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Introduction

It is the purpose of this article to show how the problem arose, to place it in
the context of the most natural of structuring mechanisms, to indicate some
powerful metrisation theorems which are available on the addition of a single
condition, and to review some recent work which gives some partial answers
and suggests lines of enquiry which should be further pursued. Despite the
attention shown to the problem over the last five years, we would not wish to
claim that the results presented here go more than a small distance towards a
solution. We believe that some new ideas are required and would encourage
our colleagues to provide them.

Since the review paper Collins [19∞] was given at the Baku Topology
Symposium in 1987, new insights have encouraged us to vary the presentation
and to include hitherto unpublished material.

All spaces will have the T1 separation axiom and N will denote the set of
natural numbers.

1. Origins

The structuring mechanism which spawned the problem arose in the search
for a simple, yet natural, condition which would produce a countable basis in
a separable space. The model was, naturally enough, a standard elementary
proof for a metric space with countable dense subset A.

If, in this context, x belongs to open U and a is an element of A ∩ Sε(x),
where the open ball S3ε(x) ⊆ U , then x ∈ Sr(y) ⊆ U for any y ∈ Sε(x) and
any rational r such that ε < r < 2ε. The picture is given in Figure 1.
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Figure 1: The proof that a separable metric space is second countable

Then {Sr(a) : a ∈ A ∧ r ∈ Q+}, where Q+ is the set of positive rational
numbers, is a countable basis.
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An essential feature of the above proof, which must be borne clearly in
mind in constructing generalisations, is the need, not only for Sr(y) to be
small enough to be within U , but also large enough to ‘pick up’ x. We shall
return to this point later.

The first generalisation to be investigated (Collins and Roscoe [1984]),
which allows an immediate parody of the above proof, runs as follows. For
each x in a space X , let

W(x) = {W (n, x) : n ∈ N}

be a countable family of subsets of X , each containing x. W = {W(x) : x ∈
X} is said to satisfy (A)1 if it satisfies

(A)
if x ∈ U and U is open, then there exist a positive integer
s = s(x, U) and an open set V = V (x, U) containing x such
that x ∈ W (s, y) ⊆ U whenever y ∈ V .

The picture is the same as Figure 1, once one sets V = Sε(x) and W (s, y) =
Sr(y). Second countability follows from separability when each W (n, x) is
open, or indeed is a neighbourhood of x (W satisfies ‘open (A)’, or ‘neigh-
bourhood (A)’). In fact, one can go further if W satisfies ‘neighbourhood de-
creasing (A)’, that is, if W (n + 1, x) ⊆ W (n, x) holds for each x and n in
addition to the W (n, x) being neighbourhoods of x.

1. Theorem (Collins and Roscoe [1984]). In order that X be metris-
able it is necessary and sufficient that X has W satisfying neighbourhood
decreasing (A).

In Collins and Roscoe [1984], it is shown that eventually decreasing
neighbourhood (A) will not suffice for metrisability. Theorem 1 is proved in one
page, relying on no other results, and a number of classical metrisation the-
orems, such as those of Nagata-Smirnov and of Moore-Arkhangel′skĭı-Stone,
are quickly deduced.

We should like to stress how natural condition (A) is by restating Theorem 1
to provide a set-theoretic model for metric spaces.

2. Theorem (Collins and Roscoe [1984]). Suppose that for each x in a
set X there is a decreasing sequence W(x) = {W (n, x) : n ∈ N} of subsets
of X , each containing x, such that

(1) given x and y, x �= y, there exists a positive integer m with y �∈ W (m, x),
(2) given x in X and a positive integer n, there exist positive integers

r = r(n, x) and s = s(n, x) such that y ∈ W (r, x) implies that x ∈
W (s, y) ⊆ W (n, x).

1The names (A), (F) and (G) used for conditions in this paper are taken from Collins
and Roscoe [1984].
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Then there is a metric for X such that, for each x in X , W(x) is a basis for
the neighbourhood system of x in the metric topology.

Condition (2) is just (A) re-stated in terms of the W (n, x)’s and obviously
strengthens the usual neighbourhood axioms for a topological space. Condi-
tion (1) ensures appropriate separation.

In the proof of second countability of a separable metric space given in
the last section, the same r sufficed for each y in Sε(x). This is reflected in
condition (A) where s = s(x, U) does not depend on y ∈ V . It is natural to ask
what happens if s also depends on y. We say (Collins and Roscoe [1984])
that W satisfies (G) if it satisfies

(G)
if x ∈ U and U is open, then there exists an open
V = V (x, U) containing x such that x ∈ W (s, y) ⊆ U for some
s = s(x, y, U) ∈ N whenever y ∈ V .

The picture is much the same as before (Figure 2).

�
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W (s, y)

Figure 2: Condition (G)

Again, with analogous definitions, if W satisfies open (G), then separability
implies second countability (Lemma 3 of Collins and Roscoe [1984]). How
finely conditions (A) and (G) are balanced on the point of what is possible in
metrisation theory may be judged from the following results.

3. Theorem (Collins and Roscoe [1984]). There is a space X (the ‘bow-
tie’ space of L. F. McAuley [1955]) which has W satisfying neighbourhood
decreasing (G) but which is not metrisable.

4. Theorem (Collins, Reed, Roscoe and Rudin [1985]). In order that
X be metrisable it is necessary and sufficient that X has W satisfying open
decreasing (G).



242 Collins, Reed and Roscoe / Point-Countable Bases [ch. 14

It should be noted that Theorems 1 and 4 are not inter-dependent.
The value of considering generalisations of open decreasing (G) is exempli-

fied by the next result.

5. Theorem (Balogh [1985], Collins, Reed, Roscoe and Rudin [1985]).
A space is stratifiable(and hence a Nagata space if first countable) if and only if
it has W satisfying decreasing (G) and has countable pseudocharacter.

Comparison of Theorems 4 and 5 prompts the following open question.

Problem 1. (Collins and Roscoe [1984]) Which spaces are characterised? 377.
as having W satisfying neighbourhood decreasing (G)?

It is known (see Collins, Reed, Roscoe and Rudin [1985]) that there
are stratifiable (indeed, Nagata) spaces which do not have neighbourhood
decreasing (G).

It is another generalisation of open decreasing (G) which provides the title
of this article and the next section.

2. The point-countable base problem

Whilst investigating the structuring mechanism described in the last section,
the authors made a number of conjectures, many of which have now been
answered by theorems or counterexamples. Of those that remain, the point-
countable base problem is the most intriguing, both because of the number
of partial solutions that have been discovered and because of the effort that
has been expended on it.

A basis for a space X is point-countable if every element of X is contained
in at most a countable number of elements of the basis. It may quickly be
deduced that, if X has such a basis B, then X has W satisfying open (G) (by
defining W(x) = {B ∈ B : x ∈ B}). The converse remains an open question.

Problem 2. (The Point-Countable Base Problem (Collins, Reed, Roscoe? 378.
and Rudin [1985])) If X has W satisfying open (G), need X have a point-
countable basis?

Note that it is not possible usefully to reduce ‘open non-decreasing W(x)’
to ‘open decreasing V(x)’ (which one might hope to do, so as to apply results
of the last section) by the formula

V (n, x) =
n⋂

i=1

W (i, x)

since, even if W satisfies (G), V may not, as the V (s, x) may not ‘pick up’ x.
(See our comment in Section 2.)
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That a space be meta-Lindelöf (a condition clearly implied by the existence
of a point-countable basis) does not require open (G), as the following result
shows. This result is not only useful, but exemplifies a common style of proof
found when (G) and related conditions are used.

6. Lemma (Moody, Reed, Roscoe and Collins [19∞]). If the space X
has W satisfying (G), then X is hereditarily meta-Lindelöf (i.e., each open
cover has a point-countable open refinement).

Proof. Suppose G = {Uα : α ∈ γ} is an open cover of X , enumerated using
some ordinal γ. For each α ∈ γ, define the set

Sα =
⋃
{V (x, Uα) : x ∈ Uα \

⋃
β∈α

Uβ}

where V (x, U) is given by (G). By construction, S = {Sα : α ∈ γ} is an open
cover of X . We claim that S is point-countable. If y belongs to Sα, then there
is xα ∈ Uα\

⋃
κ∈α Uκ such that y ∈ V (xα, Uα), and hence there is Wα ∈ W(y)

such that
xα ∈ Wα ⊆ Uα.

There can only be countably many such α, for otherwise there would be two
ordinals α, β (with α ∈ β, say) such that Wα = Wβ . But then xβ ∈ Wβ ⊆ Uα,
giving a contradiction. So, S is point-countable as claimed.

The fact that X is hereditarily meta-Lindelöf follows simply from the ob-
servation that any subspace Y trivially has W ′ satisfying (G).

A large number of partial answers have been found to the point-countable
base problem. Many of them turn out to be consequences of a simple Lemma
(which was actually discovered after many of its consequences). To state it,
we need the concept of a pointed open cover. A pointed open cover for a space
X with topology T is a subset P of X×T such that {U : ∃x ∈ X (x, U) ∈ P}
is a cover for X . P is said to be point-countable if {(x, U) ∈ P : y ∈ U} is
countable for all y, and dense if

y ∈ {x : (x, U) ∈ P ∧ y ∈ U}

for all y. Note that we have not insisted that (x, U) ∈ P implies x ∈ U .2

7. Lemma (Moody, Reed, Roscoe and Collins [19∞]). If the space X
has W satisfying open (G), then X has a point-countable base if and only if
X has a dense, point-countable, pointed open cover.

2Indeed, it is often more natural to generate these pointed open covers in such a way
that x �∈ U for some (x, U). However it is easy to show that if a space has W satisfying
open (G) and a dense, point-countable pointed open cover P, then there is another one,
P ′, where all (x, U) have x ∈ U .
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Proof. First suppose that X has a point-countable base B. For each non-
empty element U of B, pick an xU ∈ U , and define P = {(xU , U) : U ∈
B \ {∅}}. It can be easily verified that P is a dense, point-countable, pointed
open cover. Conversely, define

B = {U ∩W : ∃x (x, U) ∈ P ∧W ∈ W(x)}.

Clearly, B is a point-countable collection of open sets. To see that B is a base,
consider any x ∈ X and any open set O containing x. Since P is dense, there
must exist a (y, U) ∈ P such that x ∈ U and y ∈ V (x, O). Pick a W ∈ W(y)
for which x ∈ W ⊆ O. Then x ∈ U ∩W ⊆ O and U ∩W ∈ B, so that B is a
base as required.

Notice how this proof follows the one that a separable space with W satisfy-
ing open (G) is second-countable. In fact, possessing a dense, point-countable
pointed open cover is a natural generalisation of separability: there are count-
ably many points available to have each point as a limit, only now, which
points are available varies from place to place. (Each point is available in an
open set.) Every separable space X with countable dense subset D has such
a pointed open cover {(x, X) : x ∈ D}.

Given these two lemmas, it is possible to establish a number of results rather
easily. We now give sketch proofs of the three such theorems, in each case
showing how the dense, point-countable, pointed open covers are constructed.

8. Theorem (Moody, Reed, Roscoe and Collins [19∞]). If the space X
has W satisfying open (G) and has density ≤ ℵ1, then it has a point-countable
basis.

Proof. If X is separable then we already know it is second countable, so we
may assume it has a dense subset D = {xα : α ∈ ω1}. It is then easy to show
that the pointed open cover

P = {(xα, X \ {xβ : β ∈ α}) : α ∈ ω1} .

is point-countable and dense.

Considerable work has been done to show that, under the assumption that
large cardinals exist, if certain topological properties are true of all subsets
with cardinal ≤ ℵ1 of a given space, then they are true of the space (see
F. D. Tall’s questions on reflection, this volume). In this vein, it has been
conjectured that, if every ≤ ℵ1 subset of a first countable regular space X
has a point-countable base, then X has a point-countable base. If this could
be proved, then, of course, Theorem 8 would answer the point-countable base
problem in the affirmative for regular spaces, on the assumption of large
cardinals.
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9. Theorem (Moody, Reed, Roscoe and Collins [19∞]). If X is semi-
stratifiable and has W satisfying open (G), then it has a point-countable
basis.

Proof. We shall use the characterisation of semi-stratifiable given by G. D.
Creede in [1970], which states that a space X with topology T is semi-
stratifiable if and only if there exists a function g from N × X to T such
that

(i) {x} =
⋂{g(n, x) : n ∈ N}, and

(ii) if y ∈ X and (xn) is a sequence of points in X such that y ∈ g(n, xn)
for all n, then (xn) converges to y.

Let g be such a function. By Lemma 6 we may let Un be a point-countable
open refinement of {g(n, x) : x ∈ X}. For each U ∈ Un, choose xU such that
U ⊆ g(n, xU ). Define P =

{
(xU , U) : U ∈ Un ∧ n ∈ N}. By construction, P

is a point-countable, pointed open cover. It also follows easily from (ii) above
that P is dense.

10. Theorem (Moody, Reed, Roscoe and Collins [19∞]). If X has W
satisfying open (G) and is the locally countable sum of spaces which have
point-countable bases (i.e., X =

⋃{Xλ : λ ∈ Λ}, where each subspace Xλ has
a point-countable base and where there is a neighbourhood N(x) of each x
which meets only countably many Xλ), then X has a point-countable base.

Proof. In fact, we will show, without using the openness of W , that if each
Xλ has a dense, point-countable, pointed open cover Pλ then so does X . If
U is a set open in one of the Xλ, let UX denote some set chosen to be open
in X and such that UX ∩Xλ = U . The dense, point-countable, pointed open
cover of X is then given by

{(x,
⋃
{V (y, N(y) ∩ UX) : y ∈ U}) : λ ∈ Λ, (x, U) ∈ Pλ} .

G. Gruenhage has solved the point-countable base problem for GO-spaces.

11. Theorem (Gruenhage [19∞]). Every GO-space with W satisfying
open (G) has a point-countable base.

And P. J. Nyikos [1986] and one of us (AWR) have established the fol-
lowing result (which does not use open (G)).

12. Theorem. If X is a first countable, non-archimedean space which has
W satisfying (G), then X has a point-countable base.

We have demonstrated that the answer to the point-countable base problem
is ‘yes’ in a number of cases where there is extra structure for is available.
Our next result demonstrates that any counter-example must be particularly
unpleasant. It is a consequence of Lemma 6 and Theorem 10.
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13. Theorem (Moody, Reed, Roscoe and Collins [19∞]). If the space X
is a counterexample (i.e., has W satisfying open (G) but no point-countable
base) then there is a non-empty subspace X ′ of X , every non-empty open
subset of which is also a counterexample.

Thus, if there is a counter-example, then it has a subspace which is a
counterexample and none of whose open sets (viewed as subspaces)

(1) have density ≤ ℵ1,
(2) are semi-stratifiable
(3) are GO-spaces
(4) are non-archimedean
(5) or are locally countable sums of such spaces,

which excludes many common ways of constructing counter-examples.
It is worth remarking that the property of having W satisfying open (G)

shares a number of other properties with that of having a point-countable
basis. For example, both are countably productive and both are hereditary.
In [19∞] Gruenhage showed (i) that a submetacompact β-space with W
satisfying open (G) is developable (and hence has a point-countable base;
this result actually generalises Theorem 7 above), and (ii) that a countably
compact space with W satisfying open (G) is metric.

The next result gives a little more insight into the problem.

14. Theorem (Moody, Reed, Roscoe and Collins [19∞]). If X is a
space with W satisfying (G), then X has a point-countable pointed open
cover P such that

(i) (x, U) ∈ P ⇒ x ∈ U , and

(ii) {x : (x, U) ∈ P} is dense in X .

Thus, any space with W satisfying open (G) has a dense subspace with a
point-countable base (the set in (ii)).

The same techniques used in the proof of Theorem 8 demonstrate that
the point-countable base B for the dense subset D can be lifted to a point-
countable set B′ of subsets of X which are a basis for its topology at all points
in D. However, there is no obvious way of making them into a basis for the
whole of X .

The condition (G) may be strengthened to (G′) as follows:

(G′)
if x ∈ U and U is open, then there exists an open
V = V (x, U) ⊆ U containing x such that x ∈ W (s, y) ⊆ V
for some s = s(x, y, U) ∈ N whenever y ∈ V .

The picture here has changed in that now W (s, y) ⊆ V rather than U . It is
easy to see that the W constructed earlier, for spaces with point-countable
bases, satisfies (G′). In fact, it is possible to prove the following result.
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15. Theorem (Moody, Reed, Roscoe and Collins [19∞]). X has W
satisfying (G′) if, and only if, it has a dense, point-countable, pointed open
cover.

Thus, if it also has W ′ (not necessarily equal to W) satisfying open (G),
then it has a point-countable base. Unfortunately, the techniques used in the
proof of Theorem 15 do not seem to generalise to the weaker condition (G).
However, that result does give rise to the following problem (an affirmative
answer to which would solve the point-countable base problem):

Problem 3. Does every space with W satisfying (G) have a dense, point- 379. ?
countable, pointed open cover?

Since almost all of our positive results about the point-countable base prob-
lem are consequences of Lemma 7 after constructing a dense, point-countable,
pointed open cover, there is reason to believe that this problem may be best
attacked via Problem 3. Direct analogues of all of Theorems 8–13 hold for
Problem 3. (We have shown that Gruenhage’s proof of Theorem 11 can be
adapted to show that any GO-space with W satisfying (G) has a dense, point-
countable, pointed open cover.) The single caveat is in the case of Theorem 8,
where the proof relies on first countability (implied by open (G) but not (G)).
However any first countable space with density ≤ ℵ1 has a dense, point-
countable, pointed open cover, as does any space with cardinality ≤ ℵ1.

We have already remarked that the property of having a point-countable,
pointed open cover is rather like separability. And, like separability, it is not in
general hereditary: a counterexample can be constructed by assuming c = ℵ2

and using the Sierpinski construction of a topology on the real line where a
neighbourhood of a point x consists of all points within ε > 0 which are not
less than x in an ω2 well-order. This space does not have such a pointed open
cover, but by adding the rational points of the plane in a suitable way the space
becomes separable. However, if Problem 3 were to have a positive answer,
then any space with W satisfying (G) would have this property hereditarily.
A simple modification to the proof of Theorem 1 of Collins, Reed, Roscoe
and Rudin [1985] shows that the property is hereditary if the space has W
satisfying (G) (i.e., if X has such a W and a dense, point-countable pointed
open cover, then so does every subspace). This is a small piece of positive
evidence towards the conjecture.

3. Postscript: a general structuring mechanism

We have already seen that conditions (A) and (G) give a powerful structuring
mechanism for topological spaces when we impose various conditions on the
W(x). This mechanism can be further extended when we relax the condition
that each W(x) is countable. If W(x) is, for each x in a space X , a set of
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subsets of X containing x, we say W = {W(x) : x ∈ X} satisfies (F) when it
satisfies

(F)
if x ∈ U and U is open, then there exists an open V = V (x, U)
containing x such that x ∈ W ⊆ U for some W ∈ W(y) when-
ever y ∈ V .

The picture here is the same as in Figure 2. Every topological space clearly
has W satisfying open (F), and metrisability is given when X has W satisfy-
ing open decreasing (G), of which open (F) is a generalisation. Therefore, it
should not surprise the reader that restrictions on W satisfying (F) relate nat-
urally to certain well-known generalised metric spaces. W satisfies chain (F)
if each W(x) is a chain with respect to inclusion.

16. Theorem (Moody, Reed, Roscoe and Collins [19∞]). If X has
W satisfying chain (F) and each W(x) = W1(x) ∪ W2(x), where W1(x)
consists of neighbourhoods of x and W2(x) is well-ordered by ⊇, then X is
paracompact.

Not all paracompact spaces have such W .

Problem 4. Characterise the spaces which have W satisfying chain (F),? 380.
where the W(x) are

(i) all neighbourhoods,
(ii) well-ordered by ⊇, or
(iii) as in the statement of Theorem 14.

17. Theorem (Collins and Roscoe [1984]). If X hasW satisfying chain (F),
then X is monotonically normal (in the sense of R. W. Heath, D. J. Lutzer
and P. L. Zenor [1973]]).

It is possible to characterise the spaces that have chain (F): we define a
space X to be acyclically monotonically normal if there is, for each x and
open U such that x ∈ U , an open set V (x, U) such that

(i) x ∈ U1 ⊆ U2 ⇒ V (x, U1) ⊆ V (x, U2)
(ii) x �= y ⇒ V (x, X \ {y}) ∩ V (y, X \ {x}) = ∅
(iii) If n ≥ 2, x0, . . . xn−1 are all distinct and xn = x0, then

n−1⋂
r=0

V (xr , X \ {xr+1}) = ∅ .

Conditions (i) and (ii) are just the usual conditions for monotone normality,
and (iii) is an extension of (ii) (notice that (ii) is just condition (iii) when n =
2). The effect of (iii) is to ban certain types of cycles, hence the name.

18. Theorem. A space X is acyclically monotonically normal if and only if
it has W satisfying chain (F).
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However, we do not know if there are any monotonically normal spaces
which do not have chain (F). This leads to our final problem.

Problem 5. Is every monotonically normal space acyclically monotonically 381. ?
normal?

(The definition of acyclic monotone normality, Theorem 15 and Problem 5
all first appeared in Roscoe [1984] and were further discussed in Moody,
Reed, Roscoe and Collins [19∞].)

GO spaces and stratifiable spaces, the two best known classes of mono-
tonically normal spaces, are both acyclically monotonically normal (Moody,
Reed, Roscoe and Collins [19∞]), as are elastic spaces (Moody [1989]).
It is known that no counter-example can be scattered. In his thesis [1989],
P. J. Moody did a considerable amount of work on this problem and proved
that acyclic monotone normality has many of the same properties enjoyed by
monotone normality. He showed that there is a close relationship between
this problem and the problem of E. K. van Douwen [1975] of whether every
monotonically normal space is K0, since he observed that every acyclically
monotonically normal space is K0. He also showed that a counter-example
exists to van Douwen’s problem, and hence to ours, if there is what he terms
a λ-Gower space (see J. van Mill [1982]) which is monotonically normal, for
any infinite cardinal λ. However, it is not known if such a space exists.
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