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Abstract. We use the failures model  of  CSP to describe 
the behaviour  of  a class of  networks  of  communica t ing  
processes. This model  is well suited to reasoning about  
the deadlock potential  of  networks.  We int roduce a 
number  of  simple condit ions on networks  which aid 
deadlock analysis either by localizing the analysis re- 
quired for a p roof  of  deadlock-f reedom or by restricting 
the circumstances in which deadlock  could occur. In par-  
ticular, we formulate  some simple theorems which char-  
acterize the states in which deadlock can occur, and use 
them to prove some theorems on the absence of  global 
deadlock in systems. We identify a special class of  unidi- 
rectional networks  and develop specialized results on 
their deadlock-freedom. We develop more  general meth-  
ods based on (at most)  pairwise local deadlock analysis 
in networks,  applicable to the large class of  conflict-free 
networks.  We int roduce a me thodo logy  for proving  
deadlock-f reedom in a large ne twork  by decompos ing  
it into subnetworks  which can be analysed separately. 
A variety of  examples is given to show the utility of  
these results. We compare  our  work  with earlier work  
by several other  authors,  and make  some suggestions 
for future research. 

Key words: Deadlock  - Ne tworks  - Communica t ing  pro- 
cesses 

1 Introduction 

In  [-4, 5] we described the failures model  of  communica t -  
ing processes and  used it to describe some interesting 
parallel p r o g r a m m i n g  examples. The simple mathemat i -  
cal structure of  this model  lends itself to clean formula-  
t ion of  deadlock  properties and to formal manipu la t ion  
of process behaviour.  The model  is well suited, by its 
very construct ion,  to reasoning abou t  the potential  or  
the absence of  deadlock in systems of  processes. In this 
paper  we elaborate  this point  in some detail, developing 
some ideas which originated in Roscoe ' s  thesis [23], dis- 
covering various condit ions on networks  which make  
deadlock analysis easier and which enable a more  struc- 
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tured approach to the entire problem of deadlock analy- 
sis. While the failures model gives us a convenient and 
precise language for describing our work, most of our 
work could be re-phrased in a wide variety of formalisms 
for concurrent systems. 

Our emphasis is on methods for proving deadlock- 
freedom that allow localized analysis (by focusing on 
small subnetworks, such as pairs of processes) and sup- 
port hierarchical decomposition. There is a good reason 
for finding such techniques: a straightforward proof  of 
deadlock-freedom must take into account all possible 
states of a system; in a network with many processes 
the set of states may be very large, since it grows expon- 
entially with the number of parallel processes. Even 
though recent advances, for example [8], allow one to 
deal mechanically with certain kinds of very large finite- 
state machines, this combinatorial explosion is one that 
we would generally rather avoid. We provide some sim- 
ple yet useful theorems which may be used to analyse 
networks for the potential of deadlock. We demonstrate 
the utility of these results by examining a variety of ex- 
amples, some well known and some novel. 

Outline of paper 

After this introduction, the paper begins (Sect. 2) by sum- 
marizing some background material and placing this 
work in context. We summarize relevant notation and 
basic terminology on CSP and the failures semantic 
model, and we give a formal definition of deadlock-free- 
dom. 

Next, in Sect. 3, we introduce networks and their stat- 
ic communication graphs, and we discuss behavioural 
properties of networks. We define an appropriate notion 
of state for networks, and we provide a simple character- 
ization of states in which deadlock occurs. We introduce 
snapshot graphs, which provide instantaneous pictures 
of the dynamic state of a network and help in visualizing 
and analysing deadlock. The arcs in a snapshot graph 
are determined by the requests for communication cur- 
rently being made among the nodes of the network. A 
network deadlocks if and only if all of its processes are 
blocked, in that all existing requests are ungranted. Some 
examples are given to illustrate the definitions and to 
show the close connections between deadlock and cycles 
of ungranted requests in snapshot graphs. 

In Sect. 4 we identify several properties of networks 
related to deadlock-freedom. We motivate our desire to 
develop methods for hierarchical analysis of networks, 
allowing the treatment of networks whose nodes are 
themselves built up as networks. This leads us to restrict 
attention to the class of busy networks, all of whose 
nodes are themselves free of deadlock. In all cases our 
purpose is to find methods of proving deadlock-freedom 
that require only local analysis, such as analysis of indi- 
vidual nodes or pairs of adjacent nodes in a network. 

Section 5 gives elementary results on deadlock analy- 
sis, including simple but very useful techniques involving 
the interaction of the CSP hiding operation with dead- 
lock. The results of this section are applied througout 
the paper. 

In Sect. 6 we restrict attention to a class of unidirec- 
tional networks, with the important subclass of unidirec- 
tional tree-structured networks treated as a special case. 
An example is worked out in detail. 

Section 7 introduces the important  concepts of con- 
flict-freedom and freedom from strong conflict. These 
pairwise checkable properties form the basis for a 
number of useful results. 

In Sect. 8 we show how to decompose a network 
into regions (essential components) that can be treated 
independently in deadlock analysis, provided the interac- 
tions between regions are well behaved. This type of 
decomposition can be very useful in reducing the amount  
of combinatorial analysis required in deadlock analysis, 
but is only of practical benefit when a network has non- 
trivial essential components. Again we tackle an exam- 
ple. We also propose a network design rule based on 
these ideas, which guarantees deadlock-freedom pro- 
vided a network can be built in such a way that it adheres 
to the design rule. 

Finally, we discuss related work and point to direc- 
tions for future research. 

2 Background 

This paper evolved from a preliminary draft (with the 
same title) which was published in [2] as [6]. In this 
evolution some of the definitions and results have been 
replaced, notably by the inclusion of some simpler and 
sharper material on "conflicts". Closely related works 
applying some of the results of this paper are [-10, 24, 
25]. We use basic terminology and notation that is (for 
the most part) consistent with the usage in these related 
papers; in a few cases our notation improves slightly 
on that of [6], but readers familiar with the earlier ver- 
sion should find it easy to relate the new terminology 
to the old. We have tried to include enough background 
material to make this paper self-contained, even though 
this causes some overlap with the contents of [25] in 
particular. Although this paper is intended to be a com- 
panion to [25], there is no requirement to read that 
paper first. 

We assume some familiarity with the material of [16, 
4] or [5], where details were given of the syntax for 
processes in an abstract version of Hoare's language CSP 
(Communicating Sequential Processes), and of the math- 
ematical construction of the failures model. Here we will 
provide a brief summary of terminology; the reader 
should consult the references for more detailed explana- 
tions. 

Events, alphabets and processes 

CSP is a language of non-deterministic communicating 
processes. Communication and parallel composition are 
taken as primitive notions. Our abstract version of the 
language is sometimes referred to in the literature as 
TCSP, or "Theoretical CSP", to distinguish it from the 
more concrete language introduced as CSP by Hoare 
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in [15]. However, since Hoare himself continues to refer 
to our abstract version as CSP, as in [16], we will do 
so too. 

We use P, Q, R, etc., to range over the set of CSP 
processes. The basic actions performed by processes are 
called events, which may be regarded as representing 
communications. A process may also be able to make 
non-deterministic choices which affect its ability to per- 
form events. Each process is associated with an alphabet: 
a set of events (usually, though not necessarily, the set 
of events mentioned in the syntax of the process). 

Two methods have been used in the literature for 
introducing process alphabets. In [-4, 5, 6] for example, 
alphabets were introduced explicitly into the (syntax of 
the) parallel operator:  thus a parallel composition of P 
and Q, using alphabets B and C respectively, would be 
denoted PBI]cQ. In [16], however, all processes are de- 
fined in such a way that they automatically have an 
associated alphabet: the alphabet of P is denoted ~P. 
In this approach, which we will adopt here for con- 
sistency with [16] and [-25], there is no need to introduce 
explicit alphabets in the syntax for parallel composition. 
Instead we use the syntax P [[ Q. The alphabet of P qL Q 
is simply ~P u ~Q. The two methods are closely related: 
P ][ Q is semantically equivalent to the explicitly alphabe- 
tized version P~eI[~QQ. Parallel composition is commuta- 
tive and associative, so that we may use notation such 
as [[~= 1Pi without ambiguity. 

In a parallel composition of processes, each process 
performs events from its own alphabet, with the con- 
straint that events in the alphabets of two processes re- 
quire their cooperation. As in the original CSP language 
of [15], we focus on two-way communication, and hence 
we restrict attention to parallel compositions which are 
triple-disjoint, in that no event is common to the alpha- 
bets of more than two processes. 

The observable behaviour of a process is explained 
entirely in terms of the events (from its alphabet) it may 
or may not perform when placed in an environment 
which is trying to interact with it. We are particularly 
concerned with deadlock: the inability to perform any 
event (or, equivalently, the ability to refuse all events) 
in the relevant alphabet. 

Traces, refusals, and failures 

If A is a set of events, we write A* for the set of finite 
sequences, or traces over A. We let a, b, c range over 
events, s, t, u range over traces, and X, Y,, A, B, C range 
over sets of events. We write < ) for the empty trace, 
( a )  for the trace consisting of the single event a, and 
st for the concatenation of s and t. We write sIA for 
the trace obtained from s by deleting all events not in 
A. 

A trace of a process is a finite sequence of events 
which the process may be able to perform in sequence; 
a refusal of a process is a set of events all of which 
it may be unable to perform; a failure of a process is 
a pair (s, X) consisting of a trace s and a refusal set 
X. If (s, X) is a failure of a process P, we interpret this 

as saying that the process may refuse all of the events 
in X immediately after having performed the sequence 
s; thus, if the process is placed in an environment which 
only wants to perform events from this set next at that 
stage, deadlock is possible. The traces, refusals and fail- 
ures of P are all composed exclusively of elements of 
~P. If a process refuses its entire alphabet it is deadlocked 
(in any environment). 

As in [-4], we identify (the semantics of) a process 
P with its failure set, which we denote ~ ~P~. This is 
a subset of (~P)* x ~d(~P). We use traces (P)~_(~P)* for 
the set of traces of P; initials (P) _~ ~P is the set of initial 
events of traces of P, i.e., the set of events c which begin 
a trace of P; refusals (P) ~ ~ (~P) is the set of P's initial 
refusals. All of these sets can be extracted from the failure 
set of a process: for instance, s is a trace of P if and 
only if (s, 0) is a failure of P; i.e., traces (P)={s[(s, 
0 ) e ~ P ~ } .  When s is a trace of P we write P after 
s for the process whose behaviour describes P's subse- 
quent behaviour after first performing the sequence s. 
Its defining property is that ~ P  after s~= 
{(t, X) l(s t, X) e ~ ~P~ }. 

The failure set of a process is closed under certain 
natural conditions: in particular, trace sets are prefix- 
closed, refusal sets are subset-closed, and impossible 
events can be included in refusal sets. A denotational 
description of the failures semantic function ~- is given 
in [4, 5]. A natural ordering based on non-determinism 
makes the failures model into a complete partial order, 
with respect to which all CSP constructs are continuous; 
thus, recursive process definitions can be treated in the 
usual way as denoting least fixed points. 

Divergence 

The failures model of processes as described in [4] is 
adequate for analysing deadlock potential, but less well 
suited to a proper treatment of divergence, which occurs 
when a process is able to perform an unbounded number 
of hidden internal actions without communicating to its 
environment. The improved failures model of [5] was de- 
veloped to allow a more satisfactory treatment of diver- 
gence. In this model a process is described by a pair 
<F, D) containing a failure set F and a divergence set 
D. Divergence was treated pessimistically, in the sense 
that we treated any possibility of divergence in a process 
as catastrophic. In such a pessimistic view, it is useless 
to try to prove absence of deadlock if there is a possibility 
of divergence. 

In this paper we will again adopt this view of dead- 
lock and divergence: we are only interested in proving 
deadlock-freedom in divergence-free processes. There- 
fore, we will generally assume that all processes are diver- 
gence-free (i.e., have empty divergence set), so that a pro- 
cess is fully described by its failure set. All examples 
discussed in this paper are divergence-free, and all of 
the results apply to divergence-free processes. We will 
be careful to state the necessary assumptions on diver- 
gence-freedom when dealing with operators which may 
introduce divergence (in particular, with the hiding oper- 
ator). 
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Infinite refusal sets 

In [5] we also allowed for the possibility of infinite refus- 
al sets when processes were able to use infinite alphabets 
(for example, if a process can input an arbitrary natural 
number). This is important  for the present paper, since 
it allows cleaner statements and easier proofs for several 
results. It is only a minor technical issue, since even in 
[5] we take the view that every infinite refusal set of 
a process is determined by the fact that all of its finite 
subsets are refusal sets; the main point is that we make 
infinite refusals explicit in this treatment instead of impli- 
citly characterizing them as finitely generable in this way. 
By doing this we avoid having to resort to annoyingly 
verbose phraseology when we want to say (for instance, 
below, in defining deadlock) that a process may refuse 
its entire alphabet: in order to find a form of words 
that works both for finite and infinite alphabets we do 
not have to paraphrase and say that the process may 
refuse all finite subsets of its alphabet. Thus, in this paper, 
we focus on a failures model in which refusal sets can, 
where necessary, be infinite. 

Deadlock 

To match our earlier informal description of deadlock 
with the failures semantics of processes we now supply 
formal definitions. As remarked above, these are very 
simple. 

Definition 1. The process P can deadlock after the trace 
s if(s, a P ) E ~ P ~ .  

Definition 2. The process P is free of deadlock (or dead- 
lock-free) if 

Vs~(~P)*. (s, ~P)q~-EP~. 

3 Networks of communicating processes 

A network is a parallel combination of processes (and, 
implicitly, alphabets). We will use an indexed tuple nota- 
tion (Pi[ 1 < i < n) for a network of n processes, with each 
P~ using alphabet ~P~. The processes in a network may 
be themselves built by parallel composition. By present- 
ing a collection of processes as a network we have a 
means of imposing topological or hierarchical structure 
on deadlock analysis: it may prove advantageous to 
group several processes as a single node in a network 
for the purposes of proving deadlock-freedom. 

The networks we consider will be static, in the sense 
that number of processes and their alphabets are fixed 
throughout  the execution of the system. The problem 
of treating dynamically changing networks will be ad- 
dressed briefly in the conclusions section of this paper. 

Graphical representations of networks of processes 
have been used extensively in the literature, for instance 
by Milne and Milner [20]. First we introduce a graph 
representing the static communication topology of a net- 
work. 

Definition 3. The communication graph of a network 
(Pil 1 < i <  n) is an undirected graph whose nodes repre- 
sent the processes P~, and whose arcs are uniquely deter- 
mined by the alphabets: there is an arc between P~ and 
Pj iff ~Pin ~Pj+O and i+j. 

Thus two processes are linked in a communication 
graph if and only if there is an event common to their 
alphabets, representing a communication between them. 
Since CSP treats communication in a symmetric fashion, 
we do not assign directions to the arcs. The existence 
of an arc linking process Pi with Pj in this graph, of 
course, says nothing about  whether or not such a com- 
munication will ever take place dynamically as the net- 
work operates. 

Definition 4. The vocabulary of the network V= (Pil 1 
_< i_< n) is the set 

U{~P~n~Pj[l <~i<j<=n}. 

The vocabulary of a network consists of the events com- 
mon to the alphabets of two processes; we will refer 
to these as internal communications. Since we restrict at- 
tention to two-way communications (all networks in this 
paper are assumed to be triple-disjoint), no event is com- 
mon to the alphabets of more than two processes, and 
we do not need a more complicated notion of vocabu- 
lary. 

We will use the obvious notion of subnetwork: W 
is a subnetwork of V if it arises from V by removing 
some (or none) of its processes. The communication 
graph of a subnetwork of V will be the subgraph of 
the communication graph of V obtained by removing 
the corresponding nodes and arcs involving those nodes. 
Note that if W is a subnetwork of V, then the vocabulary 
of W is a subset of the vocabulary of V. 

Many interesting networks have tree-structured com- 
munication graphs. For  example, trees arise as communi- 
cation graphs of networks built with the master-slave 
operator (called subordination in [16]) 

[P 1] ml :Qa [1 ... I[m,:Q,], 

in which for each i the process mi:Qi is said to be a 
slave of P because its alphabet is a subset of ~P. This 
alphabetic constraint implies that in this parallel context 
each action of a slave process can occur only if P also 
performs it, i.e. that slave processes can only communi- 
cate with their master. Formally, we define the class of 
tree networks as follows: 

Definition 5. A network V is a tree when its communica- 
tion graph has no cycles, or equivalently, for connected 
networks, when it has one more vertex than arcs. 

Note that a tree network is necessarily triple-disjoint, 
for if ~Pi n ~Pj n ~Pk + 0, with i,j, k all distinct, there would 
be a cycle of edges through these three nodes. 

Network behaviour 

The behaviour of a network V= (Pi[ 1 < iN n) is that of 
(the process representing) its parallel composition 



PAR(V), defined 

" R PAR(V)=  [li=x i" 

The alphabet of this network is defined to be c~V 
=U{c~P/ll<i<n}. Under  our assumption that all the 
processes involved are divergence-free, the failures of V 
are given (as in [5, 25]) by 

~-EPAR(V)~ ={(s ,  i=~) 1 Xi)lVi(1 < i < n  

=:,. (s r x,) g )}. 

Intuitively, each process in the network is responsible 
for performing or refusing events in its own alphabet, 
with the constraint that an event in the vocabulary of 
the network requires cooperation of two nodes. Corre- 
spondingly the behaviour of a network V= (P/] 1 < i <  n) 
after the trace s will be that of the network V after s 
defined by: 

Vafter s= (Pi after(s I eP/)I 1 <=iNn), 

because at this stage the process at node i has performed 
the sequence s r,P~, obtained by including only the 
events in s which belong to the set ,P~. This is shown 
by the law 

PAR(V) after s = P A R ( V  after s). 

The definition of deadlock-freedom for a process P 
generalizes in the obvious way to a network V: the net- 
work is deadlock-free if and only if the process represent- 
ing its parallel composition is. For  convenience, we re- 
peat here the obvious adaptations of Def. 1 and 2: 

Definition 6. A network V can deadlock after s if 
(s, ~V)~ f f  ~PAR(V)~. 

Definition 7. A network V is free of deadlock if PAR(V) 
is free of deadlock, i.e., if V s ~ (~ V)*. (s, 
a V ) r  ~PAR(V)~. 

The vocabulary of a network is an important  set 
from the point of view of deadlock analysis because it 
is the set of events for whose performance the agreement 
of two node processes is necessary. Failure to reach 
agreement is a typical cause of deadlock. At any time 
when V is deadlocked it is clear that no Pi can be willing 
to perform any event outside the vocabulary of V: such 
an event would be under the control of Pi alone, and 
by definition of parallel composition PAR(V) would also 
be willing to perform it. 

Since parallel composition is commutative, networks 
differing only in the order in which we list the nodes 
have the same behaviour, and of course will also have 
identical communication graphs (up to isomorphism). 
But parallel composition is also associative, so that com- 
bining several nodes of a network into a single node 
(whose process is defined to be the obvious parallel com- 
position) does not affect the behaviour. However, a net- 
work reorganization like this will produce a different 
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communication graph. We wish to allow ourselves the 
freedom to choose the most suitable network topology 
for proving deadlock-freedom, so it is important  to re- 
member that network reorganizations involving group- 
ing of nodes leave deadlock properties invariant. 

We will restrict attention in this paper to networks 
whose communication graphs are connected. This causes 
no loss of generality when trying to prove absence of 
deadlock, since one may prove absence of deadlock in 
a general network by analysing the connected compo- 
nents of its communication graph separately, as ex- 
plained by the following observation: 

Remark. If the connected components of a network V 
are V1 . . . .  , V~, then V can deadlock after s if and only 
if for each i the subnetwork V~ can deadlock after s r ~ vi. 

This follows easily from the definition of parallel 
composition, since the connected components necessari- 
ly have disjoint alphabets. Dually, V is deadlock-free if 
and only if at least one of its connected components 
is deadlock-free. 

States of a network 

Execution of a communication by a node will generally 
change the process at that node; nevertheless, the com- 
munication graph of the network remains the same. To 
account for the dynamic effect of communication events, 
we now introduce a notion of state. A state is simply 
a cross-section of the network giving the local informa- 
tion about what each process in the system has done 
so far and is refusing to do on the next step. 

D e f i n i t i o n  8. A state of a network V= (P/[ 1 <=i<n) is 
a trace s of V together with an indexed tuple 
(X1 . . . . .  X . )  of refusal sets X i such that for each i, 

(s raP,, xi) g 

A state is maximal if each of its refusal sets is maximal, 
i.e., if 

vY.(s r Y) gWP ]  Y Xi. 

When V is in the state (s, (X1,  ..., X , ) )  each node Pi 
has so far done the sequence s I ~P~ and is currently capa- 
ble of doing any event from aP~- Xi on the next step. 

The structure of the failures model (specifically, the 
closure conditions on refusal sets) guarantees that each 
state may be extended to a maximal state. For  the pur- 
poses of deadlock analysis it is sufficient to focus atten- 
tion on maximal states: the more events each individual 
process refuses, the more likely deadlock becomes. 
Therefore, throughout  this paper, we will assume for con- 
venience that all states have this form. We will denote 
the maximal failures of a process P, in the sense above, 
by ~-~P~. It will be convenient also to use a to range 
over states, and X to range over indexed tuples of refusal 
sets. Thus, a typical state may be written a = (s, X). 

A simple characterization of states in which deadlock 
occurs is provided by: 
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Lemma 1. A network V= (Pil 1 < i < n) can deadlock after 
s i f f  there is a state (s, (X1 ,  ..., X , ) )  of V for which 

0 ~P~= 0 X,. 
i - 1  i - 1  

Proof. By definition of J~ ~PAR(V)~ and Def. 6. [] 

We will refer to such a state as a deadlock state. 
Note that, in accordance with the remarks above, any 
deadlock state extends to a maximal deadlock state. 
Henceforth, when we refer to a deadlock state, maximal- 
ity will be assumed implicitly. 

Requests and snapshot graphs 

Next we introduce the notion of a "request"  in a state. 
Our choice of terminology is intended to be suggestive. 
A pair of indices ( i , j )  is a request when P~ is trying 
to communicate with Pj, i.e. when there is an event com- 
mon to the alphabets of P~ and Pj that is not in Pi's refusal 
set; ( i , j )  is a strong request if P/can only communicate 
with Pj, because all events available to P~ on the next 
step belong also to the alphabet of P~ (and P~ is not itself 
deadlocked, so that there is at least one event possible 
for its next step). A request ( i , j )  is ungranted if the 
target Pj of the request is unwilling to respond to the 
source Pi, i.e., Pj is currently refusing all of the events 
relevant to P~ in this state. The formal definition is: 

Definition 9. Let a=(s ,  X) be a state of the network V 
I 

= (P/I 1 < i < n). A pair of indices (i, j )  (with i 4=j) is" 

- a request if (ePi - Xi) n eP~ + 0; 
- a strong request if 0=t=(~PI-Xi)_~aP~; 

ungranted if in addition aP~ n ~Pj_~ X~ u Xj. 

An alternative and equivalent formulation of the condi- 
tion for ungrantedness is that 

(~P, - x , )  n ( ~ P i -  x , )  = O. 

Strictly speaking, the notions of request, strong request, 
and ungrantedness refer to a specific state. In practice, 
the state will be clear from the context and we will often 
omit explicit reference to it. Clearly, by definition, every 
strong request is also a request. 

Ungranted requests can be regarded as the basic 
building blocks of deadlock. Sometimes we need only 
be interested in ungranted requests when neither process 
is able to communicate outside some set A; an especially 
common case is when A is the vocuabulary of the net- 
work, since events outside of the vocabulary do not re- 
quire cooperation between processes. This motivates the 
following definition. 

Definition 10. The pair (i, j )  is a request (or strong re- 
quest) with respect to A if, in addition to the above re- 
quirements, we also have: 

(c~Pi -- Xi) u (aPj-- X]) ~_ A. 

Using the notation of [25] we will write 

P/ ,P~ or P ~ P j  

when (i, j )  is a request or strong request of o-. Similarly 
we will write 

a 

P/----*'P~ or P/ ~ . P j  

when (i, j )  is a ungranted request or strong request 
of a, and 

a,A a,A 
P// ,-Pj or P/ ~ -P~  

when ( i , j )  is an ungranted request with respect to A. 
As a trivial consequence of the definition, any request 

(i, j )  is a request with respect to c~P~uc~P~. Thus, for 
example, 

a ,  A a 

Pi---+-Pj<=>P i ,-Pjj when c~PiuePj_cA. 

It is also obvious that only events belonging to the alpha- 
bets of the two processes matter: ( i , j )  is a request with 
respect to A iff it is a request with respect to 
A n(c~P~wePj). An ungranted request with respect to A 
is still ungranted in any superset of A; that is, 

if A~_A', then p ~ , A . p j ~ p j _ _ + ~  

Of course, similar observations are true of strong re- 
quests. 

In a network V= (Pi[ 1 __< i<  n) the process P~ is said 
to be blocked in the state a when it is the source of 
a request, it can only perform events internal to the net- 
work, but all of its requests are ungranted: i.e., when 

- Pi ~' Pj for some j, 

P/ ~.A ~ whenever Pi ~ 'Pk, 

where A is the vocabulary of the network. 
There is an obvious relationship between blocking 

and the existence of deadlock: a state a of a network 
V is a deadlock state if and only if every process of 
V, which is not itself deadlocked, is blocked in a. This 
follows easily from the definitions. 

To aid in the visualization of deadlock, we next intro- 
duce a graphical representation for the collection of re- 
quests being made in a state" we call this a "snapshot"  
graph. This gives an instantaneous picture of the dynam- 
ically evolving behaviour of a network, and summarizes 
the information we need to know in order to determine 
what the next actions (if any) of the network are in a 
particular state. 

Definition 11. The snapshot graph of a network V 
=(P~[ 1 < i N n )  in a state (s, (X1,  ..., X , ) )  is the directed 



graph on the nodes of V in which there is a directed 
arc from node i to node j iff ( i , j )  is a request in this 
state, i.e., if (~p/-  Xi) ('7 o~Pj :~= ~). 

Definition 12. Let a be a state of the network V= (P/I 1 
<<_i<_n>. A sequence of indices (io, . . . , / r - l>  with r=>3 
is termed a cycle o f  requests in a if, for each j, (ij ,  ij+~> 
is a request in a (where addition is modulo r). 

Cycles of requests correspond precisely to cycles in 
snapshot graphs. A cycle of requests is proper if all of 
its indices are distinct. It will be termed a cycle of un- 
granted, or of strong etc., requests in case each of the 
requests has the appropriate property. The length of this 
cycle is r, which for a proper cycle is the number of 
distinct nodes involved. We restrict attention here to cy- 
cles of length at least 3; the case of a cycle of length 2 
is sufficiently different to merit special treatment later 
in the paper. This is because a cycle of length 2 arises 
out of the interaction of a pair of processes, rather than 
out of global behaviour. In particular, a cycle of length 2 
can arise in a tree network, but longer proper cycles 
cannot. This last observation is important  when one 
seeks conditions which are strong enough to ensure 
deadlock-freedom in trees. In fact, a pair of ungranted 
requests (i , j> and (j, i) will be called a conflict, and 
we will devote considerable attention to notions of con- 
flict later. 

We will develop techniques for proving deadlock- 
freedom that rely on establishing a connection between 
the presence of deadlock and the existence of cycles of 
ungranted requests. The analogy is not exact, however: 
there are deadlock-flee networks with states in which 
there are cycles of ungranted requests; there are even 
deadlocking networks in which no cycles exist (for exam- 
ple, a trivial network with a unique, deadlocked, node). 
Nevertheless, we will see that for certain general classes 
of network (ruling out trivial cases like this) deadlock 
can only be caused by cycles of ungranted requests; this 
will enable us to focus attention on regions of a network 
in which such cycles might exist. 

To end this section we provide  some examples of 
network definitions and use them to demonstrate and 
elaborate upon the terminology we have just introduced. 
These examples also demonstrate the prominent role of 
ungranted requests in deadlock. 

Example 1 

A deadlocked chain. A chain of processes, in which each 
one communicates solely with its immediate neighbours, 
is a particularly simple form of tree network. Here is 
an interesting family of chains, parameterized by the 
number of processes. 

Define a chain of n +  1 processes for any n >  1 as 
follows. The processes will be Po . . . .  , P,, with alphabets 
~p/given by 

~P0 = {1.a, 1.b}, 

~p/ ={i .a. , i .b . , i+ l .a , i+  l.b}, l < i < n ,  

c~P, = {n.a, n.b }. 

_CU- J. " . . . . . .  

P0 el Pn-1 Pn 
Fig. 1. Snapshot of deadlocked chain 
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Events have suggestive names comprising a "channel"  
number and a "message". For  simplicity, the only possi- 
ble messages are a and b, and the channels are numbered 
1 to n. We specify the node processes informally as fol- 
lows. The left-hand end process Po can send message 
b along channel 1 to process P1 in response to receiving 
a from it. The right-hand end process P, can send mes- 
sage a to P,_ 1 along channel n in response to message 
b. Each of the intermediate processes P1,-. . ,  P/, 1 can 
transmit a from its right to its left, and b from its left 
to its right. The (recursive) process definitions are 
(i = 1, ..., n -  1): 

Po =(1.a ,1.b >Po) 
P, =(n.b ,n.a ,P~) 
P/ = ( i +  1.a ,p/a)[7(i.b. > p/b), 

P/" =(i.a. , P/)[-](i.b. , p/ab), 
p/b = ( i +  1.a >p/ab)D(i-~l.b >p/), 

P/ab=(i. a , p/b)D(i + l.b > p/a). 

The superscripts on the auxiliary processes (e.g. in P/a) 
indicate the messages which the process is ready to trans- 
mit on the next step. (Incidentally, each of the processes 
P~ . . . .  , P,-1 could be written as the parallel composition 
of a pair of processes with disjoint alphabets, much as 
in Example 9 later in this paper.) The vocabulary of this 
network is its entire alphabet, so that every event re- 
quires the participation of two processes. However, the 
process definitions do not allow any single process to 
initiate either an a or a b signal, and no pair of processes 
can agree initially on a communication, so the chain 
deadlocks immediately. That  is, there is a deadlock state 
with the empty trace. In this state there are requests 
( i - -1 ,  i> and (i, i - 1 )  for l<_i<_n. All of these requests 
are ungranted, and only (0, 1> and (n, n -  1> are strong. 
This state yields the snapshot graph shown in Fig. 1. 

Notice that this state contains many cycles of un- 
granted requests, but no proper ones. The deadlock is 
really due to the cycle that includes all of the processes. 

The astute reader may notice that despite the fact 
that the entire network may deadlock, every non-empty 
subnetwork is deadlock-free! Informally, this is because 
in every non-empty proper subnetwork some event of 
the subnetwork's alphabet is no longer in its vocabulary 
and can therefore be initiated by a single process. We 
will prove that every non-empty subnetwork is deadlock- 
free later in the paper, as a consequence of a more general 
result. 

Example 2 

Dining philosophers. In this example, attributed to Dijk- 
stra and Scholten by Hoare [15], there are five "philoso- 
pher"  processes, five " fo rk"  processes, and a "but le r"  
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process. The deadlock properties of this system are well 
known. The process definitions are: 

PHIL/ = (/.enters ~ i.picks.i ~ i.picks.i + 1 
/.eats , i.puts.i > i.puts.i+ 1 

,/.leaves , PHIL/), 

FORK~= (i.picks.i---~ i.puts.i ~ FORK~) 
D ( i -  1.picks.i , i -  1.puts.i ,FORK/), 

for i = 0 . . . .  ,4, and 

BUTLER = ADMIT Ill ADMIT Ill ADMIT Ill ADMIT, 

where 

ADMIT = []~=.4 o(/.enters >/.leaves ,ADMIT). 

Addition and subtraction of indices is modulo 5. Each 
philosopher wants to enter, pick up the fork on his right, 
pick up the fork on his left, eat, then put down the two 
forks, then leave, and resume his cyclic pattern of behav- 
iour. Each fork will initially allow itself to be picked 
up by either of its neighbouring philosophers, after which 
it must wait to be put down again before resuming its 
initial configuration. The butler is an interleaving of four 
copies of a process which repeatedly allows the entering 
and subsequent leaving of a philosopher. The alphabets 
of these processes are: 

~PHILi = {/.picks.i,/.puts.i,/.eats,/.enters,/.leaves, 
i.picks.i + 1, i.puts.i + 1}, 

c~FORKi = {/.picks.i, i -  1.picks.i, i.puts.i, i -  1.puts.i}, 
(i = 0 . . . . .  4), 

c~BUTLER = {/.enters, i.leaves I 0 __< i __< 4}, 

Figure 2 shows the communication graph for a network 
with nodes for each of the philosophers, forks, and the 
butler. 

It is possible in this system for four philosophers 
to enter and each to pick up one fork, for instance as 
described by the trace 

(1.enters, 2.enters, 3.enters, 4.enters, 1.picks.I, 
2.picks.2, 3.picks.3, 4.picks.4). 

At this point, for i=  1 . . .4 the future behaviour of the 
i th philosopher is described by: 

PHIL/af ter  (/.enters,/.picks.i) = (i.picks.i + 1 , . . .  ). 

In other words, each of these four philosophers now 
refuses ~ P H I L i -  {i-picks.i+ 1}. The other philosopher 
(PHILo) is still trying to enter, so he refuses ~PHIL o 
-{0.enters}. The future behaviour of the i th fork (i 
= 1... 4) is that of 

FORK/af te r  (/.picks.i) = (i.puts.i , FORLi), 

so that each is refusing ~FORK~-{/.puts.i}. The fork 
numbered 0 is still waiting to be picked up, refusing 
c~FORKo- {0.picks.0, 4.picks.0}. 

The butler is described at this point by 

BUTLER after ( 1.enters, 2.enters, 3.enters, 4.enters) 
= I I IL  1 (/.leaves , ADMIT). 

PHIL o 

FORK 3 

Fig. 2. C o m m u n i c a t i o n  g raph  of the d in ing phi losophers  

PHIL 

FORK 

Thus, the butler is refusing ~BUTLER-{i. leaves[ 1 < i  
_-<4}. 

We have now described all of the information for 
a particular state of the system: a trace, and correspond- 
ing (maximal) refusals for each process. This is not a 
deadlock state, because the union of these refusal sets 
does not contain the event 4.picks.0 (in which fork 0 
is picked up by philosopher 4); the network is able to 
perform this event when in this state. Figure 3 shows 
the snapshot graph of this network in this state. The 
requests are all ungranted except for the requests involv- 
ing the pair PHIL 4 and FORKo.  

Example 3 

Deadlocked philosophers. If the dining philosophers are 
allowed to operate without the guidance of the butler 
there is a potential deadlock (when all five philosophers 
enter and pick up a single fork each). This is summarized 
in the snapshot graph of Fig. 4. All of these requests 
are strong and ungranted. 

Example 4 

Variants of the dining philosophers. If we regroup the 
nodes of the dining philosophers network (Example 2) 
by combining the philosophers into a single node and 
combining the forks into a single node, we get the net- 
work shown in Fig. 5: 

(BUTLER, II~=oPHILi, []~:oFORK,), 

with identical behaviour to the original system but the 
communication graph in Fig. 5. 

Each node in this network is deadlock-free. However, 
if we combine all philosophers and forks into a single 
node, we get a network with just two nodes, one of which 
(as discussed above) can deadlock. Nevertheless, again 



PHIL o 

PHIL4 ( 

FORK 4 I 

PHII~ ~ PHIL 2 
FORK 3 

Fig. 3. Snapshot graph of the dining philosophers 

PHIL 

FORK 

P m L  o 

PHIL41 I PHILI 

OL.pi o 
FORK3 

Fig. 4. Dining philosophers deadlocked 

we have the same overall behaviour, so that the system 
is still deadlock-free. 

4 Deadlock properties of networks 

We have already defined deadlock-freedom as a global 
property of a network, involving the behaviour of the 
process PAR(V). We have stated that deadlock-freedom 
is invariant under network reorganizations like permuta- 
tion of nodes and grouping nodes together. We want 
to be able to take advantage of well chosen network 
presentations for CSP processes: to use network topolo- 
gy and graph structure as an aid in structuring proofs 

~ P H I L  i 

H FORI~  B U T L E R  

Fig. 5. Alternative view of the dining philosophers 
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of deadlock-freedom. For  non-trivial networks there are 
several interesting variations on the theme of deadlock, 
which take into account the network topology. 

Firstly, we will say that a network has a property 
hereditarily if it and all of its non-empty subnetworks 
have it. A property (of networks) is hereditary if and 
only if whenever it holds of an entire network it also 
holds of all non-empty subnetworks. Deadlock-freedom 
is not an hereditary property; equivalently, a network 
can be free of deadlock without having that property 
hereditarily. This has already been shown by the Dining 
Philosophers network (Example 2): the subnetwork ob- 
tained by removing the butler (Example 3) fails to be 
deadlock-free. Hence, it is worthwhile making the follow- 
ing definition. 

Definition 13. A network V is hereditarily deadlock-free 
if (it and) each of its non-empty subnetworks is deadlock- 
free. 

We saw in the dining philosophers example that one 
can sometimes make use of a controller process which 
prevents a system getting into a deadlock state. It is 
sometimes possible to use such processes to stop individ- 
ual nodes becoming deadlocked - the controller prevent- 
ing a node reaching a state where it is equivalent to 
STOP. But, at least in the case where each node is de- 
signed as a sequential process, it would be simpler and 
cleaner to design each node so as to avoid deadlock 
in the first place. Since we are specifically interested in 
developing techniques based on local analysis it is hard 
to imagine a general method (as opposed to ad hoc tech- 
niques) in which deadlock-freedom of individual nodes 
is not crucial. For  example, it is easier to reason about  
dining philosophers when presented with the original 
network structure, in which all nodes are deadlock-free, 
rathe than using the two-node variant version. Hence, 
we will concentrate on networks built from individual 
nodes which are themselves deadlock-free: these we call 
busy networks. 

Definition 14. A network V is busy if all of its node pro- 
cesses are deadlock-flee. 

Another  advantage of this type of restriction is that 
it fits well with our desire to develop methods which 
support hierarchical analysis of a network: if a network 
is built from nodes which are themselves networks, we 
will be able to use our techniques for proving deadlock- 
freedom first for the individual nodes, and then to analy- 
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se the entire network we need no longer take into ac- 
count the network structure of its nodes, since all we 
require to know about them is that they are deadlock- 
free. 

Note that the properties of triple-disjointness and bu- 
syness are obviously hereditary. The property of being 
a tree is almost hereditary, in the sense that whenever 
W is a non-empty subnetwork of a tree network V, each 
of its connected components is again a tree. Given this 
fact, we will abuse notation slightly and say that tree- 
hood is hereditary. 

We should remark on the relationships between these 
various notions of deadlock-freedom. Trivially, heredi- 
tary freedom from deadlock implies freedom from dead- 
lock, and also implies busyness. Deadlock-freedom nei- 
ther implies nor is implied by busyness. 

In the rest of the paper we will develop some general 
techniques for proving deadlock-freedom that use busy- 
ness as a hypothesis. The main aim is to develop dead- 
lock-freedom proofs which require only local analysis: 
busyness (involving single nodes) and pairwise analysis. 

5 Proving deadlock properties of networks 

We begin with some very elementary results. The first 
gives us a base case in beginning hierarchical proofs of 
deadlock-freedom: when all the parallelism in a network 
is at the outermost level, so that none of the node pro- 
cesses involve parallel composition, it is very easy to 
prove busyness. The second pair of results allows us free- 
dom to disregard uses of hiding, or to introduce carefully 
selected hiding operations to simplify deadlock analysis. 

Busy networks 

To show that a network is busy in general requires a 
proof of deadlock-freedom for all individual processes. 
The following simple rule is useful as a basis for estab- 
lishing deadlock-freedom for CSP processes built with- 
out parallel composition; it can be used to prove busy- 
ness in a network whose node processes conform to a 
simple subset of CSP (in particular, no node is itself a 
parallel composition, and no node can ever terminate 
successfully). Node processes are allowed to be built by 
prefixing, by nondeterministic choice (internal and exter- 
nal forms, rq and [] respectively), by renaming (with 
an alphabet transformation f) ,  by recursion (#p.P), and 
by sequential composition (P;Q). The successfully ter- 
minating process SKIP may be used in building up node 
processes, but only in limited contexts to prevent termi- 
nation of the node process: every occurrence of SKIP 
must be followed by a sequential composition either di- 
rectly, as in SKIP;P, or indirectly, as in (a- -*SKIPD Q);P. 
The reason for this constraint should be obvious: a ter- 
minated process (like a deadlocked process) cannot per- 
form any event. Note that it is possible to define diver- 
gent processes using these constructs (e.g., by unguarded 
uses of recursion such as #p.p). Consequently, as re- 
marked earlier, we need to check for divergence-freedom 

before attempting deadlock analysis. It is, however, easy 
to show that any term defined in this syntax using only 
guarded recursions, in which every recursive call is pre- 
ceded by a communication, is divergence-free. 

It is easy to prove (by induction on syntactic struc- 
ture) that a divergence-free process built with these con- 
structs alone and obeying this constraint on SKIP can 
never refuse its entire alphabet, and is therefore dead- 
lock-free. Hence the following rule (called D1 in [25]): 

Lemma 2. Suppose the definition of the process P uses 
only the following syntax: 

P: :=S K IP Ia  'P IP;QIPDQIPnQI f (P) Ip I#p .P  

(where p denotes a process variable), and P contains no 
free process variables, is divergence-free and every occur- 
rence of SKIP in P is directly or indirectly followed by 
a ";". Then P is deadlock-free. 

Thus, trivially, any network in which the component 
processes satisfy Lemma 2 will be busy. 

Hiding and deadlock analysis 

In many applications (as for instance in occam [-18]), 
uses of parallel composition are accompanied by the hid- 
ing of internal communications. These are often regarded 
as uninteresting to the external observer and in practice 
outside his control. However, when considering the pos- 
sibility of deadlock, it is usually vital to keep a full record 
of the internal events of a network; therefore the net- 
works we consider do not as a rule have internal events 
hidden. Indeed, the operator PAR defined above does 
not involve any hiding. Nevertheless, since node pro- 
cesses may be arbitrary CSP processes and may thus 
involve uses of hiding, we do need to be able to deal 
with hiding in deadlock analysis. Since hiding may intro- 
duce divergent behaviour (if arbitrarily long sequences 
of the hidden action were possible) we must be careful 
to ensure divergence-freedom when we apply the hiding 
operator to processes. Fortunately, in considering hiding 
and deadlock analysis the following two laws (called D2 
and D3 in [25]) are particularly helpful: 

Lemma 3. I f  P \  C is divergence-free, then it is deadlock- 
free if and only if P is. 

Lemma 4. I f  C c~Q=O, then (P\  C [I Q)=(P  II Q)\ C. 

Given any process definition built by parallel compo- 
sition and hiding, Lemma 4 permits one to move all the 
hiding to the outermost level, provided any relevant in- 
ternal communications are renamed to make the condi- 
tion C c~aQ = 0  true. One thus obtains a behaviourally 
equivalent process involving an outermost application 
of hiding. Thus this law says that as far as behavioural 
analysis is concerned it does not matter  whether hiding 
is all done at the outermost syntactic level or is done 
in various stages as a network is put together. Once 
Lemma 4 has been used in this way and the system has 
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been proved free of divergence (not necessarily in that 
order), Lemma 3 simply observes that the presence of 
hiding does not affect the presence of deadlock so we 
may, for the purpose of proving absence of deadlock, 
remove the hiding operator  altogether. 

The above argument permits us, with care, to ignore 
applications of hiding. It is also possible to introduce 
hiding carefully, and this idea may be very useful in re- 
ducing the number of events in a network's alphabet 
and hence reducing the complexity of its deadlock analy- 
sis. If C~_c~P-~Q is a set of events such that P \ C  is 
divergence-free, then Lemma 3 and Lemma 4 tell us that 
PI[Q is deadlock-free if and only if (P\C)llQ is. This 
concealment of "irrelevant" communication in P can 
substantially simplify deadlock analysis: a suitable 
choice of C may greatly diminish the number of states 
one needs to consider. Examples later in the paper will 
illustrate this type of reasoning. 

6 Deadlock analysis in unidirectional networks 

Many interesting networks have the property that at 
all times each process is prepared to communicate with 
at most one other process; the choice of communication 
partner may vary during execution of the network. For  
instance, Dijkstra [11] discusses networks in which each 
process attempts to communicate with its neighbours 
in cyclic order. The general property, which we term 
unidirectionality, is formalized as follows. It is clearly 
an hereditary property. 

Definition 15. A network V is unidirectional if, for each 
trace s of V and each i, there is at most one j4 : i  such 
that 

initials (P/after s I aPi) c~ ~Pj :# O. 

Unidirectionality of a network obviously implies that 
in a deadlock state any request is also a strong request. 
It also clearly implies that in any state the snapshot 
graph can have at most one arc leading from each node. 
Of course, processes in a unidirectional network may 
still be able to perform events outside of the network's 
vocabulary. 

A connection between cycles of requests and dead- 
lock is made by the following result. It gives a simple 
characterization of the snapshot graph of a unidirection- 
al system in a deadlock state: if the system satisfies the 
conditions of the theorem then deadlock corresponds 
to a cycle in the snapshot graph involving at least three 
distinct nodes, each request being ungranted. The condi- 
tions are strong enough to exclude cycles of length 2, 
which as discussed earlier, are a special case. 

Theorem 1. Let V= ( Pil 1 < i < n) be a busy unidirectional 
network of processes. I f  each pair [P/]I Pj] is free of dead- 
lock, then any deadlock state of V contains a proper cycle 
of ungranted strong requests. 

Proof. Let P = PAR(V) and let (s, (I11 . . . . .  Y,)) be a dead- 
lock state of P. Then by definition 

vi.(s r~ ,  ~)E~ E~]], (a) 

and by Lemma 1, 

0 c~Pi= 0 Yi. (b) 
i - - 1  i = 1  

It follows from this and the fact that the network is 
triple-disjoint that, whenever i@j, 

~ n ~ _ =  ~u ~., (c) 

By assumption, the Y~ are maximal refusal sets in 
(a). For  each i let Qi=Pi after s I ~Pi, so that P after 
s = II~'= 1 Qi. We argue as follows, letting i be an arbitrary 
index. 

Since P~ was assumed to be deadlock-free, we have 
Yi ~ ~P/. From (b) we see that for each i, 

~Pi-(U ~PJ)~ Yi, (1) 
j~ei 

so that in this state of the network each process is refus- 
ing all events unique to its own alphabet. Hence, 

0 . ~ -  ~--- U ~ .  (2) 
j ! : i  

By maximality of Y~ we know that Y~ contains all of 
the impossible events, those in the set c~Pi-initials(Qi): 

~P/ -  initials (Qi) ~- Yi. 

Hence, 

~P/ -  Y/_~ initials (Qi). 

But there is at most one j :# i with 

initials (Qi) n ~Pj + O, 

since the system is unidirectional. Hence there is at most 
one j :# i for which 

( ~ -  Y,)c~+O. (3) 

Putting these facts together, we see that there is a unique 
j (depending on i) such that i4=j and 

In the above analysis, i was arbitrary, and clearly the 
unique j satisfying (3) depends on i. Now consider this 
j as a function of i, mapping indices to indices. Note 
that j ( i)4i ,  and it also happens that j(j(i))4i,  because 
if this were to happen we would have a pair of indices 
i, j =j(i) with 

~ -  ~_=~, ~ -  ~_=~. 

But by (c) we would then have 
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which would in turn imply that 

~P~- ~_~ ~, ~Pj-  ~ ___ Y~. 

Hence, we would get 

contradicting the assumption that the pair [P~ II Pj] was 
deadlock-free. 

The sequence 

1,j(1),j2 (1), ... 

must contain a first repetition, say j"(1)=jm+r(1), since 
there are only finitely many indices. Define ik=j~+k(1), 
for k = 0 . . . r - 1 .  Then {i0 . . . . .  i t - l }  is a proper cycle 
of strong ungranted requests. []  

An intuitive interpretation of this theorem is that 
global deadlock (i.e., deadlock of the entire system) can 
only be caused in a unidirectional system by local dead- 
lock (involving at most two processes) or else by a cycle 
of at least three distinct nodes each demanding to com- 
municate with its successor and refusing to communicate 
with its predecessor. 

Theorem 1 thus gives us a way to focus on specific 
parts of a unidirectional network (cycles in its communi- 
cation graph) if we can first establish busyness and 
pairwise deadlock-freedom. If a network has only a small 
number of cycles, this type of approach may be advanta- 
geous. An important  special case is when we have a 
unidirectional tree network. 

Corollary. I f  a tree network is busy, unidirectional, and 
pairwise deadlock-free then it is hereditarily free of  dead- 
lock. 

Proof  A tree has no proper cycles, and all of the hypoth- 
eses of the theorem are hereditary properties. []  

Thus we have a simple method requiring only pairw- 
ise deadlock analysis for establishing deadlock properties 
in unidirectional tree networks. 

Another  special case where the number of cycles is 
very small is in a unidirectional ring of processes: there 
are only two possible cycles to consider: clockwise and 
anticlockwise. To satisfy the preconditions of Theorem 1 
we still need to prove pairwise freedom from deadlock. 
This may also often be possible by a simple case analysis 
based on the traces and refusals of the two processes 
in question, and the amount  of work involved in the 
analysis can often be reduced substantially by making 
further use of Lemma 3 and Lemma 4 above. Here is 
an example to illustrate this type of reasoning. 

Example 5 

A token ring. This example is based on [12]. We consider 
a ring of n processes (n>3), arranged with the index 
increasing clockwise, each of which wants to keep enter- 
ing a "critical section". To maintain mutual exclusion, 
a process is only allowed to enter its critical section when 

it has obtained a "privilege" token, which is passed anti- 
clockwise around the ring. When a process wants to 
begin its critical section, but does not hold the token, 
it first requests the token from its clockwise neighbour; 
when it is granted the privilege (i.e., when the token 
reaches it), the process performs its critical section (repre- 
sented here by a single event) and then releases the token. 
Using mutual recursion, and with mnemonic event 
names, we may define the individual processes P/(i< n) 
by 

Pi = (/.get , i+  1.find , i.priv , i.crit ~ i.rel ' Qi) 

[]  (/.find ~ i+  1.find ~ i.priv , i.priv , P~), 

Qi=(/.get ,i.crit ,i.rel 'Qi) 
[](/.find , i -  1.priv ' Pi). 

All arithmetic here is modulo n. The neighbours of pro- 
cess i are i - 1  and i+  1. P~ represents a node without 
the token and Qi represents a node with the token. Thus, 
if P~ wants to get the token it must put in a request 
first to its successor, and wait for that process to find 
the token and pass it back; if P~ is asked to find the 
token it passes the request on to its neighbour, and will 
later relay the token towards the requester. A Qi process 
with the token may either allow the critical action or 
pass the token on to its predecessor. 

For  each i, let eP~= c~Qi be the obvious alphabet con- 
sisting of all events appearing in the syntactic description 
of processes above. For  the network V=(Qo ,  
P~ . . . . .  P,- 1), in which initially the process with index 0 
has the token, and these alphabets are used, we would 
like to prove freedom from deadlock. The communica- 
tion graph of V is the obvious cycle. 

Each of the node processes is obviously deadlock- 
free, by Lemma 2, since they are built by prefixing, condi- 
tional choice, and guarded recursion. It is easy to see 
from the process definitions that the system is (triple- 
disjoint and) unidirectional. We wish to use Theorem 1. 
First we prove pairwise freedom from deadlock. Since 
non-adjacent pairs of processes are trivially deadlock- 
free (their alphabets are disjoint and each individual is 
deadlock-free), it is only necessary to show that each 
of the adjacent pairs 

Qo II P1, 
P/II Pi+l (0< i<n) ,  
P~ IHQ0 

is deadlock-free. These analyses are simplified by judi- 
cious use of hiding, as follows. 

For  each i, let L i=  {/.get, i.rel, /.find, i -1 .pr iv} and 
R i = {i.crit, i.rel, i + 1.find, i.priv}. Clearly, L i c_ o~p i _ c~Pi+ 1 
and Ric__c~P~+~-c~P~. We can hide the events from Li 
in Pi (or in Qi) without introducing divergence, because 
at all stages P~ cannot perform arbitrarily long traces 
consisting only of events from this set. The same is true 
of R i and P/or  Qi. Let p/L= Pi \L  i and QL = Qi\L i ,  with 
similar notation p/g and QR for Pi\Ri  and Qi \R i .  By 
Lemmas 3 and 4, the original network is pairwise free 
of deadlock if and only if the pairs 
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Qo ~ II Pa R, (1) 
p L II Pi~ 1 (0 < i < n), (2) 
p L II Qg. (3) 

are deadlock-free. We have, by definition, and using stan- 
dard properties of the hiding operation [5], 

p L = i+  1.find > i.priv , (Q~nPiL), 
Q~ = (i.crit , Q L ) v q P i L  , 

Q~ = p R = (/.find----* i-- 1.priv , Pig)[2](i.get , Q]~). 

Since rn is associative and idempotent, it follows easily 
that Pi L satisfies the simpler equation 

Pi L = i + 1.find > i.priv > Q/% 

Since (3) is in fact case i=  n -  1 of (2), we need only 
consider (1) and (2). These pairwise deadlock analyses 
may be done by a fairly straightforward analysis based 
on the process definitions. To illustrate the type of rea- 
soning necessary here, consider a typical pair in case 
(2), p/L I[ Piw 1 for an i in the range 1... n -  1. The alphabets 
of these two processes are 

all i, one of these two possibilities always occurs. Initially 
one process (numbered 0) has the token; and every com- 
munication of the form i.priv affects the two adjacent 
processes in whose alphabets it is. Therefore, there is 
always exactly one process with the token. 

To rule out a "clockwise" cycle in which (for each 
i) process i is waiting for process i+  1, note that this 
can only occur if each process i does not have the token. 
This violates the invariant property, showing that no 
such cycle can arise. 

To rule out the "anticlockwise" cycle, note that pro- 
cess i + 1 can only have an ungranted request to process 
i when it can also communicate outside the alphabet 
of the network (i.e., in the initial state of P~ or Qi). This 
is not a strong request. Hence, there can never be a cycle 
of strong ungranted requests with each process waiting 
for its predecessor. 

The proof given for this example assumed that there 
is exactly one token. A modification of this proof  goes 
through whenever the network is started with at least 
one token in the ring. Of course, in the degenerate case 
where there is no token, deadlock must occur. 

c~Pi L = {i + 1.find, i.priv, i.crit}, 

c~P~w 1 = {i. + 1.find, i.priv, i + 1.get}. 

Hence, deadlock is only possible if at some point Pi L 
refuses i.crit, P/R+1 refuses i+  1.get, and one of the pro- 
cesses refuses i+  1.find, and one of the processes refuses 
i.priv. Let ~ a denote the number of occurrences of the 
event a in the current trace of this pair of processes. 
From the process definitions it is clear that in all stages 
where Pi L refuses {i.crit, i.priv} we have ~ i + l . f i n d  
= ~i.priv, whereas whenever Pig+l is refusing {i+ 1.get, 
i + 1.find} we have ~ i.priv = ~ i + 1 . f ind-  1. This combi- 
nation of refusals is therefore impossible. The only re- 
maining possibility for deadlock would thus be if p L 
refuses {i.crit, i+  1.find} and P~w refuses {i + 1.get, i.priv}. 
A similar counting argument disposes of this case, and 
we have thus shown that the pair Pi L l] P/~ 1 is deadlock- 
free. 

We leave it to the reader to fill in the details, and 
to use similar techniques for case (1), the pair Q~ II p e. 
The conclusion at this stage in the analysis is that the 
original network is pairwise free of deadlock. We now 
return to the original network structure. 

Now we can use Theorem 1 to deduce the existence, 
in any deadlock state, of a cycle. Thus, deadlock is possi- 
ble only if either each process is waiting for its successor 
or each process is waiting for its predecessor. In order 
to show that these cycles are impossible, we first prove 
that the property that there is exactly one process with 
the token is an invariant for the network. 

Now let ~ a  denote the number of occurrences of 
event a in the current trace of the entire network. Clearly, 
process 0 has the token when 4~ n -  1.priv = ~ 0.priv, and 
does not have the token when ~ n -  1.priv = ~ 0.priv + 1. 
For  i + 0, process i has the token when ~ i -  1.priv = ~ i.- 
p r i v -  1, and does not have it when 4~ i -  1.priv = 4~ i.priv. 
It is easy to prove from the process definitions that, for 

7 Deadlock analysis in arbitrary networks 

Theorem 1 is only applicable to unidirectional networks. 
The token ring described above served to illustrate this 
class of networks. More general results are needed to 
tackle non-unidirectional systems such as the Dining 
Philosophers. We seek results which allow us to deduce 
that deadlock can only be caused by some sort of global 
misbehaviour (for instance, proper cycles of ungranted 
requests), and which are general enough at least to elimi- 
nate deadlock from trees. We can expect the precondi- 
tions of such theorems to involve a certain amount  of 
local analysis; in the unidirectional case this amounted 
to a check that all individual processes and all pairs 
of processes were deadlock-free. 

It is clearly of practical importance to keep the 
amount  of local checking as small as possible: any more 
than pairwise checking could easily prove prohibitively 
expensive in calculation. Unfortunately, even simple 
types of network can sometimes require much more than 
pairwise analysis. We have already seen that there exist 
networks in which deadlock is a global property: for 
example, the deadlocked chain network, all of whose 
non-empty proper subnetworks were deadlock-free. That  
example also demonstrates that even for simple commu- 
nication graphs there is no simple bound on the size 
(or even on the diameter, to use the graph-theoretical 
term) of the local regions requiring analysis: it might 
be necessary to analyse the entire graph at once. 

For  any particular network it is possible to identify 
a collection of local regions (called "competi t ion sets" 
in [-6]) which can form the basis of a deadlock analysis, 
but this may not break down the problem into signifi- 
cantly smaller subnetworks. We will return to the prob- 
lem of decomposing a general network into separable 
regions later. For  now we will concentrate on types of 
network which require only pairwise checking. And in- 
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stead of competition sets we introduce some sharper ma- 
terial on "conflict". 

In a non-unidirectional network we cannot expect 
every deadlock state to contain a proper cycle of strong 
requests. Nevertheless, an analysis based on proper cy- 
cles of requests will clearly be enough to exclude dead- 
lock in trees, since (as we said earlier) trees have no 
cycles. Our task is therefore to find extensions of the 
unidirectional condition which are still pairwise check- 
able and which are strong enough to generate proper 
cycles of requests in deadlock states. The following defi- 
nitions, formalizing notions of conflict between pairs of 
processes, are motivated by this aim. 

Conflicts 

Basically, a conflict is a degenerate cycle of two un- 
granted requests. We give a general definition of a F- 
conflict, or conflict relative to a set F of events: a F- 
conflict is a cycle of two ungranted requests with respect 
to/7. We will normally be concerned with the case where 
F is the vocabulary of the global network containing 
the two conflicting processes, since if any individual pro- 
cess can perform an event outside of the network's vo- 
cabulary, then the network cannot be deadlocked. Since 
the emphasis here is on pairwise analysis, we find it con- 
venient to use the abbreviation pair for a subnetwork 
with two nodes. 

Definition 16. A state a=(s ,  (X,  Y)) of the pair (P, Q) 
is a F-conflict if each has an ungranted request to the 
other (with respect to F), i.e., if: 

p~,roQ and Q ~ , r . p .  

The state is a strong F-conflict if (at least) one of these 
ungranted requests is strong i.e., if additionally 

tr, F ty, F 
p ~ ~  or Q ~ ~  

A F-conflict is a state in which each of P and Q 
wants to communicate with the other, neither can com- 
municate outside 17, and they cannot agree on a joint 
communication. The conflict is strong if one of the two 
processes is completely blocked by the other one. 

Definition 17. A pair (P, Q) is free of F-conflict if none 
of its states is a F-conflict. A process is free of strong 
F-conflict if none of its states is a strong F-conflict. 

Informally, (P, Q) is conflict-free with respect to F 
if P and Q can never simultaneously be offering to com- 
municate with each other without either agreeing on 
some action or one of them being able to communicate 
outside /7. The pair is free of strong F-conflict if it can 
never get into a state where one process can only proceed 
by communication with the other, which is offering it 
only inappropriate communications and cannot commu- 
nicate outside of/7. Clearly, each pair which is free of 
F-conflict is also free of strong F-conflict. 

We extend these notions of conflict-freedom to a gen- 
eral network as follows. 

Definition 18. A network V= (P~I 1 < i<  n) is conflict-free 
iff for all i+j the pair (Pi, P~) is conflict-free with respect 
to the vocabulary A of V The network is free of strong 
conflict iff each pair is free of strong A-conflict. 

We note that, if F' _c/7, then freedom from F-conflict 
(or strong F-conflict) implies freedom from U-conflict 
(or strong U-conflict). Since the vocabulary of a subne- 
twork is a subset of that of whole network, it follows 
that both of these properties are hereditary. Conflict- 
freedom and strong conflict-freedom can be proved by 
purely local analysis. 

Here are three elementary results on conflict-free- 
dom, giving some simple criteria which guarantee free- 
dom from conflict. In each case we assume that c~Pn 
~Q_cF,, which will certainly be the case when F is the 
vocabulary of a network containing P and Q. We also 
assume that P and Q are deadlock-free, which will be 
true when the network containing P and Q is busy. 

The first result is almost trivial: 

Lemma 5. The pair (P, Q~) is free of F-conflict whenever 
Ic~P n~QI< I. 

Proof If two processes have no event in common, they 
never try to communicate with each other and the ques- 
tion of conflict is vacuous. Conflicts never arise between 
deadlock-free processes with a unique event in common: 
if each is offering to communicate with the other, they 
must be agreeing on this event. [] 

The second result applies if at all stages, whenever 
P and Q are trying to communicate their choice is re- 
stricted to a unique event. 

Lemma 6. The pair (P,, Q) is free of F-conflict if there 
is an infinite squence of events common to the alphabets 
of P and Q, say ue(c~Pnc~Q) ~', such that in every trace 
of P and in every trace of Q the communications between 
P and Q form a prefix of u, i.e. 

VsEtraces(P)utraces(Q), s [(c~P c ~ Q ) < u .  

Remark. When u has the special form t ~ for some finite 
trace t this is essentially a cyclic communication condi- 
tion. 

Proof Suppose (w, (X,  Y ) )  were a conflict of PII Q, 
so that s l=w rap is the corresponding trace of P and 
s2 =w  [~Q that of Q. Clearly, sl r (~P c~ c~(2) 
=s2 I(ePnc~Q). By hypothesis this trace is a prefix of 
u. Suppose the next element of u is a. We know that 
a is the only possible member of the sets initials (P after 
s l ) ~ Q  and initials(Q after s2)nc~P. Since, by assump- 
tion, eQ-X.t=O and eP-Y=t=O it is easy to see that a 
belongs to both these sets. This contradicts the assump- 
tion that e P c~ c@ c_X u Y. [] 

The third result applies in case the behaviour of P 
and Q is such that in all relevant states one of them 



is acquiescent, in the sense that it cannot refuse anything 
the other one may offer. The states to which this condi- 
tion must apply are those in which P and Q are refusing 
to do any external event, but neither is refusing the entire 
alphabet of the other. It is easy to see that this condition 
prevents conflict when P and Q are known to be dead- 
lock-free. Hence: 

Lemma 7. The pair (P, Q) is free of F-conflict if for every 
trace s of PII(2, whenever (sI7P, X ) e ~ P ~  and (sit,  Q, 
Y ) e ~  EQ~ satisfy 

X~_c~P--F,, Y~c~Q--F, (c~P-X)nc~Q+O, 
( ~ Q -  Y)c~aP+O, 

it follows that either 

X n initials(Q after s I ~Q) = 0 

o r  

Yn initials (P after s I ~P) = O. 

Proof. Assume (R Q) satisfies the stated conditions. Sup- 
pose the pair has a F-conflict (s, (X,  Y)) ,  and argue 
for a contradiction. By assumption 

X~_aP--F,, Y~_~Q-F,, ( c ~ P ~ a Q ) - X + O ,  
(7Q n a P ) - -  Y~= O, 

and also X u  y D ~ p n ~ Q .  Without loss of generality 
(since everything up to now has been symmetrical in 
P and Q), we can assume that 

X c~ initials (Q after s I ~Q) = 0 

We know from the above that there is an event a e a P ~  
eQ such that a ~ X -  Y Since aq~ Y and Y is a maximal 
refusal of Q after s IaQ we know also that 

aeinitials(Q after s ~ ~Q). 

This contradicts the assumption that X ~ initials (Q 
after s reQ)=0.  That  completes the proof. [] 

Each of the above criteria in Lemmas 5, 6 and 7 
is more general (but more complex) than the previous 
one. Of course, each also implies freedom from strong 
F-conflict. It is also easy to find yet weaker conditions 
than those of Lemma 7 which imply freedom from strong 
conflict; an obvious one is that no process ever makes 
a strong request. 

To illustrate these concepts of conflict-freedom we 
return to some of our earlier examples. 

Example 1 

Deadlocked chain. Here, no pair of adjacent processes 
is conflict-free, and the pairs (P0, P1) and (Pn-1, P,,) 
are not even strong conflict-free. It is easy to see, how- 
ever, that the other pairs of adjacent processes are strong 
conflict-free: each P~(0<i<n) is always in a position 
where it can either talk to both of its neighbours or 
it can perform all communications with the only neigh- 
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bout  it can talk to. In neither of these cases can it be 
the blocked process in a strong conflict. 

Example 2 

Dining philosophers. This network is conflict-free. For  
the philosopher-fork combinations observe that there is 
a pattern of cyclic communication; for example, the com- 
munications between PHIL/ and FORK/  always form 
a prefix of the sequence (/.picks.i, i.puts.i)% Hence, by 
Lemma 6, each philosopher-fork pair is conflict-free. For  
the philosopher-butler combinations, note that whenever 
the butler can talk to a philosopher he cannot refuse 
anything the philosopher might offer, so that (in the ter- 
minology used above), the butler is acquiescent. Hence, 
by Lemma 7, each philosopher-butler pair is conflict- 
free. There is no need to consider fork-butler pairs, since 
their alphabets are disjoint. 

Example 5 

Token ring. Here we have c~P/n c~P/+ 1 = {i + 1.find, i.priv}, 
and it is easy to see that the interactions between 
P~ and P~+, follow the cyclic communication pattern 
( i +  1.find, i.priv)% Hence the network is conflict-free 
(and also free of strong conflict) by Lemma 6. 

Of course, our reason for the invention of the conflict- 
freedom conditions is that they enable us to establish 
some useful results on deadlock. 

Deadlock analysis in conflict-free networks 

Theorem 2. Let V= (P/I 1 < i < n )  be a busy network with 
vocabulary A. I f  V is free of strong A-conflict, any dead- 
lock state of the network contains a proper cycle of un- 
granted requests with respect to A. I f  V is conflict-free 
then any deadlock state contains a proper cycle of un- 
granted requests (io . . . . .  ir 1) with respect to d(r>_3), 
such that the only requests being made in this state be- 
tween processes involved in the cycle are the requests re- 
corded in the cycle. 

Proof Similar to that of Theorem 1, using the fact that 
freedom from strong A-conflict implies that in any dead- 
lock state, whenever there is a request from P~ to Pj and 
Pj is not itself deadlocked, there must be a request from 
Pj to some other process Pk with k 4: i. []  

Note that Theorem 1 is a corollary to Theorem 2, since 
in a unidirectional network every A-conflict of a pair 
of processes implies that they are deadlocked. 

It is not hard to improve this result slightly to allow 
for one pair of processes in the network to fail to be 
free of strong conflict, if instead the pair is deadlock-free. 
That we cannot go further and allow two pairs of pro- 
cesses to be deadlock-free but not free of strong conflict 
is shown by the deadlocked chain example. 

Theorem 3. The conclusions of Theorem 2 remain valid, 
even if we allow one pair of processes (Pi, P2) to be dead- 
lock-free but not free of strong conflict. 
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Corollary. I f  a tree network satisfies the conditions of 
Theorem 2 or Theorem 3 it is hereditarily deadlock-free. 

Again, we return to the examples to demonstrate the 
uses of these results. 

Example 1 

Deadlocked chain. Even though the pairs ~Po, P1) and 
(P, -  a, P,) have strong conflicts, it is easy to prove (using 
Lemma 3 and Lemma 4) that they are both deadlock- 
free. We already know that all other pairs are free of 
strong conflict. Since the removal of any number of pro- 
cesses (strictly between 0 and n) leaves us with a collec- 
tion of chains, none of which contains both of these 
pairs of processes, we conclude by the above corollary 
to Theorem 3 that every non-empty proper subnetwork 
is deadlock-free, confirming our earlier prediction to this 
effect, 

Example 2 

Dining philosophers. Since we have already shown that 
this network is busy and conflict-free, Theorem 2 implies 
that any deadlock state contains a proper cycle of un- 
granted requests. We sketch a proof demonstrating the 
impossibility of such a cycle as follows. 

- The network structure implies that such a cycle must 
involve at least one fork process and therefore must con- 
tain an edge from a philosopher to a fork. 

No philosopher can have an ungranted request to a 
fork unless that fork has been picked up by the other 
adjacent philosopher. Because of its position in the cycle, 
this fork must have an ungranted request to the philoso- 
pher who is currently holding it. 

While a philosopher holds a fork he cannot communi- 
cate with the butler. Therefore, the only process to which 
this second philosopher can have an ungranted request 
is his other fork. 
- We can clearly continue this argument to show that 
the cycle must run through all of the philosophers and 
forks (either clockwise or anticlockwise). 
- Further, we can deduce that each of the philosophers 
holds exactly one fork. This means that so far each phi- 
losopher has communicated one more 'enters '  events 
than 'leaves'. 

However, the butler process was designed to prevent 
this state arising in more than four philosophers at once. 
Hence, this contradiction proves that the network is free 
of deadlock. 

Example 5 

Token ring. By applying Lemma 6 and Theorem 2 we 
can prove deadlock-freedom of the token ring more easi- 
ly than by our earlier techniques. We have already shown 
(easily) that the ring is free of strong conflict. By Theo- 
rem 2, this means that any deadlock must be caused 
by a cycle of ungranted requests, which in this particular 
network means that either each process is waiting for 
its successor or each process is waiting for its predeces- 

sor. In the previous proof  for this network we had to 
go through a much more involved pairwise analysis to 
reach this stage in the argument. The remainder of the 
proof is the same. 

Example 6 

Telephoning philosophers. An interesting family of varia- 
tions on the Dining Philosophers theme is obtained if 
consider two disjoint "colleges", each with five philos- 
phers, five forks and a butler, and with a telephone in 
each dining room. We introduce new events /.phones.- 
j(0 < i, j < 4) representing telephone calls from philoso- 
pher TP H IL  i in the first college to philosopher TPHIL) 
in the second college. Apart  from the telephone events, 
all events involving processes in the second college are 
"pr imed"  to enforce the disjointness constraint. The 
behaviour of each philosopher is modified by insertion 
of certain telephone events; the forks and butlers operate 
as before. There are many possible ways to allow philos- 
ophers to attempt to use the telephone, some leading 
to deadlock and some not. 

Firstly, suppose that at each college every philoso- 
pher must dial the telephone number of the other dining 
room after eating, before putting down his forks; he is 
prepared to engage in a telephone call with any of the 
philosophers from the other college. The process descrip- 
tions for the philosophers are simply: 

TPHILi  = (/.enters > i.picks.i ~ i.picks.i+ 1 ,/.eats 

R 4- o(/.phones../' , i.puts.i > i.puts.i + 1 

,/.leaves , TPHILi)), 

TPHIL'i = (/.enters' ~ i.picks.i' > i-picks.i + 1' >/.eats' 

, D~=o(j.phones.i ,i.puts.i' >i.puts.i+ 1' 
/.leaves'----. TPHIL'i)). 

Clearly, eTPHIL~ ~ e T P H I L ) =  {/.phones.j}. It is easy to 
check that the communication graph of a network with 
nodes for each philosopher, fork and butler has 22 nodes 
and 55 arcs; this graph is not very well structured for 
the purposes of deadlock analysis. However, we can 
choose instead to present this system as two colleges 
(each itself a network of five philosophers, five forks and 
a butler) linked by a single arc (rather like a telephone 
cable !). We will then be able to take advantage of hier- 
archical analysis. To prove deadlock-freedom we argue 
as follows. 

- The insertion of extra events does not affect the dead- 
lock-freedom of each college separately, since the extra 
events are all outside the vocabulary of the college and 
do not therefore require cooperation among the college's 
own processes. Hence, each college itself is deadlock-free. 
In other words, our two-node network is busy. 

The vocabulary of our network is {/.phones.- 
j l0 < i, j < 4}. We now show that there can be no conflict. 
The first college can reach a state in which it can only 
perform vocabulary events, but only in the situation 
where at least one philosopher (TPHILi,  say), and hence 
the whole college, is prepared to communicate any of 
the events in the set {i .phones. j]0<j<4}.  Similarly, if 
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the other college is currently willing only to engage in 
vocabulary events one of its philosophers, say TPHIL),  
is willing to perform any of the events in {/.phones.- 
j l0 < i=<4}. These two sets intersect, since they contain 
the event i.phones.j. In other words, since each room 
contains a philosopher who wants to talk on the tele- 
phone with an arbitrary member of the other room, the 
telephone call can be made. Thus there is no conflict 
in this network. 
- Since our network is busy, trivially unidirectional, free 
of conflict, and a tree, it follows from the Corollary to 
Theorem 3 that the system is deadlock-flee. 

Secondly, suppose instead that the philosophers' 
behaviour is described by: 

TPHIL  i=(i.enters----~i.picks.i >i.picks.i+ 1 >/.eats 

i.phones.i >i.puts.i , i .puts.i+ 1 

/.leaves ~ TPHILi), 

TPHIL'i = (/.enters' > i.picks.i' > i.picks.i + 1' >/.eats' 
i.phones.i >i.puts.i' >i.puts.i+ 1' 
/.leaves' , TPHILI). 

Thus each philosopher attempts to telephone the corre- 
sponding philosopher with the same index. It is fairly 
easy to show that in this system there is a possible dead- 
lock. 

The reader might like to investigate the deadlock 
properties of the version in which each philosopher tries 
to call his opposite number after he has put down one 
fork: 

TPHILi  = (/.enters > i.picks.i ~ i.picks.i + 1 ~ i . e a t s  

i.puts.i >i.phones.i >i.puts.i+ 1 

,/.leaves , TPHILi), 

TPHIL'I = (/.enters' ~ i.picks.i' > i.picks.i + l'---~/.eats' 

i.puts.i' >i.phones.i >i.puts.i+ 1' 

/.leaves' , TPHIL'i). 

On achieving conflict-freedom 

Networks in which the design of processes and the poten- 
tial communication patterns are rather symmetric may 
fail to be conflict-free; a good example is provided by 
the deadlocked chain with its two end processes re- 
moved. Typically this happens where there are messages 
which P might wish to send to Q and vice versa. Conflict 
typically appears when P and Q are both waiting for 
a message from the other, but neither is ready to send 
one. 

It is hard, however, to imagine a reasonable example 
(of a deadlock-flee network) which has conflict and yet 
cannot be redesigned to achieve freedom from strong 
conflict. A communication which is being offered to the 
blocked process in a conflict state can never occur, and 
it is therefore quite likely that this event can be removed 
from the design of the blocked process without changing 
the behaviour of the network as a whole. For  example, 
in the typical conflict described above there must be 
some mechanism, either a message from some other pro- 

cess or the external environment, which could generate 
a message from P to Q, or else there is no point in 
Q waiting for it. We illustrate this potential need to rede- 
sign processes so that networks become conflict-free with 
yet another variant of the Dining Philosophers. 

Example 6 

Conflicting philosophers. If we replace the butler process 
of Example 2 with the following process, which has dif- 
ferent traces from those of the original butler, but the 
same alphabet, the resulting network would fail to be 
conflict-free: 

BUTLER'  = ADMIT4,  

ADMIT4 = []/4 o (/.enters---* ADMIT3), 

ADMITk = []~_0((i.enters >ADMITk_I) 
[] (/.leaves > ADMITk + 1)), (k = 1, 2, 3) 

ADMIT0 = [~/4=o(i.leaves >ADMIT0.  

In this network the pairs consisting of a philosopher 
and butler are not even free of strong conflict, since when 
the butler has admitted the other four philosophers he 
is quite happy to let the remaining philosopher " leave" 
even though he is blocking him by preventing him from 
"entering". The snapshot graph describing this state is 
the same as for the earlier version (Diagram 3), except 
that there is an additional edge, from B U T L E R  to 
PHIL  O . 

However, the behaviour of the network as a whole 
is unaltered if we replace the old butler by this one (be- 
cause the remaining philosopher of course is not even 
trying to leave at this point). There is a sense in which 
the network's correctness (i.e. deadlock-freedom) de- 
pends more on the overall structure of the network than 
it did with the original definition of the butler. 

In summary, then, we believe that conflict-freedom 
is a widely applicable condition, since we are aware of 
no natural and correct network which fails to meet this 
condition and cannot be redesigned to yield a behaviour- 
ally equivalent network that is indeed free of strong con- 
flict. 

8 Network decomposition 

In this section we introduce a general method for decom- 
position of a network into subnetworks which may be 
treated largely independently for the purposes of dead- 
lock analysis. The role of conflict-freedom of a pair of 
processes is crucial in this method. 

If V is a network, we define the disconnecting edges 
of V to be the edges of the communication graph whose 
removal would increase the number of connected com- 
ponents. The disconnecting edges are precisely the edges 
which cannot be part of any cycle in the graph. We 
also define the essential components of V to be the con- 
nected components of the graph that remains after all 
disconnecting edges are removed. (In graph-theoretic 
terms, the essential components are the maximal edge 
bi-connected subgraphs.) The essential components of 
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a tree are its individual processes, and every edge is a 
disconnecting edge in a tree. Even in a general network 
the essential components themselves always form a tree 
when an edge is drawn between a pair of essential com- 
ponents if and only if the alphabets of two of their 
members intersect non-trivially. 
In any busy network free of strong conflict, Theorem 2 
showed that deadlock can only be caused by a cycle 
of ungranted requests. It is not difficult to see that such 
a deadlock-causing cycle necessarily lies in one of the 
essential components of the network. It follows that if 
none of the essential components of such a network can 
contain such a cycle, the whole network is deadlock-free. 
Note, however, that it is necessary to prove the absence 
of cycles of ungranted requests in an essential component  
with respect to the alphabet of the whole network, not 
just with respect to that of the essential component. 
These facts, and analysis of conflict-freedom, help to es- 
tablish the following result. 

Theorem 4. Suppose V is a network with essential compo- 
nents 1/1 . . . .  , Vk where the pair of processes joined by each 
disconnecting edge are conflict-free with respect to A, the 
vocabulary of V. Then if each of the Vii is deadlock-free, 
so is V 

Proof This result follows from the associative law of 
PAR, for the behaviour of V is the same as that of the 
network whose nodes are the parallel compositions of 
V's essential components 

PAR(V) = PAR ( (PAR(g) ]  1 =< i =< k)). 

The communication graph of this new network is a tree 
as observed above. It is busy by assumption that each 
V~ is deadlock-free. To show conflict-freedom we argue 
as follows. 
- If the pair [PAR(V/)IIPAR(Vj)] were in conflict with 
respect to the vocabulary of V, their alphabets would 
intersect and so there would be a (necessarily unique) 
pair of processes P c  V/and Q~ Vj such that ePc~ eQ 4:0. 
- If (s, ( x ,  Y)) were a conflict of [PAR(V/)IIPAR(Vj)] 
then, by definition of PAR(V~) and PAR(Vj) there would 
be states (s~c~ V/, X) and ( s le  Vj, Y) of V/and Vj corre- 
sponding to the fa~ilures (sFeV/, X)~)~PAR(V/ )~  and 
(s I ~ Vj., Y ) ~  ~PAR(Vj)~. 
- If X' and Y' are the components of X and Ycorre- 
sponding to P and Q, the conditions ensure that 
X c~V j=X '  c~Q and that YcaaVi= Y' c ~ P  
- It follows that (s ~(ePw~Q), (X', Y')) is a A-conflict 
of [P ]l Q], contrary to assumption, giving the desired 
contradiction. []  

Thus we have some results identifying parts of net- 
works which can, from the point of view of deadlock 
analysis, be regarded as independent. Of course, this is 
only useful in practice if the network decomposes into 
significantly smaller or simpler subnetworks: we can rea- 
sonably expect a small network to be much easier to 
analyse than a big one. 

To illustrate the use of the type of network decompo- 

sition we propose, and to demonstrate the use of Theo- 
rem 4, here is another example. 

E x a m p l e  8 

Interconnected token rings. Suppose that, instead of the 
single ring which we saw earlier, it is for some reason 
desired to implement a system of interconnected rings. 
Provided the connection structure between the rings is 
a (connected) tree, it is straightforward to develop a 
deadlock-free system from our earlier work and Theo- 
rem 4. The rings will consist of the processes P/and Qi 
as before (Pi for processes with no token initially, Qi for 
processes having one) and a new type of process Li for 
linking two rings. Each link will have one of these L 
processes at each end, rather than having one process 
sitting in both rings, for the latter would not put the 
two rings in different essential components. These link 
processes never initially contain a token and always pass 
one on immediately after having received one. They do, 
however, remember how many tokens there are in each 
of the two components that would be created were its 
link to be cut. Provided it is correctly initialized such 
a process can always know these numbers since changes 
can only come about  when the process itself effects the 
transfer. We give here the definition of a link process 
for the case where there is only one token. 

The definition given here assumes that the link pro- 
cess is to replace process i in a ring where all the Pj 
and Qi have the same alphabets as before except that, 
to keep the internal alphabets of distinct rings disjoint, 
the events of each ring are tagged with a label (e.g. p, v). 
If a link process is to connect ring p to ring v and is 
to be placed at position i in ring p we will use the nota- 
tion Li(p, v) to denote it. Such a link process will have 
alphabet 

o~Li(p, v)= {p.i.find, p.i+ 1.find, p . i -  1.priv, p.i.priv, 
v.p.req, p.v.req, p.v.pass, v.p.pass}. 

There is an obvious directionality associated with a link 
process, and we may correspondingly refer to the two 
sides of a linking arc as the partition of the network 
which would occur if the linking arc were cut. Somewhat 
loosely (but, we hope, in accordance with intuition) we 
refer, when describing the behaviour of the link process, 
to these two subnetworks as " i ts"  side and "the other"  
side. Informally, we specify the behaviour of a link pro- 
cess as follows. 

When the token is on its side of the linking arc, the 
link process is prepared to accept either a request for 
the token from the ring (the event p.i.find), or a request 
from the other side of the link (v.p.req). In either case 
since the token is to be found on its side of the link 
the process then makes a request to its neighbour (the 
event p.i+ 1.find). Once the token has been found and 
reaches the link (p.i.priv) the link process will respond 
appropriately to the request that began this activity: ei- 
ther pass the token on to the next process in the ring 
(p.i-l.priv) or pass it over the to the other side (p.v.pass). 

When the token is on the other side of the link, the 
link process is prepared only to accept a request for 



the token (p.i.find) and to pass this request on over to 
the other side (p.v.req). When the token arrives and is 
passed over (p.v.pass), the link process hands it over to 
the neighbour who requested it (p.i- 1.priv). 

Formally, we describe the behaviour of a link process 
by means of two auxiliary process definitions: when the 
token is on its side the link process is denoted L + (p, v), 
and when the token is on the other side the process 
is denoted L}- (p, v); these auxiliary processes are defined 
(omitting the ring names) by: 

L + =(v.p.req ,p.i+ 1.find ,p.i.priv 
~ p.v.pass ,L~-) 

[] (p.i.find , p.i+ 1.find , p.i.priv 
, p . i - l . p r i v  ~L +) 

Li =p.i.find ,p.v.req ~v.p.pass 
p.i-l.priv ,L  + 

This formal description is intended to correspond to the 
informal remarks above; for instance, the passage of the 
token across a linking arc results in a change of "sign". 

Note that we allow networks in which some of the 
rings consist only of link processes. Except in the trivial 
case where there is only one ring, all rings must contain 
at least one link process. It should be obvious that the 
essential components of a multiple ring system like this 
are just the rings; the disconnecting edges are the links 
between rings. 

When the network is set up all pairs of link processes 
are in opposite states (one +,  one - ) ,  since the token 
is on one side or the other. Figure 6 shows an example 
of such a network; the position of the token and the 
states of the link processes are shown. 

To prove the link pairs conflict-free it is sufficient 
to prove that any adjacent pair with opposite signs, say 
L~ (v, p)[I L] (p, v), are. This follows from Lemma 6 since 
the communications between this pair are cyclic, repeat- 
ing (p.v.req, v.p.pass, v.p.req, p.v.pass). 

The proof that the individual rings are deadlock-free 
is essentially the same as in the earlier example. (Note 
that each ring is still unidirectional, even though the 
whole network is not.) The invariant which prevents 
there being a cycle of strong requests is now that in 
each ring the number of nodes holding a token plus 
the number of "negative" link nodes (for which the token 
is on the other side) always equals one. 

There are several interesting ways to extend this idea 
to deal with multiple tokens, but we will not discuss 
these here. 

The methodology based on Theorem 4 relies on 
showing first that the essential components of a network 
are deadlock-free, and then that the links between essen- 
tial components are well behaved (conflict-free). One 
could, of course, relax the condition that the links be- 
tween essential components are conflict-free if there were 
some other means of showing the interactions between 
the whole essential components to be strong conflict-free. 
One assumption that is not in general strong enough 
for this is that the network V is strong conflict-free; the 
reader might like to confirm this by considering the fol- 
lowing example. 

L+(p,0)( 

p 

) () 
L+(p,v) 

) 
L+(0,5) 

Fig. 6. An example of linked token rings 
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Exampie 9 
A bowtie network. Let P~(i = 0.. .  7) be the following simple 
processes: 

P/=i ~i+1 ~P/, 

where arithmetic is done modulo 8 and where processes 
have the obvious alphabets. Consider the network 
formed by the six processes Po, P1, P4, Ps, [P2 IIPT], 
[P31[ P6]. This corresponds to the communication graph 
shown in Fig. 7 (and hence the name "bowtie"). 

This network is deadlocked, even though its essential 
components (Po, P1, [P2 II P7]) and (P4, Ps, [P3 ]b P6] ) 
are each deadlock-free and the one disconnecting edge 
is strong conflict-free. The snapshot graph summarizing 
this deadlock is shown in Fig. 8. 

The deadlock state has two cycles of ungranted re- 
quests, one in each of the two essential components. 

A design rule guaranteeing deadlock-freedom 

We have so far proven some results which show that, 
under certain circumstances (such as unidirectionality, 
or conflict-freedom) deadlock can only be caused by cy- 
cles of ungranted requests. This allowed us to tackle 
deadlock analysis by proving the non-existence of such 
cycles. For tree networks this is sufficient to prove dead- 
lock-freedom directly. However, for general networks the 
problem remains of establishing that cycles of ungranted 

Po P4 

1 5 

Fig. 7. Communication graph of bowtie network 
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Po P4 

1 5 

Fig. 8. Snapshot graph of bowtie network 

requests are impossible. So far, our methods for doing 
this have been rather ad hoc: we have relied largely on 
case analysis of traces and refusals, and finding of invar- 
iant properties that are false in all potential deadlocks. 
This type of case analysis was made simpler by selective 
use of hiding. Nevertheless, we have so far not introduced 
any general results which can themselves directly prove 
the deadlock-freedom of a network whose communica- 
tion graph has cycles. All we have managed to do for 
those is to get a better understanding of the ways dead- 
lock can arise. 

It is our intention that the work of this paper should 
serve as the foundations for the development of more 
specific techniques for proving deadlock-freedom. A 
wide class of such techniques, mainly based on the con- 
cept of variants, have already been described in [25]. 
In this section we give another example: a theorem stat- 
ing some simple (though admittedly rather curious) con- 
ditions under which deadlock cannot arise. One may 
regard these conditions as imposing a design rule which, 
if adhered to, guarantees absence of deadlock directly, 
without need for detailed investigation into cycles of re- 
quests. The utility of this particular design rule is demon- 
strated by applying it to a particular example network 
which does meet these conditions: a mail system involv- 
ing a ring of user processes. 

Theorem 5. Let V be a busy network, free of strong-con- 
flict. Suppose that whenever a process P of V has an un- 
granted request to another process Q in the same essential 
component of V, Q has communicated with P, and has done 
so more recently than with any other process in that essen- 
tial component. Then V is deadlock-free. 

Proof By Theorem 2, any deadlock state has a cycle 
of ungranted requests necessarily lying in a single essen- 
tial component.  Suppose that the most recent communi- 
cation between two consecutive elements of this cycle 
was between P and Q, with P now waiting for Q. Now 
P must be blocking some process other than Q in the 
cycle, but this is impossible by assumption. []  

Example 10 

Message-passing ring. Consider a message-passing ring 
in which a number of users can send mail to one another. 
Each user is associated with a node; the nodes are con- 
nected in a ring; initially, each node is prepared to 

(i) accept a meassage from its user and pass it to 
its clockwise neighbour, or 

(ii) accept a meassage from its anticlockwise neigh- 
bour and give it to its own user or pass it clockwise 
as appropriate. 

Clearly if each node has the capacity to store only 
one message at a time, the system may deadlock. (When 
all users simultaneously decide to output a message, 
none of these messages can ever leave its source node.) 

However, if each node has capacity bigger than one, 
and if also each node has a non-zero limit strictly smaller 
than its capacity such that, when the node contains the 
limit or more items it will only accept a message from 
the ring (i.e., not from its own user), the network is dead- 
lock-free. Intuitively this is because the network can 
never become "full" (the last message entered would 
need to be into a node with only one slot left, but this 
is not allowed). 

Formally, this follows from Theorem 5 above. No 
node N ever has an ungranted request to its anticlock- 
wise neighbour, since when N is prepared to accept a 
message, this neighbour either has one to send or is able 
to communicate outside the vocabulary of the network 
by communicating with its user. Thus the only ungranted 
requests that can arise are those of a node N that wishes 
to output a message to its clockwise neighbour M. Such 
a request can only be refused when M is full, and by 
assumption the only way it can have become full is 
through an input from N which must have happened 
more recently than its last output. Thus the network 
satisfies the preconditions of Theorem 5. 

Of course, the simplest example of such a network 
is where each node has capacity two and will only accept 
input from the environment when empty. However, the 
parameters of a practical implementation would be more 
generous. 

9 Comparison and conclusions 

We have shown how to use the failures model of CSP 
to provide a succinct and mathematically tractable rep- 
resentation of deadlock. We have been able to use the 
model in proofs of some interesting and useful results 
on the analysis of deadlock in networks, and then to 
prove absence of deadlock in a variety of examples. We 
have focussed firstly on results pertaining to unidirec- 
tional systems (e.g. Theorem 1) and also on results appli- 
cable to general networks (Theorems 2, 3, 4, 5). All of 
our methods support hierarchical analysis of networks, 
assuming that deadlock-freedom of individual nodes has 
already been established. We singled out for special at- 
tention the class of tree networks (Corollaries (i) and 
(ii) to Theorem 1, and the Corollary to Theorem 3.) We 
demonstrated the power of our techniques by applying 
them to a collection of example networks. We argued 
that the concepts developed in this paper (such as cycles 
or requests, conflict-freedom, essential components) pro- 
vide the basis for a battery of theorems on deadlock 
analysis that are widely applicable. 

The theorems of this paper are only a sample of a 
large class of general results which we and others have 
derived for analysing the deadlock properties of net- 
works. As stated earlier, the results of the current paper 
have already been used extensively in [25], where more 
specialized techniques were developed such as those 
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based on "variants". A variant is a function from the 
states of the components of a network into a partial 
order. These simple combinatorial techniques often al- 
low localized proofs that no cycle of ungranted requests 
can arise, even in networks whose communication 
graphs have many cycles. These techniques seem to be 
widely applicable but are certainly not complete, since 
they cannot handle all networks. 

We analysed in Example 10 a simple message-passing 
network. A far more complex and sophisticated message- 
passing network has been developed in [24] (as an oc- 
cam program) based on this one, with analysis again 
based on Theorem 5. It makes use of the general topolo- 
gy of a network to pass messages using efficient routes, 
but uses the ring behaviour as a last resort to avoid 
deadlock. It would be interesting to see if this theorem 
is applicable to any other types of example. 

Again, Theorem 5 was specialized to networks which 
have been designed to meet a simple "design rule". Ad- 
hering to the design rules will then guarantee deadlock- 
freedom. There is much to be said for such design rules, 
especially if they are chosen to be easy to apply in prac- 
tice. The discovery of more of them should therefore 
be regarded as a priority. 

Related work. Deadlock was a popular subject for re- 
search in the 1960's and 70's. The majority of this early 
work was cast in terms of resource allocation, as in oper- 
ating systems: see [17] and [21], for example. Our work 
has been cast in the more general setting of CSP, where 
it is easy to model resource allocation problems if desired 
(see [25], for example, and also the dining philosophers 
example here). Naturally the earlier work recognised a 
number of similar facts to those discussed in the present 
paper, in particular the importance of cyclic dependen- 
cies and the resulting special properties of trees. 

The most comprehensive treatment of deadlock in 
a modern formalism that we are aware of is Dathi's thesis 
[10], which gives a broad survey of techniques both new 
and old which can be brought into this framework. He 
also gives a very thorough comparative survey of the 
relative power and applicability of various deadlock- 
proving techniques. 

Dijkstra [11] proved some theorems on the absence 
of deadlock in unidirectional networks for the special 
case in which the patterns of communication were cyclic: 
each process rotated its communication requests in cyclic 
order through its immediate neighbours. Dijkstra stated 
that his results were applicable in a more general setting, 
and [25] has demonstrated that this is indeed the case. 

Chandy and Misra have developed a method for 
proving deadlock-freedom using priorities [9]. Roughly 
speaking, they proposed that, for every state of a net- 
work, one should assign priorities to the edges of the 
communication graph in such a way that every process 
can always communicate over its adjacent edge of high- 
est priority. The existence of such a prioritization is 
equivalent to a certain strengthened version of our dead- 
lock-freedom condition. In fact, their condition implies 
that every non-empty subnetwork can make progress 
in future. To use such a technique requires a global anal- 

ysis of all states of the network, which may in practice 
be expensive because of the exponential growth in the 
size of the state space of a network as a function o f  
the number of processes. It is for reasons such as these 
that we advocate localized analysis wherever possible. 
Dathi [10] represents the method of [9] in our setting. 

In [22] Reisig discusses proof rules for deciding if 
deadlocks can occur in distributed systems of sequential 
processes which communicate deterministically by 
means of buffers. He uses a Petri net model and gives 
a characterization of deadlock states. 

The work of Apt et al. [1, 2, 3] on reasoning about 
CSP programs includes some methods for analysing 
deadlock. Essentially, this work is based on a rather dif- 
ferent approach from ours: a CSP program is first trans- 
formed syntactically into a program in a guarded com- 
mand language [13] which no longer involves communi- 
cation. In this transformation syntactically matching 
pairs of communications are combined into assignment 
statements to mimic the affect of synchronizing an input 
with a matching output. Then one reasons about the 
absence of deadlock by finding a global invariant which 
guarantees that no deadlock state can be reached, be- 
cause it is false in deadlock states. 

As mentioned earlier, one of our main aims has been 
to find methods of analysis which, where possible, avoid 
dealing with the exponential explosion of states in paral- 
lel systems. There has been a number of different ap- 
proaches to this problem. Many of these allow automatic 
verification that a finite-state system satisfies a specifica- 
tion by examination of a suitably constructed global 
state graph. For instance, Browne, Clarke and Grumberg 
showed in [7] how to reason about (a restricted class 
of) temporal logic properties of networks containing 
many identical finite-state processes, using a notion of 
bisimulation between global state graphs. German and 
Sistla [14] also introduced a method for dealing with 
properties of systems with many identical processes, 
again using a restricted temporal logic for specifying 
properties of networks. More recently, the results re- 
ported in [8] show that an approach based on symbolic 
model checking, taking advantage of a more sophisticat- 
ed representation of the state-space of a system, allows 
many practical systems with very large state spaces to 
be verified. Some other recent developments, again for 
finite-state systems, have concerned proof methods based 
on induction. For example, [19] introduces a structural 
induction theorem and [26] advocates an inductive 
method based on a notion of network invariant. We 
also described some methods based on recursion induc- 
tion for proving properties of CSP processes in [4]. 

Dynamic networks 

In this paper we have focussed entirely on static net- 
works in which both the number of processes and their 
topology remain unchanged throughout the execution 
history of the network. Dynamically changing networks 
may arise in practice, for instance when recursion is used 
inside a parallel composition: it may be possible for a 
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process  to spawn one  or  more  recursive para l le l  ins tances  
of  itself, o r  indeed  of  o the r  processes,  dur ing  execution.  
The  mos t  difficult p r o b l e m  ar is ing when t ry ing to extend 
techniques  such as ours  to cover  d y n a m i c a l l y  evolving 
ne tworks  is tha t  of keep ing  t r ack  of the ne twork ' s  struc- 
ture dur ing  execut ion.  This  means  tha t  a lot  of special-  
ized concepts  and  no t a t i ons  have  to be i n t roduc e d  to 
dea l  wi th  ne twork  s t ructure .  Of course  d e a d l o c k  only  
arises in a s ta t ic  s i tua t ion ,  so tha t  the ideas  of  this p a p e r  
ca r ry  over  to the analys is  of  dynamic  ne towrks  more  
or  less wholesale .  W e  p lan  to  deve lop  the theo ry  of  dy-  
namic  ne tworks ,  inc luding  d e a d l o c k  analysis ,  in a future 
paper .  

Acknowledgement. The authors would like to thank C.A.R. Hoare 
for his many helpful suggestions and discussions, and for his en- 
couragement and guidance during the development of the failures 
model for CSP. Discussions on deadlock analysis with Krzysztof 
Apt, Naiem Dathi, Jay Misra, Ernst-Rudiger Olderog, David Reed 
and Wolfgang Reisig have been very useful. We also thank the 
anonymous referees for a number of helpful suggestions. 

References 

1. Apt KR: A static analysis of CSP programs. In: Clarke EM, 
Kozen D (ed) Logics of programs, Proceedings. Lect Notes 
Comput Sci, vol 164. Springer, Berlin Heidelberg New York 
1983, pp 1 17 

2. Apt KR: Logics and models of concurrent systems. NATO 
ASI Ser, Set F, vol 13. Springer, Berlin Heidelberg New York 
1985 

3. Apt KR, Francez N, de Roever WP: A proof system for com- 
municating sequential processes. ACM TOPLAS 2(3):359 385 
(1980) 

4. Brookes SD, Hoare CAR, Roscoe AW: A theory of communi- 
cating sequential processes. JACM (July 1984) 

5. Brookes SD, Roscoe AW: An improved failures model for com- 
municating processes. Proc. NSF-SERC Seminar on Concur- 
rency. Lect Notes Comput Sci, vol 197. Springer, Berlin Heidel- 
berg New York 1985, pp 281-30 

6. Brookes SD, Roscoe AW: Deadlock analysis in networks of 
processes. NATO ASI Set, Ser F, vol 13. Springer, Berlin Hei- 
delberg New York 1985, pp 305-323 

7. Browne MC, Clarke EM, Grumberg O: Reasoning about net- 
works with many identical processes. Inf: Comput 8l(1): 13-31 
(1989) 

8. Burch JR, Clarke EM, Dill DL, Hwang LJ: Symbolic model 
checking: 10 z~ states and beyond. Proc. 5th IEEE Annual Sym- 
posium on Logic in Computer Science. IEEE Press (June 1990) 

9. Chandy KM, Misra J: Deadlock absence proofs for networks 
of communicating processes. Inf Process Lett 9(4):185-189 
(1979) 

10. Dathi N: Deadlock and deadlock-freedom. D. Phil. thesis, Ox- 
ford University (1989) 

11. Dijkstra EW, Scholten CS: A class of simple communication 
patterns, EwD643. In: Dijkstra EW (ed) Selected writings on 
computing. Springer, Berlin Heidelberg New York 1982, 
pp 334-337 

12. Dijkstra EW: Invariance and non-determinacy. In: Hoare 
CAR, Shepherdson JC (eds) Mathematical logic and program- 
ming languages. Prentice-Hall, Englewood Cliffs, NJ, 1985, 
pp 157-165 

13. Dijkstra EW: Guarded commands, non-determinacy, and for- 
mal derivation of programs. CACM 18(8):453457 (1975) 

14. German S, Sistla AP: Reasoning about systems with many pro- 
cesses. In: Proc 2nd IEEE Syrup on Logic in Computer Science, 
Ithaca, New York 1987, pp 138 152 

15. Hoare CAR: Communicating sequential processes. CACM 
21(8):666-677 (1978) 

16. Hoare CAR: Communicating sequential processes. Prentice- 
Hall, Englewood Cliffs, NJ, 1985 

17. Holt RC: Some deadlock properties of computer systems. ACM 
Comput Surv 4(3): 179-196 (1972) 

18. INMOS Ltd.: The occam programming manual. Prentice-Hall, 
Englewood Cliffs, NJ, 1984 

19. Kurshan RP, McMillan K: A structural induction theorem for 
processes. Proc. 8th ACM Syrup on Principles of Distributed 
Computing, Edmonton (1989) 

20. Milne G, Milner R: Concurrent processes and their syntax. 
JACM 26(2):302 321 (1979) 

21. Peterson J, Silberschatz A: Operating system concepts. Addison 
Wesley, Reading, Mass, 1983 

22. Reisig W: Deterministic buffer synchronization of sequential 
processes. Acta Inf 18:117-134 (1982) 

23. Roscoe AW: A mathematical theory of communicating pro- 
cesses. D. Phil. thesis, Oxford University (1982) 

24. Roscoe AW: Routing messages through networks: an exercise 
in deadlock avoidance. Proceedings of OUGTM7, Grenoble 
1987, published by IMAG 
Roscoe AW, Dathi N: The pursuit of deadlock freedom. Inf 
Comput 75(3):289 327 (1987) 
Wolper P, Lovinfosse V: Verifying properties of large sets of 
processes with network invariants. In: Sifakis J (ed) Proceedings 
of 1st Workshop on Automated Verification Methods for Finite 
State Systems. Lect Notes Comput Sci, vol 407. Springer, Berlin 
Heidelberg New York 1989, pp 68-80 

25. 

26. 


