
Human-centred computer security

A.W. Roscoe
Oxford University Computing Laboratory

Bill.Roscoe@comlab.ox.ac.uk

Abstract

We re-examine the needs of computer security in perva-
sive computing from first principles, specifically the prob-
lem of bootstrapping secure networks. We consider the
case of systems that may have no shared secret informa-
tion, and where there is no structure such as a PKI avail-
able. Nevertheless we propose a protocol which achieves a
high degree of security based on a combination of human-
mediated communication and an ordinary Dolev-Yao com-
munication medium. In particular it resists combinatorial
attacks on the hash values that have to be compared by
human users, seemingly optimising the amount of security
they can achieve for a given amount of work. A variant
of this protocol achieves one-sided authentication in a sce-
nario similar to that of authenticating one or more blue-
tooth devices. We discuss the properties and verification of
these protocols.

1. Introduction

Imagine that a group of people come together and agree
that they want to transfer data between them securely, mean-
ing that they want it to be secret and of authenticated ori-
gin. They all have some piece of computing hardware (e.g.,
a mobile phone or a PDA). Unfortunately none of them
knows the unique name of any of the others’ equipment,
and in any case there is no PKI which encompasses them
all. How can they achieve their goal in the context that their
machines are connected by an insecure network (whether
created by WIFI, the internet, telephony, or a mixture of
these)?

The conventional answer to this question would be that
it is impossible, since it is impossible to prevent some im-
poster I playing the man-in-the-middle between the par-
ticipants A. For an example see Figure 1. Here, 5 users
are trying to form a group and believe they have the con-
nections on the left. But the intruder has partitioned them
into two subgroups and invented 5 identities of its own to
make both of these up to the right size. It then sets up

group sessions involving, respectively, {A, B, C, D′, E′} and
{A′, B′, C′, D, E} and can then pass transactions between
the two groups or, if it wishes, impersonate a member of the
group. As far as they know, {A, B, C, D, E} are connected to
each other, and cannot tell that the intruder is present since
they have no security framework to distinguish, say, A from
A′.

However a little creative thinking can easily solve the
problem: if each person tells the others (using human con-
versation) a public key for his or her machine, they can then
use something like the Needham-Schroeder-Lowe protocol
[11] (over the insecure network) to establish secure, authen-
ticated communications. (If there are more than two partic-
ipants then they would either have to adapt that protocol or
to use it multiple times.)

They will have bypassed the intruder for the crucial step
of exchanging electronic identities.

Unfortunately this idea would require a serious amount
of effort on the part of the humans unless, perhaps, they
all carried a card with them containing their public key that
other machines could read – but of course that would again
introduce a compatibility problem as well as limiting the
range of applications. What we shall demonstrate in this
paper is that high quality security can be obtained using this
same idea of human activity bypassing the intruder for cru-
cial steps, but with a greatly reduced amount of work. In-
deed, it seems that we essentially minimise this.

Putting this in the context of earlier work, the author,
Creese, Goldsmith, Zakiuddin and others [4, 3, 1, 2, 5] have
developed the idea that the concept of a PKI is not ideal
for many pervasive computing applications, for the follow-
ing reasons. It is not realistic to assume that one is both
sufficiently universal and sufficiently available to cover all
scenarios. In any case, in the pervasive world, processes
will not know the names of the others they wish to contact –
essential for a conventional PKI. And finally, it is unrealistic
to expect the average user to understand, and react properly
to questions posed by, PKI such as “Do you trust certificates
issued by authority X?”

If we are not identifying a system by name, there must
be some other feature which identifies the ones we wish to



A A

B

C

D

E

What might really be there

t

E

D

C

B

What the users see

D’

B’

Intruder

’

B’

E’

C’

A’’

D’

Figure 1. Man in the middle

interact with securely. In pervasive computing this feature
is frequently one of position or proximity [10, 13]. We
have argued that these features can often be captured as
low bandwidth empirical channels between systems in ad-
dition to the insecure (Dolev-Yao) high bandwidth channels
used for most communication. In the scenario set out ear-
lier, these empirical channels would be implemented by the
human users and can be assumed to be non-spoofable1: an
intruder can’t persuade A that an empirical message is from
B if it is not.

We gave several protocols in [3, 1, 2] for different classes
of empirical channel, an exercise we intend to continue.
These included several related protocols for the scenarios of
a group of people attempting to form a secure network, and
of a single user connecting to an external device, such as a
printer, with a high degree of security. The assumption was
that the human or humans implement non-forgeable chan-
nels between their systems.

We emphasise that the protocols discussed in this paper
are designed for groups of systems that already trust each
other: we enable these to gain authenticated connection to
each other. The protocols do not of themselves prove that
agents are trustworthy or have particular names. In the case
where the empirical channels are human based, our proto-
cols essentially lift trust that the human(s) have, to computer
security. This explains the name of this paper: Human Cen-
tred Computer Security.

In this paper we show that such protocols can be vulnera-
ble to combinatorial attacks, meaning that the humans have

1“Spoofing”, “faking” and “forging” are synonymous terms used in the
literature for the same activity by the intruder.

to handle larger data items than ideal. The main innovation
of this paper is a pair of protocols, one for the group sce-
nario and a variation for the user-plus-devices one, which
appear to be essentially optimal in the amount of security
they offer in return for a given amount of human effort: we
analyse this issue in Section 4.

Since these are protocols for arbitrary-sized groups and
are intended to defend against a new and stronger attacker
model they pose new problems for the verifier. We discuss
these issues and set out some progress. a given amount of
human effort to supplement Dolev-Yao channels.

2. Protocols for ad hoc groups

In this section we concentrate on a group G of humans
attempting to achieve a secure link between their laptops.
Throughout this paper, N ≥ 2 is the size of G. A protocol
for just these purposes was proposed in [3]:

1. ∀ A →N ∀ B : {A, kc(A), NA}wkk

2. ∀ A →N ∀ B : {all Messages 1d, N′
A}pk(B)

3a. ∀ A displays : hash({all Messages 2d}),
number of processes

3b. ∀ A →E ∀ B : Users compare hashes
and check numbers

4. ∀ A →N ∀ B : hash′({all Messages 2d})

Here, ∀ A means that a message is sent/received by all the
participants A. In some cases this might be a broadcast,
in others a special version will be required for each recipi-
ent. Md denotes the decrypted contents of message M. The
boundary between Message 1 and Message 2 is determined



by some time-out. The purpose of Message 3 is to allow all
the users to compare the hashes and only to proceed if these
are the same and the number of participants is the same as
the size of the group who are trying to form a connection
(and whom they intend to constitute the group).

In the notation of [3], →N means the normal Dolev-Yao
network, where all messages are subject to overhearing,
taking out and spoofing, whereas →E means the empirical
channels which are, in this case, immune to spoofing. Note
that actually a two-way exchange is necessary for the agree-
ment in Message 3b: each user tells each other his or her
values, who then indicate their agreement. See Section 4
for more discussions on patterns of communication.

kc(A) means A’s key certificate. We have to be slightly
careful here about the concepts of name and public key here
since it is in the nature of our ad hoc networks that these are
not generally known in advance, and public keys may not be
generated by any recognised authority. Therefore one sys-
tem hearing a name A in a Message 1 carries no particular
information to the recipient other than that an entity calling
itself A is trying to make contact. In many circumstances
kc(A) will simply be a public key, and indeed the name A
might also be replaced by the key and the two fields con-
flated. An agent is free to use different names and different
public keys in different runs of this protocol, and there is no
need for public keys to be certified by any authority.

Under standard Dolev-Yao assumptions about the →N

channel and about encryption and hashing, for example that
given a hash value it is infeasible to create a preimage that
will map to it, it is straightforward to show that this protocol
is secure. This was done in some detail in [2]. The essen-
tial point is that the agreement on Message 3 demonstrates
that all the participants are present in the protocol run, and
that there are no more participants other than the intended
group. For under our assumptions, agreeing the hash value
is tantamount to agreeing the things hashed (though without
making them public).

The assumption that all cryptographic constructs are, in
effect, unbreakable is fairly standard in the world of crypto-
graphic protocol modelling and is termed the perfect cryp-
tography hypothesis. It is made in the natural desire for
separation of concerns. The idea of perfect cryptography
has been weakened in some instances to allow for the spe-
cial algebraic and deductive properties of individual cryp-
tosystems such as Vernam and RSA, but still in an entirely
symbolic way: creating perfect cryptography under differ-
ent sets of rules.

In essence, the perfect cryptography hypothesis is a spec-
ification that must be satisfied by a combination of able
cryptographers and sufficiently long keys, nonces, hashes
etc. In the context of the protocol above, it is a reasonable
assumption to make about all the cryptographic objects that
are transmitted on →N .

There is, however, the question of whether it is valid
for the hash that the human users compare. Let us imag-
ine our human users comparing their hash values. They are
not likely to want to handle more than a few characters. In
some scenarios they might have a better way of compar-
ing these values than just reading them out, but we need
to consider the worst case, for example on the telephone.
The hash length we are likely to be able to use conveniently
may be vulnerable to a combinatorial attack as long as an
intruder (in the guise of A′–E′) can try many nonces so as to
get a particular value in Message 3. An attack achieved by
exploiting this would not be found under the perfect cryp-
tography hypothesis. Let us assume that the set of possible
human-compared hash values has size H.

There is indeed a such an attack on the above protocol.
This involves partitioning a group G of N agents who want
to form a single session into two nonempty subsets S1 and
S2, with the intruder engaging in a separate session with
each. For each, it uses exactly the right number of identities
to expand the subset to size N, in each case using identi-
ties for which it has the secret keys. Therefore it uses the
scheme we have seen in Figure 1. The two runs of the pro-
tocol operate in parallel, with the intruder manipulating the
Dolev-Yao network so that only the messages within each
subset get through. In each case it runs Message 1 with
the appropriate group Si and waits for all the nodes in G to
contribute their Message 2’s to the two runs. It then must
invent N different nonces N′

A to transmit its Message 2’s.
Using whatever time it has, it can search for combinations
of values which make the two hash values in Message 3 the
same (note that it has all the information to compute these
hashes for any choice it may make of nonces). Note that,
since the intruder can work with the two hashes at once, it
can expect to get a coincidence if it creates just over

√
H

hashes on each side, thanks to the “birthday paradox”. For
example, for a hash consisting of six digits, only about three
thousand hashes must be computed for the intruder to have
a 90% chance of success. If it succeeds in doing so it trans-
mits the appropriate Message 2’s to the respective members
of S1 and S2. This is illustrated in Figure 2. In this figure,
the line connecting A–E with only an arrow to the intruder
represents the no-spoofing empirical channels. We see the
intruder trying to make the communications on these con-
sistent with the man-in-the-middle structure derived from
Figure 1. The box at the bottom right represents the in-
truder looking for, and finding, a coincidence between two
lists of hashes.

Upon reaching Message 3, all the humans (from the two
groups combined) will then see identical hashes and cor-
rect counts on their laptops, and so will agree to proceed
beyond Message 3. The intruder then just has to manipu-
late the network for Message 4 and contribute the correct
final message in each of the two sessions. This leaves our



A

B

E

D

C

’

Intruder

B’

D’
C’

D’

B’

A’’

E’

1010

1234

7658

.... ....

1010  5

1010
1006
3891

8367
1222

5783
0193
5729
8530
3485

3000

Figure 2. Birthday attack in progress

intruder with connections to the two subgroups, including
knowledge of all the secrets arising from the runs. They, on
the other hand, believe there is a single authenticated ses-
sion between the whole of G. The intruder is then in a posi-
tion to transmit the group’s messages while understanding
them or to impersonate group members to each other.

“Birthday attacks” like this are well known in other are-
nas where cryptographic hash functions are used. See [12],
for example. They are, however, brought into particular
focus by the human role in the protocols we are now dis-
cussing. We can take account of an attacker who can work
out 2M hashes by adding 2M bits to the hash function, but of
course this means that a more powerful attacker could make
headway, and in any case it involves the humans in extra
work. So if k hash bits would have been required had com-
binatorial attacks been impossible, 2M + k are now actually
required.

Similar attacks exist against all the protocols of [2]. In
[1], several protocols are proposed for authenticating a de-
vice such as a printer to a user. Of these, only the follow-
ing one (Protocol 2) addresses the objectives set out above,
since others are either for a different sort of empirical chan-
nel or require confirmation of more data than we would like
(including a user’s unique ID). It provides an interesting
half-way house as regards this type of combinatorial attack.
In the following, A is a user and B is a printer, and pk(P)
is the public key of all printers, which plays essentially the
same role as wkk above. K is intended to be used as a ses-

sion key.

1. A →N B : {A, pkA, NA}pk(P)
2. B →N A : {A, B, pkA, NA, K}pkA

3. B →E A : hash(Message 2)

This is secure under perfect cryptography. It does not ap-
pear to be subject to a classic birthday attack since these can
only work if the hash value is fixed by the attacker, whereas
in the above it is always fixed by the printer (through the
values it sends in Message 2). However, if the attacker
has the ability to compute the same order of magnitude
of hashes as the size of the hash space (far from incon-
ceivable if only a few digits or letters are agreed) there
is still an attack. The intruder acts as a man in the mid-
dle, switching his own public key pkI into the Message
1 received by B. Then, when he receives Message 2,
he seeks to find K′ such that hash({A, B, pkA, K′}pkA) =
hash({A, B, pkI, K}pkI) The number of hash bits required to
counter this would here grow like M +k rather than 2M +k.

The first protocol could be strengthened to M + k growth
as opposed to 2M + k if it were de-symmetrised so that a
member of G declares themselves to be the finaliser of the
hash. (To do this, this node must not issue its Message 2
until it has received Message 2’s from all other participants.)

One can, however, do better than that. We now propose
a different protocol for the first scenario, but which seems
to avoid combinatorial attacks altogether. For this proto-
col we assume our hash functions have a key such that, for
each choice of this key, they represent separate hash func-
tions, and we distinguish between sh(hk, m) and lh(hk, m):
short and long hash functions. The first of these is what the



humans compare, the second has enough bits to defeat any
combinatorial attack. In both cases it must be infeasible to
compute hk or m from the values (or indeed any number of
hashes in which one or other is fixed and the other varying).
In the long case it is infeasible given any reasonable time to
find hk and m (or one given the other) which hash to a given
value. We will discuss the length of the short hash later.

We give a special role to one of the members of G, who
initiates the protocol and who makes all members of the
group aware that he is playing this role. It is crucial that all
members of G know, by the end, that one of their number
has initiated this run of the protocol. The protocol is as
follows, where A represents a typical non-initiator node, B
a node of either type, and Md again represents message M
decrypted.

0. I →N ∀ A : I
1. ∀ B →N ∀ B′ : {B, kc(B), NB}wkk

2. I →N ∀ A : lh(hk, all Messages 1d)
2b. See note
3. I →N ∀ A : {hk}pk(A)
4a. ∀ B displays : sh(hk, all Messages 1d)

init(I, B), participant count
4b. ∀ B →E ∀ B′ : Users compare
5. ∀ B →N ∀ B′ : {lh(hkpub, S)}dual(pk(B))

The following notes explain these messages.

• Message 0 gets the protocol going and informs the par-
ticipants of the identity of I. 2

• Message 1 has the same role as the same message in
the first protocol of introducing fresh data and a public
key from each participant.

• Message 2 has I invent a new hash key hk. It then
sends each node the hash of something which every
node knows, and knows to be fresh. On the basis of
this information no-one other than I knows the value
of hk, but no-one who has accepted this message can
be fooled into thinking that any other value of hk is
correct.

• Message 2b is some way of ensuring that I will not
send a Message 3 while any other agent in G is still
waiting for a Message 2. The most obvious way of do-
ing this is to use the empirical channel at this point:
each laptop displays a signal which the users then con-
vey to the user of I.

One of the functions of Message 2 of the first protocol
was to act as preliminary test of the probable coher-
ence of a run of the protocol in advance of the humans

2In practical implementations it might be a good idea to have I intro-
duce some public nonce that will act as an identifier for this particular run
of the protocol: it could be used to reduce confusion rather than increase
security by being added as a tag to all the other →N messages.

becoming involved. There is no such check included
in the present protocol. Therefore, both to save the
humans unnecessary effort and to prevent incorrect di-
agnosis of an attack (see Section 4) we might want to
add a Message 2a in which all nodes broadcast a public
hash of the Message 1’s for this purpose.

• In Message 3, I sends each node the hash key under
its own public key. Since this message is firmly bound
to Message 2 there seems to be no reason to add any
further contextual information. Note that at this point
each node can check the value of hk by testing to see if
it produces the correct value for Message 2. They only
proceed if this is true.

• Message 4a makes a similar display to Message 3a in
the first protocol. The only difference is init(I, A),
which gives information about the initiator, at least
whether this node is the initiator of the session.

• Message 4b has the members of G compare hashes and
check the number of participants as before. The differ-
ence this time is that one of them must be able to say
“I am the initiator”. If these fail the run is abandoned.

• Message 5 acts as a confirmation amongst the laptops,
like Message 4 did in the first protocol. At this point
hk is a shared secret amongst G; assuming that some
shared secret S is needed to take the session forward
from here they can construct one in a systematic way
from the run data – necessarily involving hk since the
rest of the data is public. This message consisting of
a hash of this secret (the hash key hkpub is publicly
known) simply acts as a confirmation. The signature
using the duals of the public keys established makes
this quite strong: since authentication is actually es-
tablished by Message 4 it could be simplified without
compromising security.)

We will call this the HCBK protocol, for Hash Commit-
ment Before Knowledge. Note that though this protocol is
asymmetric, both the set-up of empirical channels and the
final result are symmetric. The final result is that the mem-
bers of G (identified by the empirical channels) are authen-
ticated to each other as the owners of the public keys they
have introduced, and have the shared secret S.

We can analyse the HCBK protocol as follows:

1. After Message 4 all participants know that I, one of
their number (and therefore trustworthy) has generated
a value hk and that the value they have just agreed to
(created using their various views of hk) all coincide
with I’s own. Under the perfect cryptography hypoth-
esis this, together with the same reasoning used for the
first protocol, would prove security. [In essence this is
that each group member knows that it, and, thanks to



the agreement, the other N −1 nodes, all belong to this
hash of N sets of values. It follows that they are all
present and no-one else is.]

2. Before Message 3 is sent, all members of G have a
long hash which has apparently been computed using
hk, but I has not divulged hk itself to anyone. Of course
the intruder might have sent any of the Message 2’s,
but he has no way of knowing at this stage what the
hash value computed in Message 4 will be. Therefore
there is no constructive way in which the intruder can
manipulate the Message 2’s for his own purposes.

3. Since it is computationally infeasible for the intruder
to find other inputs for which a long hash comes up
with a given answer, the fact that a member of G gets
past Message 3 means that he or she has the same view
of hk and of the Message 1’s as the initiator of its run.

4. At the point at which a laptop A accepts a Message 2,
the hash value it will generate in Message 4 is com-
pletely determined; however neither it nor any other
entity but I is in a position to compute that value yet.

5. Supposing that A has agreed the hash value HV in Mes-
sage 4, there are two possibilities:

• It is part of the same run as I, so all is well.

• It is part of another run that happens to have the
same hash value. But for this to be true the in-
truder has fixed another run (which A is in, sim-
ilar to the attack on the first protocol) to have
value HV in advance of knowing what HV is.
This can only be done via a single guess, which
we have assumed has negligible probability of
success. It cannot be multiplied by attacking sev-
eral members of G since as soon as one of them
spots a discrepancy the run will be abandoned.

This reasoning depends crucially on having a trustwor-
thy participant declaring that he or she is the initiator. Oth-
erwise the intruder could act as initiator in two separate runs
with members of G, giving it the opportunity to select hk
values for which the short hashes will co-incide.

It is vital for the correctness of this protocol that the
non-initiator nodes never start another protocol run between
the acknowledgement of the receipt of Message 2 (namely
Message 2b) and the final agreement about the hash val-
ues. For otherwise an intruder might persuade one of them
to abandon the first run, and start a second one where he
manipulates the final hash using a similar combinatorial at-
tack to the one described earlier against the printer protocol.
This could be achieved, for example, by putting timing con-
straints on how fast a second run can be started after one is
abandoned and how long the initiator will wait for the final

agreement. Or it could be achieved by the addition of run
numbers to some of the messages. In some human-mediated
implementations of the empirical channels we might find it
reasonable to assume they cannot be blocked, which would
mean that a node whose run is abandoned can communicate
this fact to the others.

3. Asymmetric authentication

We have already seen that the HCBK protocol is much
safer against combinatorial attacks than the earlier one. It is
natural to ask whether similar ideas could lead to stronger
protocols than others that have been based on the quote
above. One such example is Protocol 2 from [1] which we
quoted above.

We cannot simply apply HCBK to this scenario for two
reasons. The first is that we only have a one-directional em-
pirical channel. The second is that this new scenario is not
one where the concept of mutual trust makes any sense. In-
stead we are assuming that the user A has some grounds for
trusting the device B: maybe it is owned by her or someone
she trusts. We are not considering the authentication of A to
B. In summary, the scenario is no longer symmetric.

In fact a very similar protocol works, which is the same
as HCBK except that all the empirical communications that
are not to the user A – who always plays the role I – are
deleted. Note that this is a group protocol in that it can
authenticate any number of devices to a single user. We pay
the penalty that the users other than A do not have anyone
authenticated to them. The authentication provided is that A
is sure that the session really is with the devices from which
he has empirical channels (which will usually be provided
by displays on the devices that he can see).

Once again it is vital that a device will not participate in
a second run, apparently with A, while A is still running the
first. For obvious reasons this version of the protocol will
be termed Asymmetric HCBK, or AHCBK.

4. Optimality?

Our protocols are designed to initiate a secure and au-
thenticated session between the owners of a set of empiri-
cal no-spoofing channels. Where these channels are imple-
mented by humans it is natural to want to keep the amount
they do to a minimum. We might therefore pose the follow-
ing question:

From a position where nodes in a group have no
shared secrets or knowledge of each other ex-
cept for a complete set of no-spoofing empiri-
cal channels, what is the most security that can
be achieved in a group-formation protocol for a



given amount of communication on the empirical
channels?

In order to answer this question we first have to decide
what “the most security” means. The answer we propose to
that question is:

The security offered by a given protocol instance
is the minimum, over all potential attacks with a
more than infinitesimal chance of success, of the
probability that the attack is discovered divided
by the probability that it succeeds.

Here, an attack is a strategy by an intruder in-
tended to make some agreed security specifica-
tion of individual runs fail, and it succeeds if – on
a particular run – the specification does fail.

This, or the log of this value, seem to the author to be
reasonable definitions since, upon discovering an attempted
attack, the participants can make subsequent runs more se-
cure by putting more resource into them. If there were an
attack with no chance of being discovered, then presumably
it could be repeated ad nauseam until it eventually succeeds.
For that reason this seems to him to be a safer definition than
just the reciprocal of the probability of success.

In the following analysis we will discount the possibility
that an attacker of HCBK or other candidate protocol can
make the perfect cryptography hypothesis fail except on the
empirical comparison of hash values. More precisely, we
assume that the probability of such an approach working is
infinitesimal, hence the use of this word above.

Since it is readily provable that HCBK is secure if we
had perfect cryptography, and the only place we are saying
this can fail is on the short hash values, it follows that for
an attack to succeed we must have different members of
the group G producing the same hash value from different
antecedents. The group will not proceed without an initiator
I present, so we can concentrate on the case where another
node A has different antecedents for the same hash value as
I.

I knew that A was committed to the antecedents of some
final hash value at the point when it first sent Message 3
to anyone; further we know, thanks to an assumption we
made, that A cannot have become committed to another
value since.

An intruder could only know whether the final hash value
of A coincided with I’s after I has sent a Message 3. Assum-
ing that our hash functions etc have the properties we expect
of them (namely that the short hash is uniformly distributed
as a function of hk for all values of the other parameters,
and that the intruder cannot infer any information about that
hash from Message 2), the intruder will have at best 1/H
chance of success, where H is the size of the hash space.
(This is the chance of a single A with different antecedents
matching I on the final comparison.)

If the intruder was lucky then presumably he would carry
on. If he were unlucky then this attack is not going to suc-
ceed, so we should investigate how the intruder might be
discovered and try to evade discovery.

If the intruder simply lets the nodes from G carry on
then they will discover something wrong. If the intruder
ensures (as he can) that they all get Message 3’s consistent
with their Message 2’s then final agreement will fail, and
if any of them gets a Message 3 that is inconsistent it can
report intrusion. The most drastic action our intruder can
take is to prevent any of the Message 3’s getting through,
but then all nodes will know that something has interfered
with their run.

The only way of avoiding this would be if the intruder
could somehow modify the states of the nodes so that they
would in fact agree, perhaps on the correct values that the
nodes from G actually intended. This could only be done
if at least one of them were forced to abandon its present
session and start a new one that would agree. But we have
specified that, once they have got beyond Message 2 this
cannot happen and that it would lead to an attempted attack
being registered.

It therefore seems that if an attacker allows his attack to
proceed to the point when he knows if it will succeed then
he will be discovered whenever it does not. Therefore, to
have a 1

H chance of success he must have a H−1
H chance of

discovery. So our measure of security seems to be H − 1.
How much human/empirical work is required to do this?

We will disregard the work done in comparing the number
of participants, since (i) these do not have to be communi-
cated (each user independently checks the number on his or
her own screen) and (ii) these numbers serve to factor our
general protocol into different N-ary specific protocols. As-
suming we are using empirical messages for 2b, it is clear
that this requires N − 1, so let us consider the final agree-
ment phase. The protocols themselves envisage all the par-
ticipants sending the hash values to each other, but all that is
actually required is that there is a connected graph of agree-
ment exemplified by

• The initiator communicating the hash value to one
other node.

• If this node agrees it sends the value to a further node.

• This is repeated until all nodes have seen this value:
the last one in the chain then knows they all agree and
so sends an acknowledgement message back to its pre-
decessor.

• This is repeated until the initiator gets its acknowl-
edgement, at which point all nodes know they all
agree.



Note that since it is the initiator I who sets this chain going,
this strategy would also act as the confirmation required that
the initiator is a member of G.

It seems reasonable to measure the work required to send
a message as 1 + [log k], where k is the number of poten-
tial message values and [x] is the smallest integer r ≥ x.
The 1 is for the overheads of the message and the rest is
the number of bits. Given this, our agreement strategy re-
quires N − 1 communications of cost 1 + [log H] and N − 1
of weight 1. It follows that the total cost including 2b is
(N −1)(3+[log H]−2. If the empirical channels are broad-
cast rather than point-to-point (as in members of a group
talking) agreement can be achieved in a single announce-
ment of weight 1+[log H] by I followed by N −1 responses
of weight 1 from the rest. (All of these have had to do the
work of comparing the hash value independently.) So the
total cost is [log H] + 2N − 1.

Intuitively, it seems that this must be close to minimal
amongst all conceivable protocols with security measure
H − 1.

Let us examine this question briefly: we will start with
the binary (N = 2) case. We do not claim that the following
argument represents a formal proof; rather a strong indica-
tion that one exists.

In the absence of the two nodes A and B having any pre-
existing knowledge of each other, or any security infrastruc-
ture, an arbitrary protocol P is certain to have a man-in-the-
middle attack against it unless the empirical channels are
used. For our attacker can simply set up parallel sessions
with A and with B; each will know they are in a session, and
the intruder is free to translate the messages each send the
other from one session to the other.

Each of A and B has to receive an empirical message
from the other for them to be mutually authenticated, since
either that did not receive could not tell who they were con-
nected to. It follows that the total work required is at least
two plus the number of bits they communicate in their mes-
sages3.

If A and B send a total of k bits of information to each
other on empirical channels during a run of the protocol,
then in order for the above attack to succeed the messages
expected in the two attack sessions must be the same as are
expected in the proper session that A and B imagine they are
having.

The worst case for the intruder is when the protocol gives
him no information about what empirical communications
are coming from A and/or B in the two sessions, and when
the structure of the two sessions does not allow him to trans-
mit information between A and B in such a way that these
expectations match up. (In the HCBK protocols the use of

3Note that it would be possible for them to send information to each
other via patterns of content-free communication, but that the cost of such
communication would exceed sending it as bits.

the nodes’ public keys in the hash achieves this.)
Whatever values the intruder has chosen to inject into the

two runs (noting that in the two combined it injects a com-
plete set since it is playing all roles, and that the intruder is
trying to get agreement) will have a chance of the empiri-
cal communications agreeing no worse than the reciprocal
of the number of value combinations communicated. That
is precisely what is achieved in HCBK. Since that protocol
(with 2b) uses three messages as opposed to the two proved
above, the cost of HCBK for two nodes exceeds the theo-
retical bound we have established by only one.

Now let us consider the case of a group of N > 2 agents
who wish to be mutually authenticated. If broadcast com-
munication is being used, it is clearly impossible to achieve
agreement in less than one k-bit communication followed
by N − 1 null communications, since all must send an em-
pirical communication, and k bits of information have to be
compared somehow.

If point-to-point communication is used, then there must
be a first node A that knows that the run is secure. From that
point on clearly exactly N − 1 basic communications are
necessary and sufficient: all others have to receive some-
thing that tells them, and A can simply communicate the
fact by one communication to each (either directly or via a
deeper tree). The author conjectures that no node can know
the run is secure until (N−1)k bits have been communicated
in the network, but has yet to find a proof of this.

5. Verification

Our protocols offer new challenges to automated veri-
fication. These are the fact that they are group protocols
where the size of the group is checked as part of the pro-
tocol, and the use of a new and stronger attacker model.
Additionally, though this had been solved previously (e.g.
[2]), we need to model empirical channels specially so they
cannot be spoofed. This last one is very straightforward.

The author cannot claim to have made much progress on
the first of these as yet: it may well be that this, with its im-
plicit use of arithmetic, is better suited to theorem proving
than model checking. All he has been able to do is to build
CSP models for FDR in which the group size was bounded
above by some small natural number (e.g. 2 or 3).

The agreement implied by the short hash under perfect
cryptography is, as we have observed, so strong that it
would appear that the only possible source of attacks will
be from the attacker’s ability to create a fresh value so
that some construction involving it will hash to an already-
known value. (This is strong enough to allow both for birth-
day attacks and for the cruder style of attack we discussed
for the printer protocol.)

The main difficulty this creates for the CSP/FDR model
of protocols is that hashing can no longer be a simple free



data-type constructor. For the usual way of incorporating it
into the protocol data-type Fact:

Fact ::= ATOM.Atom
| SQ.〈Fact〉
| PK.Fact.Fact
| ENCRYPT.Fact.Fact
| HASH.Fact

makes all hashes of distinct objects distinct (the effective
assumption in perfect cryptography). The solution that the
author adopted was to retain the basic structure of this data-
type with two modifications:

• Since sets are used in the protocol as a natural conse-
quence of modelling groups of members with the same
role, a SET construct was added.

• Two hashing constructs were used, SHORTHASH and
LONGHASH, each taking two arguments reflecting the
usage in HCBK.

but then to modify how the hashes are computed over this
type.

Long hashes are worked out in the same simple way as
previously, namely

lh(hk, f ) = LONGHASH.hk.f

since they are still assumed to satisfy perfect encryption.
The function sh, on the other hand, is computed via a lookup
table that can be manipulated by the intruder. The lookup
table is implemented as a separate process which maps hash
keys and facts to short hash values in which each combina-
tion (hk, f ) defaults to SHORTHASH.hk.f , but if the intruder
creates a fresh atom A which is a part of the fact f or is
hk (both of which the intruder knows given A), then the in-
truder is allowed to make the lookup table send (hk, f ) to
shv for any short hash value shv it already knows.

In runs of FDR, the lookup table was limited to have a
single manipulated hash value, to reduce the state space.

As we would have expected, this model finds the same
attack we illustrated earlier on our first protocol. It finds no
attacks on HCBK or AHCBK.

6. Conclusions

We have seen how a new approach to computer security
allows this to develop from trust that may have arisen in
subtle and non-technical ways. This will often just be a
human trusting hardware he or she can see and has decided
to trust (in the case of the asymmetric protocol) or which is
in the hands of other humans in the same group.

We believe that this new paradigm should be helpful in
many circumstances, including the following.

• It provides a lightweight mechanism for a group – per-
haps in a military or business context – to set up a
highly secure network where the membership is pre-
cisely them, and no external user or piece of hardware
needs to be trusted.

• It can perform the same role where the users are so
heterogeneous that it is difficult or impractical to build
an overarching security management system.

• It can re-inforce an existing security structure, for ex-
ample because

– It is feared that some hardware might have fallen
into enemy hands. Our protocols can prevent
connection to parties unless there is human-to-
human trust.

– Users want reassurance that they are connected
to the particular member of a security structure
that they want to be.

In this context we should perhaps regard the optional
use of wkk in the protocols as a cliché for the idea
that the messages of our protocols might be sent within
some wider security structure.

• It can be used by parties to any radio, telephone or
video-phone conversation to achieve secrecy quite in-
dependently of any carrier, provided we discount the
possibility that an attacker might successfully imper-
sonate each human to the other(s) in the agreement
phase.

• The user of any device in line of sight4 can be assured
of a secure connection with it (or a group of these in
only one run).

We have given a relatively informal demonstration that
our protocols seem to be near optimal in the trade-off be-
tween human/empirical effort and the chance of a successful
attack. We have also shown how the stronger attacker of this
new protocol can be modelled on FDR. The author would
like to find a better way of modelling this that does not have
to be limited to a single manipulation – this development
would be very similar to the evolution of the “perfect spy”
of [6] from our early intruder models that had a small finite
memory. Particularly in that case, he hopes that it might
find use in other circumstances in computer security where
combinatorial attacks on hashes are an issue.

It is worth comparing what our protocols achieve against
the secure mode of Bluetooth. The latter also uses an empir-
ical channel in that both ends of a secure communication are
primed with a PIN. The key for the transmission of secure

4Or in any other context where there is a non-spoofable channel from
the device to the user.



information within that protocol is then computed from this
PIN and some broadcast random information. It is well doc-
umented (for example [9]) that it is vulnerable to a number
of attacks. These both make it imperfect within its defined
context and severely limit the extent to which it can be used
outside this. Firstly, unlike our protocols where we allow
the empirical channel to be heard by an attacker, this would
be fatal to Bluetooth. If the PIN becomes known to an at-
tacker he can simply compute the key.5 Even if the PIN is
not revealed directly, Bluetooth is vulnerable to a post hoc
attack in which the attacker just tries each candidate PIN in
turn. This is in some ways worse than the situation with our
first protocol, since there at least the combinatorial attack
has to be contemporary with the protocol run, and is there-
fore harder. The HCBK protocols, of course, eliminate this
entirely.

It would be interesting to take further the idea of quanti-
fying the security provided by a protocol. One can imagine
a number of alternative measures, and a protocol having dif-
ferent measures relative to different specifications (maybe
secrecy and authentication). It should ultimately be possi-
ble to automate it using probabilistic model checking tools
such as those described in [8, 7].

It is clear that any use of our protocols would benefit
from several sorts of human factors research. Most obvi-
ously, how should we present our hash values so that human
users will find it both easy and tolerable to compare as large
a range as possible. Might they be composed of characters,
letters, digits, words, or be sentences, or symbolic in some
way? If the computers are close together, should our hu-
mans perhaps compare images, or have their hardware play
a sequence of musical notes together? Obviously the opti-
mal way of doing this might vary from context to context.
How safe is the voice or video-telephone communication
of hash values against attack; what is the best strategy for
making an attack difficult in such circumstances?

Other questions in this area include how to explain to
users their important role in the protocols, and present the
data in such a way that they will not ignore the needs of
security.

Acknowledgements The conceptual model of computer
security proposed in this paper emerged in a series of dis-
cussions the author had with Sadie Creese, Michael Gold-
smith and Irfan “Zak” Zakiuddin. In particular it was Zak
who introduced, and emphasised the importance of, the
problem of bootstrapping security from a minimal starting
point. This joint work was reported in our earlier papers. I
have had useful discussions with Gavin Lowe and Michael
Goldsmith relating to this paper.

5This would seem to make the Bluetooth protocol susceptible to attack
whenever the attacker might be physically present in some way, or over-
hearing the PIN if it is spoken.

References

[1] S. J. Creese, M. H. Goldsmith, R. Harrison, A. W. Roscoe,
P. Whittaker, and I. Zakiuddin. Exploiting empirical en-
gagement in authentication protocol design. In D. Hutter

and M. Ullmann, editors, Proceedings of 2nd International
Conference on Security in Pervasive Computing (SPC’05),
volume 3450 of LNCS, Boppard, Germany, April 2005.
Springer.

[2] S. J. Creese, M. H. Goldsmith, A. W. Roscoe, and M. Xiao.
Bootstrapping multi-party ad-hoc security. In Proceedings
of IEEE SAC Security Track, 2006. to appear.

[3] S. J. Creese, M. H. Goldsmith, A. W. Roscoe, and I. Zaki-
uddin. The attacker in ubiquitous computing environments:
Formalising the threat model. In T. Dimitrakos and F. Mar-
tinelli, editors, Workshop on Formal Aspects in Security and
Trust, Pisa, Italy, September 2003. IIT-CNR Technical Re-
port.

[4] S. J. Creese, M. H. Goldsmith, A. W. Roscoe, and I. Zakiud-
din. Security properties and mechanisms in human-centric
computing. In P. Robinson, H. Vogt, and W. Wagealla, ed-
itors, Privacy, Security and Trust within the Context of Per-
vasive Computing, Kluwer International Series in Engineer-
ing and Computer Science. Springer, 2004. Proceedings of
Workshop on Security and Privacy in Pervasive Computing,
Wien, April 2004.

[5] S. J. Creese, G. M. Reed, A. W. Roscoe, and J. W. Sanders.
Security and trust for ubiquitous computing. In ITU WSIS
Thematic Meeting on Cybersecurity, Geneva, 2005.

[6] M. H. Goldsmith and A. W. Roscoe. The perfect ‘spy’
for model-checking cryptoprotocols. In Proceedings of
DIMACS Workshop on Design and Formal Verification of
Cryptographic Protocols, Rutgers, 1997.

[7] M. H. Goldsmith and P. Whittaker. A CSP frontend for prob-
abilistic tools, 2005.

[8] A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker.
PRISM: A tool for automatic verification of probabilistic
systems. In Proceedings of TACAS’06, 2006. to appear.

[9] M. Jakobsson and S. Wetzel. Security weaknesses in blue-
tooth. In Proceedings of 2001 conference on cryptology,
volume 2020 of LNCS. Springer Verlag, 2001.

[10] T. Kindberg and K. Zhang. Validating and securing sponta-
neous associations between wireless devices. In 6th Informa-
tion Security Conference (ISC’03), number 2851 in LNCS.
Springer-Verlag, October 2003.

[11] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In Proceedings of TACAS,
volume 1055 of LNCS, pages 147–166. Springer Verlag,
1996. Also in Software – Concepts and Tools, 17:93102,
1996.

[12] B. Schneier. Applied cryptography. Wiley, 1996.
[13] F. Stajano and R. Anderson. The resurrecting duckling: Se-

curity issues for ad-hoc wireless networks. In B. Christian-
son, B. Crispo, and M. Roe, editors, Security Protocols,
7th International Workshop Proceedings, pages 172–194.
Springer LNCS, 1999.


