the presence of W, which has the effect of limiting the number of
outstanding requests to one, two copies of P behave like a single one.

In B.8 we show that it follows from this definition that P = (P || P || P)|[[a W] W.
Indeed when an arbitrary number of P’s are interleaved in the presence of W the
resulting combination is identical to P

We also show in B.6 that Stateless(P) = Scalable(P). Interestingly the converse
does not hold. Consider:

P(n) = request.up — response.ok — P(n + 1)
O

(n > 0)&request.down — response.ok — P(n — 1)

P(0) is scalable but not stateless. We note that although P(0) = (P(0) || P(0)) [
aW] P(0), a request to the interleaved combination must be forwarded to the right
thread i.e. the one which can accept the event, and this feature of the interleaving
operator seems hard to realize in practice. Of course if P is stateless, requests can
be forwarded to either thread, since both always accept the same events.

3.4 Examples
The following defines a process P for which Stateless(P) holds:

P = request?’name — if Cleared(name) then
(store.name — response.ok — P)
O
(full — reponse.failed — P)
else
response.failed — P

This process models a thread used in a very simple airline booking system. A booking
request is made with the passenger’s name, then a security check is made with the
function Cleared. If the passenger clears security, an attempt is made to add them
to the passenger list (an auxiliary process), via the event store.name, otherwise they
are rejected. The passenger can still be rejected if the flight is full.

The following defines a process P(0) for which Thread(P(0)) holds, but
Stateless(P(0)) does not:

P(z) = request?n — if Cleared(name) then
((z < MazPassengers)&response.ok — P(z + 1))
O
((x = MaxzPassengers)&reponse.failed — P(z))
else
response.failed — P(z)

This process models the same booking system, but with no need for an auxiliary
process to keep track of bookings. This process is not scalable: a single copy of P(0)
permits only MazPassengers successful bookings whereas two copies of P(0) might
permit more.

3.5 Services

We now build a model of services. We will assume that the set Session contains
a number of session identifiers. Compared to to a single thread, every request and
response to a service contains the session identifier as an additional parameter. If P
is a thread, we form a service made of threads with P ’s behaviour by defining the
function Service.

Definition 3.7.
Service(P) = H| s : Session @ P[request < req.s, response < resp.s|

Our model is deliberately simplistic in that we do not show how clients acquire
sessions. We also assume there is a thread available for each session, so that clients
never block waiting for available threads which is possibly unrealistic. An extra layer,
modelling how sessions are assigned and limits on the number of concurrently active
sessions could easily be added but is beyond the scope of this paper.

If P is scalable, then an obvious consequence is Service(P) is scalable in the sense
that:

Service(P) = (Service(P) || Service(P)) |[{req, resp[}] Service(W)

where Service(W) models the constraint that there is never more than one request
outstanding per session.

In our example airline booking system (Sec. 3.4) we can see that building a service
with the stateless thread version would be advantageous if the function Cleared takes
considerable resources; the workload can be spread across multiple servers.

We model the stateful resources upon which a service may act simply as another
process which is forbidden to communicate directly with clients. The following pred-
icate determines if a process R is a resource.

Definition 3.8.
Resource(R) < Chaos(X — {req, resp[}) C R

(where ¥ denotes the set of all events.)
The following diagram shows the communication channels and component pro-
cesses in our general model of a a service that acts upon stateful resources

req.1
resp.l P
req.2
resp.2 P
Resource
req.n——
resp.n———— P

3.6 Formalized taxonomy

Using our preceding definitions of thread, stateless thread, service, and stateful re-
source, we redefine the [FFGT03] taxonomy of web services formally.

o A stateless service is a service made of stateless threads.
e A conversational service is a service made of threads (stateless or not).

o A stateless service that acts upon stateful resources is a stateless service in
parallel with one or more stateful resources.

e A conversational service that acts upon stateful resources is a conversational
service in parallel with one or more stateful resources.

This taxonomy can be made disjoint, by defining each category to exclude the
ones which precede it in the above list. e.g. a conversational service is a service made
of threads which are not stateless.

We can also formalize the definition of service in the context of Service-Oriented
Architecture given in [PWWRO3], [W3C]. Such services correspond to stateless ser-
vices and stateless services that act upon stateful resources (the first and third types
in the above taxonomy).

4 Discussion

Key to our distinction between stateless services that act upon stateful resources
and conversational services that act upon stateful resources, is that the threads from
which they are composed are not aware of which session they serve. That is although,
each client makes requests of the form req.s.z, where s identifies the session, only the
2 component of the event is passed to the receiving thread. Suppose alternatively
that s is also passed to the thread, so that the session can be identified. The threads
from which a conversational service is composed, can be modified to load their state
(indexed by each session s) from back-end stateful resources immediately after receiv-
ing a request, and to save their state to stateful resources immediately before each
response. Thus (under our extra assuption), for every conversational service that
acts upon stateful resources there exists a stateless service that acts upon stateful
resources with the same behaviour.

In fact this is a well-known technique for achieving what is in effect a conversa-
tional service in the context of Service-Oriented Architecture, known as contextual-
ization [PWWRO3]: every message passed between the service and its client contains
a unique context identifier.

This being the case we may ask is if the distinction we draw matters? As a ‘black
box’ there is little between a stateless service that acts upon stateful resources and a
conversational one. However, a stateless service has important ‘white box’ properties
that the conversational service does not: the ability to replicate its stateless front end
to achieve scalability. The use of stateless services may also improve the modularity
of a design.

We note also, that statelessness is not preserved by refinement e.g.

P = request?z — (response.l — P
M
response.2 — P)

is a stateless thread, whilst:
P' = request?z — response.l — request?z — reponse.2 — P’

is not, even though though P’ refines P. We argue that one should be concerned only
with the statelessness of specifications and not implementations. For suppose SPEC
is a stateless thread and IMPL is a refinement of it, which is not stateless. Although
(IMPL ||| IMPL) [aW || W # IMPL in general, it still holds (by monotonicity) that
SPEC C (IMPL ||| IMPL) [aW | W. IMPL still has the property that it can be
replicated as required for scalability whilst satisfying its specification.

5 Conclusion

We have given formal definitions of stateless and conversational services and Service-
Oriented Architecture, and explained their relationship. If contextualization is per-
mitted, the distinction between stateless and conversational services, that act upon
stateful resources cannot be determined by external behaviour; rather is it an inter-
nal property that can be used to achieve scalability. Finally we have explained how,
in the presence of non-determinism, it is possible to have a stateful implementation
of a stateless service specification, and thus it is only whether a service’s specifica-
tion is stateless that matters. We hope the ongoing debate into services and state is
informed by these observations.

References

[FFGTO03] 1. Foster, J. Frey, S. Graham, and S. Tuecke. Modelling stateful resources
with web services. Computer Associates International, Fujitsu Limited,
IBM, The Hewlett-Packard Development Company, The University of
Chicago, 2003.

[FKNTO02] 1. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the
grid: An open grid services architecture for distributed systems integra-
tion, 2002.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[PWWRO03] S. Parastatidis, J. Weber, P. Watson, and T. Rischbeck. A grid ap-
plication framework based on web services specifications and practices.
North East Regional e-Science Centre, School of Computing Science,
University of Newcastle, UK, 2003.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1998.

[Vog03] Werner Vogels. Web services are not distributed objects. IEEE Internet
Computing, 7(6):59-66, 2003.

[W3C] Web services architecture. W3C. http://www.w3.org/TR/2003/WD-

ws-arch-20030808/.

A Checking thread properties with FDR

We have used in our definition of threads and stateless threads properties which can-
not be readily checked with the FDR model checker for CSP. We here give alternative
definitions which can.

To check initials(P) C {request} we can ask FDR:

request?r — RUNsy, Cp P

We now consider how to check Vs : traces(P) | last(s) € {responsel} @ P/s = P.
Without loss of generality we assume tock is an event in the alphabet which is not
used by the process P. (We can always enlarge the alphabet with a spare event if
required.) We define:

S =7z : (X — {responsel}) = S
0
7z : {responsel} — tock — STOP

Thus @ = P|[X — {tock}] S behaves like P up to and including the first response
event, and then becomes tock — STOP. So the process (Q | {tock}] tock — P) \
{tock} similarly behaves like P up to and including the first response event, and then
behaves like P. Thus we check whether P is stateless by checking P is a thread, and
then asking FDR if:

(Q |[{tock}] tock — P) \ {tock} = P

B Proofs of theorems

Let P be a thread.
The following predicate holds exactly when process X can diverge immeadiately.

Definition B.1.

diverges(X) & X = X M div

Lemma B.2.
Vs : traces(P) o #s | {request]y > #s | {responsel}

Proof. This is an easy consequence of Thread(P). O

Definition B.3.

Write Qs for P/s if s : traces(P) A #s | {{request]} = #s | {{responsel}
Write Rs for P/s if s : traces(P) A #s | {request[} > #s | {{responsel}

Lemma B.4.

initials Qs N {responsel} =0
initials Rs N {request[} = ()

Proof. This is an easy consequence of Thread(P). O

Convention B.5. The interface of the parallel operator (||) is « W unless stated oth-
erwise. The interleaving operator (||) binds more tightly than than the parallel
operator. e.g. P || P || W stands for (P || P) [[a W] W

Theorem B.6.
Stateless(P) = Scalable(P)

Proof. Suppose Stateless(P). We show that under our assuptions, for every trace ¢
of P|| P || W and every trace t of P:

(P P W)/t=(P/t)|| P| W=P/t
it t = () V last(t) € {responsel}

(Pl Phll W)/t=(P/t)|| P || W' =P/t
otherwise

and hence (P || P) || W = P, i.e. Scalable(P).

To prove the above equality, we show that the initials, refusals and initial di-
vergences of the terms are equal, and that after each initial event the result states
are also equal if we assume the above statements. This can be formally justified by
reference to the theory of constructive recursions and unique fixeds points (UFPs) in
CSP [Ros98].

We note that due to Stateless(P) if x € {responsel} then Q™ 5y = Q.

Case (i) P1= Q<> A P2 = Q<> Il Q<> || W.

initials(P1) = initials(P2)
refusals(P1) = refusals(P2)
diverges(P1) < diverges(P2)

V@ initals(P1) P1/(z) = Ry

)

Yz : initials(P2) e P2/(x
N8 (Qy Il Beay | W)

[]
=Ry Il Qp Il W
=Ry || Qy Il W'

Case (ii) P1=R, AP2=R, || Qy || W".

initials(P1) = initials(P2)
refusals(P1) = refusals(P2)
diverges(P1) < diverges(P2)

Vz : initals(P1l) ¢ P1/{z) =
if z € {responsel} then Q, ™,y else By gy =
if z € {responsel} then Q(else By, (5)

Yz : initials(P2) ¢ P2/(z) =
if z € {responsel} then Q, ™,y || Qpy I| W
else Ry~ ay || Qo | W' =
if z € {responsel} then Q || Qy | W
else By~ g [l Q| W

9

Theorem B.7.
PP PIW=P|@P|W)I[W

Proof. The proof of this theorem is based on the a similar technique to the previous
one. We cover all reachable states by showing the following equalities:

Ro | @l Qull W =Rs || (Qu |l Qull W) Il W'
Qs H| Ry H| Qu || W' = Qs |H (Rt ||| Qu || WI) || w'
Qs Il Qe Ro || W' = Qs [(Qc || Ro || W') || W

That is, we show the initials, refusals and initial divergences of the terms are equal
and that the result states are also equal if we assume the above statements.

Case (1) P1 = Qs H‘ Qt ||| Qv || W AP2= Qs |” (Qt H‘ Qv || W) || w.

initials P1 = initials Qs U initials Q U initials Q, = initials P2
refusals P1 = refusals Qs N refusals Q¢ N refusals @, = refusals P2
diverges P1 & diverges Qs V diverges Qs V diverges @, < diverges P2

Vz : initials P1 e P1/(z) =
Mi:{s,t,v} |z € initials(P/i) o
if ¢ {request[} then
(i = s)&(QsAﬁ:) |H Qt H| Qv || W)

O
(i =1)&(Qs || Q) Il Qu Il W)
O
(i = 0)&(Qs | Qt Il Qu™ay II W)
else
(i = 8)&(Rs™ iy Il Qe | Qu || W)
O
(i = t)&(Qs H‘ Rt/\(w) ||| QU || W,)
O

(i = U)&(QS H‘ Qt ||| Rv/\(z) || WI)

Yz : initials P2 ¢ P2/(x) =
Mi:{s, t,v} |z € initials(P/i) o
if z ¢ {request]} then
(i = 8)&(Qs oy I (Qc Il @ [| W) || W)

Eiz)& (Qs (I (@i~ I Qu [W) | W)
" (1= 0)&(Qs Il (Q | @™y | W) I W)
(i = 8)&(By™ 0y 1 (Qc | Qo || W) || W)
Eiz 1)&(Qs Il (B oy Il Qu [| W I W)

(1= 0)&(Qs Il (Q | Bo™ oy [| W) | W)

10

Case (ii) P1= R [| Q: | Qu [| W' A P2 =R || (Q: | Qu [| W) || W".

initials P1 =
(initials Ry U initials Q U initials Q) — {request]} =
initials P2
refusals P1 =
{r : refusals R | r — {request]} € refusals Q; N refusals Qy} =
refusals P2
diverges P1 &
diverges Ry V divergesQ; V diverges@, <
diverges P2

Vz : initials P1 e P1/(z) =
Mi:{s,t,v} |z € initials(P/i) o
if « ¢ {response[} then
(i = 8)&(RBs™) Il Qu [l Qu || W)

O
D& (R, || Qe ay Il @u | W)

0)&(Rs || Qu [l Q™ | W)

-~

(i
m]
©

else

(Qs™ @y Il Qe lll Qv | W)

Yz : initials P2 ¢ P2/(x) =
Mi:{s,t,v} |z € initials(P/i) o
if z ¢ {responsel} then
(i = $)&(Rs oy 1 (Qe] Qu | W) I W)

O

(i = D&(Rs || (Qeay | Qu Il W) || W)

O

(i = 0)&(Rs || (Qr | Quay | W) I W)
else

(@) Il (e Il Qu | W) [W)
Case (iii) P1= Qs [| B [l Qv | W' A P2 = Qs || (B || Qu | W') || W'

initials P1 =
(initials Qs U initials Ry U initials Q) — {request]} =
initials P2
refusals P1 =
{r : refusals R, | r — {request} € refusals Qs N refusals Qy} =
refusals P2
diverges P1 &
diverges Ry V divergesQ; V diverges@, <
diverges P2

11

Vz : initials P1 e P1/{z) =
Mi:{s,t,v} |z € initials(P/i) o
if z ¢ {response]} then
(i = s)&(QsAﬁ:) |H Ry |H Qv || WI)

O

(i = t)&(Qs H‘ Rt/\(w) ||| QU || Wl)

O

(i = 0)&(Qs | Rt || Quay | W)
else

(Qs ||| Qt/\(z) ||| QU || W)

Yz : initials P2 ¢ P2/(x) =
Mi:{s,¢,v} |z € initials(P /i) o
if z ¢ {response} then
(i = $)&(Qs™ o) I (Re || Qu | W) Il W)

0= 0)&(Qs [l (B oy Il Qu Il W 1| W)

—~
~

(i = 0)&(Qs Il (Be I Qu™ oy I| W) I W)

(@s I (@ Il Qu | W) I W)

Case (iv) P1 = Qs || QI Ry [| W' A P2 = Qs || (Qu || Ry [| W) || W'
Similarly.

o
Corollary B.8.
Scalable(P) =P =P || P || P|| W
Proof.
Scalable(P) = P =P || P || W =P [(P || P[W)| W
Pl (Pl PIW)[|W=P]|PIPI|W
Scalable(P) =P =P || P || P|| W
O

12

