
Modelling unbounded parallel sessions of
security protocols in CSP

E. Kleiner and A.W. Roscoe

Oxford University Computing Laboratory
{Eldar.Kleiner, Bill.Roscoe}@comlab.ox.ac.uk

Abstract. We show that a simplification to earlier CSP models designed
to prove protocols correct on the FDR model checker is valid. This both
allows us to extend the scope of our proofs and produce checks that are
enormously more efficient.

1 Introduction

Model checkers such as FDR have been extremely effective in checking for, and
finding, attacks on cryptographic protocols. However, their use in proving the
correctness of such protocols was orginally limited, restricted by the finiteness
of some set of resources such as keys and nonces.

In [16], it was demonstrated how, using techniques based on data indepen-
dence, a simulation of a finite number of agents executing a protocol an un-
bounded number of sequential runs can be set up. The essence of that technique
was to identify cryptographic objects such as keys and nonces once they had
become stale (i.e. no longer known to a trustworthy agent). Therefore a finite
collection of values could be recycled so as to achieve the effect of an infinite
one.

In [4], the model of [16] was extended to allow multiple instances of a given
identity with the motivation of detecting parallel attacks: ones that require one or
more identities to be running several instances of the protocol at the same time.
This depended on internalising at least part of each identity within the intruder.
In effect this gives the intruder an oracle based on the behaviour of these agents.
[4] did not completely solve the problems associated with parallel attacks, for
example in the area of injective authentication. Essentially for historical reasons,
that paper created a model with both internalised agents and the recycling
model.

Some work has also been done in finding thresholds on the number of agents
and runs beyond which the behaviour of a system does not change (e.g. [11, 21].)
The problem with this approach is that it tends to generate large models which
are sometimes infeasible for a model checker to handle.

In this paper we show that, for static protocols in the presence of internalised
agents, most of the complex machinery developed in [16] to handle an infinite
number of sequential runs becomes unnecessary. This produces models which

are orders of magnitude more efficient to run on FDR as well as being concep-
tually easier. The latter means that we are able to demonstrate clearly that our
method can detect both secrecy and authentication attacks which require arbi-
trary numbers of parallel sessions from both participants in the protocol – this
is an advance on [4]. It follows that when our methods do not find an attack
then no attack (with the Dolev-Yao model with perfect cryptography) exists.

This paper is based mainly on a single example protocol. However the meth-
ods we develop work for just about all the static protocols we could have at-
tempted with previous methods.

2 Modelling protocols with CSP

CSP [9] is well suited to modelling protocols since it is a language of interaction.
The CSPM language of FDR [15] contains a wide variety of datatype and func-
tional programming constructs which make it possible to model cryptographic
protocols succinctly and elegantly. In this section we summarise how a security
protocol is modelled using CSP (a process which has been automated in Casper
[10]) and how the model allows us to reason about it. Many further details can
be found in [19].

2.1 The Fact datatype

The datatype Fact represents all the messages that pass between agents, their
constituent parts and anything else (e.g. secret keys) that is relevant to building
and understanding them. It is based on a set of atoms called Atom where the sets
Key, Agent and Nonce are defined to be subsets of the atom set (Key⊆Atom,
Agent⊆Atom and Nonce⊆Atom.) This (and all subsequent constructs we de-
scribe) can be extended to deal with other primitives, such as hashing, and
constructing forms such as set formation.

Fact ::= Encrypt.Fact.Fact | Sq.Fact∗ | Atom.Atom

In this paper we will use the Casper notation of writing {m}k for Encrypt.k .m
and will abbreviate Sq.〈m1, . . . ,mn〉 to 〈m1, . . . ,mn〉 or m1, . . . ,mn . For exam-
ple, we will denote the construct Encrypt.k .(Sq.〈a,na〉) by {a,na}k.

2.2 Trustworthy agents

Every agent taking a part in the protocol can be modelled as a CSP process (As
will be shown later, an agent can also be internalised in the intruder deduction
set, but for now we will assume that each honest agent is implemented as a sep-
arate CSP process). We define process PA denoting agent A, using the following
events:

– send.A.B .F - symbolises agent A sending message F to agent B .
– receive.A.B .F - symbolises agent B receiving message F apparently from A.

In addition we define the following events for representing the state of mind of
the agents while they are running the protocol.

– claimSecret.A.B .〈F1, . . . ,Fn〉 symbolises that A thinks that facts F1, . . . ,Fn

are secrets shared only with agent B .
– Running.A.B .〈F1, . . . ,Fn〉 symbolises that A thinks he started a new run of

the protocol with B where 〈F1, . . . ,Fn〉 contains facts identifying this run.
– Commit.A.B .〈F1, . . . ,Fn〉 symbolises that A thinks he has just finished a

run of the protocol with B where 〈F1, . . . ,Fn〉 contains facts identifying this
run.

The specific definition of the agent’s process depends on the protocol we want
to analyse. For example if we look at the modified NSPK protocol [12]

Message 1 A→ B : {na,A}PK (B)

Message 2 B → A : {na,nb,B}PK (A)

Message 3 A→ B : {nb}PK (B)

the process that represents one instance of a trustworthy agent A initiating
this protocol is defined as follows:

P I
A(na)=̂
u

B∈Agent
send .A.B .{na,A}PK (B) →

2
nb∈Nonce

 receive.B .A.{na,nb,B}PK (A) →
send .A.B .{nb}PK (B) →
claimSecret .A.B .〈na,nb〉 → Session(A,B ,na,nb)

The responder role is similarly defined: henceforth we will assume that PA(na)

can perform either the initiator or the responder role once (as agent A, using
nonce na). The claimSecret event expresses the expectation of A that na and
nb are secrets shared only between herself and agent B .

2.3 Modelling the intruder and putting the network together

Based on the Dolev-Yao model [7], we allow the intruder to have the following
abilities when attacking a set T of trusted agents: (i) overhearing all the messages
flowing through the network, (ii) intercepting messages, (iii) faking messages
based on what he knows limited only by cryptography, and (iv) behaving as
would any agent outside of T . As is customary, we do this via a deductive
system: we say that B ` F if fact F can be constructed by the intruder from
the set of facts B . For example the following rules capture the intruder’s ability
to encrypt and decrypt.

{F ,K} ` {F}K {{F}K ,K−1} ` F

The process representing the intruder is parameterised by X, which ranges
over subsets of Fact, and represents all the facts the intruder has discovered to
date. In this model the intruder gets every message sent by the honest agents

or by the server via the send channel. He then can pass it to the agents via the
appropriate receive channel unless he decides to block it or fake a new message
instead.
Intruder(X)=̂ 2F∈Fact∩Messages send?A?B !F → Intruder(X ∪ {F})

22F∈Fact∩Messages receive?A?B !F → Intruder(X)
22F∈Secrets leak .F → Intruder(X)

The initial state of the intruder is Intruder(IIK) where IIK is the Intruder
Initial Knowledge.1

What we then want to do is show that no attacks are possible in the infinite
composition

SYSTEM = (|||
(A,n)∈Inits

PA(n)) ‖
{|send,receive|}

INTRUDER(IIK)

where Inits is a set of pairs of honest agents and their initial nonces with the
property that each agent has infinitely many nonces, and no nonce is owned by
more than one agent or is owned by an agent and is in IIK . IIK should give the
intruder the ability to behave arbitrarily as all non-honest agents and should
contain all agents’ names and public keys.

Thus SYSTEM contains infinitely many copies of each role, each of which
can run the protocol once. It contains all the behaviours, however, of indefi-
nitely many copies that can each perform a protocol run as often as it likes in
sequence, because parallel and independent threads can still perform their runs
in sequence. This observation is the key to why our work in this paper provides
significantly quicker protocol proofs than earlier CSP models. Naturally we can-
not run SYSTEM itself on FDR: this paper is devoted to developing methods of
building an efficient finite model of it which we can run to discover its properties.

3 Internalising agents

The technique of incorporating (Internalising) the functionality of some partici-
pants into the intruder was originally suggested in [6] as a strategy for reducing
the state space of protocol checks. The latter is achieved by broadening the de-
duction set of the intruder. It was subsequently noticed that internalising an
agent A creates the effect of enabling A to participate in an infinite number of
parallel instances of the protocol.

Internal agents were classified into two main categories. The first includes
agents who do not, at any point of the protocol, introduce fresh values. The
server role in the TMN [22] protocol is a good example for such agents. The
server’s task in this protocol is to receive two messages M1 and M3 and then to
construct a corresponding message M4 which only contains variables appearing

1 In practice, in FDR, we use a model of the intruder which is equivalent to the
process above but vastly more efficient to run: it treats the intruder as the parallel
composition of one process for each learnable fact and uses a partial order reduction
method called chase on this. This is discussed more later.

in M1 and M3. Therefore, this functionality can be accurately internalised in the
intruder using the deduction {M1,M3} ` M4.

The second and larger category contains agents that generate fresh values
(such as nonces, keys and identities.) In [4], Broadfoot and Roscoe made the
first attempt to internalise this type of agent. The authors defined a new type
of deduction, a generation, which has the form t,X ` Y where t is a non-empty
sequence of the fresh values, X is a finite set of input facts, and Y is the result-
ing set of facts the intruder deduce containing the fresh values from t. Special
processes, known as manager processes, were responsible for supplying the fresh
values upon a generation request. Something like this is necessary whenever it
is necessary for an internal agent to create actual fresh values (possibly subject
to recycling as discussed earlier).

The problem with this modelling approach is that if the intruder is unre-
stricted, then he can perform any number of generations he wishes, each time
requesting fresh values. Hence, since the manager process has a finite source, this
will result in running out of fresh values. In order to overcome it, the authors
of [4] introduced a protocol model property referred to as just-in-time (JIT). In
the next sections we propose a different way to bound a system by dispensing
with the need for internalised agents to produce genuinely fresh values.

4 Data Independence

Process algebra models of security protocols usually treat infinite types like keys,
nonces and names data independently [18, 15] since all they do is to compare
them for equality and to apply polymorphic constructors over them like tupling
and (symbolic) encryption. For example, consider Message 2 in the the modified
NSPK protocol: Encrypt.(SKey(A), Sq.〈Na, Nb, B〉) It is obvious that this con-
struct does not depend upon the structure of the values it contains (Nb,Na,A
and B) and does not expose supplementary information related to them.

Data independence results for security protocols [16] are based on a collapsing
function φ to the data independent type(s) T of a process P(T) and proving that
the behaviour of P(T) is lifted through the function and is therefore sufficiently
similar to the behaviour of P(φ(T)) to expose any attack. In the traces world,
it is easy to see that this is always the case when φ is injective:

traces(P (φ(T))) = {φ(t) | t ∈ traces(P (T))} (∗)

However, when φ is a non-injective function, it much harder to tell whether (∗)
holds since it can change the results of the equality tests occur within P . In
[16, 6], conditions were established that are sufficient for this collapsing to work.
In essence these, PosConjEqT’C , and Positive Deductive System state that
no external agent ever requires an inequality (except with members of the set
C of constants) to make progress, and that the intruder never depends on an
inequality to make a deduction. Fortunately, these are true of most protocols
and of the standard deduction system. We will assume these properties of the
protocols and models we consider.

5 Modelling an infinite number of internal agents

We distinguish between two types of security protocol. The first one consists of
those in which each participant might perform an unbounded number of sequen-
tial steps in any session, or in which there is an unbounded chain of participants
(known as stream or erecursive protocols). The techniques developed by Roscoe
in [16], were later adapted and used by Broadfoot and Lowe [2] to analyse such
a protocol, known as the Timed Efficient Stream Loss-tolerant Authentication
protocol (TESLA) [14]. The second type consists of static protocols in which ev-
ery agent performs a fixed finite number of steps in each run of the protocol. By
far the majority of the literature on model checking cryptographic protocols has
been devoted to the latter. In this section we propose a method for modelling
infinite number of internal agents in static protocols and demonstrate how it can
be employed for proving the correctness of the modified NSPK protocol.

Suppose we wish to model a protocol involving two trustworthy identities,
{Alice, Bob}, in the context of a potentially infinite number of other identities,
none of whom are assumed to be trustworthy, and the intruder (who uses identity
Mallory). In the particular protocol we are studying, each participant generates
one nonce per run. We suggest the following collapsing function to reduce this
to a finite model.2

φ(X) =

X if X ∈ Agent is the identity of one of the external agents

Mallory if X ∈ Agent is any other agent’s identity

X if X ∈ Nonce is generated by one of the external agents

Ns if X ∈ Nonce is a secret and is generated by an honest
internal agent in a session with an honest agent

Np if X ∈ Nonceand X is generated by an honest internal
agent in a session with the intruder

Np if X ∈ Nonce is not a secret

Therefore Alice,Bob,NAlice ,NBob and the intruder identity will be mapped by
φ to themselves. All identities apart from Alice’s and Bob’s will be mapped to
Mallory who is under the control of the intruder. All nonces used by internal
agents in sessions with honest agents will be mapped to Ns and the rest to Np .

It might be the case that one does not know which values are secret and
which are not. In such cases, a secrecy analysis needs to be performed before
authentication checks to make sure which values are indeed secret. Secondly,
by mapping all agents except Alice and Bob to Mallory, we are reflecting our
assumption that that they are all potentially dishonest. In our example, nonces
and identities were the only infinite type. φ can similarly extended to keys,
indices or any other data independent type as required for different protocols.

Since all the processes in SY STEM are data independent in the types of
identities and nonces, each of the CSP processes representing Alice and Bob
2 φ can be extended in the obvious way to the whole of Fact

satisfy the PosConjEqT’C where C = {Alice,Bob} and the intruder process,
through having a positive deductive system, satisfies the PosConjEqT’C , it
follows that the behaviour before the mapping is equivalent to the behaviour
after the mapping:

traces(SY STEM(φ(Π))) = {φ(t) | t ∈ traces(SY STEM(Π))}

for parameters Π. In this model we do not need the concept of generations, since
all messages the intruder (including all other agents other than the external
{Alice, Bob}) can generate are mapped by φ to one of

{Alice,Ns}PK(Bob), {Alice, Np}PK(Mallory),
{Mallory, Np}PK(Mallory), {Mallory,Np}PK(Bob)

We therefore can include these messages in the intruder initial knowledge. The
activity of the internal copies of {Alice, Bob} are captured by the following
deductions.

deduction (2.1) ∀A ∈ Honest • {A,na}PK (B) ` {na,Ns ,B}PK (A)

deduction (2.2) {Mallory,na}PK (B) ` {na,Np ,B}PK (Mallory)

Using this fixed collapsing function φ rather than the dynamic collapsing
required in [4] has in effect made the internal agents unable to create genuinely
fresh values: rather they create pre-collapsed ones, making for a much simpler
model as we can use smaller types and do not need manager processes.

However the dynamic techniques are invaluable for modelling stream pro-
tocols as in TESLA [2] and WS-SecureConversation [8], something that many
protocol analysis tools are unable to do.

6 Restricting internal agents’ behaviour

In the previous sections we showed how actions taken by the honest agents can
be internalised independently. Though this allows us to model an infinite num-
ber of agents, it also introduces surplus behaviours. For example, an internalised
agent might perform step 3 without performing step 1 at all. In addition, the
internalised agent cannot “remember” values he generated in previous steps of
the protocol. For example, consider Message 4 in the following example taken
from [5]:

Message 1. A→ S : {B ,na}ServerKey(A)

Message 2. S → B : ns, {A,na}ServerKey(B)

Message 3. B → S : {nb}ServerKey(B)

Message 4. S → A : {ns,na,nb}ServerKey(A)

Since the internalising technique deals with each step independently, there is
no way to create a deduction for modelling S sending A Message 4. The problem
is that such deductions cannot extract the value bound to ns in the second step.

In [5], Broadfoot offers to restrict the internal agents behaviour using su-
pervisor processes put in parallel with the intruder constraining its behaviour
and prompting it with the values that were introduced in previous stages of the
protocol run.

The last problem lies in the way we model internalised S sending Message 2.
if a generation is employed then ns might be bound to any value the manager
process supplies. On the other hand, when using φ, all these values are collapsed
into Np . Therefore, there is no need to restrict the intruder from performing this
generation many times. Subsequently, a deduction for modelling Message 4 can
easily be constructed since we know that ns can only be bound to Np .

Thanks to these arguments, we are able to offer a different method which
does not require interference by external processes in the intruder’s behaviour.
We define a new construct Sent.Message.Tag abbreviated by Sent(M,T) which
states that message M has been sent by an internal agent where T are the
variables which had been instantiated by this agent up to the point in time M
was sent. For example, when observing the external process representing the
initiator (see Section 2), by the time Message 1 is sent variables A,B ,na are
instantiated. The latter is represented using the new constructor as follows:

Sent({Alice,Ns}PK (Bob), 〈Alice,Ns ,Bob〉),
Sent({Mallory ,Np}PK (Bob), 〈Mallory ,Np ,Bob〉)
Sent({Alice,Np}PK (Mallory), 〈Alice,Np ,Mallory〉)

Sent({Mallory ,Np}PK (Mallory), 〈Mallory ,Np ,Mallory〉)

Similarly, after the third message, the external process has instantiated nb as
well. deduction(3) can be amended as follows to capture this fact.

deduction(3)
{

Sent({A,na}PK (B),
〈A,na,B〉), {na,nb,B}PK (A)

}
` Sent({nb}PK (B), 〈A,na,B ,nb〉)

This illustrates the restrictions placed upon agent A. A will not be able to send
Message 3 unless he has sent Message 1 in the past. If deduction(3) was using the
“pure” Message 1 construct instead of its sent version, the intruder would be able
to perform this deduction even when Message 1 could be deduced independently,
without agent A sending it.

In the same way agents playing the responder role are internalised using the
following deductions:
deduction (2.1) ∀A ∈ Honest • {A,na}PK (B) ` Sent({na,Ns ,B}PK (A), 〈A,na,B ,Ns〉)
deduction (2.2) {Mallory ,na}PK (B) ` Sent({na,Np ,B}PK (A), 〈Mallory ,na,B ,Np〉)

For performance reasons, we can let the external agents use Np instead of their
own nonce when they think they run a session with the intruder. Finally, since
we want to give the intruder the ability to manipulate the messages sent by the
internal agents, we add the following deduction:

deduction (sent) Sent(M ,T) ` M

Even after restricting the internal agents’ behaviours using the methods offered
in this section, a limited number of false attacks may be found by our model.
This number can be reduced (possibly even to none) at the expense of enlarging
the state space of the model. We have to omit here the technical details regarding
this matter due to lack of space.

6.1 Chasing the intruder’s internal agents

It was observed in [17] that the deductive function of the intruder is monotonic;
if B ` f and B ′ ⊇ B then B ′ ` f . So, performing one inference will never
disable the inference of another fact. In particular it does not matter what order
deductions are performed in. Since by default FDR considers all possible orders,
a new external function, chase, was introduced in FDR input language. chase(P)
behaves like P except when it can perform a τ action; in that case, it executes
τ actions until no more are available. If two τ actions can be performed, one of
them will be chosen randomly and the other one will not be considered. Hence,
the efficiency of the model can be improved by hiding the infer events and chasing
the intruder process. This development reduced dramatically the state space of
the model and in effect made complete security analysis using FDR possible.
Since we want the number of chased τs to be finite the standard intruder model
does not allow an infer action whose conclusion is already known.

The internal deductions3 are no different to the standard ones in this respect.
They keep the monotonicity of the deductive function and they are only depen-
dent on whether facts are known rather then being enabled only if some facts
are not known to the intruder. Thus, two deductions will not disable each other
as long as they do not have the same conclusion.

Where intruder inferences are doubling as actions which can be observed
from the outside by a specification (see next section), we can no longer hide
them and therefore cannot chase them. For the same reason is neither necessary
nor appropriate to prevent one whose conclusion is already known.

7 Specification considerations

As with the implementation, we can apply the collapsing function φ proposed
in Section 5 to processes representing protocol specifications (we use the secrecy
and authentication specifications from [19]). Since both secrecy and authentica-
tion specifications satisfy the PosConjEqT’C property then, by data indepen-
dence results, the behaviour of these processes before and after the mapping is
congruent.

Yet one problem still remains. When an agent is modelled as a standard CSP
process, signal events, encapsulating the agents’ beliefs for specification purposes

3 We use this term to refer to the set of all deductions that model the internal agents
behaviours.

(as described in Section 2), can be constructed by appropriate renaming.4 How-
ever, an internal agent does not perform any event, its functionality is embedded
within the intruder deductive system.

Constructing a signal event related to a message dispatch of an internal agent
is relatively straightforward. Since each send event is internalised using a deduc-
tion, the same effect can be achieved by not hiding the suitable infer event of
the intruder process and renaming it in the top level system process. In our ex-
ample, the Running event of Alice when model as a CSP process is constructed
as follows:

INITIATOR(Alice,Na)
[[send .Alice.B .{nb}PK (B) ← signal .Running .INITIATOR role.Alice.B .Na.nb]]

This can be constructed in a similar way for internalised Alice:

INTRUDER(X)
[[infer.Sent({nb}PK (B), 〈Alice,B ,na,nb〉)←

signal .Running .INITIATOR role.Alice.B .na.nb]]

The construction of the signal events associated with the receiving of some
messages by internal agents is more intricate as there is no corresponding event
in the intruder deductive system. However, as we show later in this section, these
events are not needed for constructing the various specifications.

One problem might arise due to the way we construct the Running events.
Since FDR calculates all the facts the intruder might deduce from her initial
knowledge using her deductions at compile time, we might “lose” Running events
which are a result of sessions between two internal agents or an internal agent
with the intruder. This may lead to “false attacks”. Additionally, since the first
message of the protocol is already in the intruder’s mind, it will never be in-
ferred and therefore Running events corresponding to this message will never
be performed. The former can be resolved by not letting the intruder “deduce”
any fact using the deductions modelling internal agents at compile time. How-
ever, this looks unnecessary since it increases the state space and the problem
it is rectifying will very rarely introduce false attacks. The latter can be easily
mended by modifying the specification process or forcing the system to perform
these Running events at the beginning without the intruder inferring the relevant
messages.

The rest of this section is devoted to discussing how various security prop-
erties can be verified using the model described in this paper and thus how a
more complete result upon protocol analysis can be achieved.

4 Originally, these signal events were interleaved with the events representing the mes-
sages of the protocol. For efficiency reasons the model was redesigned such that the
signals events are introduced at the topmost level, via renaming of message events
of the overall system process [3].

7.1 Secrecy

The authors of [4] observed that symmetry can be exploited for checking effi-
ciently whether a protocol P satisfies a secrecy specification. We describe briefly
this technique and the theory underpinning it.

A specification of the form Secret(A, s, [B1, . . . ,Bn]) specifies that in any
completed run, A expects all values from set s to be a secret shared only with
B1, . . . ,Bn . The only type of signal event required for checking this specification
is claimSecret. It is constructed through renaming of the last message of agents
playing the role A.

Proposition 1 If we model a protocol P with the set of roles AS and verify
specifications of the form Secret(A, s, [B1, . . . ,Bn]) such that

1. All the roles in AS are internalised.
2. One instance of role A is modelled externally.
3. The claimSecret signal event is constructed for the external instance of A,

while no signal event is constructed for any other internal agent.

Then, if no secrecy attack is found in this model, then none exists upon un-
bounded number of parallel sessions of P.

Proof: As was shown in Section 5, the SY STEM process represents infinite
number of agents running P in parallel. By definition, the secrecy specification
is broken if at least one instance of A believes that a secret is shared only with
B1, . . . ,Bn while the intruder has been able to deduce it. Since all the instances
of A are symmetric in the definition of SY STEM if such an attack exists upon
any instance of A then it could be exercised upon the external one in the model
we have created.

7.2 Authentication

In this section we demonstrate how to verify authentication properties using the
model described in this paper. We consider two type of authentication specifica-
tions: injective and non-injective [13].

Non-injective authentication In a similar way to secrecy verification, sym-
metry can be used for capturing non-injective authentication properties for any
degree of parallelism.

NonInjectiveAgreement(A,B , [v1, . . . , vn]) specifies that if B thinks he has
successfully completed a run of the protocol with A, then A has previously been
running the protocol, apparently with B and both agents agree as to which roles
they took and the values bound to v1, . . . , vn . We use two types of signal events
to verify this property - Running and Commit. A protocol satisfies this property
if for every Commit event there has been a Running event that agreed with it
(but not necessarily in a 1-1 relationship).

Proposition 2 If we model a protocol P with the set of roles AS and verify
specifications of the form NonInjectiveAgreement(A,B , [v1, . . . , vn]) such that

1. All the roles in AS are internalised.
2. One instance of role B is modelled externally.
3. The Commit signal event is constructed for the external instance of B, while

no Commit signal events are constructed for any internal agent.
4. The Running events are constructed for the internal instances of A.

Then, if no non-injective authentication attack is found on B in this model,
then none exists upon the unbounded number of parallel sessions of P modelled
in SY STEM .

Proof: As was shown in Section 5, the SY STEM process represents an infinite
number of agents running P in parallel. The non-injective authentication spec-
ifications do not demand a one-to-one relationship between the runs of agents
playing role A and those who play role B . Therefore, an attack exists if at least
one agent of role B commits himself to a run with an agent that either has not
been running the protocol or has done so with different set of variables. Due to
the symmetry of the system it does not matter which instance of B participates
in the run that leads to the attack. Therefore we can collapse the system down
in such a way that the B process issuing this commit signal is external.

Injective authentication The specification Agreement(A,B , [v1, . . . , vn]) for
injective agreement is similar to the non-injective one set out in Section 7.2 only
that a one-one relationship between the runs of B and A is now required. In other
words each Commit event require a separate Running. As described in Section 2
we check whether an implementation meets this requirement by constructing a
specification process that stipulates that there is a one-one relationship between
the Running and Commit events.

Proposition 3 If we model a protocol P with the set of roles AS and verify
specifications of the form Agreement(A,B , [v1, . . . , vn]) such that

1. All the roles in AS are internalised.
2. Two instances of role B are modelled externally.
3. The Commit signal event is constructed for the external instances of B.
4. The Running events are constructed for the internal instances of A.

Then, if no injective authentication attack is found on B in this model, then
none exists upon unbounded number of parallel sessions of P

Proof: As was shown in Section 5, the SY STEM process represents infinite
number of agents running P in parallel. By definition if an attack as such ex-
ists, two different instances of B will commit themselves to the same run of an
instance of A. Thanks to the symmetry if an such attack exists the intruder can
exercise upon any pair of instances of B . Therefore, the attack can be exercised
upon the two external instances of B .

Some protocols guarantee B a one-one relationship by making A send values
that were generated earlier in the protocol run by B (e.g. nonces). Alternatively,
the injective correlation in other protocols might also be dependant upon fresh
values introduced by A. In the latter, our proposition will introduce false attacks
since all the fresh values of internal instances of role A are mapped to the same
one. We believe that correct protocols that assure B injective authentication
based on fresh values generated by A are rare or even do not exist. Unless B
remembers which values were used in previous runs, it is hard to see how he can
verify freshness without introducing freshness himself.

Although it seems unnecessary, Proposition 3 can be rectified such that these
sorts of false attack on the second class of protocols will not be found by FDR.
This can be achieved by adding an external instance of A to the model and
devising a specification that allows only one of the external instances of B to
commit to the external instance of A but not to both. Since we know that the
injective authentication specification is broken if at least two instances of B
commit themselves to A then due to symmetry if such attack exists it can be
exercised upon the external instances of A and B .

8 Discussion

[4] created a model for protocols which was, in essence, a superset of the one
we have built here. The crucial simplification we have made is based on the
observation that we do not need to create an external agent which can run the
protocol an unbounded number of times sequentially. It is enough (thanks to
symmetry arguments) to model externally the specific runs of the protocol that
might be attacked, and leave the rest internal to the intruder model. This allows
us to dispense with the recycling and generation management functions of the
earlier paper, meaning that ours is both conceptually simpler and typically very
much faster to run.

The time taken to run FDR checks attempting to prove protocols has been
reduced from perhaps hours to less than a second by this simplification, making
it competitive with all other tools for this purpose. (No protocol has taken more
than a second using our new model.)

Formally, our methods can introduce false attacks, but we have not found
this to be a problem. There are obvious similarities between our models and the
Strand Space model [23] and therefore Athena [20], which should be investigated,
which should also lead to criteria under which our method is guaranteed not to
introduce false attacks.

Since Athena uses logic for specifying the requirements of the protocol, it
cannot be used for reasoning about freshness properties such as injective au-
thentication. This problem is also common in tools that are not based on model
checking. For example, Proverif [1] uses the following abstractions to capture
unbounded runs and degree of parallelism. (1) fresh values are represented as
functions over the possible pair of participants and (2) a protocol step can be
executed several times, instead of one per session. Clearly when using the first

abstraction it is not longer possible to distinguish between old values from previ-
ous runs and new ones. Since FDR achieves similar performance when analysing
protocol using the model presented in this paper, its ability to reason about
freshness properties is an advantage of our approach over such tools.

We see no reason in principle why the techniques presented in this paper will
not be applicable to other notations and in particular other model checkers.

It should be straightforward to integrate our new techniques into Casper [10],
but this has not been done at the time of writing.

References

1. B. Blanchet. An Efficient Cryptographic protocol verifier based prolog. 14th IEEE
Computer Security Foundations Workshop (CSFW 14), 2001.

2. P. J. Broadfoot and G. Lowe. Analysing a stream authentication protocol using
model checking. In ESORICS ’02: Proceedings of the 7th European Symposium
on Research in Computer Security, pages 146–161, London, UK, 2002. Springer-
Verlag.

3. P. J. Broadfoot, G. Lowe, and A. W. Roscoe. Automating data independence. In
ESORICS ’00: Proceedings of the 6th European Symposium on Research in Com-
puter Security, pages 175–190, London, UK, 2000. Springer-Verlag.

4. P. J. Broadfoot and A. W. Roscoe. Embedding agents within the intruder to detect
parallel attacks. Journal of Computer Security, 12(3-4):379–408, 2004.

5. P.J. Broadfoot. Data Independence in the model checking of security protocols.
PhD thesis, University of Oxford, Oxford, UK, 2001.

6. P.J. Broadfoot and A.W. Roscoe. Proving security protocols with model checkers
by data independence techniques. Journal of Computer Security: Special Issue
CSFW12, 1999.

7. D. Dolev and A.C. Yao. On the security of public-key protocols. Communications
of the ACM, 29(8):198–208, August 1983.

8. E. Kleiner and A.W. Roscoe. On the relationship of traditional and Web Ser-
vices Security protocols. In Mathematical Foundations of Programming Semantics
(MFPS 05), Birmingham, UK, 2005.

9. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
10. G. Lowe. Casper: A compiler for the analysis of security protocols. Journal of

Computer Security, 6:53–84, 1998.
11. G. Lowe. Towards a completeness result for model checking of security proto-

cols. In CSFW ’98: Proceedings of the 11th IEEE Computer Security Foundations
Workshop, page 96, Washington, DC, USA, 1998. IEEE Computer Society.

12. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol us-
ing FDR. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1055, pages 147–166. Springer-Verlag, Berlin Germany, 1996.

13. Gavin Lowe. A hierarchy of authentication specifications. In CSFW ’97: Proceed-
ings of the 10th Computer Security Foundations Workshop (CSFW ’97), page 31.
IEEE Computer Society, 1997.

14. Adrian Perrig, J. D. Tygar, Dawn Song, and Ran Canetti. Efficient authentication
and signing of multicast streams over lossy channels. In SP ’00: Proceedings of the
2000 IEEE Symposium on Security and Privacy (S&P 2000), page 56, Washington,
DC, USA, 2000. IEEE Computer Society.

15. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1997.

16. A. W. Roscoe. Proving security protocols with model checkers by data indepen-
dence techniques. In Proceedings of the 11th IEEE Computer Security Foundations
Workshop, 9–11 June, 1998, pages 84–95. IEEE, 1998.

17. A. W. Roscoe and M. H. Goldsmith. The perfect “spy” for model-checking cryp-
toprotocols. In Proceedings of the DIMACS Workshop on Design and Formal
Verification of Security Protocols, Rutgers University, September 1997.

18. R.S. Lazić. A semantics study of data-independence with applications to the me-
chanical verification of concurrent systems. PhD thesis, University of Oxford,
Oxford, UK, 1999.

19. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and A.W. Roscoe. Modelling and
analysis of security protocols, 2001.

20. Dawn Xiaodong Song, Sergey Berezin, and Adrian Perrig. Athena: A novel ap-
proach to efficient automatic security protocol analysis. Journal of Computer Se-
curity, 9(1/2):47–74, 2001.

21. Scott D. Stoller. Justifying finite resources for adversaries in automated analysis of
authentication protocols. In Workshop on formal methods and security protocols,
June 1998.

22. M. Tatebayashi, N. Matsuzaki, and D.B. Newman. Key distribution protocol for
digital mobile communication systems. In Advance in Cryptology — CRYPTO ’89,
volume 435 of LNCS, pages 324–333. Springer-Verlag, 1989.

23. J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Proving security protocols
correct. Journal of Computer Security, 1999.

