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Abstract. Individual components in an inter-operating system require assurance from other components both of
appropriate functionality and of suitable responsiveness. We have developed properties which capture the notion
of non-blocking responsive behaviour, together with machine-based checks implemented in the CSP model-
checker, FDR. In this paper we illustrate the use of our responsiveness properties with a small example, and
provide a detailed comparison to related work in CCS. This work has led to the discovery of a new semantic
model for CSP with respect to which such properties are fully abstract. We present the new stable revivals model
and discuss implications for responsiveness checking.
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1. Introduction

The historical focus of formal verification of component-based systems has been to reason about the behaviour
of a system based on the collective behaviour of its components. Typical inference rules allow the derivation of
properties of an entire system from individual properties of its components. However in certain sorts of systems
developed today, such as distributed services, it is more natural to reason from the point of view of an individual
component. In this component-centred world each component may provide a particular service and may also
depend on tasks performed and services provided by other components. A component requires assurance that
other components used as sub-contractors really do provide the services it requires. It can also provide a spec-
ification of its own services to others. This picture of individual responsibility via inter-component contracts is
very different from one of overall design and central control where a full “bird’s eye” view of the overall system
can be specified. We wish to reason about the effect on the behaviour of one component resulting from its inter-
actions with other, probably independently developed, components. Our approach is to view verification from
the perspective of each single component.

In order to make decisions about the suitability of available services, an autonomous component would need
to be satisfied that appropriate functionality was offered. It would also need to know that it could interact suitably
with the sub-contractor, that is, they can agree on behaviour to make progress towards the required goal.

Our work has initially focused on a behavioural aspect of component compatibility, using the process algebra
CSP to investigate the concept of responsiveness. A fundamental requirement is that a requesting (or client) pro-
cess, P, should not be blocked by a service process, Q, not responding to it when expected. The client, P, simply
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requires that Q never prevents it from making progress whenever P demands. This is not equivalent to demand-
ing that the parallel combination of the two components be deadlock free. Characterising this interpretation of
responsiveness gives rise to a property which is weaker than deadlock freedom and which has proved surprisingly
difficult to capture formally. We illustrate this difference between the two behavioural concepts below.

In [RSR04], we defined RespondsTo, which captures the property of responsiveness for distributed compo-
nents and introduced conditions suitable for model checking the property with FDR [FSE97]. The current paper
reviews the idea of responsiveness and provides a case study to show how the property can be used in practice.
We suggest how the event-based view might be linked to a more data-rich description of the components. The
On-line Shopping Network example used here is a typical instance of a system where both aspects are important.
It allows a direct comparison with some related work on a property known as stuck-freeness formulated in CCS by
Fournet et al. [FHRR04]. This investigation has yielded a new model for CSP, and additionally, shed significant
new light on the relationship between CCS and CSP.

In Sect. 2 we introduce relevant CSP concepts and motivate the responsiveness property with some small
examples. Section 3 gives the definitions for our concept of responsiveness. The case study is presented in Sect. 4,
showing how the responsiveness properties may be used and model-checked. We also indicate a possible way of
linking to state-based process specifications, appropriate for describing functionality using the B method. Sec-
tion 5 presents detailed discussion and comparison of the CSP responsiveness work and the CCS stuck-freeness
property, leading to the presentation of the new stable revivals model for CSP. Section 6 presents conclusions
and relations to other work.

2. An introduction to CSP and Responsiveness

CSP [Hoa85, Ros98] models a concurrent system as a collection of communicating processes, describing their
patterns of interaction by means of atomic events. Communication is synchronous: an event happens when all
participants agree to it. In the following sections, P and Q denote processes. The set � contains all possible events,
that is, communications for processes in the universe of consideration. An overview of the relevant CSP syntax
is given in Appendix A.

2.1. Introductory examples

Suppose process P makes a request to server Q after which P is happy to deal with either of two possible responses.
This may be represented in CSP using the external (deterministic) choice operator, �

P � request → (response1 → P � response2 → P)

Suppose, upon receiving a request, Q offers only the service indicated by response1.

Q � request → response1 → Q

P will regard Q as a suitable service because Q can supply one of the possible acceptable patterns. In this case,
the parallel combination P ‖ Q runs successfully, making progress without deadlocking on events they have in
common from � � {request, response1, response2}. As Q is able to cooperate with one of the possible patterns of
interaction set out by P, we regard Q as being responsive to P. In this particular case, P is also responsive to Q.

The situation would be very different if P made an internal (nondeterministic) choice between the replies.
This can be represented as:

P � request → (response1 → P � response2 → P)

In this case, Q should no longer be regarded as responsive to P, since if P chooses response2, it would be forever
blocked. From Q’s perspective, it is also the case that P is not responsive to it.

In both of these cases, checking whether P ‖ Q deadlocks tells us what we need to know. However, deadlock
may be introduced by P with Q still willing to be responsive. For instance, suppose P is a process which may
either request a response or may decide to terminate (with SKIP representing clean termination).

P � (request → response1 → P) � SKIP
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Process P may request Q’s services one or more times but may also choose to terminate. Q is responsive to P
because it is willing to cooperate whenever P requires it. However, P ‖ Q may deadlock. It is also apparent that
P is not responsive to Q, demonstrating that responsiveness is not symmetric.

In the previous example, deadlock in P did not prevent Q from being responsive to it. It is also possible that in
some situations Q can deadlock whilst still remaining responsive. For example, P may be a process which simply
requires a single service and then terminates, or perhaps continues with its own behaviour, never again requesting
cooperation from Q. In this case, it is of no relevance to P what happens to Q after their joint interaction is
concluded. Hence Q may be regarded as responsive to P regardless of possible deadlock introduced by Q after
fulfilling its obligations to P. This is in keeping with the component-centred view in which P cares about its own
progress but does not need assurance about the wider system beyond this.

These examples provide a general idea of the responsiveness concept. Following an overview of CSP, we
present a formal definition of responsiveness in Sect. 3.

2.2. CSP semantic models

A number of related semantic models have been set out for CSP, each based on different observable process
behaviours. The standard one is the failures/divergences model. A failure of a process is a pair of the form (s, X )
where s is a finite trace (sequence of observable events the process can perform) and X is a set of events all of
which may be refused by the process after it has performed s. The set X is called a refusal set. A divergence is a
trace after which the process can perform an infinite sequence of internal actions.

In our work on responsiveness we have so far restricted our consideration to divergence-free processes. That
processes do indeed meet this restriction can be ensured by checking for divergence using the FDR model checker.
Under the assumption of divergence-freedom, the failures/divergence model, N , is essentially the same as the
stable failures model, F . A stable failure is a failure from which no internal events are possible. Our properties
and the theorems relating them [RSR04] have been developed in the stable failures model. In fact, we refer to F
with the addition of the special clean termination symbol, �, which is described in detail by Roscoe [Ros98].

Whilst detailed consideration of semantics is not necessary in order either to use CSP or to apply our respon-
siveness condition, it is appropriate to note here the model with respect to which the property is defined and
justified. Our work with responsiveness has also led to the discovery of a new semantic model, and we return to
this in Sect. 5.

3. Defining responsiveness

In the following descriptions, P and Q are processes, with P regarded as the requesting (client) process which
requires Q to respond in a non-blocking manner. J denotes the shared alphabet of P and Q. We assume that
there is no other member of � which both P and Q are capable of communicating – the more general case can be
reduced to this one by applying it to the lazy abstractions L�−J (P) and L�−J (Q) which form the views of P and
Q relevant to each other —see [Ros98], Chap. 12. Thus P ‖

J
Q will, in this paper, always be the same as Hoare’s

alphabetised parallel. We will refer to their alphabets as αP and αQ, so that J � αP ∩ αQ.
For Q to be suitably responsive to P, whenever P requires co-operation from Q in an event j ∈ J , Q must be

willing to participate. Q must not cause deadlock, but P may behave as it chooses. If P is happy to engage in any
one of a set of joint events, Q must be willing to engage in at least one of these.

3.1. Failures-based formulation of responsiveness properties

Our formal definition of responsiveness is given in CSP over F . It requires that, at any point in the joint execution
of P and Q, if P demands participation in a set of joint events, Q complies for some non-empty subset of the
events. In this definition:

• � is the special termination event on which all CSP parallel operators effectively synchronise (distributed
termination);

• J� is the joint alphabet with the � added;
• S∗ is the set of all finite sequences whose elements are members of set S;
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• initials(P) is the set of all initial events in which P may engage;
• P/s is the process which behaves as P would after execution of trace s;
• s � A is the subsequence of s formed by restricting s to elements of set A.

Definition 1 For processes P and Q with joint alphabet J , we say that Q RespondsTo P iff for all s ∈ (αP ∪ αQ)∗,
X ⊆ αP:

(s � αP, X ) ∈ f ailures(P) ∧ (J� ∩ initials(P/s)) − X �� {} ⇒
(s � αQ, (J� ∩ initials(P/s)) − X ) �∈ f ailures(Q)

The definition of responsiveness is nontrivial due to the effect of nondeterminism, which may occur in both
P and Q. The intuition is that, given trace t and failure (t, X ) of P, the set (J� ∩ initials(P/t)) − X describes
an event set in which P may demand participation. Thus for Q to be responsive to P, Q must not be able to
refuse all events in that set at the corresponding point in its execution trace, that is, after any trace u such that
u � J� � t � J�. Further explanation and discussion of this and additional examples can be found in [RSR04].
For example, consider

P � request → (response1 → P � response2 → P)
Q � request → response1 → Q

The pair (〈request〉, {response1}) is a failure of P, since P may nondeterministically decide to insist upon response2
after the request event. The definition requires that Q should not refuse {response2} at this point. However,
(〈request〉, {response2}) is a failure of Q. Hence Q does not respond to P.

If we instead define P as:

P � (request → response1 → P) � SKIP

then it is clear that P may choose to terminate and require no further participation from Q. However, if P does
decide to interact with Q, the participation it can demand is:

{request} after 〈〉
{response1} after 〈request〉
andsoon

These are not failures of Q, and so Q is responsive to P.

3.2. Responsiveness for deterministic processes

If we are dealing with deterministic processes the property of responsiveness can be captured more simply. In
[RSR04] this is formalised as the property RespondsToLive.

Definition 2 Q RespondsToLive P means that for every trace s

(s, J�) ∈ f ailures(P ‖
J

Q) ⇒ (s � αP, J�) ∈ Failures(P)

This says that if P ‖ Q can refuse the whole of the joint alphabet then P itself must be refusing it. For example,
the definition can be applied to the deterministic processes:

P � request → (response1 → P � response2 → P)
Q � request → response1 → Q

The parallel combination P ‖ Q behaves as Q which never refuses the whole of their joint alphabet. Hence
Definition 2 is trivially satisfied.

This definition is not in general suitable for nondeterministic processes and would not necessarily be preserved
by refinement. Hence, RespondsTo should be used if processes may be nondeterministic.

In [RSR04] we examined the relationship between the two definitions and established that RespondsTo is
the weakest refinement-closed strengthening of RespondsToLive. (A binary property, H , is refinement-closed if
whenever H(P, Q) holds, then H(P′, Q′) also holds for all refinements P � P′, Q � Q′.)
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Fig. 1. On-line Shopping Network

3.3. Machine-based verification

An important aspect of our responsiveness properties is that they are both mechanically verifiable. Automatic
refinement checking for CSP is provided by the FDR model-checker [FSE97]. A process P is a refinement of
process S (written S � P) if any possible behaviour of P is also a possible behaviour of S. S can represent
an idealised model of a system’s behaviour, or an abstract property corresponding to a correctness constraint,
such as deadlock freedom. A wide range of correctness conditions can be encoded as refinement checks between
processes. We have shown [RSR04] that both properties RespondsTo and RespondsToLive may be formulated
as machine-checkable assertions suitable for verification as refinements. These results have been generalised by
Roscoe [Ros03] who has described techniques for translating more-or-less arbitrary predicates on a process into
refinement checks. The FDR check for RespondsTo is used in the verification of the Shopping Network example
in the following section and the approach is described further there.

Once responsiveness has been verified at the specification level the components may be refined independently
in the usual way. It is significant that responsiveness is preserved by refinement, and thus any refinements of the
original specifications will be guaranteed to have the same relationship.

4. A Simple On-line Shopping Network

The On-line Shopping Network presents a situation in which components interact in a pairwise fashion to pro-
vide a service to the customer. Each component may be developed separately, but the interaction between the
components must ensure that the network provides suitable functionality and that the customer is not blocked
by the network.

This case study is useful not only in illustrating the use of our own property, but also in allowing a comparison
between our work on responsiveness and related work. In particular, in Sect. 5, we discuss the connection between
responsiveness and the idea of stuck-freeness proposed by Fournet et al. [FHRR04], who have also applied their
work on contract-checking in component-based systems to an on-line shopping scenario. The comparison yields
interesting insight into some fundamental differences between CSP and CCS.

Another aim of the case study is to set out some provisional thoughts on how behavioural interface descriptions
can fit together with a more state-oriented approach for modelling data-rich aspects of component functional-
ity. As this type of specification is not best achieved in a process algebra, we suggest by example a strategy for
incorporating results from the area of integrated formal methods.

4.1. Specification of interactions in the network

Figure 1 shows the components of our system (a much-simplified version of the problem domain, showing basic
interactions and considering the behaviour of a single customer and trolley only). The Customer interacts directly
with the Trolley component via a set of events we have called CTevents. The trolley acts as an intermediary with
the rest of the system, itself interacting with both the Warehouse and an Invoicer. The sets of events for the
Trolley’s interaction with these components are TWevents and TIevent respectively.

We provide stylised FDR scripts for this network consisting of the four processes: Customer, Trolley,
Warehouse, and Invoicer. The event sets describe the shared channels between the components. For data type T
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and channel c, c.T is the set of all events associated with c. In order to describe these data-passing events we
introduce the following abstract types.

ItemType items that may be selected
TType type for trolleys
InvType type for invoices
Flag for indicating success or failure

The intention is to keep such types as abstract as possible at this level. For example, the trolley data type is likely
to be a structure built from Items, but this is not relevant here.

4.1.1. The Customer component

The events associated with the Customer are:

CTevents � {open, close, viewTrolley, checkOut, cancel}
∪ addItem.ItemType ∪ removeItem.ItemType ∪ getTrolley.TType
∪ addAck.Flag ∪ remAck.Flag ∪ invoice.InvType

After opening the transaction, the Customer may choose to add an item to the Trolley, or to remove an item,
and receives an acknowledgement; it may ask to view the current contents of the Trolley; it may also choose
either to check out and receive an invoice or to simply abandon the session. The specification captures this as a
nondeterministic choice between the options.

Customer � open → Customer1

Customer1 �
(�item:ItemType addItem!item → addAck?flag → Customer1)

� (�item:ItemType removeItem!item → remAck?flag → Customer1)
� checkOut → invoice?xx → close → SKIP
� cancel → close → SKIP
� viewTrolley → getTrolley?tt → Customer1

We wish to make the interface at this level as abstract as possible, ignoring data-specific aspects which are not
relevant to it. This can be accomplished by using nondeterminism to abstract away from nonessential details. It
is possible that further elaboration could be provided at a more detailed level of development. As long as that
description can be shown to be a refinement of the original, responsiveness will be maintained. However, gener-
ality in the specification of an interface may have consequences in other areas. For example, this version of the
Customer specification allows the removeItem event to be available for any item, whether or not it is present in the
Trolley. This works only in conjunction with a Trolley which deals sensibly with requests to remove nonexistent
items. Presenting a more restricted choice of items to the Customer would be a refinement of this, but needs
additional state information in the Customer, or further communication with the Trolley. This starts to touch on
interesting aspects of the interplay between the interface and the state-based views of components.

4.1.2. The Trolley component

In addition to its interactions with the Customer, the Trolley invokes the services of a Warehouse and an Invoicer.
It communicates with the Warehouse on the set TWevents.

TWevents � {open, close, viewTrolley, checkOut, commitReserve, cancelReserve, cancel}
∪ reserveItem.ItemType ∪ cancelItem.ItemType
∪ resAck.Flag ∪ cancelAck.Flag

TIevents � processOrder.TType ∪ processInvoice.InvType

The Trolley specification allows external choice between the events the Customer may choose. It handles each of
these appropriately, passing on requests to the Warehouse or the Invoicer as necessary. Replies from these two
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components are then relayed to the Customer.

Trolley � open → Trolley1

Trolley1 �
addItem?item → reserveItem!item → resAck?flag → addAck!flag → Trolley1

� removeItem?item → cancelItem!item → cancelAck?flag → remAck!flag → Trolley1
� checkOut → commitReserve →

(�tt:TType processOrder!tt → processInvoice?xx → invoice!xx → close → SKIP)
� cancel → cancelReserve → close → SKIP
� viewTrolley →

(�tt:TType getTrolley!tt → Trolley1)

Again, nondeterminism is used to abstract the details of the contents of the Trolley. In this specification an item
of TType appears to be selected at random, for example, in response to a viewTrolley request. This is sufficient for
the interface specification as in this case the flow of control is not affected by the actual value. A state-oriented
description can elaborate these details by providing a different view of the Trolley (see Sect. 4.4).

4.1.3. The Warehouse component

The Warehouse reserves or releases items (as directed by the Trolley).

Warehouse �
reserveItem?item →

(�flag:FLAG resAck!flag → Warehouse
� cancelItem?item →

(�flag:FLAG cancelAck!flag → Warehouse
� commitReserve → Warehouse
� cancelReserve → Warehouse

The nondeterministic choice of reply value from the Warehouse can be used to indicate, for example, whether a
requested item is available or not. Again, the actual value will be determined by examination of the actual state of
the Warehouse. In contrast to the Customer and the Trolley, which act as threads terminating when their business
is done, the Warehouse is modelled here as an ongoing process which recurses to await the possibility of future
requests.

4.1.4. The Invoicer component

The Invoicer takes a request to process an order, and responds with an invoice. The way in which the invoice is
calculated from the order is another area of abstraction.

Invoicer �
processOrder?xx →

(�yy:InvType processInvoice!yy → Invoicer

As with the Warehouse, the Invoicer recurses repeatedly, acting as a server always ready to accept requests.

4.1.5. The Shopping Network

The Shopping Network is made up of the Trolley, Warehouse, and Invoicer, with pairwise communication on
their respective shared channels:

ShopNet � (Trolley ‖
TWevents

Warehouse) ‖
TIevents

Invoicer
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4.2. Verifying responsiveness

The FDR model-checker [FSE97] verifies process refinement in the failures-divergences model. In general, we
can discover whether some behavioural property holds for some process P by checking the refinement SPEC � P
where SPEC captures the desired property. However, RespondsTo is not a simple behavioural property of this
kind (it is not distributive) and so a different approach is needed. We make use of our previous work on develop-
ing machine-checkable assertions corresponding to RespondsTo [RSR04, Ros03] to generate the necessary proof
obligations in the form of refinement statements.

Appendix B contains a summary of the FDR check which will establish whether Q RespondsTo P. There, H
refers to the alphabet of P and J is the set of shared events for P and Q.

To show that the Shopping Network is responsive to the Customer we check the RespondsTo property to see
whether it can make progress on CTevents. Other communications in the system are abstracted using hiding (we
discuss this further in Section 6). That is, with

P � Customer
Q � ShopNet\(TWevents ∪ TIevents)
J � CTevents

H � CTevents

the FDR check shows that Q RespondsTo P. Relationships between subcomponents can also be investigated.
For example, with

P � Trolley
Q � Warehouse
J � TWevents

H � CTevents ∪ TWevents ∪ TIevents

we can again verify that Q RespondsTo P.
Examples from this case study also underline the fact that responsiveness is not symmetric and that it is not

equivalent to deadlock-freedom. For instance, although the Warehouse is responsive to the Trolley, the Trolley
is not responsive to the Warehouse. Investigating their behaviour in parallel shows that

Trolley ‖
TWevents

Warehouse

can deadlock.
Refinement-closure of RespondsTo allows developers of Trolley, Warehouse, and Invoicer to refine their imple-

mentation without worry that a modified component (satisfying standard refinement rules) would cause the overall
system to be non-responsive to customers. Significantly, this offers component-side development which preserves
responsiveness.

The Shopping Network might use distributed services, for example, the trolley might search dynamically
for the best provider of individual items. If specifications of behaviour for warehouse services are published,
the trolley could validate them on-the-fly in order to determine if their behaviours were responsive. Indeed, the
warehouse and trolley could exchange behavioural specifications and negotiate before committing to interaction.
Importantly it is not necessary to check the whole network to verify responsiveness, only the relevant pairwise
interactions (as discussed in [RSR04]).

4.3. Detecting a fault

If the interface specification of a component does not meet the requirements of the client, the responsiveness
check will fail. Suppose the Warehouse does not provide an acknowledgement when an item is removed from the
trolley. This is the case in FaultyWarehouse.
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Fig. 2. Part of a B specification for the Shopping Network

FaultyWarehouse �
reserveItem?item →
(�flag:FLAG resAck!flag → FaultyWarehouse

� cancelItem?item → FaultyWarehouse
� commitReserve → FaultyWarehouse
� cancelReserve → FaultyWarehouse

This component blocks the Trolley which expects an acknowledgement. Checking with FDR shows that Faulty-
Warehouse does not respond to Trolley, and counterexamples are generated.

4.4. A state-based view of the Shopping Network

In this section we outline a way in which our CSP interface specification focusing on behavioural requirements
might be aligned with a state-based specification of a component focusing on functional requirements. Our work
at this stage is preliminary. However it suggests how integration between these two views of a component could
be soundly achieved, pointing to existing work in the area of integrated formal methods.

We choose B Abstract Machine Notation [Abr96] to describe the state-based view of a component. This
decision is based partly on the availability of existing, well-developed tool support for the notation, and partly
on the fact that a number of very useful results for B/CSP integration have already been obtained (we refer to
these later).

Our view at this stage is that each CSP component can be associated with a B abstract machine (the machine
is the basic component of a B specification, maintaining state components and defining operations on the state).
For example, the Trolley process description is augmented by the Trolley machine shown in Fig. 2. The VARI-
ABLES section of the machine introduces the state components which the Customer machine maintains. The
INVARIANT part states important properties relating to the variables (such as their types) and the INITIALI-
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SATION section describes initial values for the state variables. The OPERATIONS part of the machine includes
a description for each of the events offered by the Trolley interface. These echo the input/output structure from
the interface description and provide further detail which may (wholly or partially) resolve nondeterminism in
the interface. An event such as open which has no effect on the state has been represented by skip (in this context,
skip is the operation which leaves all variables unchanged).

Most events match operations which are associated with a change in state, for instance, the remAck opera-
tion has an input which indicates whether or not it is possible to reserve an item: if it is, then that item can be
added to the Trolley. Values which are passed along in the CSP (such as the item input to addItem, output by
reserveItem) are coded in a routine way by introducing a B variable (in this case, citem) to store the value. Some
type information has to be shared, as in the channel types. This information has been gathered into a separate
B machine which is then made available to the relevant component machines by means of the SEES section. A
machine which SEES another may refer to the state components of the seen machine, but does not change their
values.

Simply writing down “views” in two different notations begs many questions about the semantic connection
between them and the compatibility of the two. It is beyond the scope of this paper to discuss the issues involved
in detail, but there are some interesting results which can provide a sound foundation for our approach. The
basic semantic link between the two notations can be made via the work of Morgan [Mor90] and Butler [But92]
who provide a weakest precondition characterisation of traces, failures and divergences of action systems. This
has been applied in the context of B machines by Schneider and Treharne [TS00]. The conditions they set out
for establishing compatibility of a CSP controller for a B machine are basically what are required here: we too
need to know that B operations are not called outside their preconditions (which would introduce divergence).
We also need to consider the possibility of deadlock introduced by “unsuitable” outputs from the B description.
Schneider and Treharne [ST05] have developed a number of techniques for verifying divergence-freedom and
deadlock-freedom between a CSP process and a B machine, and they present a number of very useful theo-
rems towards the verification of these properties. Their technique of attaching conditions to CSP channels in a
rely/guarantee fashion could be very useful in the context of an interface specification, allowing the specification
to include information in the form of predicates about what it guarantees to provide or about restrictions it must
place on the inputs it accepts.

Although there are many similarities between the way in which we want to reconcile different views of a system
and the approach to integration taken in Schneider and Treharne’s B||CSP work, there are also some differences
both in context and detail. However, the general aspects of integration are similar enough that we should be able
to apply their results to this aspect of our work.

The CSP and B specifications provide two views of the same components, providing complementary (some-
times overlapping) information. Together they provide the blueprint for the development of the component. The
interface specification can be made available as the external contract which the component guarantees to fulfil. If
the compatibility of each B machine/CSP interface pair is established, and if the required responsiveness property
between interfaces is also demonstrated, then independent, component-wise refinement can be undertaken. If I1
and I2 are interface specifications relating to machines M1 and M2 respectively, then if:

I2 RespondsTo I1

and

I1 � I1 || M1

and

I2 � I2 || M2

it follows that, since RespondsTo is refinement-closed:

(I2 || M2) RespondsTo (I1 || M1)

Again, the motivation is to capture the different aspects in of the specification in an appropriate notation whilst
generating proof obligations that can be discharged with existing tool support.
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5. Comparison of models

Since doing our original work on the topic of responsiveness, some similar work by Fournet et al. has appeared
[FHRR04]. That work was based on a slightly different motivation, namely ensuring that a network of processes
does not reach a state from which no further progress can be made while one of them is still requesting something
from another. Comparing our work and theirs provides a fascinating insight into the relative qualities of CCS
and CSP for specification, as well as illustrating their similarity.

The intention in [FHRR04] is that a combination does not terminate leaving one partner hanging. They call
the absence of such behaviour stuck-freeness. It is noteworthy that this is not really an issue in CSP thanks to
the termination signal �: the distributed termination condition of CSP means that the network can only seem to
have terminated when they both actually have. This simply results from Hoare’s decision to separate semantically
between deadlock and successful termination: a stuck combination will appear as deadlock, whereas a pair that
has terminated normally will have signalled �.

It follows that the absence of the type of behaviour identified as bad in [FHRR04] follows from a standard
check for deadlock freedom (naturally, permitting processes to do nothing further after �).1 This is at the expense
of signalling termination via �, but that seems to us to be a distinction worth making.

The reason why simple termination-based reasoning will not work for RespondsTo is that we forbid some
behaviours that are not final. We forbid one process from refusing another even when one, other, or even both
processes have other things they can do (although internal events may occur). So we mind even if the refusing
process has the potential, via other actions external to the binary parallel we are considering, to do more things
and then reach a position where it can now satisfy its partner’s request.

Nevertheless the way [FHRR04] chooses to address their issue is remarkably similar to the way we have
addressed ours. They specify that the network N never reaches a state in which no further action can happen (i.e.,
it is deadlocked) but some P ∈ N is still offering communications to another Q ∈ N . Over a pair of processes
P | Q this is conceptually equivalent to saying that any failure of our RespondsTo condition (in either direction)
only occurs when either P or Q has some alternative action to the interactions in this parallel.

Just as we, in [RSR04], observed that RespondsToLive is not refinement closed, they observe that their con-
dition cannot be specified in a refinement-closed manner over the failures model. While our reaction was to
strengthen the condition to the weakest refinement-closed one which implied the original, namely RespondsTo,
theirs was to devise a special equivalence over processes to support it. They call this conformance and in it two
processes are equivalent if they have identical behaviours of the form (s, X , Y ), in which (s, X ) is a failure where,
in the same stable state which witnesses the failure, every event from Y is available. They restrict Y to be of size
0 or 1. Necessarily, of course, X ∩ Y � ∅.

We make two observations about the conformance equivalence.

• Firstly, if the restriction to | Y | � 1 were removed, one gets a different congruence equivalent to the Ready-
Sets model of Olderog and Hoare [OH83]. In that, processes are associated with sets of pairs (s, A) in which
s is a trace and A is the set of events which are on offer in some stable state reachable on s. In the absence of
the | Y | � 1 assumption, every triple (s, X , Y ) extends to a maximal one in which X ∪ Y � �, and it is clear
that the two models will then be the same identifying Y with the ready set.

• Secondly, conformance can be developed into a model which is fully abstract with respect to properties like
stuck-freeness and precise operational characterisations of RespondsTo.

The stable revivals model

In order to turn the idea of conformance into a CSP model we separate the two cases of Y � ∅ (only necessary for
deadlock traces) and Y � {a}. The latter can be represented as a triple (s, X , a) for a �∈ X . Since the a represents
revival from the stable failure represented by (s, X ), that is what we shall call the triple.

On the basis (already adopted in [Ros98] relating to the stable failures model) that it is always a good idea
to know a process’s traces2 for reasons of safety specification, our new model R equates a process with three
components, respectively

1 There would be one difference: the deadlock check would regard a state in which every single component process has individually deadlocked
without terminating as incorrect even though there is no stuck-ness.
2 It is possible to get a compositional version of either this model or the stable failures model (see [Ros98]) without the trace component
provided one omits the CSP interrupt operator �. For this reason, the full abstraction result quoted below is only true for the language
including this operator.
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• The finite traces T (a prefix-closed nonempty subset of �∗).

• The deadlock traces D (a subset of T ).

• The revivals R, namely triples of the form (s, X , a) where s ∈ �∗, X ⊆ � and a ∈ � − X , such that R1:
s � 〈a〉 ∈ T , R2: (s, X , a) ∈ R and Y ⊆ X implies (s, Y , a) ∈ R, and R3: (s, X , a) ∈ R and b ∈ � implies that
either (s, X , b) ∈ R or (s, X ∪ {b}, a) ∈ R.

This yields a model which is a congruence for CSP and which yields the natural fixed point under subset-least
fixed points, like F . It is straightforward to recover the F representation of any process from the R one: the new
one is strictly less abstract.

The most interesting point in it being a congruence arises in hiding: the triple (s, X , a) ∈ revivals(P) only
gives rise to a revival of P \ Y if Y ⊆ X (because, analogously with the usual CSP hiding operator, P \ Y is
not stable unless P refuses Y ). It follows that a �∈ Y and therefore is not hidden – something which would have
caused a problem as we would have lost our next step.3

That this equivalence is weaker than ready sets is demonstrated by the following example. Let � � {a, b} and
let

P � (a → Stop) � (b → Stop)
Q � P � (a → Stop � b → Stop)

These two processes are equivalent under conformance/stable revivals semantics, since both can refuse any subset
of {a} and offer b, or vice-versa. They are not equivalent under ready sets since Q can refuse ∅ and offer both a
and b at the same time.

Just as the concept of � in CSP gives a convenient solution not available in CCS, the nature of the parallel and
restriction operators in CCS makes stuck-freeness rather more natural to specify there. As stated in [FHRR04],
it is that no unsynchronised label of a sort local to the network can be available when nothing else is in a stable
state: it is thus definable as a property of the process representing the network (unrestricted) rather than of the
individual network components.

The following definition captures this CCS style in language which is also appropriate to CSP.

Definition 3 The process N is R-stuck-free with respect to the set of actions A provided it has no revival of the
form (s, � − A, a) with s ∈ (� − A)∗ and a ∈ A.

Most interestingly, the mechanisation of the RespondsToLive specification we presented in [RSR04] used a mod-
ified parallel composition of the pair, with much in common with the ordinary CCS one: parallel processes are
enabled to perform an unsynchronised event as an alternative to parallel ones.

Exactly the same thing could be done in CSP to test stuck-freeness for networks: simply rename all synchron-
ised events to both themselves and a special event stuck as an alternative, which is not synchronised. The network
is then stuck-free if it has no revival (s, � − {stuck}, stuck) for any trace s not containing stuck.

In order to formulate RespondsTo for R we need to extend the latter to include the termination signal �. The
traces component T is extended to include members of the form s � 〈�〉, where s ∈ �∗ (recall that � �∈ �). The
deadlock component D is unchanged: still members of �∗ (for a terminated process is not deadlocked). A revival
is of the form (s, X , a), where s ∈ �∗, X ⊆ � and a ∈ ��. In other words, � is not recorded in the refusal set,
but can be the successor event a. This comes from the philosophy, described in detail in [Ros98] that termination
is a “signal” event: not one the environment can refuse or which can meaningfully be offered as an alternative to
another visible event. If s � 〈�〉 ∈ T then we specify (s, �, �) ∈ R: this states that a process which can terminate
does not have to offer any other alternative (even τ implicitly).

The structure expressed here allows us to decide whether a process which can terminate after trace s can refuse
to do so. For then s ∈ D or (s, X , a) ∈ R for some a �� �: implicitly every revival with a �� � implies the refusal
of �.

Note that if P � (T , D, R) is a process represented in R we can easily calculate (bearing in mind the conven-
tions set out in [Ros98] for F):

3 This problem means that one cannot, for example, modify this congruence so that it records traces of length two or less after a refusal: the
result would not be compositional under hiding.
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f ailures(P) � {(s, X ) | X ⊆ �� ∧ s ∈ D}
∪{(s � 〈�〉, X ) | X ⊆ �� ∧ s � 〈�〉 ∈ T }
∪{(s, X ) | (s, X , a) ∈ R}
∪{(s, X ∪ {�}) | (s, X , a) ∈ R ∧ a �� �}

The representation in the Stable Failures Model F of P is then (T , f ailures(P)).
Now we have extended our model, it is capable of giving a completely precise definition of RespondsTo.

Definition 4 We say that Q R-RespondsTo P if for every trace s, there do not exist (s � αP, X , a) ∈ RP and
(s � αQ, Y ) ∈ f ailures(Q) such that a ∈ J� and J� ⊆ X + ∪ Y . Here, X + � X if a � �, and X ∪ {�} otherwise.

This precisely captures the concept of P having a communication it wants to make with Q, but them being unable
to agree on any.

This implies RespondsToLive over F since if (s, J�) ∈ f ailures(P ‖
J

Q) is created by the maximal failures

(s � αP, X ) of P and (s � αQ, Y ) of Q, then if P, Q satisfy the condition above, (s � αP, X ) either comes from a
deadlock trace s � αP or a revival (s � αP, X , b) with b �∈ J . In the second case, by the healthiness condition R2
above, and QR-RespondsTo P, we get that J ⊆ X . In either case (s � αP, J�) ∈ f ailures(P).

Our new definition is very close to the original definition of RespondsTo over F . The old definition says that
if P can refuse X and do other things in J� besides X , then Q cannot refuse them. Our new definition, in fact,
says precisely the same except that it is now able to couple the “do other things” more closely to X : they are
necessarily from the same state. With this in mind it is straightforward to see that the definition over F implies
the one over R.

Both these implications are what we might have hoped for. Furthermore, if P is deterministic in the usual
CSP sense (with each process fully characterised by its traces), all three conditions are equivalent. Note that in
practical networks, parallel components are nearly always deterministic.

RespondsTo is both refinement-closed and distributive over R.
In this section we have shown that the concept of responsiveness can be captured more precisely in a model

we have created specially for this purpose. Indeed, this model is fully abstract with respect to both the natural
operational characterisation of this or alternatively that of stuck-freeness.

The question then arises of which model we should generally choose to reason about RespondsTo. The obvious
disadvantage of creating an ad hoc model to capture a condition is that it requires new theoretical work, new
tool support, and places a substantial burden in ensuring that the rest of one’s development is consistent with it.
It also requires significant extra understanding on the part of anyone using it. Since we believe that in the vast
majority of practical cases it will be possible to use the F version of RespondsTo, we think that pragmatically
it is best to use that as the first line of attack, holding more sophisticated models for the rare cases where it is
inadequate. As and when there is proper tool support for the refusal testing model of CSP [Muk93], based on
Phillips’s work [Phi87], it will make sense to reformulate our conditions in that ([FHRR04] observe that refusal
testing can capture stuck-freeness4). For R is a weaker equivalence than refusal testing, so the latter can express
our properties precisely.

This section has described how the development of a new fully abstract model for CSP has arisen from our
work on responsiveness and its comparison to stuck-freeness. Full details of the CSP semantics for this model
are beyond the scope of this paper but can be found in [Ros06] together with justification of the claim of full
abstraction.

6. Further remarks

We have developed a general property characterising responsiveness of interacting components formulated in
CSP which can be verified using the techniques of FDR. As shown in [RSR04], adding components which are
responsive in our sense never introduces deadlock. These results have application both for component-side system
development and for on-the-fly conformance checking and/or selection of distributed services.

This paper has developed our work on responsiveness both in terms of its application and in the theory
underpinning its use. The case study illustrates how the property can be used in practice and points to work in the

4 Note that R is the strongest congruence which is weaker than both ready sets and refusal testing.
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area of integrated formal methods to provide a route for linking interface specifications with state-based views
of components. The comparison with CCS has yielded interesting results, illuminating further the relationship
between CSP and CCS. This work has also led to the development of the new CSP stable revivals model.

In terms of the responsiveness property, the work most closely related is that of Fournet et al. [FHRR04] and
a detailed comparison of the two approaches has been provided in the previous section. Our work on responsive-
ness also relates to work on non-standard refinements carried out by Bolton and Lowe [BL03]. They investigate
refinements expressible in the form:

{(tr, X ) ∈ failures(IMPL) | F (X )} ⊆ {(tr, X ) ∈ failures(SPEC)}
where SPEC is the specification, IMPL is the implementation and F provides a constraint on the refusals
under consideration. With P as SPEC, P || Q as IMPL and X � J this is equivalent to our weaker property,
RespondsToLive. Bolton and Lowe also provide a machine-verifiable check which they judge to be more efficient
than ours for larger X , less efficient for smaller X .

The concept of non-blocking processes is also important in many other contexts. For example, in the assume-
guarantee setting adopted by Amla et al. [AANT01] a rule is developed which is both sound and complete (for
safety and liveness properties) for reasoning about component decomposition. The idea of nondeterministic
blocking is not at issue here. In contrast, we treat blocking as fundamental and undesirable.

As discussed in Sect. 4, other aspects of our work are related to the CSP||B work on integrating CSP and B
carried out by Treharne and Schneider [TS00, ST05]. They develop CSP controllers to drive B machines. The
controllers may be integrated in a wider network, communicating with other controlled components. The proof
obligations supporting this and theorems justifying the approach are set out in [ST05]. An alternative approach
to verifying divergence-freedom of the composed system using uniform properties is proposed by Evans and
Treharne [ET05]. This has the advantage of being amenable to more direct verification in PVS. The connection
with our work arises both through the idea of responsiveness itself (the B is required to respond appropriately
when the controller calls an operation) and through the concern to separate component specifications into an
event-based view and a state-based view. The CSP||B method tackles issues of compatibility when composing
two components specified in the two separate notations. It addresses fundamental issues that arise in this context
which we believe will be applicable to our development. The approach is characterised by the requirement to
make use of existing support tools for the methods used, and again this is a key feature of our work. However,
our set-up is somewhat different: our interface specifications provide the contract for the outside world and we
do not have a separate layer of communication between the B machine and the CSP process. We are working
with independent components which must fend for themselves in a wider context, cooperating for their own ends
rather than to achieve a wider network goal.

Other work on integration between state descriptions and behavioural specifications is also relevant here. But-
ler’s csp2B approach [But00] and the more recent ProB method [BL05] bear much similarity to the CSP||B work,
using a similar semantic link between the two notations. The more compositional approach of CSP||B appears
to be better suited to our component-based view with passive B specifications, however the ProB approach to
checking that B operations are not called outside their preconditions provides an alternative way which may be
very useful in practice.

Further related work in this area includes Circus [WC02] which combines CSP with the state-based notation
Z, and Event B [AM98] which introduces event ordering to B specifications. The tool support in these areas is
not yet as developed as for the notations we have used.

The work mentioned in the preceding paragraphs indicates one area of further development for our respon-
siveness work: that is, how best to make use of existing results to integrate the different component views. A
guiding principle is to maintain as far as possible the separation of concerns which allows us to make use of the
strengths of each notation and the tool support that is currently provided. In addition to this, the question of
scalability is very important, as is the independence of the composed components.

As component-based systems have become more wide-spread and more complex in nature, interest in the for-
mal specification and development of such systems has increased. A common feature of this work is its concern to
separate out the contract specification, which can be provided to the outside world, from the functional specifica-
tion, which elaborates on details for internal component development. For example, Liu et al. [LHL04] provide a
framework for contract specification based on Hoare and He’s Unified Theory of Programming [HH98]. So far,
our work has concentrated mainly on developing the condition of acceptability between components which we
have called RespondsTo. It is also distinguished by the concern to use existing notations and technologies which
can provide mature tool support for verification within the proposed development framework.
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Further work is also needed to investigate responsiveness in other settings (such as in the presence of diver-
gence and for infinite traces) and to set out properties of responsiveness which are useful for compositionality.
We need to investigate further the way in which non-interface events are abstracted. Hiding has been used so far,
but this may not always be appropriate.

The theoretical aspect of this paper which led to the discovery of the stable revivals model has already been
taken further. Roscoe [Ros06] provides the necessary detail with proofs of full abstraction for the properties of
the current paper.
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Appendix A: Introduction to CSP

We use the syntax and semantics from [Ros98]. The CSP language describes interacting components of systems:
processes whose external actions are the communication or refusal of instantaneous atomic events. All the partici-
pants in an event must agree on its performance. The following CSP algebraic operators are used for constructing
processes.

Stop is the process which never engages in any event nor terminates (deadlock).
SKIP similarly never performs any action, but instead terminates
CHAOS(A) is the most non-deterministic, divergence-free process with alphabet A.

a → P performs event a and then behaves as process P. The same notation is used for outputs (c!v → P) and
inputs (c?x → P(x) ) of typed values on named channels, with c.T � {c.x | x ∈ T }.

P �Q is nondeterministic or internal choice.

P �Q is external or deterministic choice.

�x:X
P(x) and �x:X

P(x) represent generalised forms of the choice operators allowing indexing over a finite set
of indices where P(x) is defined for each x in X . c?x → P is shorthand for �x:T

c.x → P.

P ‖
X

Q is parallel (concurrent) composition. P and Q evolve separately, but events in X occur only when P and

Q agree (i.e. synchronise) to perform them. If X is omitted, it is taken to be �.
P ||| Q represents the interleaved parallel composition. P and Q evolve separately, and do not synchronise on

their events.
P \A is the CSP abstraction or hiding operator. This process behaves as P except that events in set A are hidden

from the environment and are solely determined by P; the environment can neither observe nor influence
them.

P[[y/x]] is the process formed by renaming x to y in P.

Appendix B: Mechanical verification of RespondsTo

The checks described here are derived from those published in our earlier paper [RSR04]. We work in the CSP
failures model and assume that all processes are divergence-free (which can be mechanically checked). P is a
process with alphabet H and Q is a process which synchronises on set J of events. We define functions G(P, Q)
and SPEC such that Q RespondsTo P if and only if the FDR-checkable assertion succeeds:

assert SPEC � G(P, Q)

Let H• and H� be distinct, disjoint copies of H . Define the lazy abstraction [Ros98] of Q to be the process which
behaves like Q except that whenever Q can perform an abstracted event the new process has the choice of either
not doing it or making it invisible:

LQ � (Q ‖
�−J

CHAOS(� − J )) \ (� − J )
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P• is a copy of P which can engage in a• ∈ H• whenever P can engage in a:

P• � P[[a•/a | a ∈ H ]]

P† is a process which runs P and P• in parallel, with a regulator process Reg•. This runs P and P• in a delayed
lock-step manner, also ensuring that whenever P• has demonstrated that there is something in (J� ∩ initials(P)),
say a, then G(P, Q) only comes up with refusal sets X not containing a so that (J� ∩ initials(P))−X is nonempty
(the ones of interest for the condition).

Reg• � �a:H
a• → ((�b:H

b → (a �� b&Reg•))
� (a ∈ J )&a� → Stop

where a� ∈ H� is a further separate version of a.

P† � ((P ||| P•) ‖
H∪H•

Reg•)[[a/a� | a ∈ J ]]

Q RespondsTo P if and only if G(P, Q) � P† ‖
J

LQ has no deadlock after an odd-length trace whose last member

is in J∗. That is, if and only if it refines

Spec � (�a:J
a• → (

(�b:J
b → Spec)

�
(Stop� (�b:H−J

b → Spec)))

(1)

�
(�a:H−J

a• → (Stop� (�a:H
a → Spec)))) (2)

� Stop (3)

The above specification provides three cases: (1) after odd length traces, if the last element is in J , then something
in J (the a from P†) must be offered, and it does not care whether anything outside of J is offered or refused, (2)
after odd length traces, if the last element is not in J , then the specification does not care what events are offered
or refused, and (3) after even length traces, deadlock is acceptable since it means that P has reached a state for
which its set of initial events is empty.
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