
Distributed Computing (1991) 4:209-230

D 5 B[]B@Sr D
�9 Springer-Verlag 1991

Deadlock analysis in networks of communicating processes*
S.D. Brookes t and A.W. Roscoe 2

1 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2 Programming Research Group, Oxford University, Oxford OX1 3QD, UK

Received July 26, 1989 / Accepted July 15, 1990

S.D. Brookes received a B.A. in
mathematics (1978) and a D.Phil.
in computer science (1983), both
from Oxford University. His D.
Phil supervisor was C.A.R. Hoare.
He moved to Carnegie Mellon Uni-
versity in 1981, initially as a Re-
search Computer Scientist and then
(1984-1990) as an Assistant Profes-
sor in the School of Computer Sci-
ence at CMU. He is currently an
Associate Professor of Computer
Science at CMU. His research in-
terests include the mathematical
foundations of programming lan-
guages, the theory of parallel and

sequential computation, programming methodology, programming
language design, and the development of semantically based logics
for reasoning about program behavior.

theory, distributed databases,
image processing.

A.W. Roscoe received a B.A. in
mathematics (1978) and a D.Phil.
in computer science (1982), both
from Oxford University. His D.
Phil supervisor was C.A.R. Hoare.
He was formerly a Junior Research
Fellow at St Edmund Hall, Oxford
(198(~1982) and the IBM Research
Fellow of the Royal Society (1982
1983). Since 1983 he has been a
University Lecturer in Computa-
tion at Oxford and a Fellow of Uni-
versity College. His research inter-
ests include the theory of parallel
computing and its applications
(e.g., to VLSI design), domain

general topology and the theory of

* This research was supported in part by funds fi'om the Computer
Science Department of Carnegie Mellon University, and by the
Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 4976, monitored by the Air Force Avionics Laboratory under
Contract F33615-87-C-1499. A.W. Roscoe gratefully acknowledges
support by ONR Grant N00014-87-G-0242. The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the offical policies, either
expressed or implied, of the Defense Advanced Research Projects
Agency or the US Government.

Offprint requests to: S.D. Brookes

Abstract. We use the failures model of CSP to describe
the behaviour of a class of networks of communica t ing
processes. This model is well suited to reasoning about
the deadlock potential of networks. We int roduce a
number of simple condit ions on networks which aid
deadlock analysis either by localizing the analysis re-
quired for a p roof of deadlock-f reedom or by restricting
the circumstances in which deadlock could occur. In par-
ticular, we formulate some simple theorems which char-
acterize the states in which deadlock can occur, and use
them to prove some theorems on the absence of global
deadlock in systems. We identify a special class of unidi-
rectional networks and develop specialized results on
their deadlock-freedom. We develop more general meth-
ods based on (at most) pairwise local deadlock analysis
in networks, applicable to the large class of conflict-free
networks. We int roduce a me thodo logy for proving
deadlock-f reedom in a large ne twork by decompos ing
it into subnetworks which can be analysed separately.
A variety of examples is given to show the utility of
these results. We compare our work with earlier work
by several other authors, and make some suggestions
for future research.

Key words: Deadlock - Ne tworks - Communica t ing pro-
cesses

1 Introduction

In [-4, 5] we described the failures model of communica t -
ing processes and used it to describe some interesting
parallel p r o g r a m m i n g examples. The simple mathemat i -
cal structure of this model lends itself to clean formula-
t ion of deadlock properties and to formal manipu la t ion
of process behaviour. The model is well suited, by its
very construct ion, to reasoning abou t the potential or
the absence of deadlock in systems of processes. In this
paper we elaborate this point in some detail, developing
some ideas which originated in Roscoe ' s thesis [23], dis-
covering various condit ions on networks which make
deadlock analysis easier and which enable a more struc-

210

tured approach to the entire problem of deadlock analy-
sis. While the failures model gives us a convenient and
precise language for describing our work, most of our
work could be re-phrased in a wide variety of formalisms
for concurrent systems.

Our emphasis is on methods for proving deadlock-
freedom that allow localized analysis (by focusing on
small subnetworks, such as pairs of processes) and sup-
port hierarchical decomposition. There is a good reason
for finding such techniques: a straightforward proof of
deadlock-freedom must take into account all possible
states of a system; in a network with many processes
the set of states may be very large, since it grows expon-
entially with the number of parallel processes. Even
though recent advances, for example [8], allow one to
deal mechanically with certain kinds of very large finite-
state machines, this combinatorial explosion is one that
we would generally rather avoid. We provide some sim-
ple yet useful theorems which may be used to analyse
networks for the potential of deadlock. We demonstrate
the utility of these results by examining a variety of ex-
amples, some well known and some novel.

Outline of paper

After this introduction, the paper begins (Sect. 2) by sum-
marizing some background material and placing this
work in context. We summarize relevant notation and
basic terminology on CSP and the failures semantic
model, and we give a formal definition of deadlock-free-
dom.

Next, in Sect. 3, we introduce networks and their stat-
ic communication graphs, and we discuss behavioural
properties of networks. We define an appropriate notion
of state for networks, and we provide a simple character-
ization of states in which deadlock occurs. We introduce
snapshot graphs, which provide instantaneous pictures
of the dynamic state of a network and help in visualizing
and analysing deadlock. The arcs in a snapshot graph
are determined by the requests for communication cur-
rently being made among the nodes of the network. A
network deadlocks if and only if all of its processes are
blocked, in that all existing requests are ungranted. Some
examples are given to illustrate the definitions and to
show the close connections between deadlock and cycles
of ungranted requests in snapshot graphs.

In Sect. 4 we identify several properties of networks
related to deadlock-freedom. We motivate our desire to
develop methods for hierarchical analysis of networks,
allowing the treatment of networks whose nodes are
themselves built up as networks. This leads us to restrict
attention to the class of busy networks, all of whose
nodes are themselves free of deadlock. In all cases our
purpose is to find methods of proving deadlock-freedom
that require only local analysis, such as analysis of indi-
vidual nodes or pairs of adjacent nodes in a network.

Section 5 gives elementary results on deadlock analy-
sis, including simple but very useful techniques involving
the interaction of the CSP hiding operation with dead-
lock. The results of this section are applied througout
the paper.

In Sect. 6 we restrict attention to a class of unidirec-
tional networks, with the important subclass of unidirec-
tional tree-structured networks treated as a special case.
An example is worked out in detail.

Section 7 introduces the important concepts of con-
flict-freedom and freedom from strong conflict. These
pairwise checkable properties form the basis for a
number of useful results.

In Sect. 8 we show how to decompose a network
into regions (essential components) that can be treated
independently in deadlock analysis, provided the interac-
tions between regions are well behaved. This type of
decomposition can be very useful in reducing the amount
of combinatorial analysis required in deadlock analysis,
but is only of practical benefit when a network has non-
trivial essential components. Again we tackle an exam-
ple. We also propose a network design rule based on
these ideas, which guarantees deadlock-freedom pro-
vided a network can be built in such a way that it adheres
to the design rule.

Finally, we discuss related work and point to direc-
tions for future research.

2 Background

This paper evolved from a preliminary draft (with the
same title) which was published in [2] as [6]. In this
evolution some of the definitions and results have been
replaced, notably by the inclusion of some simpler and
sharper material on "conflicts". Closely related works
applying some of the results of this paper are [-10, 24,
25]. We use basic terminology and notation that is (for
the most part) consistent with the usage in these related
papers; in a few cases our notation improves slightly
on that of [6], but readers familiar with the earlier ver-
sion should find it easy to relate the new terminology
to the old. We have tried to include enough background
material to make this paper self-contained, even though
this causes some overlap with the contents of [25] in
particular. Although this paper is intended to be a com-
panion to [25], there is no requirement to read that
paper first.

We assume some familiarity with the material of [16,
4] or [5], where details were given of the syntax for
processes in an abstract version of Hoare's language CSP
(Communicating Sequential Processes), and of the math-
ematical construction of the failures model. Here we will
provide a brief summary of terminology; the reader
should consult the references for more detailed explana-
tions.

Events, alphabets and processes

CSP is a language of non-deterministic communicating
processes. Communication and parallel composition are
taken as primitive notions. Our abstract version of the
language is sometimes referred to in the literature as
TCSP, or "Theoretical CSP", to distinguish it from the
more concrete language introduced as CSP by Hoare

211

in [15]. However, since Hoare himself continues to refer
to our abstract version as CSP, as in [16], we will do
so too.

We use P, Q, R, etc., to range over the set of CSP
processes. The basic actions performed by processes are
called events, which may be regarded as representing
communications. A process may also be able to make
non-deterministic choices which affect its ability to per-
form events. Each process is associated with an alphabet:
a set of events (usually, though not necessarily, the set
of events mentioned in the syntax of the process).

Two methods have been used in the literature for
introducing process alphabets. In [-4, 5, 6] for example,
alphabets were introduced explicitly into the (syntax of
the) parallel operator: thus a parallel composition of P
and Q, using alphabets B and C respectively, would be
denoted PBI]cQ. In [16], however, all processes are de-
fined in such a way that they automatically have an
associated alphabet: the alphabet of P is denoted ~P.
In this approach, which we will adopt here for con-
sistency with [16] and [-25], there is no need to introduce
explicit alphabets in the syntax for parallel composition.
Instead we use the syntax P [[Q. The alphabet of P qL Q
is simply ~P u ~Q. The two methods are closely related:
P][Q is semantically equivalent to the explicitly alphabe-
tized version P~eI[~QQ. Parallel composition is commuta-
tive and associative, so that we may use notation such
as [[~= 1Pi without ambiguity.

In a parallel composition of processes, each process
performs events from its own alphabet, with the con-
straint that events in the alphabets of two processes re-
quire their cooperation. As in the original CSP language
of [15], we focus on two-way communication, and hence
we restrict attention to parallel compositions which are
triple-disjoint, in that no event is common to the alpha-
bets of more than two processes.

The observable behaviour of a process is explained
entirely in terms of the events (from its alphabet) it may
or may not perform when placed in an environment
which is trying to interact with it. We are particularly
concerned with deadlock: the inability to perform any
event (or, equivalently, the ability to refuse all events)
in the relevant alphabet.

Traces, refusals, and failures

If A is a set of events, we write A* for the set of finite
sequences, or traces over A. We let a, b, c range over
events, s, t, u range over traces, and X, Y,, A, B, C range
over sets of events. We write <) for the empty trace,
(a) for the trace consisting of the single event a, and
st for the concatenation of s and t. We write sIA for
the trace obtained from s by deleting all events not in
A.

A trace of a process is a finite sequence of events
which the process may be able to perform in sequence;
a refusal of a process is a set of events all of which
it may be unable to perform; a failure of a process is
a pair (s, X) consisting of a trace s and a refusal set
X. If (s, X) is a failure of a process P, we interpret this

as saying that the process may refuse all of the events
in X immediately after having performed the sequence
s; thus, if the process is placed in an environment which
only wants to perform events from this set next at that
stage, deadlock is possible. The traces, refusals and fail-
ures of P are all composed exclusively of elements of
~P. If a process refuses its entire alphabet it is deadlocked
(in any environment).

As in [-4], we identify (the semantics of) a process
P with its failure set, which we denote ~ ~P~. This is
a subset of (~P)* x ~d(~P). We use traces (P)~_(~P)* for
the set of traces of P; initials (P) _~ ~P is the set of initial
events of traces of P, i.e., the set of events c which begin
a trace of P; refusals (P) ~ ~ (~P) is the set of P's initial
refusals. All of these sets can be extracted from the failure
set of a process: for instance, s is a trace of P if and
only if (s, 0) is a failure of P; i.e., traces (P)={s[(s,
0) e ~ P ~ } . When s is a trace of P we write P after
s for the process whose behaviour describes P's subse-
quent behaviour after first performing the sequence s.
Its defining property is that ~ P after s~=
{(t, X) l(s t, X) e ~ ~P~ }.

The failure set of a process is closed under certain
natural conditions: in particular, trace sets are prefix-
closed, refusal sets are subset-closed, and impossible
events can be included in refusal sets. A denotational
description of the failures semantic function ~- is given
in [4, 5]. A natural ordering based on non-determinism
makes the failures model into a complete partial order,
with respect to which all CSP constructs are continuous;
thus, recursive process definitions can be treated in the
usual way as denoting least fixed points.

Divergence

The failures model of processes as described in [4] is
adequate for analysing deadlock potential, but less well
suited to a proper treatment of divergence, which occurs
when a process is able to perform an unbounded number
of hidden internal actions without communicating to its
environment. The improved failures model of [5] was de-
veloped to allow a more satisfactory treatment of diver-
gence. In this model a process is described by a pair
<F, D) containing a failure set F and a divergence set
D. Divergence was treated pessimistically, in the sense
that we treated any possibility of divergence in a process
as catastrophic. In such a pessimistic view, it is useless
to try to prove absence of deadlock if there is a possibility
of divergence.

In this paper we will again adopt this view of dead-
lock and divergence: we are only interested in proving
deadlock-freedom in divergence-free processes. There-
fore, we will generally assume that all processes are diver-
gence-free (i.e., have empty divergence set), so that a pro-
cess is fully described by its failure set. All examples
discussed in this paper are divergence-free, and all of
the results apply to divergence-free processes. We will
be careful to state the necessary assumptions on diver-
gence-freedom when dealing with operators which may
introduce divergence (in particular, with the hiding oper-
ator).

212

Infinite refusal sets

In [5] we also allowed for the possibility of infinite refus-
al sets when processes were able to use infinite alphabets
(for example, if a process can input an arbitrary natural
number). This is important for the present paper, since
it allows cleaner statements and easier proofs for several
results. It is only a minor technical issue, since even in
[5] we take the view that every infinite refusal set of
a process is determined by the fact that all of its finite
subsets are refusal sets; the main point is that we make
infinite refusals explicit in this treatment instead of impli-
citly characterizing them as finitely generable in this way.
By doing this we avoid having to resort to annoyingly
verbose phraseology when we want to say (for instance,
below, in defining deadlock) that a process may refuse
its entire alphabet: in order to find a form of words
that works both for finite and infinite alphabets we do
not have to paraphrase and say that the process may
refuse all finite subsets of its alphabet. Thus, in this paper,
we focus on a failures model in which refusal sets can,
where necessary, be infinite.

Deadlock

To match our earlier informal description of deadlock
with the failures semantics of processes we now supply
formal definitions. As remarked above, these are very
simple.

Definition 1. The process P can deadlock after the trace
s if(s, a P) E ~ P ~ .

Definition 2. The process P is free of deadlock (or dead-
lock-free) if

Vs~(~P)*. (s, ~P)q~-EP~.

3 Networks of communicating processes

A network is a parallel combination of processes (and,
implicitly, alphabets). We will use an indexed tuple nota-
tion (Pi[1 < i < n) for a network of n processes, with each
P~ using alphabet ~P~. The processes in a network may
be themselves built by parallel composition. By present-
ing a collection of processes as a network we have a
means of imposing topological or hierarchical structure
on deadlock analysis: it may prove advantageous to
group several processes as a single node in a network
for the purposes of proving deadlock-freedom.

The networks we consider will be static, in the sense
that number of processes and their alphabets are fixed
throughout the execution of the system. The problem
of treating dynamically changing networks will be ad-
dressed briefly in the conclusions section of this paper.

Graphical representations of networks of processes
have been used extensively in the literature, for instance
by Milne and Milner [20]. First we introduce a graph
representing the static communication topology of a net-
work.

Definition 3. The communication graph of a network
(Pil 1 < i < n) is an undirected graph whose nodes repre-
sent the processes P~, and whose arcs are uniquely deter-
mined by the alphabets: there is an arc between P~ and
Pj iff ~Pin ~Pj+O and i+j.

Thus two processes are linked in a communication
graph if and only if there is an event common to their
alphabets, representing a communication between them.
Since CSP treats communication in a symmetric fashion,
we do not assign directions to the arcs. The existence
of an arc linking process Pi with Pj in this graph, of
course, says nothing about whether or not such a com-
munication will ever take place dynamically as the net-
work operates.

Definition 4. The vocabulary of the network V= (Pil 1
< i< n) is the set

U{~P~n~Pj[l <~i<j<=n}.

The vocabulary of a network consists of the events com-
mon to the alphabets of two processes; we will refer
to these as internal communications. Since we restrict at-
tention to two-way communications (all networks in this
paper are assumed to be triple-disjoint), no event is com-
mon to the alphabets of more than two processes, and
we do not need a more complicated notion of vocabu-
lary.

We will use the obvious notion of subnetwork: W
is a subnetwork of V if it arises from V by removing
some (or none) of its processes. The communication
graph of a subnetwork of V will be the subgraph of
the communication graph of V obtained by removing
the corresponding nodes and arcs involving those nodes.
Note that if W is a subnetwork of V, then the vocabulary
of W is a subset of the vocabulary of V.

Many interesting networks have tree-structured com-
munication graphs. For example, trees arise as communi-
cation graphs of networks built with the master-slave
operator (called subordination in [16])

[P 1] ml :Qa [1 ... I[m,:Q,],

in which for each i the process mi:Qi is said to be a
slave of P because its alphabet is a subset of ~P. This
alphabetic constraint implies that in this parallel context
each action of a slave process can occur only if P also
performs it, i.e. that slave processes can only communi-
cate with their master. Formally, we define the class of
tree networks as follows:

Definition 5. A network V is a tree when its communica-
tion graph has no cycles, or equivalently, for connected
networks, when it has one more vertex than arcs.

Note that a tree network is necessarily triple-disjoint,
for if ~Pi n ~Pj n ~Pk + 0, with i,j, k all distinct, there would
be a cycle of edges through these three nodes.

Network behaviour

The behaviour of a network V= (Pi[1 < iN n) is that of
(the process representing) its parallel composition

PAR(V), defined

" R PAR(V)= [li=x i"

The alphabet of this network is defined to be c~V
=U{c~P/ll<i<n}. Under our assumption that all the
processes involved are divergence-free, the failures of V
are given (as in [5, 25]) by

~-EPAR(V)~ ={(s , i=~) 1 Xi)lVi(1 < i < n

=:,. (s r x,) g)}.

Intuitively, each process in the network is responsible
for performing or refusing events in its own alphabet,
with the constraint that an event in the vocabulary of
the network requires cooperation of two nodes. Corre-
spondingly the behaviour of a network V= (P/] 1 < i < n)
after the trace s will be that of the network V after s
defined by:

Vafter s= (Pi after(s I eP/)I 1 <=iNn),

because at this stage the process at node i has performed
the sequence s r,P~, obtained by including only the
events in s which belong to the set ,P~. This is shown
by the law

PAR(V) after s = P A R (V after s).

The definition of deadlock-freedom for a process P
generalizes in the obvious way to a network V: the net-
work is deadlock-free if and only if the process represent-
ing its parallel composition is. For convenience, we re-
peat here the obvious adaptations of Def. 1 and 2:

Definition 6. A network V can deadlock after s if
(s, ~V)~ f f ~PAR(V)~.

Definition 7. A network V is free of deadlock if PAR(V)
is free of deadlock, i.e., if V s ~ (~ V)*. (s,
a V) r ~PAR(V)~.

The vocabulary of a network is an important set
from the point of view of deadlock analysis because it
is the set of events for whose performance the agreement
of two node processes is necessary. Failure to reach
agreement is a typical cause of deadlock. At any time
when V is deadlocked it is clear that no Pi can be willing
to perform any event outside the vocabulary of V: such
an event would be under the control of Pi alone, and
by definition of parallel composition PAR(V) would also
be willing to perform it.

Since parallel composition is commutative, networks
differing only in the order in which we list the nodes
have the same behaviour, and of course will also have
identical communication graphs (up to isomorphism).
But parallel composition is also associative, so that com-
bining several nodes of a network into a single node
(whose process is defined to be the obvious parallel com-
position) does not affect the behaviour. However, a net-
work reorganization like this will produce a different

213

communication graph. We wish to allow ourselves the
freedom to choose the most suitable network topology
for proving deadlock-freedom, so it is important to re-
member that network reorganizations involving group-
ing of nodes leave deadlock properties invariant.

We will restrict attention in this paper to networks
whose communication graphs are connected. This causes
no loss of generality when trying to prove absence of
deadlock, since one may prove absence of deadlock in
a general network by analysing the connected compo-
nents of its communication graph separately, as ex-
plained by the following observation:

Remark. If the connected components of a network V
are V1 , V~, then V can deadlock after s if and only
if for each i the subnetwork V~ can deadlock after s r ~ vi.

This follows easily from the definition of parallel
composition, since the connected components necessari-
ly have disjoint alphabets. Dually, V is deadlock-free if
and only if at least one of its connected components
is deadlock-free.

States of a network

Execution of a communication by a node will generally
change the process at that node; nevertheless, the com-
munication graph of the network remains the same. To
account for the dynamic effect of communication events,
we now introduce a notion of state. A state is simply
a cross-section of the network giving the local informa-
tion about what each process in the system has done
so far and is refusing to do on the next step.

D e f i n i t i o n 8. A state of a network V= (P/[1 <=i<n) is
a trace s of V together with an indexed tuple
(X1 X .) of refusal sets X i such that for each i,

(s raP,, xi) g

A state is maximal if each of its refusal sets is maximal,
i.e., if

vY.(s r Y) gWP] Y Xi.

When V is in the state (s, (X1, ..., X ,)) each node Pi
has so far done the sequence s I ~P~ and is currently capa-
ble of doing any event from aP~- Xi on the next step.

The structure of the failures model (specifically, the
closure conditions on refusal sets) guarantees that each
state may be extended to a maximal state. For the pur-
poses of deadlock analysis it is sufficient to focus atten-
tion on maximal states: the more events each individual
process refuses, the more likely deadlock becomes.
Therefore, throughout this paper, we will assume for con-
venience that all states have this form. We will denote
the maximal failures of a process P, in the sense above,
by ~-~P~. It will be convenient also to use a to range
over states, and X to range over indexed tuples of refusal
sets. Thus, a typical state may be written a = (s, X).

A simple characterization of states in which deadlock
occurs is provided by:

214

Lemma 1. A network V= (Pil 1 < i < n) can deadlock after
s i f f there is a state (s, (X1 , ..., X ,)) of V for which

0 ~P~= 0 X,.
i - 1 i - 1

Proof. By definition of J~ ~PAR(V)~ and Def. 6. []

We will refer to such a state as a deadlock state.
Note that, in accordance with the remarks above, any
deadlock state extends to a maximal deadlock state.
Henceforth, when we refer to a deadlock state, maximal-
ity will be assumed implicitly.

Requests and snapshot graphs

Next we introduce the notion of a "request" in a state.
Our choice of terminology is intended to be suggestive.
A pair of indices (i , j) is a request when P~ is trying
to communicate with Pj, i.e. when there is an event com-
mon to the alphabets of P~ and Pj that is not in Pi's refusal
set; (i , j) is a strong request if P/can only communicate
with Pj, because all events available to P~ on the next
step belong also to the alphabet of P~ (and P~ is not itself
deadlocked, so that there is at least one event possible
for its next step). A request (i , j) is ungranted if the
target Pj of the request is unwilling to respond to the
source Pi, i.e., Pj is currently refusing all of the events
relevant to P~ in this state. The formal definition is:

Definition 9. Let a=(s , X) be a state of the network V
I

= (P/I 1 < i < n). A pair of indices (i, j) (with i 4=j) is"

- a request if (ePi - Xi) n eP~ + 0;
- a strong request if 0=t=(~PI-Xi)_~aP~;

ungranted if in addition aP~ n ~Pj_~ X~ u Xj.

An alternative and equivalent formulation of the condi-
tion for ungrantedness is that

(~P, - x ,) n (~ P i - x ,) = O.

Strictly speaking, the notions of request, strong request,
and ungrantedness refer to a specific state. In practice,
the state will be clear from the context and we will often
omit explicit reference to it. Clearly, by definition, every
strong request is also a request.

Ungranted requests can be regarded as the basic
building blocks of deadlock. Sometimes we need only
be interested in ungranted requests when neither process
is able to communicate outside some set A; an especially
common case is when A is the vocuabulary of the net-
work, since events outside of the vocabulary do not re-
quire cooperation between processes. This motivates the
following definition.

Definition 10. The pair (i, j) is a request (or strong re-
quest) with respect to A if, in addition to the above re-
quirements, we also have:

(c~Pi -- Xi) u (aPj-- X]) ~_ A.

Using the notation of [25] we will write

P/ ,P~ or P ~ P j

when (i, j) is a request or strong request of o-. Similarly
we will write

a

P/----*'P~ or P/ ~ . P j

when (i, j) is a ungranted request or strong request
of a, and

a,A a,A
P// ,-Pj or P/ ~ -P~

when (i , j) is an ungranted request with respect to A.
As a trivial consequence of the definition, any request

(i, j) is a request with respect to c~P~uc~P~. Thus, for
example,

a , A a

Pi---+-Pj<=>P i ,-Pjj when c~PiuePj_cA.

It is also obvious that only events belonging to the alpha-
bets of the two processes matter: (i , j) is a request with
respect to A iff it is a request with respect to
A n(c~P~wePj). An ungranted request with respect to A
is still ungranted in any superset of A; that is,

if A~_A', then p ~ , A . p j ~ p j _ _ + ~

Of course, similar observations are true of strong re-
quests.

In a network V= (Pi[1 __< i< n) the process P~ is said
to be blocked in the state a when it is the source of
a request, it can only perform events internal to the net-
work, but all of its requests are ungranted: i.e., when

- Pi ~' Pj for some j,

P/ ~.A ~ whenever Pi ~ 'Pk,

where A is the vocabulary of the network.
There is an obvious relationship between blocking

and the existence of deadlock: a state a of a network
V is a deadlock state if and only if every process of
V, which is not itself deadlocked, is blocked in a. This
follows easily from the definitions.

To aid in the visualization of deadlock, we next intro-
duce a graphical representation for the collection of re-
quests being made in a state" we call this a "snapshot"
graph. This gives an instantaneous picture of the dynam-
ically evolving behaviour of a network, and summarizes
the information we need to know in order to determine
what the next actions (if any) of the network are in a
particular state.

Definition 11. The snapshot graph of a network V
=(P~[1 < i N n) in a state (s, (X1, ..., X ,)) is the directed

graph on the nodes of V in which there is a directed
arc from node i to node j iff (i , j) is a request in this
state, i.e., if (~p/- Xi) ('7 o~Pj :~= ~).

Definition 12. Let a be a state of the network V= (P/I 1
<<_i<_n>. A sequence of indices (io, . . . , / r - l> with r=>3
is termed a cycle o f requests in a if, for each j, (ij , ij+~>
is a request in a (where addition is modulo r).

Cycles of requests correspond precisely to cycles in
snapshot graphs. A cycle of requests is proper if all of
its indices are distinct. It will be termed a cycle of un-
granted, or of strong etc., requests in case each of the
requests has the appropriate property. The length of this
cycle is r, which for a proper cycle is the number of
distinct nodes involved. We restrict attention here to cy-
cles of length at least 3; the case of a cycle of length 2
is sufficiently different to merit special treatment later
in the paper. This is because a cycle of length 2 arises
out of the interaction of a pair of processes, rather than
out of global behaviour. In particular, a cycle of length 2
can arise in a tree network, but longer proper cycles
cannot. This last observation is important when one
seeks conditions which are strong enough to ensure
deadlock-freedom in trees. In fact, a pair of ungranted
requests (i , j> and (j, i) will be called a conflict, and
we will devote considerable attention to notions of con-
flict later.

We will develop techniques for proving deadlock-
freedom that rely on establishing a connection between
the presence of deadlock and the existence of cycles of
ungranted requests. The analogy is not exact, however:
there are deadlock-flee networks with states in which
there are cycles of ungranted requests; there are even
deadlocking networks in which no cycles exist (for exam-
ple, a trivial network with a unique, deadlocked, node).
Nevertheless, we will see that for certain general classes
of network (ruling out trivial cases like this) deadlock
can only be caused by cycles of ungranted requests; this
will enable us to focus attention on regions of a network
in which such cycles might exist.

To end this section we provide some examples of
network definitions and use them to demonstrate and
elaborate upon the terminology we have just introduced.
These examples also demonstrate the prominent role of
ungranted requests in deadlock.

Example 1

A deadlocked chain. A chain of processes, in which each
one communicates solely with its immediate neighbours,
is a particularly simple form of tree network. Here is
an interesting family of chains, parameterized by the
number of processes.

Define a chain of n + 1 processes for any n > 1 as
follows. The processes will be Po , P,, with alphabets
~p/given by

~P0 = {1.a, 1.b},

~p/ ={i .a. , i .b . , i+ l .a , i+ l.b}, l < i < n ,

c~P, = {n.a, n.b }.

_CU- J. "

P0 el Pn-1 Pn
Fig. 1. Snapshot of deadlocked chain

215

Events have suggestive names comprising a "channel"
number and a "message". For simplicity, the only possi-
ble messages are a and b, and the channels are numbered
1 to n. We specify the node processes informally as fol-
lows. The left-hand end process Po can send message
b along channel 1 to process P1 in response to receiving
a from it. The right-hand end process P, can send mes-
sage a to P,_ 1 along channel n in response to message
b. Each of the intermediate processes P1,-. . , P/, 1 can
transmit a from its right to its left, and b from its left
to its right. The (recursive) process definitions are
(i = 1, ..., n - 1):

Po =(1.a ,1.b >Po)
P, =(n.b ,n.a ,P~)
P/ = (i + 1.a ,p/a)[7(i.b. > p/b),

P/" =(i.a. , P/)[-](i.b. , p/ab),
p/b = (i + 1.a >p/ab)D(i-~l.b >p/),

P/ab=(i. a , p/b)D(i + l.b > p/a).

The superscripts on the auxiliary processes (e.g. in P/a)
indicate the messages which the process is ready to trans-
mit on the next step. (Incidentally, each of the processes
P~ , P,-1 could be written as the parallel composition
of a pair of processes with disjoint alphabets, much as
in Example 9 later in this paper.) The vocabulary of this
network is its entire alphabet, so that every event re-
quires the participation of two processes. However, the
process definitions do not allow any single process to
initiate either an a or a b signal, and no pair of processes
can agree initially on a communication, so the chain
deadlocks immediately. That is, there is a deadlock state
with the empty trace. In this state there are requests
(i - -1 , i> and (i, i - 1) for l<_i<_n. All of these requests
are ungranted, and only (0, 1> and (n, n - 1> are strong.
This state yields the snapshot graph shown in Fig. 1.

Notice that this state contains many cycles of un-
granted requests, but no proper ones. The deadlock is
really due to the cycle that includes all of the processes.

The astute reader may notice that despite the fact
that the entire network may deadlock, every non-empty
subnetwork is deadlock-free! Informally, this is because
in every non-empty proper subnetwork some event of
the subnetwork's alphabet is no longer in its vocabulary
and can therefore be initiated by a single process. We
will prove that every non-empty subnetwork is deadlock-
free later in the paper, as a consequence of a more general
result.

Example 2

Dining philosophers. In this example, attributed to Dijk-
stra and Scholten by Hoare [15], there are five "philoso-
pher" processes, five " fo rk" processes, and a "but le r"

216

process. The deadlock properties of this system are well
known. The process definitions are:

PHIL/ = (/.enters ~ i.picks.i ~ i.picks.i + 1
/.eats , i.puts.i > i.puts.i+ 1

,/.leaves , PHIL/),

FORK~= (i.picks.i---~ i.puts.i ~ FORK~)
D (i - 1.picks.i , i - 1.puts.i ,FORK/),

for i = 0 ,4, and

BUTLER = ADMIT Ill ADMIT Ill ADMIT Ill ADMIT,

where

ADMIT = []~=.4 o(/.enters >/.leaves ,ADMIT).

Addition and subtraction of indices is modulo 5. Each
philosopher wants to enter, pick up the fork on his right,
pick up the fork on his left, eat, then put down the two
forks, then leave, and resume his cyclic pattern of behav-
iour. Each fork will initially allow itself to be picked
up by either of its neighbouring philosophers, after which
it must wait to be put down again before resuming its
initial configuration. The butler is an interleaving of four
copies of a process which repeatedly allows the entering
and subsequent leaving of a philosopher. The alphabets
of these processes are:

~PHILi = {/.picks.i,/.puts.i,/.eats,/.enters,/.leaves,
i.picks.i + 1, i.puts.i + 1},

c~FORKi = {/.picks.i, i - 1.picks.i, i.puts.i, i - 1.puts.i},
(i = 0 4),

c~BUTLER = {/.enters, i.leaves I 0 __< i __< 4},

Figure 2 shows the communication graph for a network
with nodes for each of the philosophers, forks, and the
butler.

It is possible in this system for four philosophers
to enter and each to pick up one fork, for instance as
described by the trace

(1.enters, 2.enters, 3.enters, 4.enters, 1.picks.I,
2.picks.2, 3.picks.3, 4.picks.4).

At this point, for i= 1 . . .4 the future behaviour of the
i th philosopher is described by:

PHIL/af ter (/.enters,/.picks.i) = (i.picks.i + 1 , . . .).

In other words, each of these four philosophers now
refuses ~ P H I L i - {i-picks.i+ 1}. The other philosopher
(PHILo) is still trying to enter, so he refuses ~PHIL o
-{0.enters}. The future behaviour of the i th fork (i
= 1... 4) is that of

FORK/af te r (/.picks.i) = (i.puts.i , FORLi),

so that each is refusing ~FORK~-{/.puts.i}. The fork
numbered 0 is still waiting to be picked up, refusing
c~FORKo- {0.picks.0, 4.picks.0}.

The butler is described at this point by

BUTLER after (1.enters, 2.enters, 3.enters, 4.enters)
= I I IL 1 (/.leaves , ADMIT).

PHIL o

FORK 3

Fig. 2. C o m m u n i c a t i o n g raph of the d in ing phi losophers

PHIL

FORK

Thus, the butler is refusing ~BUTLER-{i. leaves[1 < i
_-<4}.

We have now described all of the information for
a particular state of the system: a trace, and correspond-
ing (maximal) refusals for each process. This is not a
deadlock state, because the union of these refusal sets
does not contain the event 4.picks.0 (in which fork 0
is picked up by philosopher 4); the network is able to
perform this event when in this state. Figure 3 shows
the snapshot graph of this network in this state. The
requests are all ungranted except for the requests involv-
ing the pair PHIL 4 and FORKo.

Example 3

Deadlocked philosophers. If the dining philosophers are
allowed to operate without the guidance of the butler
there is a potential deadlock (when all five philosophers
enter and pick up a single fork each). This is summarized
in the snapshot graph of Fig. 4. All of these requests
are strong and ungranted.

Example 4

Variants of the dining philosophers. If we regroup the
nodes of the dining philosophers network (Example 2)
by combining the philosophers into a single node and
combining the forks into a single node, we get the net-
work shown in Fig. 5:

(BUTLER, II~=oPHILi, []~:oFORK,),

with identical behaviour to the original system but the
communication graph in Fig. 5.

Each node in this network is deadlock-free. However,
if we combine all philosophers and forks into a single
node, we get a network with just two nodes, one of which
(as discussed above) can deadlock. Nevertheless, again

PHIL o

PHIL4 (

FORK 4 I

PHII~ ~ PHIL 2
FORK 3

Fig. 3. Snapshot graph of the dining philosophers

PHIL

FORK

P m L o

PHIL41 I PHILI

OL.pi o
FORK3

Fig. 4. Dining philosophers deadlocked

we have the same overall behaviour, so that the system
is still deadlock-free.

4 Deadlock properties of networks

We have already defined deadlock-freedom as a global
property of a network, involving the behaviour of the
process PAR(V). We have stated that deadlock-freedom
is invariant under network reorganizations like permuta-
tion of nodes and grouping nodes together. We want
to be able to take advantage of well chosen network
presentations for CSP processes: to use network topolo-
gy and graph structure as an aid in structuring proofs

~ P H I L i

H FORI~ B U T L E R

Fig. 5. Alternative view of the dining philosophers

217

of deadlock-freedom. For non-trivial networks there are
several interesting variations on the theme of deadlock,
which take into account the network topology.

Firstly, we will say that a network has a property
hereditarily if it and all of its non-empty subnetworks
have it. A property (of networks) is hereditary if and
only if whenever it holds of an entire network it also
holds of all non-empty subnetworks. Deadlock-freedom
is not an hereditary property; equivalently, a network
can be free of deadlock without having that property
hereditarily. This has already been shown by the Dining
Philosophers network (Example 2): the subnetwork ob-
tained by removing the butler (Example 3) fails to be
deadlock-free. Hence, it is worthwhile making the follow-
ing definition.

Definition 13. A network V is hereditarily deadlock-free
if (it and) each of its non-empty subnetworks is deadlock-
free.

We saw in the dining philosophers example that one
can sometimes make use of a controller process which
prevents a system getting into a deadlock state. It is
sometimes possible to use such processes to stop individ-
ual nodes becoming deadlocked - the controller prevent-
ing a node reaching a state where it is equivalent to
STOP. But, at least in the case where each node is de-
signed as a sequential process, it would be simpler and
cleaner to design each node so as to avoid deadlock
in the first place. Since we are specifically interested in
developing techniques based on local analysis it is hard
to imagine a general method (as opposed to ad hoc tech-
niques) in which deadlock-freedom of individual nodes
is not crucial. For example, it is easier to reason about
dining philosophers when presented with the original
network structure, in which all nodes are deadlock-free,
rathe than using the two-node variant version. Hence,
we will concentrate on networks built from individual
nodes which are themselves deadlock-free: these we call
busy networks.

Definition 14. A network V is busy if all of its node pro-
cesses are deadlock-flee.

Another advantage of this type of restriction is that
it fits well with our desire to develop methods which
support hierarchical analysis of a network: if a network
is built from nodes which are themselves networks, we
will be able to use our techniques for proving deadlock-
freedom first for the individual nodes, and then to analy-

218

se the entire network we need no longer take into ac-
count the network structure of its nodes, since all we
require to know about them is that they are deadlock-
free.

Note that the properties of triple-disjointness and bu-
syness are obviously hereditary. The property of being
a tree is almost hereditary, in the sense that whenever
W is a non-empty subnetwork of a tree network V, each
of its connected components is again a tree. Given this
fact, we will abuse notation slightly and say that tree-
hood is hereditary.

We should remark on the relationships between these
various notions of deadlock-freedom. Trivially, heredi-
tary freedom from deadlock implies freedom from dead-
lock, and also implies busyness. Deadlock-freedom nei-
ther implies nor is implied by busyness.

In the rest of the paper we will develop some general
techniques for proving deadlock-freedom that use busy-
ness as a hypothesis. The main aim is to develop dead-
lock-freedom proofs which require only local analysis:
busyness (involving single nodes) and pairwise analysis.

5 Proving deadlock properties of networks

We begin with some very elementary results. The first
gives us a base case in beginning hierarchical proofs of
deadlock-freedom: when all the parallelism in a network
is at the outermost level, so that none of the node pro-
cesses involve parallel composition, it is very easy to
prove busyness. The second pair of results allows us free-
dom to disregard uses of hiding, or to introduce carefully
selected hiding operations to simplify deadlock analysis.

Busy networks

To show that a network is busy in general requires a
proof of deadlock-freedom for all individual processes.
The following simple rule is useful as a basis for estab-
lishing deadlock-freedom for CSP processes built with-
out parallel composition; it can be used to prove busy-
ness in a network whose node processes conform to a
simple subset of CSP (in particular, no node is itself a
parallel composition, and no node can ever terminate
successfully). Node processes are allowed to be built by
prefixing, by nondeterministic choice (internal and exter-
nal forms, rq and [] respectively), by renaming (with
an alphabet transformation f) , by recursion (#p.P), and
by sequential composition (P;Q). The successfully ter-
minating process SKIP may be used in building up node
processes, but only in limited contexts to prevent termi-
nation of the node process: every occurrence of SKIP
must be followed by a sequential composition either di-
rectly, as in SKIP;P, or indirectly, as in (a- -*SKIPD Q);P.
The reason for this constraint should be obvious: a ter-
minated process (like a deadlocked process) cannot per-
form any event. Note that it is possible to define diver-
gent processes using these constructs (e.g., by unguarded
uses of recursion such as #p.p). Consequently, as re-
marked earlier, we need to check for divergence-freedom

before attempting deadlock analysis. It is, however, easy
to show that any term defined in this syntax using only
guarded recursions, in which every recursive call is pre-
ceded by a communication, is divergence-free.

It is easy to prove (by induction on syntactic struc-
ture) that a divergence-free process built with these con-
structs alone and obeying this constraint on SKIP can
never refuse its entire alphabet, and is therefore dead-
lock-free. Hence the following rule (called D1 in [25]):

Lemma 2. Suppose the definition of the process P uses
only the following syntax:

P: :=S K IP Ia 'P IP;QIPDQIPnQI f (P) Ip I#p .P

(where p denotes a process variable), and P contains no
free process variables, is divergence-free and every occur-
rence of SKIP in P is directly or indirectly followed by
a ";". Then P is deadlock-free.

Thus, trivially, any network in which the component
processes satisfy Lemma 2 will be busy.

Hiding and deadlock analysis

In many applications (as for instance in occam [-18]),
uses of parallel composition are accompanied by the hid-
ing of internal communications. These are often regarded
as uninteresting to the external observer and in practice
outside his control. However, when considering the pos-
sibility of deadlock, it is usually vital to keep a full record
of the internal events of a network; therefore the net-
works we consider do not as a rule have internal events
hidden. Indeed, the operator PAR defined above does
not involve any hiding. Nevertheless, since node pro-
cesses may be arbitrary CSP processes and may thus
involve uses of hiding, we do need to be able to deal
with hiding in deadlock analysis. Since hiding may intro-
duce divergent behaviour (if arbitrarily long sequences
of the hidden action were possible) we must be careful
to ensure divergence-freedom when we apply the hiding
operator to processes. Fortunately, in considering hiding
and deadlock analysis the following two laws (called D2
and D3 in [25]) are particularly helpful:

Lemma 3. I f P \ C is divergence-free, then it is deadlock-
free if and only if P is.

Lemma 4. I f C c~Q=O, then (P\ C [I Q)=(P II Q)\ C.

Given any process definition built by parallel compo-
sition and hiding, Lemma 4 permits one to move all the
hiding to the outermost level, provided any relevant in-
ternal communications are renamed to make the condi-
tion C c~aQ = 0 true. One thus obtains a behaviourally
equivalent process involving an outermost application
of hiding. Thus this law says that as far as behavioural
analysis is concerned it does not matter whether hiding
is all done at the outermost syntactic level or is done
in various stages as a network is put together. Once
Lemma 4 has been used in this way and the system has

219

been proved free of divergence (not necessarily in that
order), Lemma 3 simply observes that the presence of
hiding does not affect the presence of deadlock so we
may, for the purpose of proving absence of deadlock,
remove the hiding operator altogether.

The above argument permits us, with care, to ignore
applications of hiding. It is also possible to introduce
hiding carefully, and this idea may be very useful in re-
ducing the number of events in a network's alphabet
and hence reducing the complexity of its deadlock analy-
sis. If C~_c~P-~Q is a set of events such that P \ C is
divergence-free, then Lemma 3 and Lemma 4 tell us that
PI[Q is deadlock-free if and only if (P\C)llQ is. This
concealment of "irrelevant" communication in P can
substantially simplify deadlock analysis: a suitable
choice of C may greatly diminish the number of states
one needs to consider. Examples later in the paper will
illustrate this type of reasoning.

6 Deadlock analysis in unidirectional networks

Many interesting networks have the property that at
all times each process is prepared to communicate with
at most one other process; the choice of communication
partner may vary during execution of the network. For
instance, Dijkstra [11] discusses networks in which each
process attempts to communicate with its neighbours
in cyclic order. The general property, which we term
unidirectionality, is formalized as follows. It is clearly
an hereditary property.

Definition 15. A network V is unidirectional if, for each
trace s of V and each i, there is at most one j4 : i such
that

initials (P/after s I aPi) c~ ~Pj :# O.

Unidirectionality of a network obviously implies that
in a deadlock state any request is also a strong request.
It also clearly implies that in any state the snapshot
graph can have at most one arc leading from each node.
Of course, processes in a unidirectional network may
still be able to perform events outside of the network's
vocabulary.

A connection between cycles of requests and dead-
lock is made by the following result. It gives a simple
characterization of the snapshot graph of a unidirection-
al system in a deadlock state: if the system satisfies the
conditions of the theorem then deadlock corresponds
to a cycle in the snapshot graph involving at least three
distinct nodes, each request being ungranted. The condi-
tions are strong enough to exclude cycles of length 2,
which as discussed earlier, are a special case.

Theorem 1. Let V= (Pil 1 < i < n) be a busy unidirectional
network of processes. I f each pair [P/]I Pj] is free of dead-
lock, then any deadlock state of V contains a proper cycle
of ungranted strong requests.

Proof. Let P = PAR(V) and let (s, (I11 Y,)) be a dead-
lock state of P. Then by definition

vi.(s r~ , ~)E~ E~]], (a)

and by Lemma 1,

0 c~Pi= 0 Yi. (b)
i - - 1 i = 1

It follows from this and the fact that the network is
triple-disjoint that, whenever i@j,

~ n ~ _ = ~u ~., (c)

By assumption, the Y~ are maximal refusal sets in
(a). For each i let Qi=Pi after s I ~Pi, so that P after
s = II~'= 1 Qi. We argue as follows, letting i be an arbitrary
index.

Since P~ was assumed to be deadlock-free, we have
Yi ~ ~P/. From (b) we see that for each i,

~Pi-(U ~PJ)~ Yi, (1)
j~ei

so that in this state of the network each process is refus-
ing all events unique to its own alphabet. Hence,

0 . ~ - ~--- U ~ . (2)
j ! : i

By maximality of Y~ we know that Y~ contains all of
the impossible events, those in the set c~Pi-initials(Qi):

~P/ - initials (Qi) ~- Yi.

Hence,

~P/ - Y/_~ initials (Qi).

But there is at most one j :# i with

initials (Qi) n ~Pj + O,

since the system is unidirectional. Hence there is at most
one j :# i for which

(~ - Y,)c~+O. (3)

Putting these facts together, we see that there is a unique
j (depending on i) such that i4=j and

In the above analysis, i was arbitrary, and clearly the
unique j satisfying (3) depends on i. Now consider this
j as a function of i, mapping indices to indices. Note
that j (i)4i , and it also happens that j(j(i))4i, because
if this were to happen we would have a pair of indices
i, j =j(i) with

~ - ~_=~, ~ - ~_=~.

But by (c) we would then have

220

which would in turn imply that

~P~- ~_~ ~, ~Pj- ~ ___ Y~.

Hence, we would get

contradicting the assumption that the pair [P~ II Pj] was
deadlock-free.

The sequence

1,j(1),j2 (1), ...

must contain a first repetition, say j"(1)=jm+r(1), since
there are only finitely many indices. Define ik=j~+k(1),
for k = 0 . . . r - 1 . Then {i0 i t - l } is a proper cycle
of strong ungranted requests. []

An intuitive interpretation of this theorem is that
global deadlock (i.e., deadlock of the entire system) can
only be caused in a unidirectional system by local dead-
lock (involving at most two processes) or else by a cycle
of at least three distinct nodes each demanding to com-
municate with its successor and refusing to communicate
with its predecessor.

Theorem 1 thus gives us a way to focus on specific
parts of a unidirectional network (cycles in its communi-
cation graph) if we can first establish busyness and
pairwise deadlock-freedom. If a network has only a small
number of cycles, this type of approach may be advanta-
geous. An important special case is when we have a
unidirectional tree network.

Corollary. I f a tree network is busy, unidirectional, and
pairwise deadlock-free then it is hereditarily free of dead-
lock.

Proof A tree has no proper cycles, and all of the hypoth-
eses of the theorem are hereditary properties. []

Thus we have a simple method requiring only pairw-
ise deadlock analysis for establishing deadlock properties
in unidirectional tree networks.

Another special case where the number of cycles is
very small is in a unidirectional ring of processes: there
are only two possible cycles to consider: clockwise and
anticlockwise. To satisfy the preconditions of Theorem 1
we still need to prove pairwise freedom from deadlock.
This may also often be possible by a simple case analysis
based on the traces and refusals of the two processes
in question, and the amount of work involved in the
analysis can often be reduced substantially by making
further use of Lemma 3 and Lemma 4 above. Here is
an example to illustrate this type of reasoning.

Example 5

A token ring. This example is based on [12]. We consider
a ring of n processes (n>3), arranged with the index
increasing clockwise, each of which wants to keep enter-
ing a "critical section". To maintain mutual exclusion,
a process is only allowed to enter its critical section when

it has obtained a "privilege" token, which is passed anti-
clockwise around the ring. When a process wants to
begin its critical section, but does not hold the token,
it first requests the token from its clockwise neighbour;
when it is granted the privilege (i.e., when the token
reaches it), the process performs its critical section (repre-
sented here by a single event) and then releases the token.
Using mutual recursion, and with mnemonic event
names, we may define the individual processes P/(i< n)
by

Pi = (/.get , i+ 1.find , i.priv , i.crit ~ i.rel ' Qi)

[] (/.find ~ i+ 1.find ~ i.priv , i.priv , P~),

Qi=(/.get ,i.crit ,i.rel 'Qi)
[](/.find , i - 1.priv ' Pi).

All arithmetic here is modulo n. The neighbours of pro-
cess i are i - 1 and i+ 1. P~ represents a node without
the token and Qi represents a node with the token. Thus,
if P~ wants to get the token it must put in a request
first to its successor, and wait for that process to find
the token and pass it back; if P~ is asked to find the
token it passes the request on to its neighbour, and will
later relay the token towards the requester. A Qi process
with the token may either allow the critical action or
pass the token on to its predecessor.

For each i, let eP~= c~Qi be the obvious alphabet con-
sisting of all events appearing in the syntactic description
of processes above. For the network V=(Qo ,
P~ P,- 1), in which initially the process with index 0
has the token, and these alphabets are used, we would
like to prove freedom from deadlock. The communica-
tion graph of V is the obvious cycle.

Each of the node processes is obviously deadlock-
free, by Lemma 2, since they are built by prefixing, condi-
tional choice, and guarded recursion. It is easy to see
from the process definitions that the system is (triple-
disjoint and) unidirectional. We wish to use Theorem 1.
First we prove pairwise freedom from deadlock. Since
non-adjacent pairs of processes are trivially deadlock-
free (their alphabets are disjoint and each individual is
deadlock-free), it is only necessary to show that each
of the adjacent pairs

Qo II P1,
P/II Pi+l (0< i<n) ,
P~ IHQ0

is deadlock-free. These analyses are simplified by judi-
cious use of hiding, as follows.

For each i, let L i= {/.get, i.rel, /.find, i -1 .pr iv} and
R i = {i.crit, i.rel, i + 1.find, i.priv}. Clearly, L i c_ o~p i _ c~Pi+ 1
and Ric__c~P~+~-c~P~. We can hide the events from Li
in Pi (or in Qi) without introducing divergence, because
at all stages P~ cannot perform arbitrarily long traces
consisting only of events from this set. The same is true
of R i and P/or Qi. Let p/L= Pi \L i and QL = Qi\L i , with
similar notation p/g and QR for Pi\Ri and Qi \R i . By
Lemmas 3 and 4, the original network is pairwise free
of deadlock if and only if the pairs

221

Qo ~ II Pa R, (1)
p L II Pi~ 1 (0 < i < n), (2)
p L II Qg. (3)

are deadlock-free. We have, by definition, and using stan-
dard properties of the hiding operation [5],

p L = i+ 1.find > i.priv , (Q~nPiL),
Q~ = (i.crit , Q L) v q P i L ,

Q~ = p R = (/.find----* i-- 1.priv , Pig)[2](i.get , Q]~).

Since rn is associative and idempotent, it follows easily
that Pi L satisfies the simpler equation

Pi L = i + 1.find > i.priv > Q/%

Since (3) is in fact case i= n - 1 of (2), we need only
consider (1) and (2). These pairwise deadlock analyses
may be done by a fairly straightforward analysis based
on the process definitions. To illustrate the type of rea-
soning necessary here, consider a typical pair in case
(2), p/L I[Piw 1 for an i in the range 1... n - 1. The alphabets
of these two processes are

all i, one of these two possibilities always occurs. Initially
one process (numbered 0) has the token; and every com-
munication of the form i.priv affects the two adjacent
processes in whose alphabets it is. Therefore, there is
always exactly one process with the token.

To rule out a "clockwise" cycle in which (for each
i) process i is waiting for process i+ 1, note that this
can only occur if each process i does not have the token.
This violates the invariant property, showing that no
such cycle can arise.

To rule out the "anticlockwise" cycle, note that pro-
cess i + 1 can only have an ungranted request to process
i when it can also communicate outside the alphabet
of the network (i.e., in the initial state of P~ or Qi). This
is not a strong request. Hence, there can never be a cycle
of strong ungranted requests with each process waiting
for its predecessor.

The proof given for this example assumed that there
is exactly one token. A modification of this proof goes
through whenever the network is started with at least
one token in the ring. Of course, in the degenerate case
where there is no token, deadlock must occur.

c~Pi L = {i + 1.find, i.priv, i.crit},

c~P~w 1 = {i. + 1.find, i.priv, i + 1.get}.

Hence, deadlock is only possible if at some point Pi L
refuses i.crit, P/R+1 refuses i+ 1.get, and one of the pro-
cesses refuses i+ 1.find, and one of the processes refuses
i.priv. Let ~ a denote the number of occurrences of the
event a in the current trace of this pair of processes.
From the process definitions it is clear that in all stages
where Pi L refuses {i.crit, i.priv} we have ~ i + l . f i n d
= ~i.priv, whereas whenever Pig+l is refusing {i+ 1.get,
i + 1.find} we have ~ i.priv = ~ i + 1 . f ind- 1. This combi-
nation of refusals is therefore impossible. The only re-
maining possibility for deadlock would thus be if p L
refuses {i.crit, i+ 1.find} and P~w refuses {i + 1.get, i.priv}.
A similar counting argument disposes of this case, and
we have thus shown that the pair Pi L l] P/~ 1 is deadlock-
free.

We leave it to the reader to fill in the details, and
to use similar techniques for case (1), the pair Q~ II p e.
The conclusion at this stage in the analysis is that the
original network is pairwise free of deadlock. We now
return to the original network structure.

Now we can use Theorem 1 to deduce the existence,
in any deadlock state, of a cycle. Thus, deadlock is possi-
ble only if either each process is waiting for its successor
or each process is waiting for its predecessor. In order
to show that these cycles are impossible, we first prove
that the property that there is exactly one process with
the token is an invariant for the network.

Now let ~ a denote the number of occurrences of
event a in the current trace of the entire network. Clearly,
process 0 has the token when 4~ n - 1.priv = ~ 0.priv, and
does not have the token when ~ n - 1.priv = ~ 0.priv + 1.
For i + 0, process i has the token when ~ i - 1.priv = ~ i.-
p r i v - 1, and does not have it when 4~ i - 1.priv = 4~ i.priv.
It is easy to prove from the process definitions that, for

7 Deadlock analysis in arbitrary networks

Theorem 1 is only applicable to unidirectional networks.
The token ring described above served to illustrate this
class of networks. More general results are needed to
tackle non-unidirectional systems such as the Dining
Philosophers. We seek results which allow us to deduce
that deadlock can only be caused by some sort of global
misbehaviour (for instance, proper cycles of ungranted
requests), and which are general enough at least to elimi-
nate deadlock from trees. We can expect the precondi-
tions of such theorems to involve a certain amount of
local analysis; in the unidirectional case this amounted
to a check that all individual processes and all pairs
of processes were deadlock-free.

It is clearly of practical importance to keep the
amount of local checking as small as possible: any more
than pairwise checking could easily prove prohibitively
expensive in calculation. Unfortunately, even simple
types of network can sometimes require much more than
pairwise analysis. We have already seen that there exist
networks in which deadlock is a global property: for
example, the deadlocked chain network, all of whose
non-empty proper subnetworks were deadlock-free. That
example also demonstrates that even for simple commu-
nication graphs there is no simple bound on the size
(or even on the diameter, to use the graph-theoretical
term) of the local regions requiring analysis: it might
be necessary to analyse the entire graph at once.

For any particular network it is possible to identify
a collection of local regions (called "competi t ion sets"
in [-6]) which can form the basis of a deadlock analysis,
but this may not break down the problem into signifi-
cantly smaller subnetworks. We will return to the prob-
lem of decomposing a general network into separable
regions later. For now we will concentrate on types of
network which require only pairwise checking. And in-

222

stead of competition sets we introduce some sharper ma-
terial on "conflict".

In a non-unidirectional network we cannot expect
every deadlock state to contain a proper cycle of strong
requests. Nevertheless, an analysis based on proper cy-
cles of requests will clearly be enough to exclude dead-
lock in trees, since (as we said earlier) trees have no
cycles. Our task is therefore to find extensions of the
unidirectional condition which are still pairwise check-
able and which are strong enough to generate proper
cycles of requests in deadlock states. The following defi-
nitions, formalizing notions of conflict between pairs of
processes, are motivated by this aim.

Conflicts

Basically, a conflict is a degenerate cycle of two un-
granted requests. We give a general definition of a F-
conflict, or conflict relative to a set F of events: a F-
conflict is a cycle of two ungranted requests with respect
to/7. We will normally be concerned with the case where
F is the vocabulary of the global network containing
the two conflicting processes, since if any individual pro-
cess can perform an event outside of the network's vo-
cabulary, then the network cannot be deadlocked. Since
the emphasis here is on pairwise analysis, we find it con-
venient to use the abbreviation pair for a subnetwork
with two nodes.

Definition 16. A state a=(s , (X, Y)) of the pair (P, Q)
is a F-conflict if each has an ungranted request to the
other (with respect to F), i.e., if:

p~,roQ and Q ~ , r . p .

The state is a strong F-conflict if (at least) one of these
ungranted requests is strong i.e., if additionally

tr, F ty, F
p ~ ~ or Q ~ ~

A F-conflict is a state in which each of P and Q
wants to communicate with the other, neither can com-
municate outside 17, and they cannot agree on a joint
communication. The conflict is strong if one of the two
processes is completely blocked by the other one.

Definition 17. A pair (P, Q) is free of F-conflict if none
of its states is a F-conflict. A process is free of strong
F-conflict if none of its states is a strong F-conflict.

Informally, (P, Q) is conflict-free with respect to F
if P and Q can never simultaneously be offering to com-
municate with each other without either agreeing on
some action or one of them being able to communicate
outside /7. The pair is free of strong F-conflict if it can
never get into a state where one process can only proceed
by communication with the other, which is offering it
only inappropriate communications and cannot commu-
nicate outside of/7. Clearly, each pair which is free of
F-conflict is also free of strong F-conflict.

We extend these notions of conflict-freedom to a gen-
eral network as follows.

Definition 18. A network V= (P~I 1 < i< n) is conflict-free
iff for all i+j the pair (Pi, P~) is conflict-free with respect
to the vocabulary A of V The network is free of strong
conflict iff each pair is free of strong A-conflict.

We note that, if F' _c/7, then freedom from F-conflict
(or strong F-conflict) implies freedom from U-conflict
(or strong U-conflict). Since the vocabulary of a subne-
twork is a subset of that of whole network, it follows
that both of these properties are hereditary. Conflict-
freedom and strong conflict-freedom can be proved by
purely local analysis.

Here are three elementary results on conflict-free-
dom, giving some simple criteria which guarantee free-
dom from conflict. In each case we assume that c~Pn
~Q_cF,, which will certainly be the case when F is the
vocabulary of a network containing P and Q. We also
assume that P and Q are deadlock-free, which will be
true when the network containing P and Q is busy.

The first result is almost trivial:

Lemma 5. The pair (P, Q~) is free of F-conflict whenever
Ic~P n~QI< I.

Proof If two processes have no event in common, they
never try to communicate with each other and the ques-
tion of conflict is vacuous. Conflicts never arise between
deadlock-free processes with a unique event in common:
if each is offering to communicate with the other, they
must be agreeing on this event. []

The second result applies if at all stages, whenever
P and Q are trying to communicate their choice is re-
stricted to a unique event.

Lemma 6. The pair (P,, Q) is free of F-conflict if there
is an infinite squence of events common to the alphabets
of P and Q, say ue(c~Pnc~Q) ~', such that in every trace
of P and in every trace of Q the communications between
P and Q form a prefix of u, i.e.

VsEtraces(P)utraces(Q), s [(c~P c ~ Q) < u .

Remark. When u has the special form t ~ for some finite
trace t this is essentially a cyclic communication condi-
tion.

Proof Suppose (w, (X, Y)) were a conflict of PII Q,
so that s l=w rap is the corresponding trace of P and
s2 =w [~Q that of Q. Clearly, sl r (~P c~ c~(2)
=s2 I(ePnc~Q). By hypothesis this trace is a prefix of
u. Suppose the next element of u is a. We know that
a is the only possible member of the sets initials (P after
s l) ~ Q and initials(Q after s2)nc~P. Since, by assump-
tion, eQ-X.t=O and eP-Y=t=O it is easy to see that a
belongs to both these sets. This contradicts the assump-
tion that e P c~ c@ c_X u Y. []

The third result applies in case the behaviour of P
and Q is such that in all relevant states one of them

is acquiescent, in the sense that it cannot refuse anything
the other one may offer. The states to which this condi-
tion must apply are those in which P and Q are refusing
to do any external event, but neither is refusing the entire
alphabet of the other. It is easy to see that this condition
prevents conflict when P and Q are known to be dead-
lock-free. Hence:

Lemma 7. The pair (P, Q) is free of F-conflict if for every
trace s of PII(2, whenever (sI7P, X) e ~ P ~ and (sit, Q,
Y) e ~ EQ~ satisfy

X~_c~P--F,, Y~c~Q--F, (c~P-X)nc~Q+O,
(~ Q - Y)c~aP+O,

it follows that either

X n initials(Q after s I ~Q) = 0

o r

Yn initials (P after s I ~P) = O.

Proof. Assume (R Q) satisfies the stated conditions. Sup-
pose the pair has a F-conflict (s, (X, Y)) , and argue
for a contradiction. By assumption

X~_aP--F,, Y~_~Q-F,, (c ~ P ~ a Q) - X + O ,
(7Q n a P) - - Y~= O,

and also X u y D ~ p n ~ Q . Without loss of generality
(since everything up to now has been symmetrical in
P and Q), we can assume that

X c~ initials (Q after s I ~Q) = 0

We know from the above that there is an event a e a P ~
eQ such that a ~ X - Y Since aq~ Y and Y is a maximal
refusal of Q after s IaQ we know also that

aeinitials(Q after s ~ ~Q).

This contradicts the assumption that X ~ initials (Q
after s reQ)=0. That completes the proof. []

Each of the above criteria in Lemmas 5, 6 and 7
is more general (but more complex) than the previous
one. Of course, each also implies freedom from strong
F-conflict. It is also easy to find yet weaker conditions
than those of Lemma 7 which imply freedom from strong
conflict; an obvious one is that no process ever makes
a strong request.

To illustrate these concepts of conflict-freedom we
return to some of our earlier examples.

Example 1

Deadlocked chain. Here, no pair of adjacent processes
is conflict-free, and the pairs (P0, P1) and (Pn-1, P,,)
are not even strong conflict-free. It is easy to see, how-
ever, that the other pairs of adjacent processes are strong
conflict-free: each P~(0<i<n) is always in a position
where it can either talk to both of its neighbours or
it can perform all communications with the only neigh-

223

bout it can talk to. In neither of these cases can it be
the blocked process in a strong conflict.

Example 2

Dining philosophers. This network is conflict-free. For
the philosopher-fork combinations observe that there is
a pattern of cyclic communication; for example, the com-
munications between PHIL/ and FORK/ always form
a prefix of the sequence (/.picks.i, i.puts.i)% Hence, by
Lemma 6, each philosopher-fork pair is conflict-free. For
the philosopher-butler combinations, note that whenever
the butler can talk to a philosopher he cannot refuse
anything the philosopher might offer, so that (in the ter-
minology used above), the butler is acquiescent. Hence,
by Lemma 7, each philosopher-butler pair is conflict-
free. There is no need to consider fork-butler pairs, since
their alphabets are disjoint.

Example 5

Token ring. Here we have c~P/n c~P/+ 1 = {i + 1.find, i.priv},
and it is easy to see that the interactions between
P~ and P~+, follow the cyclic communication pattern
(i + 1.find, i.priv)% Hence the network is conflict-free
(and also free of strong conflict) by Lemma 6.

Of course, our reason for the invention of the conflict-
freedom conditions is that they enable us to establish
some useful results on deadlock.

Deadlock analysis in conflict-free networks

Theorem 2. Let V= (P/I 1 < i < n) be a busy network with
vocabulary A. I f V is free of strong A-conflict, any dead-
lock state of the network contains a proper cycle of un-
granted requests with respect to A. I f V is conflict-free
then any deadlock state contains a proper cycle of un-
granted requests (io ir 1) with respect to d(r>_3),
such that the only requests being made in this state be-
tween processes involved in the cycle are the requests re-
corded in the cycle.

Proof Similar to that of Theorem 1, using the fact that
freedom from strong A-conflict implies that in any dead-
lock state, whenever there is a request from P~ to Pj and
Pj is not itself deadlocked, there must be a request from
Pj to some other process Pk with k 4: i. []

Note that Theorem 1 is a corollary to Theorem 2, since
in a unidirectional network every A-conflict of a pair
of processes implies that they are deadlocked.

It is not hard to improve this result slightly to allow
for one pair of processes in the network to fail to be
free of strong conflict, if instead the pair is deadlock-free.
That we cannot go further and allow two pairs of pro-
cesses to be deadlock-free but not free of strong conflict
is shown by the deadlocked chain example.

Theorem 3. The conclusions of Theorem 2 remain valid,
even if we allow one pair of processes (Pi, P2) to be dead-
lock-free but not free of strong conflict.

224

Corollary. I f a tree network satisfies the conditions of
Theorem 2 or Theorem 3 it is hereditarily deadlock-free.

Again, we return to the examples to demonstrate the
uses of these results.

Example 1

Deadlocked chain. Even though the pairs ~Po, P1) and
(P, - a, P,) have strong conflicts, it is easy to prove (using
Lemma 3 and Lemma 4) that they are both deadlock-
free. We already know that all other pairs are free of
strong conflict. Since the removal of any number of pro-
cesses (strictly between 0 and n) leaves us with a collec-
tion of chains, none of which contains both of these
pairs of processes, we conclude by the above corollary
to Theorem 3 that every non-empty proper subnetwork
is deadlock-free, confirming our earlier prediction to this
effect,

Example 2

Dining philosophers. Since we have already shown that
this network is busy and conflict-free, Theorem 2 implies
that any deadlock state contains a proper cycle of un-
granted requests. We sketch a proof demonstrating the
impossibility of such a cycle as follows.

- The network structure implies that such a cycle must
involve at least one fork process and therefore must con-
tain an edge from a philosopher to a fork.

No philosopher can have an ungranted request to a
fork unless that fork has been picked up by the other
adjacent philosopher. Because of its position in the cycle,
this fork must have an ungranted request to the philoso-
pher who is currently holding it.

While a philosopher holds a fork he cannot communi-
cate with the butler. Therefore, the only process to which
this second philosopher can have an ungranted request
is his other fork.
- We can clearly continue this argument to show that
the cycle must run through all of the philosophers and
forks (either clockwise or anticlockwise).
- Further, we can deduce that each of the philosophers
holds exactly one fork. This means that so far each phi-
losopher has communicated one more 'enters ' events
than 'leaves'.

However, the butler process was designed to prevent
this state arising in more than four philosophers at once.
Hence, this contradiction proves that the network is free
of deadlock.

Example 5

Token ring. By applying Lemma 6 and Theorem 2 we
can prove deadlock-freedom of the token ring more easi-
ly than by our earlier techniques. We have already shown
(easily) that the ring is free of strong conflict. By Theo-
rem 2, this means that any deadlock must be caused
by a cycle of ungranted requests, which in this particular
network means that either each process is waiting for
its successor or each process is waiting for its predeces-

sor. In the previous proof for this network we had to
go through a much more involved pairwise analysis to
reach this stage in the argument. The remainder of the
proof is the same.

Example 6

Telephoning philosophers. An interesting family of varia-
tions on the Dining Philosophers theme is obtained if
consider two disjoint "colleges", each with five philos-
phers, five forks and a butler, and with a telephone in
each dining room. We introduce new events /.phones.-
j(0 < i, j < 4) representing telephone calls from philoso-
pher TP H IL i in the first college to philosopher TPHIL)
in the second college. Apart from the telephone events,
all events involving processes in the second college are
"pr imed" to enforce the disjointness constraint. The
behaviour of each philosopher is modified by insertion
of certain telephone events; the forks and butlers operate
as before. There are many possible ways to allow philos-
ophers to attempt to use the telephone, some leading
to deadlock and some not.

Firstly, suppose that at each college every philoso-
pher must dial the telephone number of the other dining
room after eating, before putting down his forks; he is
prepared to engage in a telephone call with any of the
philosophers from the other college. The process descrip-
tions for the philosophers are simply:

TPHILi = (/.enters > i.picks.i ~ i.picks.i+ 1 ,/.eats

R 4- o(/.phones../' , i.puts.i > i.puts.i + 1

,/.leaves , TPHILi)),

TPHIL'i = (/.enters' ~ i.picks.i' > i-picks.i + 1' >/.eats'

, D~=o(j.phones.i ,i.puts.i' >i.puts.i+ 1'
/.leaves'----. TPHIL'i)).

Clearly, eTPHIL~ ~ e T P H I L) = {/.phones.j}. It is easy to
check that the communication graph of a network with
nodes for each philosopher, fork and butler has 22 nodes
and 55 arcs; this graph is not very well structured for
the purposes of deadlock analysis. However, we can
choose instead to present this system as two colleges
(each itself a network of five philosophers, five forks and
a butler) linked by a single arc (rather like a telephone
cable !). We will then be able to take advantage of hier-
archical analysis. To prove deadlock-freedom we argue
as follows.

- The insertion of extra events does not affect the dead-
lock-freedom of each college separately, since the extra
events are all outside the vocabulary of the college and
do not therefore require cooperation among the college's
own processes. Hence, each college itself is deadlock-free.
In other words, our two-node network is busy.

The vocabulary of our network is {/.phones.-
j l0 < i, j < 4}. We now show that there can be no conflict.
The first college can reach a state in which it can only
perform vocabulary events, but only in the situation
where at least one philosopher (TPHILi, say), and hence
the whole college, is prepared to communicate any of
the events in the set {i .phones. j]0<j<4}. Similarly, if

225

the other college is currently willing only to engage in
vocabulary events one of its philosophers, say TPHIL),
is willing to perform any of the events in {/.phones.-
j l0 < i=<4}. These two sets intersect, since they contain
the event i.phones.j. In other words, since each room
contains a philosopher who wants to talk on the tele-
phone with an arbitrary member of the other room, the
telephone call can be made. Thus there is no conflict
in this network.
- Since our network is busy, trivially unidirectional, free
of conflict, and a tree, it follows from the Corollary to
Theorem 3 that the system is deadlock-flee.

Secondly, suppose instead that the philosophers'
behaviour is described by:

TPHIL i=(i.enters----~i.picks.i >i.picks.i+ 1 >/.eats

i.phones.i >i.puts.i , i .puts.i+ 1

/.leaves ~ TPHILi),

TPHIL'i = (/.enters' > i.picks.i' > i.picks.i + 1' >/.eats'
i.phones.i >i.puts.i' >i.puts.i+ 1'
/.leaves' , TPHILI).

Thus each philosopher attempts to telephone the corre-
sponding philosopher with the same index. It is fairly
easy to show that in this system there is a possible dead-
lock.

The reader might like to investigate the deadlock
properties of the version in which each philosopher tries
to call his opposite number after he has put down one
fork:

TPHILi = (/.enters > i.picks.i ~ i.picks.i + 1 ~ i . e a t s

i.puts.i >i.phones.i >i.puts.i+ 1

,/.leaves , TPHILi),

TPHIL'I = (/.enters' ~ i.picks.i' > i.picks.i + l'---~/.eats'

i.puts.i' >i.phones.i >i.puts.i+ 1'

/.leaves' , TPHIL'i).

On achieving conflict-freedom

Networks in which the design of processes and the poten-
tial communication patterns are rather symmetric may
fail to be conflict-free; a good example is provided by
the deadlocked chain with its two end processes re-
moved. Typically this happens where there are messages
which P might wish to send to Q and vice versa. Conflict
typically appears when P and Q are both waiting for
a message from the other, but neither is ready to send
one.

It is hard, however, to imagine a reasonable example
(of a deadlock-flee network) which has conflict and yet
cannot be redesigned to achieve freedom from strong
conflict. A communication which is being offered to the
blocked process in a conflict state can never occur, and
it is therefore quite likely that this event can be removed
from the design of the blocked process without changing
the behaviour of the network as a whole. For example,
in the typical conflict described above there must be
some mechanism, either a message from some other pro-

cess or the external environment, which could generate
a message from P to Q, or else there is no point in
Q waiting for it. We illustrate this potential need to rede-
sign processes so that networks become conflict-free with
yet another variant of the Dining Philosophers.

Example 6

Conflicting philosophers. If we replace the butler process
of Example 2 with the following process, which has dif-
ferent traces from those of the original butler, but the
same alphabet, the resulting network would fail to be
conflict-free:

BUTLER' = ADMIT4,

ADMIT4 = []/4 o (/.enters---* ADMIT3),

ADMITk = []~_0((i.enters >ADMITk_I)
[] (/.leaves > ADMITk + 1)), (k = 1, 2, 3)

ADMIT0 = [~/4=o(i.leaves >ADMIT0.

In this network the pairs consisting of a philosopher
and butler are not even free of strong conflict, since when
the butler has admitted the other four philosophers he
is quite happy to let the remaining philosopher " leave"
even though he is blocking him by preventing him from
"entering". The snapshot graph describing this state is
the same as for the earlier version (Diagram 3), except
that there is an additional edge, from B U T L E R to
PHIL O .

However, the behaviour of the network as a whole
is unaltered if we replace the old butler by this one (be-
cause the remaining philosopher of course is not even
trying to leave at this point). There is a sense in which
the network's correctness (i.e. deadlock-freedom) de-
pends more on the overall structure of the network than
it did with the original definition of the butler.

In summary, then, we believe that conflict-freedom
is a widely applicable condition, since we are aware of
no natural and correct network which fails to meet this
condition and cannot be redesigned to yield a behaviour-
ally equivalent network that is indeed free of strong con-
flict.

8 Network decomposition

In this section we introduce a general method for decom-
position of a network into subnetworks which may be
treated largely independently for the purposes of dead-
lock analysis. The role of conflict-freedom of a pair of
processes is crucial in this method.

If V is a network, we define the disconnecting edges
of V to be the edges of the communication graph whose
removal would increase the number of connected com-
ponents. The disconnecting edges are precisely the edges
which cannot be part of any cycle in the graph. We
also define the essential components of V to be the con-
nected components of the graph that remains after all
disconnecting edges are removed. (In graph-theoretic
terms, the essential components are the maximal edge
bi-connected subgraphs.) The essential components of

226

a tree are its individual processes, and every edge is a
disconnecting edge in a tree. Even in a general network
the essential components themselves always form a tree
when an edge is drawn between a pair of essential com-
ponents if and only if the alphabets of two of their
members intersect non-trivially.
In any busy network free of strong conflict, Theorem 2
showed that deadlock can only be caused by a cycle
of ungranted requests. It is not difficult to see that such
a deadlock-causing cycle necessarily lies in one of the
essential components of the network. It follows that if
none of the essential components of such a network can
contain such a cycle, the whole network is deadlock-free.
Note, however, that it is necessary to prove the absence
of cycles of ungranted requests in an essential component
with respect to the alphabet of the whole network, not
just with respect to that of the essential component.
These facts, and analysis of conflict-freedom, help to es-
tablish the following result.

Theorem 4. Suppose V is a network with essential compo-
nents 1/1 , Vk where the pair of processes joined by each
disconnecting edge are conflict-free with respect to A, the
vocabulary of V. Then if each of the Vii is deadlock-free,
so is V

Proof This result follows from the associative law of
PAR, for the behaviour of V is the same as that of the
network whose nodes are the parallel compositions of
V's essential components

PAR(V) = PAR ((PAR(g)] 1 =< i =< k)).

The communication graph of this new network is a tree
as observed above. It is busy by assumption that each
V~ is deadlock-free. To show conflict-freedom we argue
as follows.
- If the pair [PAR(V/)IIPAR(Vj)] were in conflict with
respect to the vocabulary of V, their alphabets would
intersect and so there would be a (necessarily unique)
pair of processes P c V/and Q~ Vj such that ePc~ eQ 4:0.
- If (s, (x , Y)) were a conflict of [PAR(V/)IIPAR(Vj)]
then, by definition of PAR(V~) and PAR(Vj) there would
be states (s~c~ V/, X) and (s le Vj, Y) of V/and Vj corre-
sponding to the fa~ilures (sFeV/, X)~)~PAR(V/)~ and
(s I ~ Vj., Y) ~ ~PAR(Vj)~.
- If X' and Y' are the components of X and Ycorre-
sponding to P and Q, the conditions ensure that
X c~V j=X ' c~Q and that YcaaVi= Y' c ~ P
- It follows that (s ~(ePw~Q), (X', Y')) is a A-conflict
of [P]l Q], contrary to assumption, giving the desired
contradiction. []

Thus we have some results identifying parts of net-
works which can, from the point of view of deadlock
analysis, be regarded as independent. Of course, this is
only useful in practice if the network decomposes into
significantly smaller or simpler subnetworks: we can rea-
sonably expect a small network to be much easier to
analyse than a big one.

To illustrate the use of the type of network decompo-

sition we propose, and to demonstrate the use of Theo-
rem 4, here is another example.

E x a m p l e 8

Interconnected token rings. Suppose that, instead of the
single ring which we saw earlier, it is for some reason
desired to implement a system of interconnected rings.
Provided the connection structure between the rings is
a (connected) tree, it is straightforward to develop a
deadlock-free system from our earlier work and Theo-
rem 4. The rings will consist of the processes P/and Qi
as before (Pi for processes with no token initially, Qi for
processes having one) and a new type of process Li for
linking two rings. Each link will have one of these L
processes at each end, rather than having one process
sitting in both rings, for the latter would not put the
two rings in different essential components. These link
processes never initially contain a token and always pass
one on immediately after having received one. They do,
however, remember how many tokens there are in each
of the two components that would be created were its
link to be cut. Provided it is correctly initialized such
a process can always know these numbers since changes
can only come about when the process itself effects the
transfer. We give here the definition of a link process
for the case where there is only one token.

The definition given here assumes that the link pro-
cess is to replace process i in a ring where all the Pj
and Qi have the same alphabets as before except that,
to keep the internal alphabets of distinct rings disjoint,
the events of each ring are tagged with a label (e.g. p, v).
If a link process is to connect ring p to ring v and is
to be placed at position i in ring p we will use the nota-
tion Li(p, v) to denote it. Such a link process will have
alphabet

o~Li(p, v)= {p.i.find, p.i+ 1.find, p . i - 1.priv, p.i.priv,
v.p.req, p.v.req, p.v.pass, v.p.pass}.

There is an obvious directionality associated with a link
process, and we may correspondingly refer to the two
sides of a linking arc as the partition of the network
which would occur if the linking arc were cut. Somewhat
loosely (but, we hope, in accordance with intuition) we
refer, when describing the behaviour of the link process,
to these two subnetworks as " i ts" side and "the other"
side. Informally, we specify the behaviour of a link pro-
cess as follows.

When the token is on its side of the linking arc, the
link process is prepared to accept either a request for
the token from the ring (the event p.i.find), or a request
from the other side of the link (v.p.req). In either case
since the token is to be found on its side of the link
the process then makes a request to its neighbour (the
event p.i+ 1.find). Once the token has been found and
reaches the link (p.i.priv) the link process will respond
appropriately to the request that began this activity: ei-
ther pass the token on to the next process in the ring
(p.i-l.priv) or pass it over the to the other side (p.v.pass).

When the token is on the other side of the link, the
link process is prepared only to accept a request for

the token (p.i.find) and to pass this request on over to
the other side (p.v.req). When the token arrives and is
passed over (p.v.pass), the link process hands it over to
the neighbour who requested it (p.i- 1.priv).

Formally, we describe the behaviour of a link process
by means of two auxiliary process definitions: when the
token is on its side the link process is denoted L + (p, v),
and when the token is on the other side the process
is denoted L}- (p, v); these auxiliary processes are defined
(omitting the ring names) by:

L + =(v.p.req ,p.i+ 1.find ,p.i.priv
~ p.v.pass ,L~-)

[] (p.i.find , p.i+ 1.find , p.i.priv
, p . i - l . p r i v ~L +)

Li =p.i.find ,p.v.req ~v.p.pass
p.i-l.priv ,L +

This formal description is intended to correspond to the
informal remarks above; for instance, the passage of the
token across a linking arc results in a change of "sign".

Note that we allow networks in which some of the
rings consist only of link processes. Except in the trivial
case where there is only one ring, all rings must contain
at least one link process. It should be obvious that the
essential components of a multiple ring system like this
are just the rings; the disconnecting edges are the links
between rings.

When the network is set up all pairs of link processes
are in opposite states (one +, one -) , since the token
is on one side or the other. Figure 6 shows an example
of such a network; the position of the token and the
states of the link processes are shown.

To prove the link pairs conflict-free it is sufficient
to prove that any adjacent pair with opposite signs, say
L~ (v, p)[I L] (p, v), are. This follows from Lemma 6 since
the communications between this pair are cyclic, repeat-
ing (p.v.req, v.p.pass, v.p.req, p.v.pass).

The proof that the individual rings are deadlock-free
is essentially the same as in the earlier example. (Note
that each ring is still unidirectional, even though the
whole network is not.) The invariant which prevents
there being a cycle of strong requests is now that in
each ring the number of nodes holding a token plus
the number of "negative" link nodes (for which the token
is on the other side) always equals one.

There are several interesting ways to extend this idea
to deal with multiple tokens, but we will not discuss
these here.

The methodology based on Theorem 4 relies on
showing first that the essential components of a network
are deadlock-free, and then that the links between essen-
tial components are well behaved (conflict-free). One
could, of course, relax the condition that the links be-
tween essential components are conflict-free if there were
some other means of showing the interactions between
the whole essential components to be strong conflict-free.
One assumption that is not in general strong enough
for this is that the network V is strong conflict-free; the
reader might like to confirm this by considering the fol-
lowing example.

L+(p,0)(

p

) ()
L+(p,v)

)
L+(0,5)

Fig. 6. An example of linked token rings

L-(v,p)

(3 (
8

() (
L-(&O)

227

)

)

)

)

Exampie 9
A bowtie network. Let P~(i = 0.. . 7) be the following simple
processes:

P/=i ~i+1 ~P/,

where arithmetic is done modulo 8 and where processes
have the obvious alphabets. Consider the network
formed by the six processes Po, P1, P4, Ps, [P2 IIPT],
[P31[P6]. This corresponds to the communication graph
shown in Fig. 7 (and hence the name "bowtie").

This network is deadlocked, even though its essential
components (Po, P1, [P2 II P7]) and (P4, Ps, [P3]b P6])
are each deadlock-free and the one disconnecting edge
is strong conflict-free. The snapshot graph summarizing
this deadlock is shown in Fig. 8.

The deadlock state has two cycles of ungranted re-
quests, one in each of the two essential components.

A design rule guaranteeing deadlock-freedom

We have so far proven some results which show that,
under certain circumstances (such as unidirectionality,
or conflict-freedom) deadlock can only be caused by cy-
cles of ungranted requests. This allowed us to tackle
deadlock analysis by proving the non-existence of such
cycles. For tree networks this is sufficient to prove dead-
lock-freedom directly. However, for general networks the
problem remains of establishing that cycles of ungranted

Po P4

1 5

Fig. 7. Communication graph of bowtie network

228

Po P4

1 5

Fig. 8. Snapshot graph of bowtie network

requests are impossible. So far, our methods for doing
this have been rather ad hoc: we have relied largely on
case analysis of traces and refusals, and finding of invar-
iant properties that are false in all potential deadlocks.
This type of case analysis was made simpler by selective
use of hiding. Nevertheless, we have so far not introduced
any general results which can themselves directly prove
the deadlock-freedom of a network whose communica-
tion graph has cycles. All we have managed to do for
those is to get a better understanding of the ways dead-
lock can arise.

It is our intention that the work of this paper should
serve as the foundations for the development of more
specific techniques for proving deadlock-freedom. A
wide class of such techniques, mainly based on the con-
cept of variants, have already been described in [25].
In this section we give another example: a theorem stat-
ing some simple (though admittedly rather curious) con-
ditions under which deadlock cannot arise. One may
regard these conditions as imposing a design rule which,
if adhered to, guarantees absence of deadlock directly,
without need for detailed investigation into cycles of re-
quests. The utility of this particular design rule is demon-
strated by applying it to a particular example network
which does meet these conditions: a mail system involv-
ing a ring of user processes.

Theorem 5. Let V be a busy network, free of strong-con-
flict. Suppose that whenever a process P of V has an un-
granted request to another process Q in the same essential
component of V, Q has communicated with P, and has done
so more recently than with any other process in that essen-
tial component. Then V is deadlock-free.

Proof By Theorem 2, any deadlock state has a cycle
of ungranted requests necessarily lying in a single essen-
tial component. Suppose that the most recent communi-
cation between two consecutive elements of this cycle
was between P and Q, with P now waiting for Q. Now
P must be blocking some process other than Q in the
cycle, but this is impossible by assumption. []

Example 10

Message-passing ring. Consider a message-passing ring
in which a number of users can send mail to one another.
Each user is associated with a node; the nodes are con-
nected in a ring; initially, each node is prepared to

(i) accept a meassage from its user and pass it to
its clockwise neighbour, or

(ii) accept a meassage from its anticlockwise neigh-
bour and give it to its own user or pass it clockwise
as appropriate.

Clearly if each node has the capacity to store only
one message at a time, the system may deadlock. (When
all users simultaneously decide to output a message,
none of these messages can ever leave its source node.)

However, if each node has capacity bigger than one,
and if also each node has a non-zero limit strictly smaller
than its capacity such that, when the node contains the
limit or more items it will only accept a message from
the ring (i.e., not from its own user), the network is dead-
lock-free. Intuitively this is because the network can
never become "full" (the last message entered would
need to be into a node with only one slot left, but this
is not allowed).

Formally, this follows from Theorem 5 above. No
node N ever has an ungranted request to its anticlock-
wise neighbour, since when N is prepared to accept a
message, this neighbour either has one to send or is able
to communicate outside the vocabulary of the network
by communicating with its user. Thus the only ungranted
requests that can arise are those of a node N that wishes
to output a message to its clockwise neighbour M. Such
a request can only be refused when M is full, and by
assumption the only way it can have become full is
through an input from N which must have happened
more recently than its last output. Thus the network
satisfies the preconditions of Theorem 5.

Of course, the simplest example of such a network
is where each node has capacity two and will only accept
input from the environment when empty. However, the
parameters of a practical implementation would be more
generous.

9 Comparison and conclusions

We have shown how to use the failures model of CSP
to provide a succinct and mathematically tractable rep-
resentation of deadlock. We have been able to use the
model in proofs of some interesting and useful results
on the analysis of deadlock in networks, and then to
prove absence of deadlock in a variety of examples. We
have focussed firstly on results pertaining to unidirec-
tional systems (e.g. Theorem 1) and also on results appli-
cable to general networks (Theorems 2, 3, 4, 5). All of
our methods support hierarchical analysis of networks,
assuming that deadlock-freedom of individual nodes has
already been established. We singled out for special at-
tention the class of tree networks (Corollaries (i) and
(ii) to Theorem 1, and the Corollary to Theorem 3.) We
demonstrated the power of our techniques by applying
them to a collection of example networks. We argued
that the concepts developed in this paper (such as cycles
or requests, conflict-freedom, essential components) pro-
vide the basis for a battery of theorems on deadlock
analysis that are widely applicable.

The theorems of this paper are only a sample of a
large class of general results which we and others have
derived for analysing the deadlock properties of net-
works. As stated earlier, the results of the current paper
have already been used extensively in [25], where more
specialized techniques were developed such as those

229

based on "variants". A variant is a function from the
states of the components of a network into a partial
order. These simple combinatorial techniques often al-
low localized proofs that no cycle of ungranted requests
can arise, even in networks whose communication
graphs have many cycles. These techniques seem to be
widely applicable but are certainly not complete, since
they cannot handle all networks.

We analysed in Example 10 a simple message-passing
network. A far more complex and sophisticated message-
passing network has been developed in [24] (as an oc-
cam program) based on this one, with analysis again
based on Theorem 5. It makes use of the general topolo-
gy of a network to pass messages using efficient routes,
but uses the ring behaviour as a last resort to avoid
deadlock. It would be interesting to see if this theorem
is applicable to any other types of example.

Again, Theorem 5 was specialized to networks which
have been designed to meet a simple "design rule". Ad-
hering to the design rules will then guarantee deadlock-
freedom. There is much to be said for such design rules,
especially if they are chosen to be easy to apply in prac-
tice. The discovery of more of them should therefore
be regarded as a priority.

Related work. Deadlock was a popular subject for re-
search in the 1960's and 70's. The majority of this early
work was cast in terms of resource allocation, as in oper-
ating systems: see [17] and [21], for example. Our work
has been cast in the more general setting of CSP, where
it is easy to model resource allocation problems if desired
(see [25], for example, and also the dining philosophers
example here). Naturally the earlier work recognised a
number of similar facts to those discussed in the present
paper, in particular the importance of cyclic dependen-
cies and the resulting special properties of trees.

The most comprehensive treatment of deadlock in
a modern formalism that we are aware of is Dathi's thesis
[10], which gives a broad survey of techniques both new
and old which can be brought into this framework. He
also gives a very thorough comparative survey of the
relative power and applicability of various deadlock-
proving techniques.

Dijkstra [11] proved some theorems on the absence
of deadlock in unidirectional networks for the special
case in which the patterns of communication were cyclic:
each process rotated its communication requests in cyclic
order through its immediate neighbours. Dijkstra stated
that his results were applicable in a more general setting,
and [25] has demonstrated that this is indeed the case.

Chandy and Misra have developed a method for
proving deadlock-freedom using priorities [9]. Roughly
speaking, they proposed that, for every state of a net-
work, one should assign priorities to the edges of the
communication graph in such a way that every process
can always communicate over its adjacent edge of high-
est priority. The existence of such a prioritization is
equivalent to a certain strengthened version of our dead-
lock-freedom condition. In fact, their condition implies
that every non-empty subnetwork can make progress
in future. To use such a technique requires a global anal-

ysis of all states of the network, which may in practice
be expensive because of the exponential growth in the
size of the state space of a network as a function o f
the number of processes. It is for reasons such as these
that we advocate localized analysis wherever possible.
Dathi [10] represents the method of [9] in our setting.

In [22] Reisig discusses proof rules for deciding if
deadlocks can occur in distributed systems of sequential
processes which communicate deterministically by
means of buffers. He uses a Petri net model and gives
a characterization of deadlock states.

The work of Apt et al. [1, 2, 3] on reasoning about
CSP programs includes some methods for analysing
deadlock. Essentially, this work is based on a rather dif-
ferent approach from ours: a CSP program is first trans-
formed syntactically into a program in a guarded com-
mand language [13] which no longer involves communi-
cation. In this transformation syntactically matching
pairs of communications are combined into assignment
statements to mimic the affect of synchronizing an input
with a matching output. Then one reasons about the
absence of deadlock by finding a global invariant which
guarantees that no deadlock state can be reached, be-
cause it is false in deadlock states.

As mentioned earlier, one of our main aims has been
to find methods of analysis which, where possible, avoid
dealing with the exponential explosion of states in paral-
lel systems. There has been a number of different ap-
proaches to this problem. Many of these allow automatic
verification that a finite-state system satisfies a specifica-
tion by examination of a suitably constructed global
state graph. For instance, Browne, Clarke and Grumberg
showed in [7] how to reason about (a restricted class
of) temporal logic properties of networks containing
many identical finite-state processes, using a notion of
bisimulation between global state graphs. German and
Sistla [14] also introduced a method for dealing with
properties of systems with many identical processes,
again using a restricted temporal logic for specifying
properties of networks. More recently, the results re-
ported in [8] show that an approach based on symbolic
model checking, taking advantage of a more sophisticat-
ed representation of the state-space of a system, allows
many practical systems with very large state spaces to
be verified. Some other recent developments, again for
finite-state systems, have concerned proof methods based
on induction. For example, [19] introduces a structural
induction theorem and [26] advocates an inductive
method based on a notion of network invariant. We
also described some methods based on recursion induc-
tion for proving properties of CSP processes in [4].

Dynamic networks

In this paper we have focussed entirely on static net-
works in which both the number of processes and their
topology remain unchanged throughout the execution
history of the network. Dynamically changing networks
may arise in practice, for instance when recursion is used
inside a parallel composition: it may be possible for a

230

process to spawn one or more recursive para l le l ins tances
of itself, o r indeed of o the r processes, dur ing execution.
The mos t difficult p r o b l e m ar is ing when t ry ing to extend
techniques such as ours to cover d y n a m i c a l l y evolving
ne tworks is tha t of keep ing t r ack of the ne twork ' s struc-
ture dur ing execut ion. This means tha t a lot of special-
ized concepts and no t a t i ons have to be i n t roduc e d to
dea l wi th ne twork s t ructure . Of course d e a d l o c k only
arises in a s ta t ic s i tua t ion , so tha t the ideas of this p a p e r
ca r ry over to the analys is of dynamic ne towrks more
or less wholesale . W e p lan to deve lop the theo ry of dy-
namic ne tworks , inc luding d e a d l o c k analysis , in a future
paper .

Acknowledgement. The authors would like to thank C.A.R. Hoare
for his many helpful suggestions and discussions, and for his en-
couragement and guidance during the development of the failures
model for CSP. Discussions on deadlock analysis with Krzysztof
Apt, Naiem Dathi, Jay Misra, Ernst-Rudiger Olderog, David Reed
and Wolfgang Reisig have been very useful. We also thank the
anonymous referees for a number of helpful suggestions.

References

1. Apt KR: A static analysis of CSP programs. In: Clarke EM,
Kozen D (ed) Logics of programs, Proceedings. Lect Notes
Comput Sci, vol 164. Springer, Berlin Heidelberg New York
1983, pp 1 17

2. Apt KR: Logics and models of concurrent systems. NATO
ASI Ser, Set F, vol 13. Springer, Berlin Heidelberg New York
1985

3. Apt KR, Francez N, de Roever WP: A proof system for com-
municating sequential processes. ACM TOPLAS 2(3):359 385
(1980)

4. Brookes SD, Hoare CAR, Roscoe AW: A theory of communi-
cating sequential processes. JACM (July 1984)

5. Brookes SD, Roscoe AW: An improved failures model for com-
municating processes. Proc. NSF-SERC Seminar on Concur-
rency. Lect Notes Comput Sci, vol 197. Springer, Berlin Heidel-
berg New York 1985, pp 281-30

6. Brookes SD, Roscoe AW: Deadlock analysis in networks of
processes. NATO ASI Set, Ser F, vol 13. Springer, Berlin Hei-
delberg New York 1985, pp 305-323

7. Browne MC, Clarke EM, Grumberg O: Reasoning about net-
works with many identical processes. Inf: Comput 8l(1): 13-31
(1989)

8. Burch JR, Clarke EM, Dill DL, Hwang LJ: Symbolic model
checking: 10 z~ states and beyond. Proc. 5th IEEE Annual Sym-
posium on Logic in Computer Science. IEEE Press (June 1990)

9. Chandy KM, Misra J: Deadlock absence proofs for networks
of communicating processes. Inf Process Lett 9(4):185-189
(1979)

10. Dathi N: Deadlock and deadlock-freedom. D. Phil. thesis, Ox-
ford University (1989)

11. Dijkstra EW, Scholten CS: A class of simple communication
patterns, EwD643. In: Dijkstra EW (ed) Selected writings on
computing. Springer, Berlin Heidelberg New York 1982,
pp 334-337

12. Dijkstra EW: Invariance and non-determinacy. In: Hoare
CAR, Shepherdson JC (eds) Mathematical logic and program-
ming languages. Prentice-Hall, Englewood Cliffs, NJ, 1985,
pp 157-165

13. Dijkstra EW: Guarded commands, non-determinacy, and for-
mal derivation of programs. CACM 18(8):453457 (1975)

14. German S, Sistla AP: Reasoning about systems with many pro-
cesses. In: Proc 2nd IEEE Syrup on Logic in Computer Science,
Ithaca, New York 1987, pp 138 152

15. Hoare CAR: Communicating sequential processes. CACM
21(8):666-677 (1978)

16. Hoare CAR: Communicating sequential processes. Prentice-
Hall, Englewood Cliffs, NJ, 1985

17. Holt RC: Some deadlock properties of computer systems. ACM
Comput Surv 4(3): 179-196 (1972)

18. INMOS Ltd.: The occam programming manual. Prentice-Hall,
Englewood Cliffs, NJ, 1984

19. Kurshan RP, McMillan K: A structural induction theorem for
processes. Proc. 8th ACM Syrup on Principles of Distributed
Computing, Edmonton (1989)

20. Milne G, Milner R: Concurrent processes and their syntax.
JACM 26(2):302 321 (1979)

21. Peterson J, Silberschatz A: Operating system concepts. Addison
Wesley, Reading, Mass, 1983

22. Reisig W: Deterministic buffer synchronization of sequential
processes. Acta Inf 18:117-134 (1982)

23. Roscoe AW: A mathematical theory of communicating pro-
cesses. D. Phil. thesis, Oxford University (1982)

24. Roscoe AW: Routing messages through networks: an exercise
in deadlock avoidance. Proceedings of OUGTM7, Grenoble
1987, published by IMAG
Roscoe AW, Dathi N: The pursuit of deadlock freedom. Inf
Comput 75(3):289 327 (1987)
Wolper P, Lovinfosse V: Verifying properties of large sets of
processes with network invariants. In: Sifakis J (ed) Proceedings
of 1st Workshop on Automated Verification Methods for Finite
State Systems. Lect Notes Comput Sci, vol 407. Springer, Berlin
Heidelberg New York 1989, pp 68-80

25.

26.

