
SPECIFYING PROBLEM ONE[USING THE 'FAILURE ~ SETS MODEL FOR CSP

AND DERIVING CSP PROCESSES WHICH MEET THIS SPECIFICATION

1.

AoW. Roscoe

Programming Research Group

Un i ve r s i t y of Oxford

In this note we sketch how ~n abstract mathematical model can be used

to specify the two-way channel. We see how theorems proved about the

abstract specification suggest designs of processes which satisfy it.
The model used can express safety and !iveness properties and allows

non-determinism. It does not deal with fairness however.

The Fa i l u re Sets Model

For a summary desc r i p t i on of the f a i l u r e sets model see the appendix to t h i s paper.

The important po in ts to note are:

(i) every process is represented by a set of pa i rs (s , ~) ,

where s i s a poss ib le t race and ~ is e i t h e r

representing divergence (non-termination), or

representing a set of symbols to which the process

can refuse to respond.

(i i) The model is good for expressing correctness conditions because i t

. permits the banning of divergence

allows possible traces to be specified (safety)

. allows the banning of refusal by the process (liveness).

I f on operat ing some process A w i th cu r ren t t race s we o f f e r i t a set X such tha t

(s, X) ~ A, then we can guarantee tha t the process w i l l even tua l l y accept some

element of X.

First, a notation for manipulating traces.

(i)
(i i)

I f s , t ~ Z * , we say s<. t i f ~u .su = t .

I f s~Z* , Xc_Z , we say

sr X = <> i f s =<>

= t ~ X i f s = t < a > and a ¢ X

= (t F X) < a > i f s = t < a > and a~ X.

104

(i i i) I f a is some name used for symbols, and b~Z , then

strip(a)(b) = c, i f b = ac

= b otherwise.

(iv) I f s ~ * , then

str ip(a)(s) = <>, i f s = <>

= (s t r ip (a) (t)) < st r ip(a)(b)>,

i f s = tb, where tE~ *, be~i

(v) s ~ a = strip(a)(s~ a.~E)

eg.:<a.b, c.b, a.c>@a :<b,c>

2. R..ro.blem 1: Two-way Channel wit.h..Disconnect

What is a channel?

Informally i t passes messages either way.

'dis' is a message, so i ts order is preserved, and i t is transmitted.

To be a rel iable channel i t must accept a|l input i t is offered while empty

(in either direction~).

When i t contains a message this must eventually be delivered to a destination

which does nothing but wait.

On delivering or receiving a dis at either end i t must die at that end.

(To die without transmitting a 'dis' to the environment seems unreasonable.)

Specification of a chann.e I (Abstract)

The set of ordinary messages is T (dis# T).

The alphabet ~CHAN(a,b) of a channel, whose end ports are named a and b, is:

{ a ' t ' , a?t', b ' t ' , b?t' t ' ~ T U {d is} }

The predicate CHAN(a,b) is defined as follows:

CHAN(a,b)(C) = [(s,&) ~ C=> 6#t r]
)*]

~[(s,X)~ C =~ s e (ECIFiia~(a,b)
&[s@a?) s@b' & s&b~>~ s@a']

. . . . order of messages preserved

&[(s@ a = u<d> v) & de{?dis, :d is}~v =<>]

~[(s~ b = u<d>v}& de[?dis, :dis]# v =<>]

. . . . neither end can do anything after a dis

Id is (a) (s) & (sSa? = s¢ b . ')~Xn(a?T U [a?dis}) = #
& Id is (b) (s) & (sCb~ = s ~ a ') ~ X n (b ? T U ~b?dis}) : ¢

. . . . a non-disconnected end, a l l of whose
communication has been received, must
be able to transmit

105

&qdis(b)(s) & (s~a?) (s@b:)< t '>)==~b.~t '~ X
~Tdis(a)(s) & (s ~ b ~ (s # a :) ~ t ' >) = = ~ a : t ' ¢ X

. . . . the channel can never refuse
to output a message i t contains

where dis(oO(s) -= s~{~:dis, e?dis} #< >.

A buffer may be defined in the same way:

BUFF(B) ~Vs(s,T)# B

(s,X)~ B ===~ s e (~T'U:T~) *

&(s+~ s¢ ' - -~×n?T. = 0)

&(s#? ~ (s@:)<t>) ~ t t ¢ x

where T' = TU {dis~ .

BUFF(a,b) is the same except that ~ is replaced by bJ
and ~ is replaced by a~.

Assorted theorems can be proved concerning channels and buffers:

eg. CHAN(a,b)(C) & CHAN(b,d)(C*) & d # a~CHAN(a,d)(C ~ C*)

BUFF(A) & BUFF(B)===~BUFF(A>> B)

BUFF(A) ~ BUFF(A>> B) }BUFF(B)

BUFF(A>> B) & BUFF(B) -,pBUFF(A)

a # e, ~ b # d & CHAN(a,b)(C 1) & BUFF(b,d)(B 1)

BUFF(d,b)(B 2) & CHAN(d,c)(C 2)

.... ~ CHAN(a,e)(C 1~ (Blll B 2} ~ C2)

Such theorems are easy, i f tedious, to prove.

Examples of buffers:

B 1 = ? x : T ' - + : x - ~ B 1

B n = BI>> >>B I (n t imes)

B ~ = .p x :T f - -~ (B~>>:X-B I) (unbounded)
* T,__+ (BI>>, * B = ?x: .X-B) (bounded but growing)

One obvious con f igu ra t ion fo r a channel i s :

B u f f ~ _ _ ~

, , , Buff -

106

This can be real~sed:

INS(:,#) = {a?x:T ~ (plx-INS(a,#) ~ ~Idis-abort))

(~?dis~ | dis-abort)

O ((xxais-abort)

OUTS(a,~) : (B?x:T - (~Ix-OUTS(~,#) 0 a?dis-abort))

(#?dis-(~Idis-abort 0 ~?dis-abort))

D (a ~ d ~ - a b o r t)

I f B 1 is any (b,a) bu f fe r and B 2 is any (a,b) buf fer , then

a / b~((INS(a,b)H OUTS(a,b)) ~ (Blll B 2)~ (INS(b,a)I(OUTS(b,a)))

satisfies CHAN(a,b).

Appendix - A summary of the f a i l u r e sets model fo r CSP

For a fuller description of this model the reader should consult any of

[1, 2, 3, 4]. The model is similar to, and makes the same basic postulates about

processes as, the well-known 'traces' model. I t is, however, able to make some

important distinctions between processes not made by simple traces.

The agents m.y NIL + ~.# NIL and ~.{~.NIL + ~.NIL) would be identified over

traces, as would (#p.~.p)\m and NIL. There are good reasons for wishing to

avoid these identifications: the idea is to record not only the possible traces

(ie. sequences of atomic actions) of a process but also its refusals (the sets

which i t can reject in a 'stable' state after some trace), and diver@ences (the

occasions when i t can become involved in an infinite sequence of internal actions

and never give any answer to its environment).

A process is thus a set of pairs {s,~), the f i rs t component being a trace and the

second either X,a refusal set (X~S, the alphabet), or # indicating divergence.

A process Q will be any subset of ~* x (~(Z) U{i~}) such that

1. dom(Q) = {s6Z*j~6.(s,~)~Q} is non-empty and prefix-closed

[<>~dom(Q), st~dom(Q)~s6dom(Q)]

2. (s,X)e Q & Y-cX ~ (s , Y) ~ Q

3. (s,X)6Q ~ Yn(Q after s) ° = ~:==>(s, XuY)~Q

107

4. (V f i n i t e Y-cX. (s ,Y)e Q) ~ (s , X) e Q

5. (s, ~) ~ Q ===>(st,~)e Q

Q a f te r s : { (t , ~) j (s t , ~)E Q1 ,

Technical Notes

QO : {ae~l<:a> e domQ}

CSP can be given a semantics over hi:

abort = {(<>,X) I Xc-Z}

the process which does nothing at all

skip = [(<>,X), (<V> ,Y)I ,/i~ ×}

the process which immediately terminates successfully

a-~A = {(<>,X) l a l / XJ U [(<~>s,~) I (s ,~)~AJ

communicates 'a' and then behaves l ike A

a.x:T-~A(x) = { (<>,X)I a.TnX =#} U [(<a.b>B,8)

inputs a value b named by 'a ' , then behaves

AFI B = AUB

behaves l ike A or B at the process' choice

(b~T~ (s, 6)EA(b)}

ike A(b).

The space~ of all processes is a complete semi-lattice under the reverse

inclusion order A - = B ~ A : - B. This order is naturally interpreted as A=_ B

B is more non-deterministic than A. The bottom or minimal element of ~ is Z* x

(ID(~) x {~}) (called CHAOS), one of whose many realisations is a process which

can diverge immediately.

There is a natural map from boundedly non-deterministic synchronisation trees to

IM, and a not-quite-so natural one from arbitrary synchronisation trees to IM. CSP

can be given operational semantics which are in each case congruent to the

abstract semantics given below.

The fai lure sets model gives a very expressive language for specification, since

i t regulates not only traces but also liveness (via divergence and refusals). '

108

A~B = { (<>, X
U C(s,
behaves

bY) ~ (<>,X)~ A& (<>,Y)e B] U {(s, 6) I s ~<>&{s, 6)~AU B}

)I (s , f) ~ A U B}
l ike A or B giving the environment the choice of f i r s t steps.

A;B {(s,X) J s does not contain v z , and (s, X U{J})E A}

U { (st, S)~s does not contain ~ , and (s , f) ~ A}

U {(st , S)is does not contain J , (s<J>,@)~ A, (t , ~) ~ B }

behaves like A unti] i t terminates successfully, then like B.

A\b {(s\b,X) I (s,X UCb])~A}

U {((s~b)t,~)J (s,@)eA}

U {((s~b)t,~)IVn (s n,#)eA~

where <>\b = <>

s<a>\b = (s \b)<a> i f a # b

= s\b i f a = b

hides the event 'b' in A (note the divergence introduced by an

inf in i te sequence of b's)

A\X

(AxIIyB)

= (. . . (A\bl) )\bn, where X = {b I bnl, is any f in i te set.

= {(s,(UnX) U (VnY) U z) l s~(X U Y)

(s~X, II)~A ~(s~Y,V)E B ~Zn{X U Y)=~}

U{(s t ,~) I s ¢ (X U Y) ~ s~X~domA~s~Y~domB

k ((s ~ X , ~) ~ A V (s~Y,@)E B) 1

A, with alphabet X, operates in parallel with B which has alphabet Y.

(ALl B) will be used as an abbreviation in the case where both A and B have as

their alphabets the total i ty of symbols they can ever use.

\X, H and easy alphabetical transformations can be used to derive operators.

>> which expects both arguments to have alphabet ?T U IT, and connects the

channel of i ts left-hand argument to the ? channel of i ts right-hand

argument. Internal communication is hidden.

which expects the intersection of the alphabets of i ts arguments to be
a

a?T U a~T. The outputs (a:) of each argument are connected to the input

(a?) of the other. Internal connection is hidden.

There are of course many theorems connect ing these operators.

109

References

1. Hoare, C.A.R., Brookes, S.D,, Roscoe, A.W. "A Theory of Co,~unicating

Sequential Processes". Oxford PRG monograph PRG-16 (198z)

and JACM July 1984.

2. Brookes, S.D. Oxford D.Phil ~hesis, 1983 (SDB)

3. Roscoe, A.W. Oxford D.Phil thesis, 1982 (AWR)

.
Brookes, S.D., Roscoe, A.W. "An Improved Failure-Sets Model for Communicating

Processes" To appear in Proceedings of NSF-SERC Seminar on concurrency,
Springer~Verlag LNCS. Available as a Carnegie-Mellon Technical Report.

Note

The failures ~odel has appeared in several forms. The original version
[1,2,3] was deficient in its treatment of divergence and was improved
in [2,3]. The version described in this note is the improved form from
[2]; this differs in presentation from the "standard" improved form of
[4] but is easily seen to be isomorphic to it.

