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We study 2- and 3-dimensional digital geometry in the context of almost arbitrary adjacency 
relations. (Previous authors have based their work on particular adjacency relations.) We define 
a binary digital picture to be a pair whose components are a set of lattice-points and an 
adjacency relation on the whole lattice. We show how a wide class of digital pictures have 
natural "continuous analogs." This enables us to use methods of continuous topology in 
studying digital pictures. We are able to prove general results on the connectivity of digital 
borders, which generalize results that have appeared in the literature. In the 3-dimensional case 
we consider the possibility of using a uniform relation on the whole lattice. (In the past  authors 
have used different types of adjacency for "object" and "background.") �9 1985 Academic Press, 
Inc. 

PREREQUISITES 

Familiarity with the content of [15] is probably essential for understanding some 
of the remarks in the introduction; the rest of the paper is more or less self-con- 
tained, but familiarity with [15] might still be helpful. The graph-theoretic terminol- 
ogy we use is defined in the first chapter of [3]. A httle elementary topology is 
assumed in our discussion of continuous analogs--the relevant concepts are covered 
in the third and fourth chapters of [1]. 

INTRODUCTION 

Digital images are, of course, arrays of non-negative numbers (gray values); 
binary images are obtained when the array elements are partitioned ("segmented") 
into two subsets by thresholding. The array elements are called pixels in 2D and 
voxels in 3D. Pixels are sometimes thought of as little squares and voxels as small 
cubes (the cuberille approach--see [5]), but we shall not think of pixels and voxels in 
this way; instead we shall identify each pixel or voxel with a lattice-point in the 
plane or in 3-space. 

Rosenfeld's 1981 paper [15] provides a very clear exposition of the fundamental 
concepts of 3-dimensional digital topology. However, only two kinds of adjacency 
relation are considered in [15]: either 6-adjacency is used for the "objects" and 
26-adjacency for the "background," or 26-adjacency is used for the "objects" and 
6-adjacency for the "background." Yet it is clear that the concepts like digital paths 
and digital components make sense for a wide variety of adjacency relations. The 
first goal of this paper is to present a simple unified approach to digital pictures 
which places no artificial restrictions on the adjacency relations used. 

Morgenthaler and Rosenfeld suggest in [10] that we might sometimes wish to 
define adjacency between points "which are not even 'near' each other." It might be 
possible to extend our new theory so as to allow this. In another direction 
Mylopoulos and Pavlidis showed in [11] that many of the basic concepts of digital 
geometry remain valid when the conventional rectangular grid is replaced by the 
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Cayley diagram (of. [3, Chap. 8]) of any finite presentation of an abelian group--they 
called such group presentations discrete spaces. It is likely that the ideas introduced 
in our present article can be applied to many of these discrete spaces. 

Further motivation for the present paper comes from our investigation of the 
"surface-points" introduced by Morgenthaler, Reed, and Rosenfeld [10, 13, 12]. In 
our paper [7] we prove non-trivial results by transforming problems of digital 
topology into problems of polyhedral topology. The transformation is done by 
constructing "continuous analogs" of digital pictures. However, the full potential of 
this approach is not realized in [7]: although continuous analogs exist for "most" 
digital pictures, their existence is proved only in very special cases. The second goal 
of this paper is to develop a general theory of continuous analogs and to give good 
necessary and sufficient conditions for their existence. 

Our work on general binary digital pictures has interesting corollaries for particu- 
lar adjacency relations. Not only can we obtain Propositions 5 and 6 of [15] but we 
also find that similar results hold for every pair of "pure" adjacency relations (6-, 
18-, or 26-adjacency) other than (6, 6). We regard a proof of these results as our third 
goal. That these results are fairly deep becomes apparent when we note that the 
2-dimensional analogs of both results fail on the surface of a cylinder (when Z 2 is 
replaced by Z ,  • Z, where Z n denotes the integers modulo n). The point is that if n 
is large then Z n • Z is locally indistinguishable from Z 2, which shows that the 
two propositions express global properties of Euclidean space. (Geometric topol- 
ogists will recognize that the propositions express discrete versions of two 
"Phragmen-Brouwer properties" [18]). Many of the propositions proved in our 
earlier paper [7] are also global results in this sense. 

To establish the validity of such results we must use a "global proof method": 
purely local methods (such as straightforward induction on the number of points in 
S, or simple graph-theoretic arguments) are unlikely to suffice. Our method of attack 
involves applying techniques from continuous topology to the continuous analogs of 
binary digital pictures. We do this in the "IV implies I" part of the proof of 
Theorem 2. 

Finally we point out some of the drawbacks of using any single elementary 
adjacency relation (4-, 6-, 26-, etc.) on the conventional square and cubic grids. In 
order to overcome these difficulties many other workers have resorted to the use of 
different adjacency relations for object and background points. Our investigations 
suggest that for some purposes it may be a better choice to use a 2-dimensional 
hexagonal lattice or a 3-dimensional face-centered cubic lattice equipped with the 
corresponding "nearest neighbor" adjacency relations. 

This paper is structured in such a way that it is possible to omit the sections 
relating to continuous analogs, and the proofs of Theorems 2 and 2', provided that 
the "I  is equivalent to II" part of these theorems is assumed without proof. The 
statement and proof of Proposition 3 may also be omitted on a first reading; 
however, the corollary to Proposition 3 is used in the proof of Proposition 4. 

SIMPLY-CONNECTED SETS 

It will emerge from our paper that Propositions 5 and 6 in [15] are valid because 
R 2 and R 3 are both simply-connected. 

A connected subset Y of R 2 or R 3 is said to be simply-connected if it has no 
"holes." (A solid cube is simply-connected but a solid torus is not.) Equivalently, Y 
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is simply-connected if given any two curves in Y with the same endpoints we can 
t ransform one curve into the other by means of a "continuous deformation" during 
which both  endpoints remain fixed and the rest of the curve remains in Y. The 
precise definition is as follows: 

A curve in a subset Yof  R 1 is a continuous map `/: [0,1] --, Y. The curve ` / is  said 
to be a curve in Y from the point `/(0) to the point ,/(1). The trace of a curve `/ is 
another  name for the image of `/. A connected subset Y of R" is said to be 
simply-connected if given any two points p and q in Y and any two curves `/0 and /̀1 
each of which is a curve in Y from p to q, we can find a continuous map h: 
[0,1] • [0,1] --, Y such that for all s and t in [0,1] we have 

(i) h(s,O)= Vo(S) 
(ii) h(s, 1) = `/l(s) 

(iii) h (0, t)  = p 

(iv) h (1, t)  = q. 

The "continuous deformation" h is called a fixed endpoint homotopy of `/0 onto `/1. 
I t  is customary to think of t as "' time." 

The definition we have just given is the one we shall use; but it is not the standard 
definition. We show in the Appendix that the two definitions are equivalent. We 
asserted above that a solid torus is not simply-connected. This is intuitively clear but 
not  so easy to prove. However, it is a corollary of Theorem 2 below. 

ELEMENTARY TERMINOLOGY 

In this paper  Z denotes the set of integers and R denotes the set of real numbers; 
Z is regarded as a subset of R. Thus R" denotes Euclidean n-space and Z"  is the set 
of  all lattice-points in Euclidean n-space. 

Recall that two points in 13 are said to be 26-adjacent if they are distinct and 
each coordinate of one differs from the corresponding coordinate of the other by  at 
most  1; two points are 18-adjacent if they are 26-adjacent and differ in at most two 
of their coordinates; two points are 6-adjacent if they are 26-adjacent and differ in at 
most  one coordinate. Two points (x, y )  and (x ' ,  y ' )  in Z 2 are said to be 8-adjacent 
or 4-adjacent according as (x, y,O) and (x ' ,  y',O) are 26-adjacent or 6-adjacent. 
Unless otherwise stated the greek letters a, p, `/, and 8 will denote integers from the 
set (4, 8, 6, 18, 26}. We use the term "latt ice-point" to denote a point in Z 2 or Z 3. In 
this paper  we identify Z n with the set of points in R n that have integer coordinates 
(in the obvious way). If  W _c Z"  then W c denotes the complementary set Z ' \  W 
(here n = 3 in the sections relating to 3-dimensional digital pictures and n = 2 in 
the sections on 2-dimensional pictures). A unit cell is a closed unit cube (in 3D) or a 
closed unit square (2D) whose corners are all lattice-points. (Note that a unit cell is a 
connected subset of R 3 or R 2 and not a set of lattice-points.) A window is any union 
of unit cells. 

I f  K is a unit cell and S _ Z  3 then K N S  can be mapped by rotation or 
reflection onto one of the 22 sets shown in Fig. 1. (A proof is given in the Appendix, 
but  in any event it is readily confirmed that Fig. 1 does exhaust all possibilities.) We 
shall say that the pair (K,  S)  is of type n if K (3 S can be mapped by rotation or 
reflection on the nth  set in Fig. 1. 
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FIG. 1. The twenty-two types of unit cell. 

BINARY DIGITAL PICTURES 

The following definition is the basis of our new approach to digital topology: 
A 3- (2-)dimensional binary digital picture is a pair (A, S), where S is any subset 

of Z 3 (Z 2) and A is any symmetric binary relation on Z 3 (Z 2) that satisfies the 
axioms (i) and (ii) below. We shall say that x is A-adjacent to y if (and only if) 
(x, y)  ~ A. The axioms A must satisfy are: 

(i) If x and y are 6- (4-)adjacent then x and y are A-adjacent. 

(ii) If  x and y are A-adjacent then x and y ate 26- (8-)adjacent. 

I f  (A, S)  is a binary digital picture then we refer to S as the set of object points of 
the picture, we refer to S c as the set of background points of the picture, and we refer 
to A as the adjacency relation of the picture. 

The set S of object points is usually derived from pictorial data, but the adjacency 
relation A is chosen by the user. In the above definition the adjacency relation is 
explicitly included as part of a binary digital picture; we have found it helpful to 
think in this way. However, we are not the first to incorporate adjacency relations 
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into the mathematical structure of a digital picture. Previous authors did so 
implicitly when using terms like "connectedness in the sense of the background." 

Nevertheless, the definition just given represents a slight but significant departure 
f rom the usual conceptual framework of digital geometry, because the adjacency 
relation has been freed of all dependence on the set of object points: there is no 
longer any notion of "adjacency in the S (or S c) sense." In the rest of this paper 
(A, S)  will be a 2- or 3-dimensional binary digital picture. 

MORE ELEMENTARY TERMINOLOGY 

In this section and the next we adapt the terminology of [15] to our new definition 
of digital pictures. 

If two points are A-adjacent then each is called an A-neighbor of the other. A 
point is A-adjacent to a set if it is A-adjacent to some member of that set. Two 
disjoint sets of lattice-points will be said to be A-adjacent if there is a point in one 
subset that is A-adjacent to some point in the other. An A-path is a sequence of 
distinct lattice-points such that any two consecutive points in the sequence are 
A-adjacent. If each point in an A-path belongs to some set T then we shall call the 
path  an A-path in T. An A-path whose first point is x and whose last point is y will 
be called an A-path from x to y, or alternatively an A-path that links x to y. We 
shall say S is A-connected if every pair of points in S is linked by an A-path. An 
A-connected subset of S that is not A-adjacent to any other point in S will be called 
an A-component of S. Thus S is A-connected iff S contains just one A-component. 
If  S and T are disjoint sets of lattice-points then the (A, S)-border of T (or, 
alternatively, the A-border of T with respect to S)  is defined to be the set of all 
points in T that are A-adjacent to a point in S. 

If A is an adjacency relation on 12 or Z 3 and X is a window then A ( X )  denotes 
the adjacency relation on the set of lattice-points in X such that x is A(X)-adjacent 
to y ill' there is a unit cell in X which contains both x and y, and x is A-adjacent 
to y. 

We shall frequently want to use these definitions in the special cases where A is 
the a-adjacency relation for some a; it will then be very convenient to use the prefix 
" a "  in place of "A."  Thus we might refer to an 18-component ( =  an A-component 
where A is the 18-adjacency relation), or " t h e  (6, S)-border of T "  ( =  the (A, S)- 
border  of T where A is the 6-adjacency relation. This use of the numbers 6, 18, 26, 4, 
and 8 as prefixes is fully consistent with the usage established by previous authors 
[15,10,13,12], etc.). 

If  K is any unit cell in R 2 then we define K* to be the union of K with the four 
other unit cells that have an edge in common with K. Similarly, if K is any unit cell 
in R 3 then we define K* to be the union of K with the six other unit cells that have 
a face in common with K. 

Finally, we define A(a, ~, "/, S) to be the adjacency relation on Z 2 or Z 3 in which 
two points x, y are adjacent iff either x and y are a-neighbors in S or x and y are 
~8-neighbors in S c or x and y are ,/-neighbors, and exactly one of x and y belongs 
to S. 

ADJACENCY GRAPHS 

Let X be any window. The X-adjacency graph of (A, S), denoted by adj(A, X, S), 
is a (possibly infinite) bipartite graph each of whose vertices is a whole A(X)-com- 
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ponent  of S N X or S c n X. The first vertex class of adj(A, X, S)  consists of the 
vertices corresponding to A(X)-components  of S O X (these are called the S-vertices 
of adj(A, X, S)); the second vertex class consists of the vertices corresponding to 
A(X)-components  of S ~ O X (these are called the SC-vertices of adj(A, X, S)). An 
S-vertex x and an S%vertex y are joined by an edge of adj(A, X, S)  if and only if 
the components  represented by x and y are A(X)-adjacent.  

The adjaeeney graph of (A, S), which we denote by adj(A, S)  is defined to be the 
(possibly infinite) graph adj(A, R3, S) (3D case) or adj(A, R2, S) (2D case). 
"adj (a ,  fl, -/, S )"  will be an abbreviation for "adj(A(a,  fl, y, S), S)." Thus the S- and 
SC-vertices of adj(a, fl, 3', S) are respectively the a-components of S and the fl-com- 
ponents of S~; and an S-vertex is joined to an SC-vertex iff the corresponding 
components  are y-adjacent. Following Rosenfeld [15] we observe that if a and fl are 
not both  equal to 6 (or, in the 2D case, not both equal to 4) then an a-component of 
S and a fl-component of S c are 6- (4-)adjacent iff they are 26- (8-)adjacent. So unless 
a - - - f l  = 6 ( =  4) we can suppress the y in "adj(a, fl, 'r,S)" and just write 
"adj (a ,  fl, S) ."  (Note that adj(6,26, S) and adj(26,6, S)  are just the adjacency 
graphs considered in [15].) 

If x is a vertex of adj(A, X, S)  then we use the notation COMPT(x)  to denote the 
A(X)-component  corresponding to the vertex x. (Strictly speaking there is no 
difference between x and COMPT(x) ,  but we use the latter notation whenever we 
are interested in the "internal structure" of COMPT(x).)  

NORMAL DIGITAL PICTURES 

The following concept is very important in our paper. 

DEFINITION. We shall say that a binary digital picture (A ,S )  is normal if 
adj(A, K, S )  is a tree for every unit cell K. If (A, S)  is normal then we shall say that 
S is A-normal. 

There are some adjacency relations A such that (A, S)  is a normal binary digital 
picture for any set of lattice-points S. The simplest examples are the 18- and 
26-adjacency relations (in 3D) and the 8-adjacency relation (in 2D). On the other 
hand there are some sets S which have the property that (A, S) is normal for all 
adjacency relations A that satisfy the conditions (i) and (ii) in the definition of a 
binary digital picture. In fact any S such that for every unit cell K one of the sets 
S n K and S c O K is 6-connected will have this property. 

Note  also that if one of a and fl is not equal to 6 (4 in the 2D case) then for all K 
and S either S n K is a-connected or S c n K is fl-connected; so if a and fl are not 
both equal to 6 (4) then for all choices of y the binary digital picture (A(a, fl, "r, S), S) 
is normal. 

DIGITAL REPRESENTATIONS AND CONTINUOUS ANALOGS 

In this section we shall assume that we are working in three dimensions. Defini- 
tions of 2-dimensional digital representations and continuous analogs are obtained 
by substituting R 2 and Z 2 for R 3 and Z 3. Let C be any dosed subset of • 3. We 
shall call the binary digital picture (A, S)  a digital representation of C if there exists 
a dosed  set C'  which is geometrically similar to C and which satisfies the following 
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conditions: 

(i) S = C ' n Z 3 .  

(ii) Let K be any unit cell. If F is any connected component of K n C' then 
F n Z 3 is a non-empty union of A-components of S n K and is contained in one 
A(K*)-component of S n K*. 

(iii) Let K be any unit cell. If B is any connected component of K \  C' then 
B n Z 3 is an A-component of S c N K. 

(iv) If D is a face or edge of any unit cell K then each connected component of 
D n C'  and of D \ C' contains a comer of K. 

(v) If K is any unit cell and F and B are connected components of K n C' 
and K \  C'  respectively then ~F meets ~B itf F n Z 3 is A-adjacent to B N Z 3 
(Note: OX = the boundary of X). 

Observe that in (v) the condition "OF meets 0B"  is equivalent to " F  U B is 
connected." (A, S) is a digital representation of C with resolution factor ~ if C'  is 
congruent to )~C (i.e., C'  is exactly )~ times as big as C). Note that the resolution 
factor of a digital representation is not in general unique. 

The reader may be puzzled by the asymmetry between (ii) and (iii). Admittedly we 
should like to .replace (ii) by the simpler condition that if F is any connected 
component of K n C'  then F n at 3 is an A-component of S n K. But if we do this 
then the inverse concept of a continuous analog (which is precisely defined below) 
will no longer satisfy Theorem 2. 

Some closed subsets of R 3 have no digital representation. Indeed, it is easy to see 
that any bounded set which has infinitely many connected components or cavities 
has none. (Sets which have "zero thickness" in some places will also cause problems.) 
However, the following rather pedestrian argument shows that given any dosed 
subset F of R 3 and any positive ~ there exists a dosed superset Fo of F such that 
every point in F o is within er of a point in F and such that F o has digital 
representations of arbitrarily large resolution factor. 

Let Q be the set of dosed cubes with sides of length e whose comer coordinates 
are all integer multiples of e. We define F 0 to be the union of all the cubes in Q that 
meet F. Let n be any integer greater than 1 and let F '  = ((n/e)Fo). Let S = F '  N Z 3 
and let A be any adjacency relation satisfying the conditions in the definition of a 
binary digital picture. Then (A, S) is a digital representation of F 0 with resolution 
factor n/e.  

By inverting the concept of a digital representation we get the notion of a 
continuous analog: Let X be any window. A polyhedral set in 3-space is a set which 
is a locally finite union of discrete points, closed straight line segments, closed 
triangles, and dosed tetrahedra ("locally finite" means that every bounded region 
meets only finitely many of the sets in the union). A continuous analog of a binary 
digital picture (A, S) relative to X is a polyhedral set C _ X which satisfies the 
following conditions: 

(i) S A X =  C A at 3. 

(ii) Let K be any unit cell contained in X. If F is any connected component of 
K n C then F N 13 is a union of A-components of S n K and is contained in one 
A(K*)-component of S n K* n X. 
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(iii) Let K be any unit cell contained in X. If B is any connected component of 
K \  C then B N Z 3 is an A-component of S ~ N K. 

(iv) If  D is a face or edge of a unit cell K and K is contained in X then each 
connected component of D o C and of D \ C contains a comer of K. 

(v) If  K is any unit cell contained in X and F and B are connected 
components of K O C and K \ C respectively then OF meets 0B iff F n Z 3 is 
A-adjacent to B N Z 3. 

A very reasonable alternative condition to (v) in this definition is the following: (v') 
If x is a comer of the unit cell K belonging to S and B is a connected component 
of K \  C then x ~ OB iff x is A-adjacent to B O 1_3. In fact, Theorem 2 remains 
true if we replace (v) by (v'). 

Note that if C is a continuous analog of (A, S) relative to R 3 then (A, S)  is a 
digital representation of C with resolution factor 1. 

The following proposition expresses an important property of continuous analogs; 
essential use will be made of this property in the proof of our principal result 
(Theorem 2). 

PROPOSITION O. Let C be a continuous analog of the binary digital picture (A, S) 
relative to the window X. Then 

(i) l f  F is any connected component of C then F n 1_ 3 is an A(  X)-component of 
S N X .  

(ii) I f  B is any connected component of X \  C then B t3 1_3 is an A(  X)-compo- 
nent of  S ~ n X. 

Proof. We shall prove (i); a proof of (ii) is obtained by substituting the terms in 
square brackets [ . . .  ] for the terms that immediately precede the brackets. Let 
(x  o, x 1 . . . . .  Xm) (where m > 1) be an arbitrary A(X)-path in X. Then for every 
0 < i < m there exists a unit cell K i in X that contains both xi and xi+ 1. So if the 
x i all belong to S [S c] then by (ii) [(iii)] in the definition of a continuous analog they 
all belong to the same connected component of C [ X \  C]. This shows that if two 
points u and v belong to the same A(X)-component of S n X [S c n X] then they 
belong to the same connected component of C I X \  C]. In order to establish part (i) 
[part (ii)] of Proposition 0 it remains to show that if x and y are any two points in 
][3 which belong to the same connected component of C [ X \  C] then x and y both 
belong to the same A(X)-component of S n X [S c n X]. 

So let x and y be two such points, let P be the point-set of a polygonal arc in C 
[ X \  C] from x to y, and let p ( t )  denote the (unique) point on P whose distance 
from x, when measured along P, is exactly t. Let l be the total length of P. Thus 
p(O) = x and p ( l )  = y. Define a finite sequence (tll 0 < i < n)  of real numbers in 
accordance with the following rules (the value of n is determined by rule 3): 

(1) t o -- O. 

(2) If t i < 1 then ti+ 1 is the greatest real number such that { p(t )[ t  i < t <_ ti+l} 
is contained in a single unit cell. 

( 3 )  t n = 1. 
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For  every i < n pick a unit cell that contains { p ( t ) l t  i < t < ti+l}. Call this cell K i. 
Then for all 1 < i < n p(t~) and P( t i_ l )  both belong to the same connected 
component  of C N Ki_ 1 [K/_ 1 \ C]. For each i define u i as follows: 

(1) If  p( t i )  E l 3 then u i = p(ti).  

(2) If  F is a face or edge of K~ such that p(t~) belongs to the relative interior of 
F then by  (iv) in the definition of a continuous analog there is a point  in F n Z 3 
that belongs to the same connected component  of F n C [ F \  C] as p ( q ) :  define u~ 
to be such a point. 

Hence if 1 < i < n then u~ and P(ti)  both belong to the same connected component  
of  C N Ki_ 1 [K~_ 1 \ C]. If  0 < i < n - 1 then it follows from our construction of 
the uj that ui_l, p( t i_ t )  , p(t~), and u~ all belong to the same connected component  
of C n Ki_ 1 [Ki_ 1 \ C]. So by (ii) [(iii)] in the definition of a continuous analog 
both  u~_ 1 and u i belong to the same A(X)-component  of S n gi*_ 1 ~ X [ S  c n 

Ki_l]. Therefore x ( =  u0) and y ( =  u , )  belong to the same A(X)-componen t  of 
S n X IS c n X], as required. [] 

In  the 3-dimensional case Theorem 2 will provide a useful, necessary, and 
sufficient condition for a continuous analog to exist. 

THE 3-DIMENSIONAL CASE 

In this section (A, S)  will be a 3-dimensional binary digital picture. The following 
proposi t ion should give the reader an intuitive understanding of the geometric 
significance of normality. 

PROPOSITION 1. (i) I f  (A, S )  is normal then so is (A,  So). 

(ii) Suppose adj(A, X, S)  is a tree and suppose W is a subset of S such that 
W N X is a union of A(X)-components of S n X. Then adj(A, X, W )  is a tree. 
(Hence if  T is any A-normal set then any union of A-components of T is A-normaL) 

(iii) Suppose adj(A, K, S)  is a tree, where K is a unit cell. Then either S N K is 
A-connected or S ~ n K is A-connected, or the A-components of S n K and S ~ n K are 
as shown in Fig. 2. 

(iv) Suppose ( A,  S)  is normal. Then an A-component of S is A-adjacent to an 
A-component of S ~ only i f  those two A-components are 6-adjacent. 

(v) I f  the ( A,  SC)-border of S is A-normal then so is S itself. 

L 
I 

I 

I 

11 r 
f 

FIG. 2. A--lst A-component of S O K; B--lst A-component of S c N K; C--2nd A-component of 
S n K; D--2nd A-component of S c n K. 
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Proof (i) Trivial. 

(ii) Let C be an A(X)-component of S n X. Let v be the S-vertex of 
adj (A,  X , S )  that corresponds to C. Then adj(A, X , S \ C )  is obtained from 
adj(A, X, S)  simply by identifying v and all its neighbors. Hence if adj(A, X, S) is a 
tree then so is adj(A, X, S \ C). But W can be obtained from S by removing a 
suitable collection of A(X)-components of S. Hence adj(A, X, W) is a tree. 

(iii) Suppose K contains two A-components C, C'  of S n K and two A-compo- 
nents B, B '  of S c O K. Then a fortiori neither S n K nor S c O K is 6-connected, so 
(K,  S)  must be of type 8, 12, 13, 14, or 15. Now if (K, S) is of type 8, 12, or 13 then 
each point in S N K is 6-adjacent to every 6-component of S c O K, so each of C, C' 
is A-adjacent both to B and to B'; this implies that adj(A, K, S) is not a tree, which 
contradicts the normality of (A, S). Similarly, (K, S)  cannot be of type 15 (by 
symmetry with type 8); hence (K, S) is of type 14. It is impossible for C and C' both 
to contain two points--for if this were so then each of C and C' would be 
6-adjacent both to B and to B'  # .  Therefore one of C and C' (C say) contains just 
one point; similarly one of B and B' (B say) contains just one point. We finish the 
proof by showing that each of C'  and B' contains three points, and that K is as 
shown in Fig. 2. Let x denote the unique point in C, and let L denote the set of 
6-neighbors of x in K. We claim that all three points in L must belong to the same 
A-component of S r n K. For if u and v are any two distinct points in L then there 
is a point y in S \  (x} which is a 6-neighbor of both u and v; so since adj(A, K, S) 
is acyclic and { x } is an A-component of S r K it follows that u and v belong to 
the same A-component of S c n K, as we claimed. Hence L = B' and we are home 
by symmetry, since B must now be the only point in S c o K that is not 6-adjacent 
to x. 

(iv) Let C be an A-component of S and let B be an A-component of S ~ that is 
A-adjacent to C. Let K be a unit cell such that C o K is A-adjacent to B n K. If K 
is as in Fig. 2 then the result is plainly true. If K is not as in Fig. 2 then by (iii) 
either C A K = S A K o r B A K = S  o A K :  but B A K  and C A K  are certainly 
6-adjacent to S N K and S ~ n K respectively (since K n Z 3 is 6-connected), and so 
the result is proved. 

(v) Let B denote the (A, SC)-border of S. Then S ~ is a union of A-components 
of B ~, so the result follows from (i) and (ii). [] 

Note that the converse of Proposition 1 (v) is false; for if A is the 6-adjacency 
relation and S = {(x, y, z) l lx l  + lyl + Izl -< 1} then S is A-normal but the 
(A, S~)-border of S is not. 

The following theorem, which is our principal result, establishes a fundamental 
global property of 3-dimensional binary digital pictures. By proving it we achieve the 
second of the three goals mentioned in the Introduction. 

THEOREM 2. Suppose ( A, S) is a 3-dimensional binary digital picture. Then the 
following are equivalent: 

I. adj(A, X, S) is a tree for all Simply-connected windows X. 

II. (A, S)  is normal. 

III. ( A, S)  has a continuous analog relative to every window. 

IV. ( A, S) has a continuous analog relative to every unit cell. 
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Proof. I implies H; I l l  implies IV. These implications are trivial. 

H implies 111. Suppose II holds. Let X be a simply-connected window. For 
each unit cell K contained in X we shall construct a closed polyhedral set 
C(A, K, S) which is a continuous analog of (A, S) relative to K. C(A, K, S) is 
defined as follows: 

1. If every comer of K belongs to S then C(A, K, S) = K; if every comer of K 
belongs to S c then C(A, K, S) -- { }. 

2. If S c n K is non-empty and A-connected then C(A, K, S) is the union of 
S o K with all faces of K whose four comers are all in S, all (1,1, ~/2) triangles 
whose comers are all in S N K, and all straight line segments whose endpoints are 
comers of K that belong to the same A-component of S n K x for some unit cell 
g 1 ___ K*  n S .  

3. If S~A K is not A-connected and ( K , S )  is not of type 14 or 15 then 
C( A, K, S) = co( S n K ). (Note: co = "convex-hull of".) 

4. If SeN K is not A-connected and (K,S)  is of type 14 or 15 then let 
r, s, t, u, v,w, x, y, z denote the points with coordinates (�89 �89 �89 (0, 0, 0), (0, 0, 1), 
(0, 1, 0), (1, 0, 0), (1, 1, 0), (0,1,1), (1, 0,1), (1, 1,1), respectively. C(A, K, S) is defined 
by the following five rules: 

(A) If each point in K n S ~ belongs to a different A-component of S ~ n K 
then we define C(A, K, S) = co(S N K). 

(B) If (K,  S)  is of type 15 and S c O K has exactly two A-components then let 
p be a rotation which maps these A-components onto the sets { s, y } and { w }. We 
define C(A, K, S) = p - l ( c o ( { l ,  u, x, g}) U co( (  u, v, 2}) U co({t, v})). 

(In (C), (D), and (E) (K, S) is assumed to be of type 14.) 

(C) If  S c n K has exactly three A-components then let p be a rotation which 
maps these A-components onto the sets {u}, {v}, and (t, z}. We define C(A, K, S) 

= p-l(co((s, w, y))  u co((s, w, x}) u co((x, y})). 
(D) If S ~ n K has two different A-components and each of them contains just 

two points then let p be a rotation which maps these A-components onto the sets 
{t ,v} and {u,z}.  We define C(A,K ,S )=p- l ( co ( { s , x , r } )Oco({s ,w , r } )U 
co({y, w, r}) O co({x, y, r}) O co({s, y})  U co({x,w))). 

(E) If one A-component of S ~ n K contains three points and a second A-com- 
ponent of S r O K contains just one point then let p be a rotation which maps these 
two A-components onto the sets { v } and { t, u, z }. Let R be the subset of { s, y, w } 
consisting of those comers which belong to the same A-component of S O K~ as x 
for some unit cell K 1 _ K* n X. We define C ( A , K , S ) =  p- l (co({s ,y ,w})u L) 
where L is the union of all straight line segments with one endpoint at x and one 
endpoint in R. 

We claim that C(A, K, S) satisfies (i), (ii), (iii), (iv), and (v) in the definition of a 
continuous analog relative to K. This is easily confirmed in cases 1, 2, and 4. (Note 
that in (A), (B), (C), and (D) of case 4, Proposition 1 (iii) implies that S o K is 
A-connected.) Now suppose case 3 applies. Then (i), (iv), and the first assertions of 
(ii) and (iii) are plainly satisfied; furthelxnore, Proposition 1 (iii) implies that S n K 
is A-connected, so since C(A, K, S) is convex (and hence connected) (ii) holds. By 
inspection of Fig. 1 we see that if (K, S) is not of type 14 or 15 then there are at 
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most two 6-components of S c n K, so by the hypotheses of case 3, two points in 
S c n K belong to the same A-component of S e n K iff they belong to the same 
6-component  of S ~ n K. Further inspection of Fig. 1 reveals that if (K, S) is not of 
type 14 or 15 then each connected component of K \ c o ( S  n K )  meets Z 3 in a 
6-component  of S e n  K. Hence (iii) holds. We now know that C(A, K, S) is a 
connected set which meets Z 3 in just one A-component of S n K, and that each 
connected component of K \  C(A,K, S) meets Z 3 in just one A-component of 
S ~ n K; so since the boundary of C(A, K, S) must meet the boundary of each 
component  of K \  C(A, K, S) and C(A, K, S)  O Z 3 must be A-adjacent to each 
A-component  of ( K \  C(A, K, S)) N 13, it follows that (v) also holds. 

Define C = U(C(A, K, S)IK is a unit cell contained in X) .  Observe that, by our 
construction of C(A, K, S), we have C(A, K, S) = C n K for every unit cell K 
contained in X. So since C(A, K, S) is a continuous analog of (A, S) relative to K, 
it follows that C is a continuous analog of (A, S) relative to X, and this proves that 
II implies III. 

1V implies H; III implies L Suppose (A, S) has a continuous analog relative to 
a simply-connected window X (thus X might be a unit cell or the whole of R 3). We 
shall show that adj(A, X, S)  is a tree. Suppose (for the purpose of getting a 
contradiction) that adj(A, X, S)  contains a cycle. Let U and V be distinct A-compo- 
nents of S c n X which correspond to two vertices on the cycle. Pick a point u in U 
and a point  v in V. 

By definition of u and v we may partition S n X into two subsets M and N such 
that each of M and N is a union of A-components of S N X and such that there 
exist A-paths Po in X O M c and Qo in x N N c each of which links u to v. Now let 
C be a continuous analog of (A, S)  relative to X. By Proposition 0(i) there exist 
closed sets F and B, each of which is a union of connected components of C, such 
that F O Z 3 = M and B O 13 = N. By conditions (ii), (iii), and (v) of the definition 
of a continuous analog u and v are connected in X \  F and in X \ B. X \  F and 
X \ B are both open relative to X, so there exist two curves "/0 and Y1 in X joining u 
to v such that the trace of ~'0 does not meet B and the trace of 3'1 does not meet F. 

By our definition of simple-connectedness there exists a continuous map h: 
[0,1] • [0, 1] --* X such that for all s and t in [0, 1]: 

(i) h(s,O) = Vo(S) 
(ii) h(s, ] )  = v l ( s )  

(iii) h (0, t) = u 

(iv) h(1, t) = v. 

In the rest of this proof the term "square" denotes a closed 2-dimensional square 
(and not  just  the interior or boundary of the "square"). By "drawing" lines parallel 
to the x and y axes we may dissect the unit square [0, 1] • [0,1] into n 2 little 
squares of side l/n, where n is chosen so large that the image under h of each little 
square always misses at least one of the two sets F and B. Let Q be the set of all the 
little squares whose image under h meets F. Define E o = {ele is an edge of exactly 
one square in Q }. Let L denote the straight line segment with endpoints (0, 0) and 
(1,0) and let E 1 denote the set {ele is an edge of a little square and e c L}.  Let E 
denote the symmetric difference of E 0 and E x. With the exceptions of (0, 0) and 
(1, 0) each comer  of a little Square is incident either on no edges in E or on exactly 
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two edges in E. Each of (0, 0) and (0,1) is incident on exactly one edge in E. It 
follows that (0, 0) and (0,1) belong to the same connected component of UE; call 
this connected component P. Then h(P)  is a connected subset of X which contains 
both u and v but does not meet F or B. So since X \ C is open in X there exists a 
simple polygonal arc in X \  C which joins u and o. So by Proposition 0, u and o 
belong to the same A-component of S ~ n X, which is the required contradiction. [] 

Theorem 2 implies that if a closed set has a digital representation then all its 
digital representations are normal. Another easy corollary is the following generali- 
zation of Corollary 7 in [15]. 

COROLLARY. Suppose one of a and fl is not equal to 6. Then adj(a, fl, S)  is a tree 
for every S. 

Proof. By definition adj(a, fl, S) = adj(A(a, fl, 6, S), S). But we have already 
noted that (A(a ,  fl, 3', S), S)  is normal whenever a and fl are not both equal to 6; so 
the corollary follows from the theorem. [] 

Remark. Theorem 2 remains true if property I is replaced by the more general 
assertion: 

I ' :  For all windows X the Euler characteristic of adj(A, X, S) is not less than 
the Euler characteristic of X minus the number of cavities of X. 

(This says that adj(A, X, S) never has more "holes" than X. Thus if X has just 
one hole then "adj(A, X, S) has at most one cycle.) 

Proposition 1 (ii) implies that if (A, W) is normal then every A-component of W 
is A-normal. The converse of this result is false; indeed, if A is the 6-adjacency 
relation and S = ((x, y, z) I lxl + lYl + Izl = 1} then adj(A, S) is the complete 
bipartite graph K(6, 2) which is not a tree. However, a partial converse is provided 
by the corollary to the following proposition. 

PROPOSITION 3. Let X be a window, and let ( A, T)  be a binary digital picture such 
that adj(A, X, T)  is a tree. Let {T,.10 < i < n} be the set of A-components of T n X 
and let W be a subset of T such that for each i the adjacency graph adj(A, X, T/O W) 
is a tree. Then adj(A, X, W)  is a tree. 

Proof. Suppose the hypotheses are satisfied but adj(A, X, W) contains a cycle F. 
Let W~ denote T~ n X. We shall deduce the contradiction that for some i adj(A, X, W~) 
contains a cycle. Let a, x, and b be three consecutive vertices on F such that x is a 
W vertex, and let T O be the A-component of T n X that contains COMPT(x). Thus 
COMPT(x)  is an A-component of W n X while COMPT(a) and COMPT(b) are 
A-components of W c n X. Now COMPT(a) and COMPT(b) are both A-adjacent 
to COMPT(x),  but since I" is a cycle they are not separated by COMPT(x). So since 
by assumption adj(A, X, W0) is a tree it follows that COMPT(a) and COMPT(b) 
are contained in the same A-component of W~ n X. 

Pick u and v on the (A, COMPT(x))-borders of COMPT(a) and COMPT(b), 
respectively. By the last sentence in the previous paragraph there exists an A-path P 
in X which joins u to o and which does not meet W 0. Now a ~ : b  means 
COMPT(a)  and COMPT(b) are different A-components of W e n  X. Hence P 
contains at least one point in W and since P does not meet W 0 = T O O W it follows 
that every point w in W that lies on P belongs to ( T \  To). For every point w in W 
that lies on P let z (w)  and z '(w) denote the two points on P which are such that: 
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(a) z(w) and z'(w) both lie in To; (b) z(w) comes before w and z'(w) comes after w 
on P; (c) the portion of P between z(w) and z'(w) contains no other points in T 0. 
Also, let r(w) denote the immediate successor of z(w) on P and let s(w) denote the 
immediate predecessor of z'(w) on P. Suppose temporarily that there is no point w 
such that r(w) and s(w) belong to different A-components of T c n X. Then we can 
construct an A-path P '  in ( T 0 \  W) U (T r n X) that joins u to v - P '  passes 
through each r(w) and s(w) but bypasses every point w in W that lies on P. The 
A-path P '  does not meet W, which implies that a = b # .  This contradiction shows 
that there must exist a point w 0 such that r(wo) and S(Wo) belong to different 
A-components  of T c. But by construction r(Wo) and S(Wo) are both A-adjacent to 
T 0, and they are not separated by T 0. Hence adj(A, X, T )  contains a cycle and this 
contradiction proves the proposition. [] 

COROLLARY. Let T be an A-normal set and let W be a subset of T which meets 
each A-component of T in an A-normal set. Then W is A-normal. 

Proof. Let K be an arbitrary unit cell and let T O be any A-component of T n K. 
Let T 0' be the A-component of T that contains T 0. Then adj(A, K, TO' N W) is a 
tree, so by Proposition 1 (ii) adj(A, K, T O N W) is a tree. Also, adj(A, K, T)  is a tree 
since T is A-normal. So since T O was any A-component of T n K Proposition 3 
implies that adj(A, K, W) is a tree. This argument works for all unit cells K, so W is 
A-normal. [] 

We are now ready to prove a very general result on the connectivity of digital 
borders. Basically, we give conditions which ensure that the border of a component 
of object points with respect to a component of background points is connected and 
separates the components. If any digital picture contains a border which does not 
have these two properties then it is clear that the adjacency relation is incompatible 
with the set of object points. 

PROPOSITION 4. Let F and B be A-components of S and S ~ respectively and let W 
denote the (A, B)-border of F. Suppose both S and W are A-normal. Then W is 
A-connected. Furthermore, if W is non-empty and P is an A-path linking a point in F 
to a point in B then there are two consecutive points u, o on P such that u ~ W and 
v ~ B .  

Proof. Let T denote the set W w (S \ F) .  Suppose W is not A-connected. Let U 
and V be distinct A-components of W. Then there exists an A-path in F that links 
U to V; on such an A-path pick a point x that does not belong to W, and let X 
denote the A-component of T r that contains x. U and V are distinct A-components 
of T. Furthermore,  B is an A-component of T c and B ~ X. Now there exist two 
A-paths Po and Pt from x to B such that P0 goes through V and does not meet U 
while Px goes through U and does not meet V. It follows that there exist two 
different paths in adj(A, T)  from X to B (of which one contains U and the other 
contains V). But R 3 is a simply-connected window; therefore Theorem 2 implies 
that T is not  A-normal. But, by the corollary to Proposition 3, T is A-normal since 
T meets each A-component of S is an A-normal set. This contradiction proves the 
first assertion. 

To prove the second assertion suppose W is non-empty, and let z be any point in 
F. If z ~ Wdef ine  C = W; if z ~ F \  W then let C be the A-component of T ~ that 
contains z. Let P be an A-path from z to a point in B. Let b, c, and w be the 
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vertices of adj(A, T)  such that COMPT(b) = B, COMPT(c) = C, and COMPT(w) 
= W, so that w is adjacent to b and either w = c or else w is adjacent to c. We have 
already noted that T is A-normal, so adj(A, T )  is a tree. Now the A-path P induces 
a walk in adj(A, T )  from c to b, and this walk must traverse the edge in adj(A, T)  
joining w to b (since adj(A, T)  is acydic). This implies the result. [] 

The next proposition is the analog of Proposition 4 in the conventional theory of 
binary digital pictures (as described in [15 or 16]). The proposition contains 
Proposition 5 in [15] as a special case and can also be shown to imply the principal 
theorem in [6] (use the technique described in the final section of [10]). So by proving 
it we achieve the third and last of our goals. Results of this kind are used to establish 
the soundness of border-tracking algorithms. 

PROPOSITION 5. Leg each o f  a, fl, and ~ be equal to 6, 18, or 26, and let 
8 = min( f l ,  u Le t  F be an a-component o f  S, let B be a fl-component o f  S c, and let 
W denote the (y, B)-border of  F: 

(i) Suppose at least one of  a and 8 is not equal to 6. Then W is a-connected. 

(ii) Suppose W is non-empty and at least one of  a and fl is not equal to 6. Then 
any 8-path P f rom a point  in F to a point in B contains two consecutive points u, v such 
that u ~ W and v ~ B. 

Proof. 
Case I: a and 8 are not both equal to 6. We shall prove (i) and (ii) simulta- 

neously. 
Let A denote the adjacency relation on Z 3 such that x and y are A-adjacent 

either if they are A ( a ,  fl, y, S)-adjacent or if x and y are 26-neighbors in S \ W. 
Observe that B is an A-component of S c. 

Let K be any unit cell. If a = 6 (so that nefther fl nor ~, is equal to 6) then either 
S n K is 6-connected (and hence A-connected) or else S r n K is 18-connected (and 
hence A-connected). If on the other hand a 4 :6  then either S N K is 18-connected 
(and hence A-connected) or else S r O K is 6-connected (and hence A-connected). 
Thus S is A-normal in all cases. 

Let F '  denote the A-component of S that contains F, and let IV' denote the 
(A, B)-border of F ' .  Let K be any unit cell. If a = 6 (so that neither 13 not ~, is 
equal to 6) then either W' N K is 6-connected (and hence A-connected) or else 
W 'c t~ K is 18-connected (and hence A-connected). If on the other hand a 4:6 then 
either W' n K is 18-connected (and hence A-connected) or else W 'c n K is 6-con- 
nected (and hence A-connected). Thus W' is A-normal in all cases. Recalling that S 
is also A-normal, we see that by Proposition 4 the set W '  is A-connected. But it is 
easy to see that W = IV' r F, so that W is a subset of W' that is not A-adjacent to 
W ' \  W. Hence W = IV'. This proves part (i) of the proposition. Since W is 
A-connected it follows that given any &path P we can construct an A-path P '  
which agrees with P except possibly on W (in the sense that if x and y are 
consecutive points on P which are not both in W then x and y are consecutive 
points on P ' ,  and vice versa). Thus we are home by Proposition 4 (applied to A, F' ,  
B, and VII' = W ). 

Case H:  a = 6 and 8 = 6. Here only part (ii) of the proposition applies. Note 
that fl 4 :6  (by the hypothesis that at least one of a and fl is not equal to 6), and so 
"t = 6. Let P be a 8-path (i.e., a 6-path) from a point in F to a point in B. Let W "  
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be the (26, B)-border of F and let 8' = min(/3, 26) =/3.  Then since the 6-path P is 
(a fortiori) a 8'-path, and since 8' ~ 6 it follows from Case I that there are two 
consecutive points u, v on P such that u ~ W" and v ~ B. But u ~ W'" implies 
u ~ F, and, since u and v are consecutive on P, u is 6-adjacent to the point  v, 
which is in B. Hence u ~ W, and we are home. D 

We can show that Proposition 5 is a "best  possible" result. First of all, it is 
obvious that W will not in general be more than a-connected, simply because that is 
the only sort of connectivity that is assumed for F. Now put S = X U Y U 
( ( 2 , 0 , 0 ) , ( - 2 , 0 , 0 ) }  where X =  { ( x , y , z )  ~ Z3lmax(lx[,  [y[, Izl) = 3 and just one 
of Ixl, lYl, Izl is equal to 3}, and Y = ((x, y, z) ~ Z31 Ixl + lYl + Izl -< 1}. We 
shall consider the consequences of different choices of a , /3 ,  and 7. In all cases let B 
denote the only unbounded/3-component  of S c, let z 0 be the point (0, 0, 0), let F 
denote the a-component of S that contains z0, and let W denote the (7, B)-border 
of F. If a = 8 = 6 then W is not a-connected, so part (i) fails; if ot = /3  = 6 then z 0 
is contained in the same 8-component of W c as B so part  (ii) fails. Also, part (ii) 
cannot  be strengthened by substituting/3 or 7 for 8: If a = /3  = 18 and 7 = 6 then 
z o is contained in the same/3-component of W c as B while if a = 7 = 18 and 13 = 6 
then z o is contained in the same 7-component of W ~ as B. Even if ~ = 18, part (ii) 
may fail if 8 is replaced by /3  or 7- To see this put  (fl, 7) = (26,18) or (18, 26) 
S = F = X \  Y, where  X = ( ( x ,  y ,  z )  ~ Z31max(Ixl, lYl, Izl) -< 2) a n d  Y = 
{(x, y, z)  ~ 131 Ix[ = lyl = Izl >- 1}. 

THE 2-DIMENSIONAL CASE 

It is easily seen that Proposition 1 remains true in two dimensions (in part (iv) 
"6-adjacent" should be replaced by "4-adjacent," and the assumption that (A, S)  is 
normal is unnecessary). 

Unfortunately Theorem 2 fails when (A, S)  is a 2-dimensional binary digital 
picture; indeed, if S =  { ( x , y ) ~  121 Ixl + l Y l - - 1 }  and A is the 8-adjacency 
relation then (A, S)  is normal but  has no continuous analog. (The fact that (A, S)  
has no continuous analog is the essence of the "paradox"  mentioned in ([17, p. 475]). 
If S is as above and A is the 4-adjacency relation then (A, S)  again has no 
continuous analog--this  can be regarded as the source of the "Euler theorem 
paradox"  mentioned in ([14, p. 147]), where these paradoxes are put forward as a 
reason for not "using the same type of connectivity for both set and complement." 
But note that in the second case (A, S)  is not normal, and so would not be expected 
to have a continuous analog.) It is easy to prove the following weak analogy of 
Theorem 2: 

THEOm~M 2'. Suppose ( A, S )  is a 2-dimensional binary digital picture. Let four 
conditions I, 11, 111, and I V  be defined as follows: 

I. adj(A, X, S)  is a tree for all simply-connected windows X. 

II. (A, S )  is normal. 

III. ( A, S )  has a continuous analog relative to every window. 

IV. ( A, S )  has a continuous analog relative to every unit cell. 
Then I and 11 are equivalent, I I I  and I V  are equivalent, and 111 and I V  imply ! and 
H. 

Proof. Let (A, S)  be a 2-dimensional binary digital picture. It is readily con- 
firmed that if for every unit cell K the set C(K)  is a continuous analog of (A, S)  
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relative to K then for every window X the set U{C(K)IK c__ X} is a continuous 
analog of (A, S) relative to X. Hence III and IV are equivalent. Now define an 
adjacency relation A' on Z 3 such that two points (x ,y , z )  and (x ' ,y ' ,z ' )  are 
A'-adjacent iff they are 26-adjacent and the points (x, y)  and (x', y') are either equal 
or A-adjacent. Define S' to be the set S • {0,1}. Then if X is any 2-dimensional 
window we have that adj(A, X, S) is a tree if and only if adj(A', X • [0,1], S') is a 
tree (here [0,1] denotes the closed unit interval {x I 0 < x < 1}). Hence I and II are 
equivalent by Theorem 2. Moreover, if C is a continuous analog of (A, S) relative to 
X then C • [0, 1] is a continuous analog of (A', S') relative to X • [0,1]. So IV 
implies II by Theorem 2. [] 

Remark. In this paper we never actually make use of the assumption that an 
n-dimensional window is actually embedded in n-dimensional Euclidean space. Thus 
one might define a generalized window to be any space obtainable by taking a 
disjoint collection of unit cells and "gluing together" some of the corners, edges and 
(in three dimensions) faces of these cells. Observe that any union of faces of 
3-dimensional unit cells is a 2-dimensional generalized window, regardless of whether 
or not the faces all lie in one plane. Theorems 2 and 2' remain valid if X is a 
generalized window. 

Propositions 3 and 4 remain true in two dimensions: the proofs are obtained from 
the 3-dimensio.nal proofs by replacing references to Theorem 2 by references to 
Theorem 2'. If in the statement and proof of Proposition 5 we replace "26" and "18" 
by "8", and we replace "6" by "4" then we get a correct statement and proof of a 
2-dimensional version of Proposition 5. This is again a "best possible" result--2-di- 
mensional versions of the examples given after the proof of Proposition 5 are easily 
constructed. 

THE HEXAGONAL AND FACE-CENTRED CUBIC LATTICES 

It is unfortunate that, in general, neither of the 2-dimensional binary digital 
pictures (4, S) and (8, S) has a continuous analog relative to any given window; the 
same applies to the 3-dimensional picture (6, S). As a result, digital objects in these 
pictures can have properties which real objects never have--recall the counterexam- 
pies given after the proof of Proposition 5. Although continuous analogs always exist 
for the binary digital pictures (18, S) and (26, S) (because they are always normal) 
these continuous analogs do not always reflect the topological structure of the 
picture. As an example, consider the digital picture (a, {(0,0, 0), (1, 1, 0),(0, 1, 1)}), 
where a = 18 or 26: although one feels that this digital picture ought to be simply 
connected, since any two object points are mutually adjacent, it does not have a 
simply-connected continuous analog (relative to R 3). A related problem is that if we 
define the Euler characteristic of (18, S) and (26, S) to be the Euler characteristic of 
the natural continuous analogs of these pictures, then the topological structure of a 
picture may change when a simple point (defined in [9]) is removed. A much more 
obvious drawback of (18, S) and (26, S) is that the 18- and 26-adjacency relation 
give each point too many neighbors: it is desirable to have fewer neighbors, as this 
will reduce the amount of computation involved in many algorithms. 

The standard way of avoiding these difficulties is to use adjacency relations of the 
form A(a, fl, fl, S), where S is the set of object points, and exactly one of a and fl 
(usually fl) is equal to 4 or 6. This approach was suggested by Duda [4]. But in both 
two and three dimensions there is an elegant alternative. 
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In the 2-dimensional case this alternative is in fact quite well known, although it 
has never been widely used in practice. It involves abandoning the rectangular grid 
in favor of the hexagonal lattice which is constructed by tessellating the plane with 
unit equilateral triangles and regarding each point lying at a corner of a triangle as a 
lattice-point. The hexagonal lattice is so called because it is possible to tessellate the 
plane with regular hexagons in such a way that the set of lattice-points is exactly the 
set of centers of the hexagons. 

The only adjacency relation we shall use with this lattice is the relation A such 
that each lattice-point is A-adjacent to its six nearest neighbors and to no other 
points. A binary digital picture on the hexagonal lattice is just a set of lattice-points 
(since the adjacency relation is fixed there is no need to include it in the definition). 
The relation A assigns just 6 neighbors to each lattice-point, which is an improve- 
ment on the 8-adjacency relation on the rectangular lattice. Actually, the hexagonal 
lattice has another advantage over 8-adjacency: in the hexagonal lattice each 
lattice-point is equidistant from all its neighbors. More generally, the adjacency 
relation A is isotropie in the sense that if p, q, and r are any three lattice-points in 
the hexagonal lattice such that p and q are both adjacent to r then there is a plane 
rotation with center r which preserves the lattice and maps p to q. 

Digital pictures on the hexagonal lattice can be incorporated into the theory of 
digital pictures developed above. Indeed, if A' denotes the adjacency relation on the 
rectangular lattice Z 2 such that (x, y)  is A'-adjacent to (s, t) iff (x, y) is 4-adjacent 
to (s, t) or (x - s, y - t) ~ {(1, 1), ( -  1, - 1)}, then there is an afline map T of the 
plane to itself which induces a bijection of the points of the hexagonal lattice to Z 2 
with the property that two lattice-points in the hexagonal lattice are A-adjacent iff 
their images in the rectangular lattice are A'-adjacent. So for the purposes of digital 
topology every binary digital picture W on the hexagonal lattice is equivalent to the 
binary digital picture (A', T(W)) on the rectangular lattice. 

It is readily confirmed that (A ' ,S )  is normal for all S. Moreover, a very 
well-behaved continuous analog for (A', S) relative to an arbitrary window X can be 
constructed by taking the union of all points in S n X, all straight line segments 
joining two A'-adjacent points in S n X, and all (1,1, r triangles each of whose 
sides joins two A'-adjacent points in S n X. Thus the "borders are connected and 
surround" result (Proposition 4) holds for digital pictures on a hexagonal lattice. 
Note that this is a property of the hexagonal lattice itself, and not merely a property 
of A'. 

The 3-dimensional analog of the 2-dimensional hexagonal lattice is the face- 
centered cubic lattice whose set of lattice-points can be taken to be ((x, y, z) ~ Za[ 
x + y + z is even}. The only adjacency relation we shall use with this lattice is the 
relation A 1 in which each lattice-point is adjacent to its nearest neighbors. As the 
adjacency relation is again fixed we can define a binary digital picture on the lattice 
to be any set of lattice-points. The adjacency relation A 1 assigns 12 neighbors to 
each lattice-point, which is an improvement on the 18- or 26-adjacency relations on 
the rectangular lattice. Like the adjacency relation A on the 2-dimensional hexago- 
nal lattice the adjacency relation A1 is isotropic, which the 18- and 26-adjacency 
relations are not. 

It is interesting to note that there we can tessellate 3-space with equal rhombic 
dodecahedra in such a way that the set of centers of the rhombic dodecahedra is 
exactly the points set of the face-centered cubic lattice. (The convex polyhedron 
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whose vertex set is ( ( x , y , z )  ~ Zallxl + lYl + Izl = 2 and IxllYl + Izl > 0} is a 
rhombic dodecahedron.) 

As in the case of the hexagonal lattice, digital pictures on the face-centered lattice 
can be incorporated into our general theory. There are two natural ways of doing 
this. The first way is based on the adjacency relation A t on the rectangular grid 
such that the point (x, y, z) is A~-adjacent to the point (t, u, v) if and only if the 
two points are 6-adjacent, or (x - t, y - u, z - v) ~ {(1, 0, 1), (0,1, 1), ( -  1,1, 0), 
( -  1, 0, - 1), (0, - 1, - 1), (1, - 1, 0)}. The other way is based on the adjacency 
relation A t' on the rectangular grid such that the point (x, y, z) is A~'-adjacent to the 
point (t, u, o) if and only if the two points are 6-adjacent, or (x - t, y - u, z - v) 
{(1 ,0 ,1) , (0 ,1 ,1) , (1 ,1 ,1) , ( -1 ,0 ,  - 1),(0, - 1 ,  - 1 ) , ( -  1, - 1 ,  - 1 ) ) .  

There are affine transformations T{ and T~' which map the points of a face- 
centered cubic lattice onto the points of a rectangular lattice in such a way that two 
points of the face-centered cubic lattice are At-adjacent ill their images under T t' and 
TI" are respectively At-adjacent and A~'-adjacent. So for the purposes of digital 
topology every binary digital picture on the face-centered cubic lattice is equivalent 
to binary digital pictures on the rectangular lattice based on the adjacency relations 
A t and At'. 

We claim that (At, S) and (At', S) are normal for all S. To justify this claim, it 
suffices to show that each of adj(A i, K, S) and adj(A~', K, S) is a tree when K is the 
unit cell that contains (0, 0, 0) and (1,1,1). We may assume w.l.o.g. (by symmetry 
between S and S c) that (0, 0, 0) ~ S. If (1, 0, 0) or (0,1, 0) is also in S then S n K is 
At-connected so adj(A{, K, S) is a tree. If both of these points are in S c then the set 
consisting of these two points (which are contained in one At-component of 
S c n K)  is At-adjacent to every At-component of S n K. Moreover, if there is a 
second At-component of S r N K then it must be ((0, 0, 1)} (since all other points in 
S c n K are At-adjacent to (1, 0, 0) or (0,1, 0)), and {(0, 0,1)} is adjacent to only one 
Ai-component of S n K. So adj(A{, K, S) is a tree in all cases. Again, if one of the 
three points (1, 0,0), (0,1,0), and (1,1,1) is in S then S n K is Ai'-connected, 
whence adj(Ai' , K, S) is a tree. If all three of these points are in S c then the set 
consisting of these three points (which are contained in one Ai'-component of 
S c N K )  is Ai'-adjacent to every Ai'-component of S n K. Moreover, if there is a 
second Ai'-component of A c n K then it must be {(0, 0,1)}, which is Ai'-adjacent to 
only one A{'-component of S N K. So adj(Ai', K, S) is a tree in all cases. 

It follows that the "borders are connected and surround" result (Proposition 4) 
holds for digital pictures based on the face-centered cubic lattice. Although this 
result is proved by consideration of A t (or At' ), it expresses a property of the 
face-centered cubic lattice itself. 

Moreover, it turns out that for all S the digital pictures (At, S) and (Ai', S) have 
well-behaved continuous ~malogs relative to every window, which meet each unit cell 
in a simply-connected set. The construction of such continuous analogs is not hard; 
but it does involve a certain amount of case analysis and will not be described here. 

CONCLUDING REMARKS 

This paper may be summarized as follows: 

(a) We introduced a new definition of a binary digital picture (based on the 
lattice-point representation of voxels); the new definition was more general but at 
the same time rather simpler than the definition used in [15]. 
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(b) We adapted Rosenfeld's adjacency graphs to the new definition, and at the 
same time introduced the slightly broader concept of the X-adjacency graph of a 
binary digital picture, where X can be any window (i.e., any union of unit cells). 

(c) We defined a normal binary digital picture to be a picture (A, S) whose 
K-adjacency graph is a tree for every unit cell K. 

(d) We introduced the notion of the continuous analog of a binary digital 
picture relative to a window. 

(e) Using the method of continuous analogs, we proved satisfying theorems 
(Theorems 2 and 2'), which show that the concept of normality is of fundamental 
importance in the theory of binary digital pictures. 

(f) Two results (Propositions 4 and 5 and their 2-dimensional variants) concern- 
ing the connectedness of digital borders were deduced from Theorems 2 and 2' 
(without making further use of the powerful but rather complex machinery of 
continuous analogs). These results are general forms of Proposition 5 in [15] and 
they are useful for proving the soundness of border tracking algorithms. 

(g) We showed how binary digital pictures on the hexagonal and face-centered 
cubic lattices with nearest neighbor adjacency could be incorporated into the theory, 
and explained why they are well behaved. 

Our approach to digital topology (based on the new definition of a binary digital 
picture) produces stronger theorems than the conventional approach described in 
[15]. Thus no result as powerful as Theorem 2 could be stated in terms of the old 
theory, and so it would be impossible to prove a result like Proposition 5 in the way 
we have. The relationship of our approach to previous ones is akin to that between 
the study of topology and the study of particular topological spaces. The generality 
of our approach has paid off in the applications ((f) and (g) above) which have 
emerged. 

The new theory could have other, more practical, advantages too. Suppose we 
wished to extract "connected components" of S--which in one context (see [2]) 
might correspond to organs in a human body. Then we would use an algorithm 
which finds A-components of S, where many different choices of the adjacency 
relation A are acceptable. This is a well-known example of a family of algorithms 
that is naturally parameterized by a set of "possible choices" of adjacency relation. 
The new theory can cope with a greater variety of different adjacency relations than 
the old theory and this increased power might have applications in situations where 
our pictorial data is "noisy" and of low resolution. 

Finally, this paper provides a second illustration (following [7]) of how continuous 
methods can be used to prove deep results in digital topology. 

APPENDIX 

A. Simple-Connectedness 

In most texts (e.g., [1]) a connected set Y is said to be simply-connected iff every 
closed curve in Y can be continuously deformed to a single point. Thus Y is simply 
connected ill given any curve ,/: [0,1] ~ Y such that ,/(0) = -/(1) there exists a 
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cont inuous  funct ion h: [0,1] • [0,1] ~ Y with the f o l l o ~ n g  properties:  

(i) h(x,O) = .t(x) (0 < x < 1), 

(ii) h(x ,  1) = p (0 < x < 1), where p is a point  in Y and is the same for all x, 

(iii) h(0, t)  = h(1, t)  (0 < t < 1). 

We shall call this the standard definition. 
If Y is s imply-connected according to our  earlier definition then it is readily seen 

to be s imply-connected in the standard sense. To prove the converse suppose Y 
satisfies the s tandard  definition and suppose "to and .t~ are two curves on  Y such that  
.to(0) = .tl(0) and .t0(1) = .tl(1). We must  prove the existence of  a fixed endpoint  
h o m o t o p y  H of .to onto  .tl. 

Define a closed curve .t such that . t ( x ) =  .to(2X) if x ~ [0 ,1 /2 ]  and . t ( x ) =  
,/1(2(1 - x ) )  if x ~ [1 /2 ,1] .  By hypothesis there exists a cont inuous function h 
satisfying (i), (i_i), and (iii) above. Now define go, gl, Go, G1, H:  [0,1] x [0,1] ~ Y 
such that:  

g o ( x , t )  - h ( x / 2 ,  t); g l ( t )  = h(1  - x / 2 ,  t ) ;  f o r j  = 0 ,1 ,  

Gj(x ,  t) = gj(O, 2 x )  if x < t /2 ,  

Gj(x , t . )  = g j (1 ,2 (1  - x ) )  i f x  >__ 1 - t / 2 ,  

Gj(x ,  t) = g j ( (2x  - t ) / ( 2 ( 1  - t ) ) ,  t )  otherwise; 

H ( x ,  t) = Go(x, 2t )  if t _< 1 / 2 ,  

H ( x , t )  = Gl (X ,2 (1  - t ) )  if t >__ 1 / 2 .  

Then  

H(x,O)  = . to(X); 

H ( x ,  1) = . t l (X);  

H(0 ,  t )  = Y0(0) - . t l(0); 

H(1 ,  t )  - .t0(1) = .tl(1). 

I t  is easily verified that  G is continuous.  (The only point  where there  is any doubt  
is (�89 which is a discontinuity of (2x - 0 / ( 2 ( 1  - t)); however, all is well because 
gj is uni formly cont inuous ( j  = 0,1): given any t > 0 we can pick 8 > 0 so small 
tha t  whenever  t > 1 - ~ the distance between gj(x,  t) and p is at mos t  e, irrespec- 
tive of  the value of  x.) Hence H is cont inuous and so H is a fixed endpoint  
h o m o t o p y  that  takes .t0 to .tl. 

This  p roof  looks complicated until one realizes the geometric meaning of  G 
and  H.  

B. Proof That Fig. 1 ls  Complete 

We shall work out  the number  of different ways in which we can color  the comers  
of  a cube using two colors (black and white, say), where two colorings are considered 
to be  the same if "one  is a rotat ion of the other ."  We shall use Polya 's  enumerat ion 
theorem.  Readers  who are unfamiliar with this result are referred to chapter  8 of  [3]. 
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Each of the 6 faces of a cube has 4 sides, so there are just 24 different rotations 
which map a cube onto itself. These 24 rotations can be classified as follows: 

1. The identity, 

2. A quarter turn (clockwise or anticlockwise) about an axis passing through 
the centers of two opposite faces (3 x 2 = 6 possibilities), 

3. A half turn about an axis passing through the centers of two opposite faces 
(3 possibilities), 

4. A half  turn about an axis passing through the mid-points of two diagonally 
opposite edges (6 possibilities), 

5. Rotat ion through an angle of 2~r/3 or - 2~r/3 about an axis passing through 
two diametrically opposite corners (4 • 2 = 8 possibilities). 

The cycle index associated with this group of rotations is (a~ 8 + 6a24 + 3a 4 + 6a~ + 
8a2a2)/24. Hence if we associate a weight of 1 with all points, black or white, then 
Polya's enumeration theorem shows that the number of different colorings is 

(28 + 6 • 22 + 3 • 24 + 6 • 24 + 8 • 22 • 22) /24  = 23. 

Plainly each of the 22 cells in Fig. 1 corresponds to a different one of these 23 
colorings. The only remaining coloring corresponds to a reflection of cell 11. This 
proves that any unit cell can be mapped by an appropriate rotation either onto one 
of the cells in Fig. 1 or onto a reflection of cell 11. [] 
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