CHARACTERIZATIONS OF SIMPLY-CONNECTED FINITE
POLYHEDRA IN 3-SPACE
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The following result was discovered by the authors during investigations into the
topological problems of three-dimensional pictorial data analysis:

THEOREM 1. Let Y be a connected finite polyhedron in S3. Then the following are
equivalent :

(1) Y is simply-connected
(i1) The first (integral) homology group of Y is trivial
(iii) The first (integral) Betti number of Y is zero
(iv) The first (integral) cohomology group of Y is trivial
(v) The Euler Characteristic of Y is equal to the number of components of S®\Y
(vi) Y has one (and hence all six) of the Phragmen-Brouwer properties [6] (The
Phragmen—Brouwer properties are listed in the Appendix.)

It is known that (ii), (iii), (iv), (v) and (vi) are equivalent, and that they hold if Y is
simply-connected. But as far as we know there is no published proof that conditions
(i) to (vi) imply that Y is simply-connected. From the viewpoint of pictorial data
analysis by machine the theorem is useful, because the equivalence of (i) and (v) gives
us a criterion for simple-connectedness that can be applied in practice. Furthermore,
the equivalence of (i) and (iii) suggests that it is reasonable to define the number of
holes in a finite polyhedron X in S to be the first Betti number of X, because attaching
a ‘solid handle’ to any finite polyhedron increases the polyhedron’s first Betti number
by exactly one. If we adopt this definition then the Euler Characteristic of X is equal
to the number of components of X plus the number of cavities in X minus the number
of holes in X. This is a natural generalization of the familiar formula for the Euler
Characteristic of a handlebody in S2. The ‘number of holes’ in a three-dimensional
object is a concept which has been of some interest to workers in image processing
in recent years (for example, [3, 4, 5]).

We shall deduce Theorem 1 from the following result, which is essentially due to
Alexander [1].

LeEMMA. Let S be a finite polyhedron in S® with non-empty interior whose boundary
is homeomorphic to S®. Then S is homeomorphic to a closed 3-ball (that is, S is a * 3-cell’).

Notation. Let K= K(Y) be a triangulation of S?® for which there exists a
subcomplex L such that |L| =Y.

Proof of Theorem 1. Conditions (iii) and (iv) are equivalent since H*(Y) is the
direct sum of the free part of H,(Y) and the torsion subgroup of H,_,(Y) — and the
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torsion subgroup of H,(Y) is trivial. Conditions (ii) and (iit) are equivalent because
the Alexander Duality Theorem implies tht the torsion subgroup of H,(Y) is equal
to the torsion subgroup of H,(S?\Y), and must therefore be trivial. Conditions (ii1)
and (v) are equivalent because the Euler Characteristic is expressible as the alternating
sum of the Betti numbers, and by the Alexander Duality Theorem the second Betti
number of Y is exactly one less than the number of components of S3\ Y. Condition
(iii) is shown to be equivalent to one of the Phragmen—Brouwer properties (uni-
coherence) in [2], and if Y has any one of the Phragmen-Brouwer properties then it has
the other five [6]. So conditions (ii), (iii), (iv), (v) and (vi) are equivalent. Condition
(i) implies condition (ii), for it is well known that H,(Y) is the abelianization of the
fundamental group of Y.

We observe in passing that ‘(i) implies (ii1)’, ‘(i) implies (iii)’, and °(iii), (iv) and
(vi) are equivalent’ remain true even if Y is not embedded in S3 We also mention
that it is not essential to use integral homology and cohomology groups in (ii), (iii)
and (iv). For we have already noted that Y is 1-torsion free (in fact Y is n-torsion
free for all n), so if G is any abelian coefficient group then H,(Y; G) = H(Y; G) = G*,
where 7 is the first integral Betti number of Y.

To finish the proof we shall show that (v) implies (i). In doing this we may assume
that Y is a 3-manifold with boundary. For if Y, is the regular neighbourhood of Y
in K (this is defined to be the union of all the simplexes of the second barycentric
subdivision of K that meet Y) then Y, is a 3-manifold with boundary such that S3\ Y]
has the same number of components as S?\ Y, and the fundamental group and the
Euler Characteristic of Y are the same as the corresponding invariants of Y.
Moreover, it is only necessary to prove that (v) implies (i) in the case when S%\ Y is
connected, for if Y is a 3-manifold with boundary such that S3\Y is not connected
then we may ‘bore a thin tunnel’ from one of the components of S3\Y to each of
the other components: it is readily confirmed that such tunnelling does not affect the
validity of (v), and it is clear that it cannot make the fundamental group of Y trivial
if it was not trivial before.

So suppose that Y is a 3-manifold with boundary, that S3\ Y is connected and that
the Euler Characteristic of Y is one. We must show that Y is simply-connected: in
fact we shall show that Y is a 3-cell. Since Y is a polyhedral 3-manifold its frontier
Fr Y is a polyhedral 2-manifold. Since (v) and (vi) are equivalent S?® has the third
Phragmen-Brouwer property, so FrY is connected; thus FrY is a connected
2-manifold.

Now it is known that the Euler Characteristic of a finite polyhedron which is a
3-manifold with boundary is exactly one half of the Euler Characteristic of its
boundary. (For we can ‘glue’ two copies X, X, of such a polyhedron together by
identifying their boundaries to produce a 3-manifold (without boundary). It is
well-known that the Euler Characteristic of any odd dimensional triangulated
manifold (without boundary) is zero — this fact can be proved by dual cell decompo-
sition, and it is a corollary of the Poincaré Duality Theorem. Thus the Euler
Characteristic of X, U X, is zero, whence the Euler Characteristic of Fr X, = X, n X,
is the sum of the Euler Characteristics of X, and X,, which are equal.) So since the
Euler Characteristic of Y is one, the Euler Characteristic of Fr ¥ must be two, whence
by the Classification Theorem for Surfaces Fr Y is a polyhedral 2-sphere. Hence Y is
a 3-cell by the above lemma.

We are grateful to the referee for pointing out an alternative proof of
Theorem 1. He shows that (iii) implies (i) by taking a regular neighbourhood N of ¥,
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and using the Lefschetz Duality Theorem, the Exact Homology Sequence of (N, ON),
the Classification Theorem for Surfaces, and the Seifert-van Kampen Theorem.

COROLLARY. If'Y is a connected finite polyhedron in S® then Y is simply-connected
if and only if each component of S3\Y is simply-connected.

Proof. We may assume that Y is a 3-manifold with boundary, for the regular
neighbourhood Y, of Yin Kis a 3-manifold with boundary, Y is a deformation retract
of Y, and if ¥; denotes the regular neighbourhood of ¥, in the second barycentric
subdivision of K then the closure of $?\ ¥, is a deformation retract both of §3\ Y and
of $3\,.

Now each component D of S\ Y has the same fundamental group and the same
first homology group as its closure ¢l D - for the union of all the simplexes of the
second barycentric subdivision of K that are contained in D is a deformation retract
both of D and of c1 D. Hence if D is a component of $3\ Y then (on applying Theorem 1
to the finite polyhedron cl D) we deduce that D is simply-connected if and only if
the rank of H,(D) is zero. The Alexander Duality Theorem implies that the rank of
H,(Y) s zero if and only if the rank of H (D) is zero for every component D of S3\ Y.
Theorem 1 implies that Y is simply-connected if and only if the rank of H,(Y) is zero.

Appendix — The Phragmen—Brouwer Properties
The Phragmen-Brouwer properties are defined for a topological space S as follows:

1. If 4 and B are disjoint closed subsets of S and x, y € S are such that neither 4 nor
B separates x and y in S then (4 U B) does not separate x and y in S.

2. If neither of the disjoint closed subsets 4 and B of S separates S then 4 U B does
not separate S.

3. If M is a closed connected subset of S and C is a component of S\ M then the
frontier of C is connected.

4. (Unicoherence) If 4 and B are closed connected sets such that 4 U B = S then
AN B is connected.

5. If Fis a closed subset of S and C,, C, are disjoint components of S\ F which have
the same frontier B then B is connected.

6. If A and B are disjoint closed subsets of S, ae 4 and b € B, then there exists a closed
connected subset C of S\(4 U B) which separates a and 4.

It is proved in [6] that if a connected and locally connected metric space has any one
of these properties then it has the other five. (It is also shown that in such spaces
property 6 still holds if ‘disjoint closed’ is replaced by ‘mutually separated’, and
property 3 can be generalized to assert that the intersection of any component of a
closed set M with the frontier of any component of S\ M is connected.)
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