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In this note we sketch how ~n abstract mathematical model can be used 

to specify the two-way channel. We see how theorems proved about the 

abstract specification suggest designs of processes which satisfy it. 
The model used can express safety and !iveness properties and allows 

non-determinism. It does not deal with fairness however. 

The Fa i l u re  Sets Model 

For a summary desc r i p t i on  of  the f a i l u r e  sets model see the appendix to t h i s  paper. 

The important  po in ts  to note are: 

(i)  every process is  represented by a set of  pa i rs  ( s , ~ ) ,  

where s i s  a poss ib le  t race and ~ is  e i t h e r  

representing divergence (non-termination), or 

representing a set of symbols to which the process 

can refuse to respond. 

( i i )  The model is good for expressing correctness conditions because i t  

. permits the banning of divergence 

allows possible traces to be specified (safety) 

. allows the banning of refusal by the process (liveness). 

I f  on operat ing some process A w i th  cu r ren t  t race s we o f f e r  i t  a set X such tha t  

(s, X) ~ A, then we can guarantee tha t  the process w i l l  even tua l l y  accept some 

element of X. 

First, a notation for manipulating traces. 

( i )  
( i i )  

I f  s , t ~  Z * ,  we say s<. t i f  ~u .su  = t .  

I f  s~Z* ,  Xc_Z , we say 

sr  X = <> i f  s =<>  

= t ~ X  i f  s = t < a >  and a ¢  X 

= ( t F X ) < a >  i f  s = t < a >  and a~  X. 
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( i i i )  I f  a is some name used for symbols, and b~Z , then 

strip(a)(b) = c, i f  b = ac 

= b otherwise. 

(iv) I f  s ~ * ,  then 

str ip(a)(s) = <>, i f  s = <> 

= (s t r ip (a) ( t ) )  < st r ip(a)(b)>,  

i f  s = tb, where tE~ *, be~i 

(v) s ~ a = strip(a)(s~ a.~E ) 

eg.:<a.b, c.b, a.c>@a :<b,c> 

2. R..ro.blem 1: Two-way Channel wit.h..Disconnect 

What is a channel? 

Informally i t  passes messages either way. 

'dis' is a message, so i ts  order is preserved, and i t  is transmitted. 

To be a rel iable channel i t  must accept a|l input i t  is offered while empty 

(in either direction~). 

When i t  contains a message this must eventually be delivered to a destination 

which does nothing but wait. 

On delivering or receiving a dis at either end i t  must die at that end. 

(To die without transmitting a 'dis'  to the environment seems unreasonable.) 

Specification of a chann.e I (Abstract) 

The set of ordinary messages is T (dis# T). 

The alphabet ~CHAN(a,b) of a channel, whose end ports are named a and b, is: 

{ a ' t ' ,  a?t', b ' t ' ,  b?t' t ' ~  T U {d is} }  

The predicate CHAN(a,b) is defined as follows: 

CHAN(a,b)(C) = [(s,&) ~ C=> 6#t r ]  
)*] 

~[(s,X)~ C =~ s e (ECIFiia~(a,b) 
&[s@a?) s@b' & s&b~>~ s@a'] 

. . . .  order of messages preserved 

&[(s@ a = u<d> v) & de{?dis, :d is}~v =<> ] 

~[(s~ b = u<d>v}& de[?dis, :dis]# v =<> ] 

. . . .  neither end can do anything after a dis 

Id is (a ) (s )  & (sSa? = s¢ b . ' )~Xn(a?T U [a?dis} ) = # 
& Id is (b) (s)  & (sCb~ = s ~ a ' ) ~ X n ( b ? T  U ~b?dis} ) : ¢ 

. . . .  a non-disconnected end, a l l  of whose 
communication has been received, must 
be able to transmit 
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&qdis(b)(s) & (s~a?)  (s@b:)< t '>  )==~b.~t '~  X 
~Tdis(a)(s) & ( s ~ b ~  ( s # a : ) ~ t ' > ) = = ~ a : t ' ¢  X 

. . . .  the channel can never refuse 
to output a message i t  contains 

where dis(oO(s) -= s~{~:dis, e?dis} #< >. 

A buffer may be defined in the same way: 

BUFF(B) ~Vs(s,T)# B 

(s,X)~ B ===~ s e (~T'U:T~) * 

&(s+~ s¢ ' - -~×n?T. = 0) 

&(s#? ~ (s@:)<t>) ~ t t ¢  x 

where T' = TU {dis~ . 

BUFF(a,b) is the same except that ~ is replaced by bJ 
and ~ is replaced by a~. 

Assorted theorems can be proved concerning channels and buffers: 

eg. CHAN(a,b)(C) & CHAN(b,d)(C*) & d # a~CHAN(a,d)(C ~ C*) 

BUFF(A) & BUFF(B)===~BUFF(A>> B) 

BUFF(A) ~ BUFF(A>> B) ..... }BUFF(B) 

BUFF(A>> B) & BUFF(B) -,pBUFF(A) 

a # e, ~ b # d & CHAN(a,b)(C 1) & BUFF(b,d)(B 1) 

BUFF(d,b)(B 2) & CHAN(d,c)(C 2) 

.... ~ CHAN(a,e)(C 1~ (Blll B 2} ~ C2) 

Such theorems are easy, i f  tedious, to prove. 

Examples of buffers: 

B 1 = ? x : T ' - +  : x - ~ B  1 

B n = BI>> . . . . .  >>B I (n t imes) 

B ~ = .p x :T f - -~ (  B~>>:X-B I )  (unbounded) 
* T,__+ (BI>>, * B = ?x: .X-B ) (bounded but growing) 

One obvious con f igu ra t ion  fo r  a channel i s :  

B u f f ~ _ _ ~  

, , ,  Buff  - 



106 

This can be real~sed: 

INS(:,#) = {a?x:T ~ (plx-INS(a,#) ~ ~Idis-abort )) 

(~?dis~ | dis-abort ) 

O ((xxais-abort) 

OUTS(a,~) : (B?x:T - (~Ix-OUTS(~,#) 0 a?dis-abort )) 

(#?dis-(~Idis-abort 0 ~?dis-abort ) ) 

D ( a ~ d ~ - a b o r t )  

I f  B 1 is any (b,a) bu f fe r  and B 2 is  any (a,b) buf fer ,  then 

a / b~(( INS(a,b)H OUTS(a,b)) ~ (Blll B 2)~ (INS(b,a)I(OUTS(b,a))) 

satisfies CHAN(a,b). 

Appendix - A summary of the f a i l u r e  sets model fo r  CSP 

For a fuller description of this model the reader should consult any of 

[1, 2, 3, 4]. The model is similar to, and makes the same basic postulates about 

processes as, the well-known 'traces' model. I t  is, however, able to make some 

important distinctions between processes not made by simple traces. 

The agents m.y NIL + ~.# NIL and ~.{~.NIL + ~.NIL) would be identified over 

traces, as would (#p.~.p)\m and NIL. There are good reasons for wishing to 

avoid these identifications: the idea is to record not only the possible traces 

(ie. sequences of atomic actions) of a process but also its refusals (the sets 

which i t  can reject in a 'stable' state after some trace), and diver@ences (the 

occasions when i t  can become involved in an infinite sequence of internal actions 

and never give any answer to its environment). 

A process is thus a set of pairs {s,~), the f i rs t  component being a trace and the 

second either X,a refusal set (X~S, the alphabet), or # indicating divergence. 

A process Q will be any subset of ~* x (~(Z) U{i~}) such that 

1. dom(Q) = {s6Z*j~6.(s,~)~Q} is non-empty and prefix-closed 

[<>~dom(Q), st~dom(Q)~s6dom(Q)] 

2. (s,X)e Q & Y-cX ~ ( s , Y ) ~  Q 

3. (s,X)6Q ~ Yn(Q after s) ° = ~:==>(s, XuY)~Q 
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4. ( V f i n i t e  Y-cX. (s ,Y)e Q ) ~ ( s , X ) e  Q 

5. (s, ~ ) ~ Q ===>(st,~)e Q 

Q a f te r  s : { ( t ,  ~ ) j (s t ,  ~ )E Q1 , 

Technical Notes 

QO : {ae~l<:a> e domQ} 

CSP can be given a semantics over hi: 

abort = {(<>,X) I Xc-Z} 

the process which does nothing at all 

skip = [(<>,X), (<V> ,Y)I ,/i~ ×} 

the process which immediately terminates successfully 

a-~A = {(<>,X) l a l /  XJ U [ (<~>s,~)  I (s ,~)~AJ 

communicates 'a' and then behaves l ike A 

a.x:T-~A(x) = { (<>,X)I  a.TnX =#} U [(<a.b>B,8 ) 

inputs a value b named by 'a ' ,  then behaves 

AFI B = AUB 

behaves l ike A or B at the process' choice 

(b~T~ (s, 6 )EA(b)} 

ike A(b). 

The space~ of all processes is a complete semi-lattice under the reverse 

inclusion order A - = B ~ A : -  B. This order is naturally interpreted as A=_ B 

B is more non-deterministic than A. The bottom or minimal element of ~ is Z* x 

( ID(~ ) x {~}) (called CHAOS), one of whose many realisations is a process which 

can diverge immediately. 

There is a natural map from boundedly non-deterministic synchronisation trees to 

IM, and a not-quite-so natural one from arbitrary synchronisation trees to IM. CSP 

can be given operational semantics which are in each case congruent to the 

abstract semantics given below. 

The fai lure sets model gives a very expressive language for specification, since 

i t  regulates not only traces but also liveness (via divergence and refusals). ' 
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A~B = { (<>,  X 
U C(s, 
behaves 

bY) ~ (<>,X)~ A& (<>,Y)e B] U {(s, 6 ) I  s ~<>&{s, 6 )~AU B} 

)I ( s , f ) ~ A  U B} 
l ike A or B giving the environment the choice of f i r s t  steps. 

A;B {(s,X) J s does not contain v z ,  and (s, X U{J} )E A} 

U { (st, S )~s does not contain ~ ,  and ( s , f ) ~  A} 

U {(st ,  S )is does not contain J , (s<J>,@)~ A, ( t , ~ ) ~ B }  

behaves like A unti] i t  terminates successfully, then like B. 

A\b {(s\b,X) I (s,X UCb])~A} 

U {((s~b)t,~ )J (s,@)eA} 

U {((s~b)t,~ )IVn (s<b> n,# )eA~ 

where <>\b = <> 

s<a>\b = (s \b )<a>  i f  a # b 

= s\b i f  a = b 

hides the event 'b' in A (note the divergence introduced by an 

inf in i te sequence of b's) 

A\X 

(AxIIyB) 

= ( . . . (A\bl)  . . . .  )\bn, where X = {b I . . . .  bnl, is any f in i te set. 

= {(s,(UnX) U (VnY) U z) l s~(X U Y) 

(s~X, II)~A ~(s~Y,V)E B ~Zn{X U Y)=~}  

U{(s t ,~  ) I s ¢ ( X  U Y) ~ s~X~domA~s~Y~domB 

k ( ( s ~ X , ~ ) ~ A  V (s~Y,@)E B) 1 

A, with alphabet X, operates in parallel with B which has alphabet Y. 

(ALl B) will be used as an abbreviation in the case where both A and B have as 

their alphabets the total i ty of symbols they can ever use. 

\X, H and easy alphabetical transformations can be used to derive operators. 

>> which expects both arguments to have alphabet ?T U IT, and connects the 

channel of i ts left-hand argument to the ? channel of i ts right-hand 

argument. Internal communication is hidden. 

which expects the intersection of the alphabets of i ts arguments to be 
a 

a?T U a~T. The outputs (a:) of each argument are connected to the input 

(a?) of the other. Internal connection is hidden. 

There are of  course many theorems connect ing these operators.  
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Note 

The failures ~odel has appeared in several forms. The original version 
[1,2,3] was deficient in its treatment of divergence and was improved 
in [2,3]. The version described in this note is the improved form from 
[2]; this differs in presentation from the "standard" improved form of 
[4] but is easily seen to be isomorphic to it. 


