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In this paper, the authors investigate starcompact properties between countable compactness and
the discrete finite chain condition (i.e., pseudocompactness), and star-Lindel6f properties between
the Lindeldi property and the discrete countable chain condition (i.e., the pseudo-Lindelof
property). This work represents a unification and extension of concepts previously studied by
several authors in the literaiure. Theory is developed to establish connections between the various
star properties and other covering conditions, and a large collection of nontrivial examples is
given to make distinctions.
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1. Introduction

Several questions concerning chain conditions in Moore spaces were raised in
[21]. Most of these questions were answered in [5]. However, van Douwen and
Reed were unable to decide if there exists a 3-separable (equals DCCC) Moore
space which was not 2-separable (see Section 3.2 for details). The following
definitions arose in the attempt to analyse this question.

Recall that if B X and ¥ is a collection of subsets of X, then ST'(B, %)=
{He¥: HAB#@} and st'(B, ¥)=\JST'(B, ). Inductively ST"*'(B, %)=
{He ¥: Hnst"(B, ¥)#0} and st""'(B, %)=\ ST"*"(B, ). For brevity we will
write ST(B, %) for ST'(B, %), st(B, ) for st'(B, ) and st(x, ) for st({x}, %). Fix
neN, the set of strictly positive integers.

* Supported by the Science and Engineering Research Council, gr:nt number 88002084.
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Definition 1.1. A space X is said to be n-starcompact if for every open cover U of
X, there is some finite subset ¥ of % such that st"( ¥, %)= X.

Definition 1.2. A space X is said to be strongly n-starcompact if for every open cover
U of X, there is some finite subset B of X such that st"(B, %)= X.

Definition 1.3. A space X is said to be n-star-Lindelof if for every open cover U of
X, there is some countable subset ¥ of % such that st"(lJ ¥, %) = X.

Definition 1.4. A space X is said to be strongly n-star-Lindelof if for every open
cover U of X, there is some countable subset B of X such that st"(B, %) = X.

It is easy to see that if X is strongly n-starcompact, then X is n-starcompact,
and if X is n-starcompact, then X is strongly n + 1-starcompact. A similar hierarchy
holds for the star-Lindelof properties. For T; spaces, strongly 1-starcompact equals
countably compact, n-starcompact equals the DFCC (the discrete finite chain
condition) for n =2, and n-star-Lindelof equals the DCCC (the discrete countable
chain condition) for n = 2. For Moore spaces, strongly 1-starcompact equals compact
and metrizable, n-starcompact implies separable for n = 1, and 1-star-Lindelof equals
separable. Hence for Moore spaces, the star properties form a chain of implications
from compact and metrizable to the DFCC and from separable to the DCCC. Proof
of these facts will be given in due course. Recall that a completely regular space is
pseudocompact if and only if it has the DFCC.

The existence of a 3-separable Moore space which is not 2-separable is equivalent
to the existence of a 2-star-Lindel6f Moore space which is not strongly 2-star-
Lindelof. In investigating the above properties in 1984, van Douwen and Reed were
able to give examples to show that all but three of the possibly distinct classes in
Moore spaces were in fact distinct. These three were (1) those in the original question
(i.e., 2-star-Lindelof and strongly 2-star-Lindeldf), (2) strongly 1-starcompact and
1-starcompact, and (3) 2-starcompact and strong 2-starcompact.

The second author finally found a Moore space to answer (1) in 1989 and presented
it at the Oxford Topology Symposium. Actually, it was a space he had constructed
in 1987 as an example of a DCCC Moore space with a o-locally countable base
(hence o-para-Lindelof) which is not separable. Now, with the aid of the last two
authors, the lattice of implications for Moore spaces is complete. In fact, for Moore
spaces the properties of (2) are equivalent under CH (or d=c), and the properties
of (3) are equivalent in ZFC.

In this paper, we present not only the study of the above properties in Moore
spaces, but we also explore their relationships in more general spaces (e.g. first
countable, regular, Hausdorff, etc.). We show that the equivalence of (2) and (3)
above for Moore spaces does not hold in the class of regular first countable spaces.
In particular, we show that the Tychonoff piark is 1-starcompact but not strongly
1-starcompact, and under the assumption (b = w,), produce such an example which
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is both regular and first countable. Under CH we exhibit a regular first countable
2-starcompact space which is not strongly 2-starcompact.
We consider also the extension to w-starcompact and w-star-Lindeldf properties.

Definition 1.5. A space X is said to be w-starcompact if for every open cover % of
X, there is some neN" and some finite subset B of X such that st"(B, %)= X.

Definition 1.6. A space X is said to be w-star-Lindeldf if for every open cover %
of X, there is some n € N* and some countable subset B of X such thatst"(B, %) = X.

This paper represents a unification and expansion of concepts already studied
on several occasions under different terminology. Fleischman introduced the concept
of strong starcompactness in [7]. Later, Sarkhel in [23] extended his work, and
defined tlie concepts of n-starcompactness and w-starcompactness. Matveev defined
k-pseudocompactness in [15] which extended Fleischman’s work to strong n-
starcompactness. Furthermore, it has recently come to the authors’ attention that
the strong star-Lindelof conditions have been studied by Ikenaga, in [11, 12], who
named them w-n-star spaces. It is clear that ihe equivalence (in our terminology)
of strongly 1-starcompact and countably compact and the equivalence of strongly
3-starcompact and pseudocompact were known by some of these authors. In addi-
tion, Scott Williams has informed the authors that he had independently obtained
certain of our lemmas about the weight of starcompact Moore spaces in unpublished
work.

Organisation of the paper

In Section 2, we present the study of the starcompactness properties, and in
Section 3, we consider the star-Lindelof properties. Within each section, we first
present the positive implications between the various properties in the context of
the weakest separation. Secondly, we explore the relationships for Moore spaces.
The rich structure of Moore spaces provides the equivalence of certain of these
properties, and it ensures nontrivial counterexamples where the properties are not
equivalent. Thirdly, we consider examples in regular spaces, Hausdorff spaces, and
first countable spaces which distinguish properties that are equivalent in Moore
spaces. Finally, we consider more general issues about the properties in question.

2. Starcompactness

2.1. General positive implications

The results in this section follow directly from work in [1, 7, 15, 23]. For
completeness, we present proofs in our current terminology. Note that unless
otherwise specified, space means simply topological space. We use the term regular
to include T;.



74 E.K. van Douwen et al.

The following trivial lemmas instantly set up a hierarchy amongst the starcompact-
ness properties.

r

w . N ] Y oS Lé..
Lemma L.k.0. IJ A IS 3T

Proof. If % is an open cover of X, by hypothesis there is a finite subset B of X
such that st"(B, %)= X. For each be B select some U, € U such that be U,. Let
¥ ={U,: be B}. So ¥ is a finite subset of % and

X=st"(B,U)cst"(U7,U)c X. O

Lemma 2.1.2. If X is n-starcompact, then X is strongly n+ i-starcompact.

Also, using this style of argument, it is clear that we could take the following as
alternative, though equivalent, definition of w-starcompact (see [23]).

Definition 2.1.3. A space X is said to be w-starcompact if for every open cover ""h‘

of X, there is some n € N* and some finite subset ¥ of % such that st*({J ¥, #) =

Obviously, these covering properties are all weakenings of compactness. In fact,
they all lie between countable compactness and pseudocompactness, as we will
shortly see.

The following two theorems are from [7], although the proof of Theorem 2.1.5
for Hausdorff spaces was omitted. Together, they show that for Hausdorff spaces
countable compactness and strong 1-starcompactness are equivalent.

Theorem 2.1.4. Every countably compact space is strongly 1-starcompact.

Proof. Suppose X is a countably compact space which is not strongly 1-star-
compact. Let % be an open cover such that if B< X is finite, then st(B, %) # X
(*). Pick any x, € X and, inductively, pick x,, € X —st({x,, x, . X1}, U) forn>0,

o 7K v 15" i
which is possible by (*). Let A={x,: neN} and ¥ = {St(xm UL)‘ n eN}. Note that
by the choice of the x,, every member of ¥ contains precisely one element of A
Consequently, no finite subset of V" will cover A.
If ye A, pick some open Ue % such that ye U (U covers X). As UnA#0,
U n A #§ and hence y €si(x,, %) for some . Th‘fef ore we see that 9" is a countable
covering of A by sets open in X. A is countably compact, being a closed subset of

X. Therefore there must exist a finite subset of ¥ which covers A and hence A.
This contradicts our previous observation about V. [J
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Theorem 2.1.5. Strongly 1-starcompact Hausdorff spaces are countably compact.

Proof. Suppose that X is a Hausdorff space that is not countably compact. Then
there exists D ={x,: n€N}< X, an infinite closed discrete subset. As D is discrete,
for each n there exists an open set U, such that U,n D={x,}.

For every meN, define Y, ={x,e D:2"<n<2""'}, so |Y,,|=2"-1. Since Y,,
is finite and X is Hausdorff, there exist disjoint open sets V, 3x, for 2" <n<2™*!,

Next, setting ¥, ={U, n V,,: 2" < n <2™*'} gives a collection of pairwise disjoint
open subsets of X such that (U, V,)n D ={x,}.

Define ¥"={X — D} U\, cn ¥m- Evidently, 7" is an open cover of X.

Let A be any finite subset of X, with |A|= M, say. Then |A|<2™ —1=|%}]. So,
for some 2M <sm <2M*' -1, (U, V,,)nA=0. But U, " V,, is the only member
of V" which contains x,,. Thus, x,, €st(A, V). Specifically, st(A, V) # X. But A was
an arbitrary finite subset of X, so X is not strongly 1-starcompact. [J

The next three theorems show that for Tychonoff spaces, w-starcompact spaces
are pseudocompact, and that for regular spaces, 2-starcompactness, w-starcompact-
ness (together with all the properties in between), and the DFCC are equivalent
conditions. These results can be found under different terminology in [1, 7, 15, 23].

Theorem 2.1.6. Every w-starcompact space X has the property that every continuous
real-valued function on X is bounded.

Proof. Suppose that X is w-starcompact and that f: X - R is continuous. Define
U ={f""(k, k+2): ke Z}. Then U is an open cover of X and for some neN" and
for some finite ¥'< %, st"((J ¥, %)= X. Let M =max{k+2: f'(k,k+2)e ¥} and
m=min{k: f "'k, k+2)e V}.

It is now clear that f(X)< (m—2n, M +2n). For if x € X, then for 1 =<j < n there
are f'(k;,k;+2)e¥ such that xef '(k, k,+2) with f7(k,k+2)n
f (Kpsy, ke +2)# 9 and f'(ky, k,+2) AU V' #0. By construction, f(L %)<
(m, M). An easy induction now shows that f(x) € (m —2n, M +2n), as required. [

Theorem 2.1.7. If X is DFCC, then X is 2-starcompact.

Proof. Suppose that X is not 2-starcompact and % is an open cover such that if
V' < U is finite, then st’(J ¥, U) # X (*).

Pick U, U and define ¥, ={U,}. Suppose inductively that we have defined ¥,
a discrete collection of k members of U such that ¥;_,< ¥} for 1<k<n. By (*),
st{U ¥.._,, U)# X. Pick x, € X —st’(J ¥,,—,, %) and a U, € U such that x, € U,.
Let V,=7,-,u{U,}

We claim that ¥, is discrete. Let y€ X and select any V€ % such that ye V. If
there were distinct U, U'e ¥, such that VAU #@® and VA U'#0 (say U=U,,
and U’'=U,, with n,<n,), then

xX.€ U'cst?(UJ V., W) st Vi o, U)-
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But this contradicts the choice of x,,. So for every y € X thereis an open V containing
y which meets at most one element of ¥,,. Hence claim.

Defining ¥'=J,_y, V», @ similar argument shows that 7" is a countably infinite
discrete collection of open sets. Therefore X is not DFCC and the result follows. [J

Theorem 2.1.8. If X is regular and w-starcompact, then X is DFCC.

Proof. Suppose X is not DFCC and % ={U,: neN} is a discrete collection of
nonempty open sets; say x, € U, for neN.
Fix neN. Applying the regularity condition n times yields

x,cA"cAMc---cAVcAY - c AV c AV U,
where each A\’ is open in X. Define

w=x-U Ay,

neN
(n) _ Aln)
Vl _A;’ s

VS_,", ___A(3n)_A(ln),

vim =AM - AN,
Vi = U, - AT,
Note that each V';’c U,, x, € Vi»' if and only if m=1 and V{" n V{" # ¢ implies
that || — m| < 1. Note also that {A'"’: n e N} is a discrete collection since % is discrete
and A" < U,. Hence W is open and so too is V'™ for all m<n and neN.
Let V'={W}u{VL: m<n, neN}, a collection of sets open in X.

Claim 1. ¥ covers X. Since A}’ < AL}, ,itis clearthat\ )" _, V{7’ = U,.. Furthermore,
X-U,cn Uns X -, AL = W. So for x € X, either x € U, for some n, and hence
xe Vi)' for some m and n, or x¢\J,_,, U,, in which case xe W.

Claim 2. V" witnesses that X is not w-starcompact. Let B< X be finite and let neN".
Because B is finite and % is infinite, there exist infinitely many U, in % such that
U.n B=§. Thus, we can pick N > n such that Uy n B =¢. By the remarks made
earlier, it is easily seen that st(xy, ¥) = V{™' < Uy and more generally, st™ (xn, V") <
U, ViN<c Uy form=< N. In particular, st"(xy, V") < Un, so xy €st"(B, ¥'). B and
n were arbitrary, so X cannot be w-starcompact. [

Remark 2.1.9. The above results complete Fig. 1 and give us some simple connections
between our initial definitions. Furthermore, it is well known that pseudocompact
spaces are DFCC and that (pseudo)normal pseudocompact spaces are countably
compact (see [6, Section 3.10]). So these propurties are all equivalent in pseudo-
normal spaces.
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2.2. Moore spaces

As noted in the last section, for T, spaces, countable compactness is equivalent
to strong 1-starcompactness. Hence, from [17], each strongly 1-starcompact Moore
space is compact and metrizable. Also we know that for regular spaces, 2-star-
compactness, w-starcompactness, and the DFCC are equivalent, and for completely
regular spaces, these are equivalent to pseudocompactness. Hence, for Moore spaces,
we need only to establish the relationships between 2-starcompactness and strong
2-starcompactness, between strong 2-starcompactness and 1-starcompactness, and
between 1-starcompactness and compactness.

Lemma 2.2.1 [21]. Each 2-starcompact Moore space is separable.

Lemma 2.2.2. Every regular 2-starcompact separable space X is strongiy Z -starcompact.

Proof. In regular spaces, an equivalent of the DFCC property (and hence 2-
starcompactness) is that every countable open cover has a finite subset whose union
is dense [1]. Let D be a countable dense subset of X and % any open cover. The
collection of open sets {st(d, %): d € D} is a countable open cover because [ is
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both countable and dense. Hence there is a finite B< D such that st(B, %) is dense
in X and so st’(B, ¥)=X. O

Hence, we have the following.
Theorem 2.2.3. Each 2-starcompact Moore space is strongly 2-starcompact.

Lemma 2.2.4. If X is a regular space which has a closed discrete subset D such that
|D|=w(X)= w, where w(X) is the weight of X, then X cannot be 1-starcompact.

Proof. Let & be a basis for X with minimum cardinality, so |%|=|D|. Because X
is regular, for each x € D there is a basic B, € # such that x € B, and B.n D={x}.
Furthermore, for each y € X — D there is a basic V, >y such that V,n D=4. Let
U ={B,: xe D}u{V,: ye X — D}. Therefore,

|B|=|%|=|(B.: xe D}l =|D|= |3,

50 |U%|=|®B|. Now let F={F < U: F is a finite subset of %}. Hence, |%|=|%|=|D|,
because |%|= w. Pick Fe & Then F={U,,..., U,}, say, so thai { F=J;
m

in at most finitely many points of X.
Enumerate & as {F,: a < «}. Suppose for each B < a we L:ave defined some xz € D
such that x5 2| Fz and x3 # x,, for B# y<a <k.

D-({xg: B<a}ulUF,)#0 as DnlJF, is finite,

so we can pick x, € D—({xg: B<a}ulUF,) and x, # x; for all B<a.
For each x € D, define

{an(X—U F,), if x=x, for some a <k,
U= .
B, otherwise.

In either case, U, is open and contains x. Let %'={U,: xe D}u{V,: ye X — D},
so AU' is an open cover of X. If G ' is finite, then G={U,,..., U, }u
{Ve,..., V,,.}. Let F={B,,...,B. }u{V,,...,V, },so FeFand UG<cUF.
For some a <k, F=F,, so that x, ¢|J F,,. We observe that

x,€st(JG, ') ifandonlyif U,_nlJG#0,

since U, is the only element of %' containing x,. But U, =B, —\J F,,so U, N
JUG<c U, AnUF, =0 au. hence x, ¢st(l JG, U’).

Thus we have constructed an open cover “«’ of X and shown that if G U’ is
finite, then st{l_J G, %’y # X. Hence X cantot be 1-starcompact. []
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Example 2.2.5. There exists a locally compact, strongly 2-starcompact Moore space
(¥) which is not 1-starcompact.

Proof. Let {N;: se S}, where NnS=@, be an infinite family of infinite subsets of
N such that the intersection N, n N is finite for every pair s, s’ of distinct elements
of S and that {N;: se S} is maximal with respect to this property.

Generate a topology on the set X =Nu S by the neighbourhood system {B(x): x e
X}, where

{{x}}, if xeN,

%(x)z{{{x}U(Nx—{O’13"""}):nEN}’ if xeS.

This topology makes X a locally compact Moore space, and is the space ¥ described
in [9, 18]. The set S is a closed discrete subset of X which has the same cardinality
as the weight of X. So, by Lemma 2.2.4, X is not 1-starcompact.

To show that X is strongly 2-starcompact, it is sufficient to show that if % is any
open cover of X, there is a finite subset B of N such that Ncst(B, %). This is
because N is a dense subset of X.

Suppose to the contrary, that there is some basic open cover % such that if B& N
is finite, then it is not the case that Nc st(B, %) (*). Let x, =0 and B, ={x,}. Suppose
we have inductively defined distinct elements x,, x;,..., x, of N, such that x; &
st(Bi-;, U), where B;={x,,X,,...,x;} for 1<i<n. Then by the property of %,
A, =N-st(B,, U%) must be infinite (for if it were finite, A, U B, would be a finite
subset of N and Nc st(A, u B,, ) contradicting (*)). Hence we may pick x,., € A,
greater than all the elements of B,. As x, € A,, x,.,2st(B,, %). Now, B=
{x,: neN} is an infinite subset of N, so by maximality of S, there exists a limit point,
s, of B with the property that if V is an open set containing s, then |V~ B|=N,.
As U covers X, pick some U e U containing s. Let x;, x;- be distinct elements of
U N B, with k<k'. Then x, € U cst(x;, %). In particular, x;,.<st(By_,, %), as
k< k’—1. This contradicts the original property of % and the result follows. []

Now, let us show that it is consistent that each 1-starcompact Moore space is
compact.

Lemma 2.2.6. If X is a Moore space such that w(X') does not have countable cofinality,
then there is a closed discrete subset D of X such that |D|=w(X).

Proof. For such a space X, there is an open covering % ={U,: a <k} such that
k=w(X)and Us—U,_; U, #0 for all g <.

[If this were not the case, we could arrange a development {%,: neN} with
|4,|<w(X) and covers ¥,={V,.:a<A,}c¥, such that A,<k and V,z—
UK‘, Voo #20 for all B<A,. Now, as w(X) does not have countable cofinality,
|9 < w(X), where =\, 9., and ¥ is a base foi X. Contradictior |
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Let x;e Ug “‘ans U, and E ={x,: B <k}. Then E, is a discrete subset of X
where E =\, E. and E, = {x,: st(x,, 9,) < U,}. Furthermore, we can find an m
such that |E,,|=w(X). But every discrete subset of a perfect space is o-closed
discrete, so there is a subset of E,, with cardinality « that is closed discrete. [

Corollary 2.2.7. If X is a 1-starcompact Moore space, then w(X) has countable
cofinality.

Proof. This follows from Lemmas 2.2.4 and 2.2.6. [

Theorem 2.2.8 (CH). 1-starcompact Moore spaces are compact and metrizable.

Proof. By Lemma 2.2.1, each 1-starcompact Moore space has w(X)=<c¢. As ¢ does
not have countable cofinality, under CH, Corollary 2.2.7 implies such a Moore
space must be second countable. [J

To obtain a sharper result than Theorem 2.2.8, we make use of two of the cardinals
(and the notation) defined in [4]. Define “w as the set of all functions from o to
itself. For all f, g€ “0, we say f <* g if and only if f(n)=< g(n) for all but finitely
many n. The unbounding number, b, is the smallest cardinality of an unbounded
subset of (“w, <*). The dominating number, d, is the smallest cardinality of a cofinal
subset of (“w, <*). It is straightforward to show that w,<b=<?b=<c¢ and it is known
that v, <b=¢, w,=0<¢ and w,=b<d=c¢ are all consistent with the axioms of
ZFC (see [4] for details).

Let L(X)=min{B: each open cover of X has a subcover of cardinality < 8}+ o,
the Lindelof degree of X.

Lemma 2.2.9. If X is a regular first countable space with L(X)<b, then X is
pseudonormal.

Proof. Let H, K be disjoint closed subsets of X with K ={x;: ieN}. Let ¥ be an
open cover of H such that |¥|<L(X)<b and V~ K =0 for all Ve ¥. For each
x € K, let {G,(x): neN} be a countable neighbourhood base at x with G,(x) H =¢
and G, (x) < G,(x) for all n.

For each Ve ¥, there are n; such that K =, G, (x,) and G, (x;) n V=0. Let
fviw->wbyfy(i)=n.Sol{fy: Ve ¥} <band hence there is some function g: v »
such that, for every V. fy(i)=<g(i) for all but finitely many i It follows that, if
4 ={G,(x;): ieN}, U ¢ is an open set covering K and U $n H=0. O

It follows from Remark 2.1.9, Corollary 2.2.7 and Lemma 2.2.9 that, if b=c¢,
1-starcompact Moore spaces are compact and metrizable. But we can do better still.
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Lemma 2.2.10. If X is a regular first countable 1-starcompact space with w(X)<bd,
then X is countably compact.

Proof. Let 3 be a base with cardinality less than d and suppose that X were not
countably compact. Then there is an infinite subset A={x,: n€ w} with no limit

point. Let {B,(x,): me w} be an open neighbourhood base for x, such that
R (y Y\c R (v ) farall m and Ri(v YA R (v — Munle

Lrm+i\vp) = Lrm\vp) 1YL QGIL 11s QIR W \An )T VAT I\ Ay ) —y wuill

Let €= {B,(x,): ne w}. For each xe X - €, pick a U, € B such that xe U,

i 4 Let ={U.:x¢\J €} and U = ¢ -
and U,nA=0. Let 2={U,: xeU €} and U = €U 2. From %, we construct an

open refinement witnessing that X cannot be 1-starcompact. Observe that | %|<|3| <
0.
Let & be the collection of all finite subsets of %. Then || <b. For each Fe &,

define fr € “o as follows:

n -
" .

(0 UAB.(x) =6 for all mca
)% UnB,(x,)=0forall mco
JIF(Q) = a d .Of u!! U’E LY

lmax{m: UnB,(x,)#0, Ue F}, otherwise.

For fixed n, each U € F can meet at most finitely many B,,(x,) because UnA=0.
Hence f; is well defined. But now |{fr € “w: F € F}| <D, so there is a g€ “w such
that for each F € & there are infinitely many n with g(n)> fz(n).

Finally, let ¥'=2 U{Bgn)(X,): n€ 0} U {Bi(x,) — Byn+1(X,): n€ w}. Then ¥V is
an open refinement of 4. By the construction of g, any finite subset 7" of ¥ fails
to meet infinitely many of the B, (x,). Hence |[A—st(lJ 7", ¥)| = w; so, in par-
ticular, st(UJ 7", V)= X. O

Theorem 2.2.11 (d=c¢). Each 1-starcompact Moore space X is compact and metrizable.

Proof. X is separable since it is a DFCC Moore space. Hence w(X)=<c¢. However,
by Corollary 2.2.7, w(X) # ¢, since ¢ does not have countable cofinality. Therefore
w(X)<bd. By Lemma 2.2.10, X is countably compact, and hence compact and
metrizable. [

The relationships between the starcompactness properties in Moore spaces are
given in Fig. 2.

2.3. Non-Moore space examples

First, let us consider examples to show that 2-starcompactness, strong 2-star-
compactness, 1-starcompactness, and strong 1-starcompactness are (at least con-
sistently) all distinct in the class of first countable regular spaces.

In [24], Scott describes a regular DFCC meta-Lindeldf space that is not compact.
We carefully adjust this example to obtain a regular first countable 2-starcompact
space that is not strongly 2-starcompact. The continuum hypothesis is used for
enumeration purposes (as in Scott’s example).
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compact and metrizable

!

strongly 1-starcompact
l 1 consistent

1-starcompact

S

strongly 2-starcompact

!

2-starcompact «— DFCC

!

w-starcompact

Fig. 2.

This space has been named *‘fat-psi” because, instead of taking a maximal family
of almost disjoint sequences from N as in the construction of ¥, sequences of clopen
subsets from Z x o are constructed, for some suitable space Z. To ensure the whole
space is regular and DFCC, a maximal family of almost disjoint such sequences is
chosen. The difficulty arises in simultaneously arranging for an open cover to witness
that the space is not strongly 2-starcompact. This accounts for the complexity of
the chosen Z.

Lemma 2.3.1. Let {X,: A€ A} be an infinite collection of topological spaces. Let
k =min{d(X,): A€ A}. If Ac X =]],., X\ has cardinality less than «, then A is
nowhere dense in X.

Proof. Suppose that A< X is not nowhere dense in X, i.e., there is a nonempty
basic U=[],., U, A. For some A,e A (in fact, for all but finitely many A)
U,,= X,,- It is easy to show that m, (A) is dense in X, . Hence

|A|=|m(A)|=d(X,)=«. O

Observe that the lemma is not true for finite products: the long line X is locally
separable, but d(X) =N,.

Example 2.3.2 (CH). A regular first countable 2-starcompact space which is not
strongly 2-starcompact.’

Proof. Let S be the Cantor set on [0, 1]. Then S is a compact metric space with a
countable base consisting of clopen sets. Put the lexicographic order on S x S (i.e.,
(a,b)<(c,d) if and only if b<d or (b=d and a<c)) and give Sx S the order
topology. Then $x S is compact T, first countable and has a base of 2“ clopen
subsets. Observe that d(S x §) =2,

Let Z = (S x S)“, the product of w many copies of S x S. Then Z is compact T>,
first countable, |Z| =2“ and Z has a base oi 2* clopen subsets. By Lemma 2.3.1, if

' Added in proof; the fourth author has recently constructed a space with these properties within ZFC.
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A< Z has cardinality less than 2, A is nowhere dense in Z. Let Y =Z x® have
the usual product topology.
Henceforth assume CH.

Claim 1. We can write Z =\, B., where the B, are pairwise disjoint, nonempty
and clopen. The proof of this is temporarily postponed. Let B ={B,: a <N},
B,={Bx{n}: Be B} and J=J,., B.. Let I be the set of all countably infinite
subsets R of J such that for each n, |R N 8,|< 1. Observe that if I'' < I' is countable,
there is an Re I’ with  RnUU T =0 (*).

Let € be the family of all basic clopen subsets of Z such that € refines 8 (i.e.,
if Ce€ €, then there is some Be B with C< B). Let €,={C x{n}: Ce ¢} and
K =J,.., 6. Let X be the set of all countably infinite subsets S of K such that
|S ~ €,|=<1 for each n.

Claim 2. We can enumerate X as {S,: a <¥,} such that if a is a limit ordinal,
US.anlUUg., Ss=0. As with Claim 1, the proof is postponed. Let Z=
{z.: @ <N} and for B <N,, Z; ={z,: @ <B}. Note that |Z;| <¥N,, so Z; is nowhere
dense in Z. By irduction on a < N,, we shall construct D, € 3 u {#} and 4, < 3 U {0}
so that the following hold for each a <N;:

(1) A, ={Dg: B<a};

(2) elements of A, are almost disjoint;

(3) there is a D€ A, such that D is not almost disjoint from S, ;

4) UD,cUS,;

5) (Z,xw)n\J D, =0.

To say that sequences Dy and Dj. are almost disjoint, we mean here that d nd'# ¢
for at most finitely many d € Dg and d'e Dg..

Suppose that @ < X, and that D, and 4; have been defined for all 8 < a to satisfy
(1)-(5). Let A, ={Djg: B <a}; then 4, is almost disjoint. If 4, L {S.} is not almost
disjoint, let D, =@. Otherwise, let M ={ne€ w: S, N 6, # 0} and for each ne M, let
C,=(Zx{n})nUJS,. For each ne M, there is a C,€ %, such that C,c
C,—Z,x{n}. Let D, ={C": ne M}. In either case, set 4, =4, u{D,}. (1)-(5) are
clearly satisfied at a. Furthermore, if @ is a limit ordinal, U D, n\UU;_, D=
@ ().

Now let 4 ={J{4,: a <¥,}—{0}. Then 4 is a maximal almost disjoint subfamily
of 3. Moreover, for any ye Y, {De A: y el D} is countable (by (5)), andif A'c 4
is countable there are uncountably many De 4 with U Dn{J 4'=0 (by (+*)).

Let |L|=N, with Ln Y =0 and associate each De A with a unique Ip€ L. Let
X = Yu L, and topologize X as follows: Y is an open subspace of X and basic
open neighbourhoods of points of L take the form {lp}u U {D - F}, where F is a
finite subset of D. This topology makes X Hausdorff, zero-dimensional, first count-
able, locally compact and meta-Lindelof. Note that L is a closed discrete subset of
X.

X is DFCC: Let ¥ ={V,: nc w} be a disjoint family of nonempty open subsets
of X. Y is open and dense in X, so we may assuime VeV Iftherz 5 e it Zow
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such that V, ~(Z x{m})# @ for infinitely many n € , then the compactness of Z
ensures some point of Zx{m} is a cluster point of ¥. Otherwise there is an
S={S,: nc w}e X such that S, < V, for each n € w, and the maximality of 4 then
ensures that some D € A is not almost disjoint from S; therefore I, is a cluster point
of 7.

X is not strongly 2-starcompact: Let 7" be a basic open cover of X such that
each I e L is contained in a unique Ve ¥, ¥ —{V,: l€ L} covers Y and each element
of this collection is contained in some Z x {n}. Enumerate the finite subsets of Y
as {F,: @ <N,}. Suppose that for all a <p we have defined a distinct I(a) € L such
that if Vi, is the uniquc element of ¥ containing l(a), then Viq,n\UJ D=0
whenever De 4 with|J D F, #0. Observethat A'={DeA: U Dn,_, F. #0}
is countable, so there are uncountably many D’'e 4 such that | D'nlJU A'=0
(by (#*)) [N.B. crucial use of CH here]. Thus we can pick such a D’ for which
Ip2{l(a): @ <B} and let I(B)=Ip. Notice that V,;5,n | D=0 whenever De A
and | Dn Fz #9.

Define Vi, = Vigy— U {Z x{n}: Fsn Z x{n}#0}.So Vg, is open as Fj is finite.
Finally, let V" ={Vig,: B<NR}Uu{Ve V: V# Vg for any B <N;}. Then 7" is an
open cover of X. Now if F is a finite subset of Y, F = F, for some a <N,.If Ve V"
and Vn F+#0, then either Vel J Du{lp} for some De 4, or V< Z x{n} where
FA(Z x{n})#40. In either case, V},,n V =0 by construction. As V,, is the unique
element of 7" containing I(a), I(a)&st*(F, V).

Proof of Claim 1. Let {g,: n€ w} be a countable dense subset of S. Let C,=(0,1)
be a clopen subset of S containing g,. Suppose we have defined pairwise disjoint
clopen subsets of S, C, ..., C, that are also subsets of (0, 1). If |_,_,., G is dense
in S, then stop. Otherwise pick C,., clopen such that gq,, €C,S
(0,1) —=Up<;<, Ci, where m,.,, is the least integer such that q,,,"H:EUOs i<n Gie

This process generates a collection &/ of pairwise disjoint clopen subsets of S
that are dense in S and are all subsets of (0,1). Let " ={AX{s}: s€ S, Ac A}
Then &/ is a collection of pairwise disjoint clopen subsets of the lexicographically
ordered Cantor square, SX S,and |*|=N,.If 7: Z = (8 x §)* > § x § is the projec-
tion onto the first coordinate, B = {7 'A: Ae &£} does the job.

Proof of Claim 2. Enumerate X as {T,: a« <N,}. Suppose for « <8 we have defined
S, € X such that, if « is a limit ordinal, U S, nlUU, ., S,=0. If B is a successor,
let Sz be T, €2, where v is the least ordinal such that T, &{S,€2: a <B}. For
limit B, recall that for all a, S, < R(a)e T, so by (*), there is an R € I', and hence
in 3 such that U RNUJU,_;S.=0. Let S;=R. O

Example 2.3.3. The Tychonoff plank is a 1-starcompact completely regular space
which is not strongly 1-starcompact.

Proof. Let T =[0, w,] %[0, w] have the usual product topolcgyand T* = T — (w,, »)
have the induced topology. The space T* is known as the Tychonoff plank.
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Let U be a cover of T* consisting of basic open sets. Then for each n < w, there
is an a,<w, such that {(B,n)eT: a,<B<w;}€ U Call this set U,. Let a =
sup{a, € w,: n<w}, s0 @ <w,. Then {(B, n): a <B<w,}< U, for each n<w. For
some Ve U, there is an m<ew such that {(a+1,n)eT: m<n<w}c V. Define
¥,={V}u{U,: n<m}. Notice that ¥, U is finite and that st( ¥,, %)
(a, 0,1%[0, ®).

Define E =[0, « +1] %[0, w]< T*. Clearly, E is compact as a subspace of T™*.
So there is some finite ¥>< % that covers E.

Finally, [0, w,) X{w} is homeomorphic to [0, w,;), which is countably compact
and, in particular, 1-starcompact. Hence there is some finite ¥3< % such that
st(UJ 75, %) 2[0, w,) X {w}.

Define V'=9,u ¥>u 73, so that 7 is a finite subset of %. Observe that

T* =((a, 0,1 %[0, ®)) U ([0, a +1]1X[0, @]) U ([0, @) X {w})
cst(J Y, U)=T*.

Thus, we have shown that for any basic open cover % of T*, there is a finite subset
¥ of % such that st(U ¥, %)=T*, i.e., T* is 1-starcompact.

However, T* is not countably compact because A={(w,, n): n <w} is a closed,
infinite discrete subset of T*. Hence, by Theorem 2.1.5, T* is not strongly 1-
starcompact. [J

Notice that A is a closed subset of T* which has the discrete topology. Hence
closed subsets of 1-starcompact spaces need not be 1-starcompact.

We now give a consistent example of a regul-r first countable 1-starcompact space
which is not strongly 1-starcompact. It is a modification of an example due to van
Douwen and Nyikos in [4].

Lemma 2.3.4. (0= w,). There is a dominating D < “w that is well ordered by <*.

Proof. Let F={f,: a <w,} be a dominating subset of (“w, <*). Suppose we have
defined g, € “w for all @ < such that f, <* g, and g,  <* g, for all a’<a. The
collection {g,: @ < B}u{fs} is countable, so there is some gs € “w such that g, <*gg
for all @ <B and f <* gg.

The set D={g.: @ <w,} is the required dominating family. []

Example 2.3.5 (0= w,). A regular first countable 1-starcompact space which is not
strongly 1-starcompact.

Proof. Let D be a dominating subset of “w well ordered by <*. Let X=w U
(w xw)u D and topologize X as follows: points of w X e are isolated, basic
neighbourhoods of points k € w take the form

Uk, n)={k}u ({k}x[n, 0)) for ncw,
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and basic neighbourhoods of points f in D take the form
G(f,8,S)={heD:g <* h<*flu((L,— L) - S),

where g € D satisfies g <* f, Se[w xw]™* and L, ={(m, n): n<f(m)}.

With this topology, X is T; (in fact, zero-dimensional). Because d=w,, D is
homeomorphic to w, with the usual topology, and it follows that X is first countable.
X is not countably compact (and hence not strongly 1-starcompact) because w is
an infinite subset with no limit point.

In preparation for the proof that X is 1-starcompact, we prove the following
claims:

Claim 1. If n, € w for each k € w, there is an f € D such that whenever U is open and
fe U, U meets {k}x[ny, w) for all but finitely many k.

Claim 2. If A is an infinite subset of w X w with |An ({k}x w)|<w for all k, then
there is a limit point f of A in D.

Proof of Claim 1. Define he€ “w by h(k) = n, for k€ w. As D is dominating, there
is an fe D such that h <* f. Consider G(f, g, S) for any ge D with g <* f and
Selox o]~ If G(f, g S) n{k}*[n,, @) =0 for infinitely many k, then (L, — L,) n
{k} x[ny, @) =0 for infinitely many k (S is finite). Therefore g(k) = f(k) for infinitely
many Kk, since f(k)= n, for all but finitely many k. But this contradicts g <* f.

Proof of Claim 2. Define he “w as follows:

0, if there is no n with (k, n) € A,
min{n: (k, n) € A}, otherwise.

h(k)={

As D is dominated and well ordered by <*, let f be the <*-least element of D with
h <* f Consider G(f,g, S) where ge D satisfies g <*f and Sec[wxw] " If
G(/f, g S) n A were finite, G(f, g, S) n h would be finite (regarding h as a collection
of ordered pairs). But G(f, g, S)nh=((L,—L,)—S) ~ h, Sis finite and (k, h(k)) € L,
for all but finitely many k. Hence (k, h(k)) € L, for all but finitely many Kk, i.e.,
h <* g. This contradicts the minimality of f.

That X is 1-starcompact: Let % be any open covering of X. For every k € o, for
some U, € U and some ny € w, {k} U ({k} X[n,, w)) € U;. By Claim 1, there is some
f€ D such that, if fe Ve %, V meets all but finitely many of the sets Uy. Hence,
st(V, %) contains all but finitely many points of w. For each point k€ w —st(V, %)
pick a U, € U with ke U,. Let %’ be the set containing V' and these U,. Then
U'c U is finite and w = st(LJ U’, U). As a subspace of X, D is countably compact;
so there is certainly a finite %" < U satisfying st((_ %", %) 2 D. Finally, it follows
from Claim 2 that any infinite subset of w X w has a limit point in w U D. Hence
X=-stUUvUJU" U) is a finite subset of w X w. 50 there is certainly a finite
U"< U covering this remaining subset. Thew ¥ =U'u U"U U" is a finite subset
of U and st(l ) ¥, U) = X as required. O
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We conclude the regular examples with the following:

Example 2.3.6. A regular space that has every real-valued function bounded (in
fact, constant) but which is not DFCC.

Proof. Let Y be any space suchthat|Y|=2, Y is T; and every continuous real-valued
function on Y is constant (for example, see [6, Section 2.7]). Pick any y,€ Y. Let
Y,=Yx{i} and X =@),_, Y. Define an equivalence relation ~ on X as follows:

(», i) ~(y2, 1) if and only if ((n=y,and i,=1i,) or " =y2=y)),

and let X*=X/~. Then X* is T; because each Y; is. Pick any ye Y —{y,} and
disjoint open U, U’ in Y such that yoe U and y€ U'. Then {#w(U’'x{i}): ieN} is
a countably infinite discrete collection of open sets in X*, where 7: X » X* is the
quotient map. So X™* is not DFCC.

Suppose f*:X*->R is continuous. Then f;: Y;->R defined by f,=f*c x|, is
continuous. Because of the property of Y, each f;: Y; >R is constant. Therefore for
any yeY,

[ (@ (y, D))= £y, 1) = fi(yo, ) = *(7 (o, i)).

But we know w7 (y,, i) = m(y,, j) for all i, j. Hence we have that for any ye Y and
any i, j,
[ (a(y, ) =f*(7(yo, 1)) =f*(m(yo, )
From this it is clear that f* is constant on X *. O
The situation for starcompactness in regular first countable spaces is summarised
in Fig. 3.

Finally, we consider nonregular distinctions between the various starcompactness
properties.

countably compact

!
strongly 1-starcompact
l $¢‘onsisu)m
1-starcompact
1 %
strongly 2-starcompact
d Feonsistent
2-starcompact «—> DFCC
!

w-starcompact

Fig. 3.
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Example 2.3.7. A strongly 1-starcompact T, space which is not countably compact.

Proof. Let X =R with the cocountable topology. Then X is a T, space which is
not T. It is certainly not countably compact.

Let 9" be any open cover of X and pick any nonempty Voe V. If Vo=X, then
let B={0}; clearly, st(B, ¥)=X. If Vo# X, then X — V,={x,: neN"} (repetitions
allowed). For each neN', pick some V, € ¥ with x,€ V,. Then ¥"={V,: neN}c ¥
is an open cover of X. Now,

X—m Vn=U (X_Vn)a
neN neN
which is countable (V, is open, so X —V, is countable). Therefore, (), Va is
nonempty, because X is uncountable. Selectany x €[,y Va, let B={x}and observe
that
X=U V,=st(x, ¥")cst(B, V)< X.

neN

Hence X is strongly 1-starcompact. [

In [23], a scheme is constructed which, fcr any n eN™, will generate a Hausdorff
strongly n + 1-starcompact space that is not n-starcompact. This scheme also enables
Sarkhel to create a Hausdorff space that is w-starcompact, but not n-starcompact
for any neN*.

Here, we modify this technique so that, for any n e N*, we also get an n-starcompact
Hausdorff space that is not strongly n-starcompact. In the light of Theorem 2.1.8,
this is the best “construction scheme” that we could hope for.

Example 2.3.8. An n-starcompact Hausdorff space which is not strongly n-star-
compact.

Proof. Take the compact interval I ={0, 1] and express it as the union of pairwise
disjoint sets A,,..., Ay,+1, €ach dense in I with 0,1€ A,,,,. Let E,=A;_,U A U
Apyy for k=1,3,5,...,2n+1 and E, = A, for k=2,4,6,...,2n, where A;=A,
and A,,.,= A;,.,. Notice that E; n E; is dense in I if and only if |i—j|<1 or i and
J are consecutive odd numbers. Note also that for each x € I there is a unique index
k(x) such that xe A,,.

Now let X denote the set I with the topnlogy 7,(X) consisting of all subsets
G < I such that for every x € G there is an open interval I, satisfying x € I, N E;(, S
G. This topology makes X a Hausdorff space that is n-starcompact, but not strongly
n-starcompact.

Let 7" be any open cover of X. For each x € X we select an open V, € ¥ and an
open interval I, satisfying x € I, n E;(,,< Y, (*). Because X is compact in the metric
topology, X =|J{I,: b e B} for some finite B< X. Then given x € X, we have x€ I,

for some be B. It follows that x € st"(V,, ¥); thus X is n-starcompact (take 7" =
{V,e V:be B}).
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We now show that X cannot be strongly n-starcompact. Fix a strictly increasing
sequence {cx} < Ayn+ converging to 1 with ¢, =0. Select a, € I,nA,, where I, =
(ck, ck+1) and let Ji = (ck, ax) U (ay, Ci+y). Then the family % consisting of the set
E, .+ together with the sets L nE, and JynE; (k=1,2,...;i=2,3,...,2n) is an
open cover of X. Given any finite B< X there is an index m such that none of the
sets I,NE,, Ju,nE,,...,J.nE,, meets B (this is because the sequence {c;} is
increasing). By the construction of the Ji, a,, £ st"(B, %). This proves that X is not
strongly n-starcompact, because st”(B, %) # X for arbitrary finite B< X.

One final observation is that the collection of sets I,,n A, for k=1,2,... is
discrete, so this space does not satisfy the DFCC. O

2.4. Properties of starcompact spaces

Here we consider further properties of starcompactness, such as the combination
of starcompactness with other covering properties. First, we look at continuous
images of starcompact spaces and products involving starcompactness.

Theorem 2.4.1. The continuous image of a strongly n-starcompact (respectively n-
starcompact) is strorgly n-starcompact (respectively n-starcompact), for 1 <n<w.

Proof. Straightforward. [

In general, the product of two countably compact spaces need not even be
pseudocompact [6, 3.10]; so no form of starcompactness is even finitely productive.
Furthermore, Fleischman shows in [7] that the product of a strongly 1-starcompact
space with a compact space need not be strongly 1-starcompact. However, at least
we have the fcllowing result, which is also proved in [23]:

Theorem 2.4.2. If X is n-starcompact and Y compact, then X X Y is n-starcompact
(n<w).

Proof. We give the proof for n = w. It is clear how the proof for other values of n
can be obtained.

Suppose X and Y are as above and % is a basic open covering of X x Y. For
each x € X, U is an open cover of the compact subset {x}x Y of X x Y. Therefore,
there is a finite subset of % covering {x}X Y, say U, X Vy,..., U)X Vanix)-
Define W, =7 U,;, so that W, is an open subset of X containing x and

{x}x YeU{W,x Vi 1=<isn(x)}
cU{Uux Va: 1<isn(x)}
Then W ={W,: xe X} is an open cover of X. Because X is w-starcompact, there
is some finite subset W'={W,:1<j<r}c W and some NeN" such that
stNIU W, w)=X.
Define U'={U,;x V,;: 1<isn(x), 1 <sj<r}, so that ¥’ is a finite subset of %.
Straightforward induction shows that st”"(UJ %", W)x Ycst™ (U %', %) and
hence st"N(J %', U)=XxY. O
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We have already seen that starcompactness does not have the same “closed
hereditary” property as countable compactness—both the Tychonoff plank, Example
2.3.3, and ¥, Example 2.2.5, have infinite closed discrete subsets. However, due to
the equivalence of the DFCC and 2-starcompactness, we do have an instance where

starcompactness is preserved in subspaces:

Proof. The proo
can be found i

=

It is well known that a countably compact space that is either Lindeiof or
metacompact is compact. So it is natural, therefore, to ask whether similar results
hold for spaces that are both starcompact and have some other covering property.

Observe that Example 2.3.7 is a strongly 1-starcompact, Lindelof T, space. So
we immediately see that no form of starcompactness strictly weaker than countable
compactness, together with the Lindel6f condition, is sufficient to imply compactness.
Furthermore, the following example is a second-countable Hausdorff space that is
1-starcompact but not compact.

{a}ulU{[0, 1) x{n}: n> m} where m eN. Basic open sets about other points of X
are the usual induced metric open sets. The topology which this basis generates is
clearly Hausdorff and makes each of the subsets [0, 1] x{n} compact.

This space is not countat!y compact since {(1,n): neN} is an infinite closed
discrete collection of points of X; so X is not strongly 1-starcompact. It is, however,
1-starcompact. Let % be any basic open cover of X. Pick any U, € U that contains
a. Then U, ={a}uUJ{[0, 1) x{n}: n>m} for some m. Each [0, 1]x{n} for n<m
is compact so these sets are covered by some finite %'< 4. If we now define
U"=U{U,}, it is clear that st(JJ %", )= X. O

“ompaci spaces need not be compact, uniike tize case with countabie compactness.
in particular, it shows that s-starcompact metacompact spaces need not be strongly
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n-starcompact. We will now see that strong 1-starcompactness is sufficient to imply
compactness, and how metacompactness does link the starcompactness properties.

Theorem 2.4.5. Strongly 1-starcompact metacompact spaces are compact.

Proof. Let % be any open cover of a strongly 1-starcompact metacompact space
X. Let V" be a point-finite refinement of %. There is a finite B< X such that
st(B, V)= X. As 7 is point-finite, ST(B, V') is finite and covers X. As ¥ refines %,
for each Ve ST(B, ¥) we can find Uy € % with V< U,. The collection {U,: Ve
ST(B, ¥)} is the required finite subcover. [

This provides us with an alternative, if roundabout, proof of the fact mentioned
above:

Corollary 2.4.6. Countably compact metacompact spaces are compact.
Proof. Combine Theorems 2.1.4 and 24.5. O
Theorem 2.4.7. Strongly n+ 1-starcompact metacompact spaces are n-starcompact.

Proof. Adapt the proof of Theorem 2.4.5. [

In [24], Scott shows that regular DFCC metacompact spaces are compact. To
conclude our investigation with metacompactness, we again use the equivalence of
the DFCC and 2-starcompactness in regular spaces:

Theorem 2.4.8. Every regular 2-starcompact w 2tacompact space is compact.

Example 2.4.4 shows that regular cannot be weakened to Hausdorff.

3. The star-Lindelof condition
3.1. General positive results
Let us recall the definitions of Section 1.

Definition. A space X is said to be n-star-Lindeléf if for every open cover U of X,
there is some countable subset 7" of U such that st"(lJ ¥, %)= X.

Definition. A space X is said to be strongly n-star-Lindelof if for every open cover
U of X, there is some countable subset B of X such that st"(B, %) = X.

Definition. A space X is said to be w-star-Lindeldf if for every open cover U of X,
there is some neN"* and some countable subset B of X such that st"(B, %) =X

As we might expect, the theory that follows from these definitions is similar to
that of Section 2. For instance, it is immediate that every (strongly) #-fa7oi .sact
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space is (strongly) n-star-Lindelof for n < ». However, the theories are by no means
completely identical; but when a corresponding theorem does hold in the star-
Lindeldf case, it is often enough to replace “finite” with “countable” in the proof
(perhaps with some transfinite induction). Theorem 3.1.1 summarises the results
analogous to Lemmas 2.1.1 and 2.1.2 and Theorem 2.1.4.

Theorem 3.1.1. (1) Every Lindelof space is strongly 1-star-Lindelof.
(2) Every strongly n-star-Lindelof space is n-star-Lindelof.
(3) Every n-star-Lindeldf space is strongly n+ 1-star-Lindelof.
(4) Every (strongly) n-star-Lindelof is w-star-Liadelof.

In fact, Theorem 3.1.1(1) holds for the more general class of N,-compact (i.e.,
every uncountable subset has a limit point) T, spaces.

Being N,-compact (or by Theorem 2.1.4 and the remark above), w, with the order
topology is strongly 1-star-Lindelof. Moreover, w, is normal but not Lindel6f. Thus,
we see that Theorem 2.1.5 does not carry over to the star-Lindelof case.

The discrete countable chain condition is described in {25]. By modifying the
proofs of Theorems 2.1.6 and 2.1.7, we obtain the following:

Theorem 3.1.2. (1) Every DCCC space is 2-star-Lindelof.
(2) Every regular w-star-Lindelof space is DCCC.

Consequently, for regular spaces, the DCCC equals 2-star-Lindelof equals w-star-
Lindelof, and all the properties in between. Both Theorems 3.1.1 and 3.1.2 were
known by Ikenaga [11, 12].

Observe that a completely regular space is pseudocompact if and only if every
continuous real-valued function has compact image. We introduce a definition which
is the Lindelof analogue of pseudocompactness, i.e., keeping the “continuous
function™ flavour. Let H be the hedgehog of spininess w, (see [6]). Then H is a
non-DCCC, connected metric space, with metric d.

Definition 3.1.3. A space X is pseudo-Lindelof if every continuous f:X - H has
Lindelot image.

Theorem 3.1.4. For a completely regular space X, X is DCCC if and only if it is
pseudo-Lindelof.

Proof. Suppose f: X » H does not have Lindelof image, i.e., f(X), as a subspace
of H, is not Lindelof. H is metric, so f(X) is too. Therefore f(X) is not DCCC
[25]. Let {V,: @ <w,} be an uncountable discrete collection of nonempty open sets.
It is easy to verify that {f "'(V,): @ < w,} is an uncountable discrete collection in X.

Conversely, suppose {V,: a <w,} is an un.countable discrete collection of open
subsets of X and pick x € V,. Let [0,1], be the Ath spine of H. By complete
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regularity, there is a continuous f, : X - [0, 1], such that f,(x,) =1 and f,(x) =0 for
all xg V,. Define F: X > H by

[£i(x), if xeV, (and such a A is unique),
F(x)=1" L
L0, otherwise.
To show that F is continuous, we show that inverse images of basic open subsets
of H are open in X. First observe thatif0<a <b<1,then F '((q, b),)=f7'((a, b),)
and F~ '((a, l])‘)=l A '((n, 11/\ ), whi hich are onen bv the continuitvof £, If B.. (0 =
7 VEwAR g LAV SULINILBRLY UL JAs X X ig\V)
fhe H d(O0 hY<1/n) then it remainc ta chaw that E U R (0 ic anen in ¥ Dt
P = 2X . SV, 75y A] Te jg CEAWEL AV L WIRIGRARIS LU JIIU VY LIIGL X \ul/”\\l}[ 19 Up\all 111 . DUt
F YR (ON={xecX:-F(x)=0y || r—l{l l\
\&1/n\V}) VS e I A v (W J \ ) }
m>naA€w, m n

and the second half of this union is open in X. We must show, therefore, that for
eacn xe X such that F(x)= 0, there is an open U containing x with Uc

F7'(B,,(0)). So suppose F(x)=0. If xzu,\w V,,then U=X-UJ,,, V) works.
If, on the other hand, x¢ U rew, V), there is an open W containing x that meets
precisely one of the V,, say V, . It follows that U =(X —f, ([1/n,1],,)) » W has
the required properties. Hence F is continuous. Finally, by considering the open
cover {B,,,(0)}u{(0,1],: A € A} intersected with F(X), we see that F(X) is not
Lindelof. O

If Theorem 3.1.2 is not convincing enough, the next two easily established results
are evidence that the star-Lindelof properties are essentially chain conditions.

Theorem 3.1.5. Every separable space is strongly 1-star-Lindelof.
Proof. Take B equal to some countable dense subset. []
Theorem 3.1.6. Every CCC space is 1-star-Lindeldf.

Proof. In a CCC space X, for any open cover U of X there is a countable U’ < U
whose union is dense in X. [

We saw above that w, is a normal, strongly 1-star-Lindelof space that is uot
Lindelof. In a sense this unfortunate: it would have been convenient if normal
star-Lindelof spaces were Lindel6f. A simple argument shows that a normal collec-
i i at is not N;-compact cannot be DCCC. So the search

for normal spaces that dastz..gush the u.ar-!_mdelef conditions may weil be difficult
ceuioh enacac wanld ava ta ha narmal hut nat callectionwice Haugdorff, A i rfh?!'
SUwvIil ﬂPa\’Vu YWUMIU LIAYLV LU UL (IVILIIIGI VUL IVl WURLVWLEIUVRI VW IUOW R B UNSWIR LA & A weivii
Amrmlinatiam fo that f:m (01 Elaicomar mravad that undor V=T all narmal enaceg
LuINpLiLativll 1> Uiag, 1l | O jy L'ICIDDIIvI PIUVVU Liidi, Wiluvl v L., il IIUIIIIGI SPGVTS
el Lo a8 o o B8 at . BT B AT Qn nien; st 1 csmana Aafinad in
WIlN SNaracCier = &y ar€ COHCCUONwWIsC riausQoOrit. OU dlly Huiilal Spave uviiiivu i3k
- —~ e b A 1. 11 e Voo alecn ntaa A
£LFC that ulstmgulsnes two star-Lindelof conditions will large cnaracCi€r. A

normal 1-star-Lindeiof not strongly 1-star-Lindeidf space exists in ZFC and can be

found in [14]. It has character N,,.
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The search for normal spaces distinguishing the star-Lindelof properties is reduced
considerably by a corollary of a result due to Ikenaga [12].

Theorem 3.1.7. Let X be a normal DCCC space. If U is any open cover, there is a
countable B < X such that st(B, U) is dense in X.

Proof. Suppose there were an open cover % that failed to have this property. Then,
for B <w,, we can pick xz € X —st({x,: a <B}, U). Let

Vs =st(xg, U)—st({x,: a <}, UA).

Then V; is open, xge Vg and Vg Vg.=@ whenever g#p". If we let H=
{x,: @ <w,}, H is closed; after all, no U e % can contain more than one element
of H and % covers X. By normality, there is an open U such that Hc Uc Uc
Ua<m| V,. It is easy to verify that {UN V,: @ <w,} is an uncountable discrete
collection of nonempty open sets. [

Corollary 3.1.8. Normal DCCC spaces are strongly 2-star-Lindelof.

The question remains whether there are normal strongly 2-star-Lindelof spaces
that are not 1-star-Lindelof. Our final result in this section shows that there are no
such spaces that are also perfect. This completes Fig. 4.

Lindelf
|

N,-compact
l

strongly 1-star-Lindelof «—————— separable

{ l

1-star-Lindel6f «——— CCC

l

strongly 2-star-Lindelof perfeetly normal
! |r4

2-star-Lindelof DC FC T pseudo-Lindelof
. +

!
strongly n-star-Lindelof

1)
n-star-Lindelof regular

l

strongly n + 1-star-Lindelof
l
l

w-star-Lindel6f

Fig. 4.
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Theorem 3.1.9. Every perfectly normal DCCC space is CCC.
Proof. In a similar vein to Theorem 3.1.7. [

3.2. Moore spaces

3.2.1. n-separability in Moore spaces
The concept of n-separability in Moore spaces served as the inspiration of our
study of star covering properties. The following results are from [20, 21].

Definition. The subset X of the Moore space S is n-dense in S with respect to the
development ¥ ={%} for S provided for each i, S =st"(X, 4).

Definition. A Moore space S is n-separable provided for each development ¥ for
S, there exists a countable subset K of S such that K is n-dense in S with respect
to %

Definition. A Moore space is wd-normal provided for each open set U in S, there
exists a sequence {U,} of open subsets of U such that for each n, U,<c U, and
U < {J {U,}. (This concept was later renamed (quite sensibly) by Blair as countable
tiling.)

Theorem. A Moore space has the countable chain condition if and only ifit is 2-separable
and has countable tiling.

Theorem. A Moore space has the discrete countable chain condition if and only if it
is 3-separable.

Example. There exists a Moore space with the discrete countable chain condition
but without the countable chain condition.

Question. Does there exist a 3-separable Moore space which is not 2-separable?

Clearly, (by applying the star-Lindel6f property to each stage of the developmert)
it follows that a Moore space is 2-separable if and only if it is strongiy 2-star-Lindelof,
and that a Moore space is 3-separable if and only if it is 2-star-Lindelof.

3.2.2. The Moore space machine

In [21, 22], Reed developed a construction technique which associates a Moore
space J(X) to each regular first countable space X such that (X ) is separable
(respectively, locally separable, CCC or DCCC) if and only if X has the correspond-
ing property. This relationship has been extended to other chain conditions (e.g.
calibers) by MclIntyre [16]. Hence, one would expect similar results for the star-
Lindeldf properties, whereby distinctions between these properties coul:? b~ 56 Wn
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to be identical for the two classes of spaces. Surprisingly, this is not the case. Whereas
previously, the construction has been used to raise distinctions between chain
conditions in simple first countable examples to Moore space examples, it is used
below to create distinction in the derived Moore spaces which are not made in the
first countable spaces.

The construction. Let X denote a regular first countable space. For each xe X,
denote by {U,(x)} a sequence of open sets in X which forms a local base at x such
that for each n, U,.,(x)c U,(x). Now, for each meN*, let A,=
{(ny,ny,...,nn):ny=1and for 1<ism, neN}. Let A=J,_,,..c Am- For each
a=(n,,n,,...,n,) €A, denote by S, a unique copy of X such that all copies are
pairwise disjoint, and for each x € X, denote by (x,, X2, ..., X,m) the element of
S, which is identified with x. Let #(X)=|J{S,: a € A} and define a development
for #(X) as follows: For each jeN', a=(n,n,,...,n,)eA, and p=
(Pn1s Ynzs e+ v s Yam) € Sa, let Gi(p) ={p} O {(Xu1, Xn2s - -+ 5 Xnms Xk1s Xk2s « - - » Xie)? X E
X, ceN" and x € Uy, +;(y), for some j such that k;=j and i<i<c}.

It follows that B ={G;(p): pe M(X), and jeN'} is a basis for a topology on
M(X) and that {%,}, where for each n, §,={G;(p): pe #(X) and j=n}, is a
development for the Moore space (X).

Theorem 3.2.2.1. If X is Lindelof, then #(X) is 1-star-Lindelof.

Proof. Without loss of generality, for each pe #(X), let G, denote a basic open
set for p,and let % ={G,: p € #(X)}. It suffices to show that there exists a countable
subset 7" of U such that st(l ¥, %) covers #(X). In fact, since A is countable, it
suffices to show that for each a € A, there exists a countable subset ¥, of U, =
{G,: pe S.} such that st(l_J V,, U,) covers S,.

Let 7 dcuote the natural projection mapping from (X)) onto X, i.e.,

7r(-xill,-an,- .. rxnm)=x-

Observe that for each a in A, 7 restricted to S, is one-to-one. As noted in [22], 7
is an open countable-to-one continuous mapping from #(X) to X. For each neN"*
and a=(nl, n2,...,nm)e€ A, let an denote (n1,n2,..., nm, n)c A.
Now, for each G, € 4, there exists jpeN" such that G, = G;,(p). Observe that:
(1) Vpe S, and n=jp, w(p)e w(G,N S,,) = U, ;p(w(p)), and
(2) VneN', %,={n(G,N S,,): G,€ U, and m= n} is an open covering of X.
Since X is Lindelof, for each n, let ¥, denote a countable subcovering of %, for
X, and for each Ue ¥, let G, € U, such that there exists pe S, and m = n such
that Gy, = G, and 7(G, N S,,,) = U. Finally, let ¥, ={Gy,: neN*, Ue %,,}.

Claim. st( ¥, %,) covers S,. Suppose p S, and consider G,=Gj(p)eU,. From
(2), there exists Ue ¥, such that 7(p)e U and U = 7(G, N S,,) for some g€ S,
and n=jp. Then Gy e ¥V, and by (1), 7 "1 a(p))nG,(p)n Gy S,, #0. O
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3.2.3. Examples

In the last section, we saw that a regular space is DCCC if and only if it is
2-star-Lindelof, if and only if it is w-starcompact {and that these are all equivalent
to pseudo-Lindel6fness for completely regular spaces). Furthermore, it is well known
that N,-compact Moore spaces are Lindel6f (see [13]). Here, we show that there
exist Moore spaces which distinguish those star-Lindeldf properties which have not
already been eliminated by these constraints.

Examples 3.2.3.1. Strongly 1-star-Lindel6f Moore spaces which are not N,-compact.

Proof. Both the tangent disc space and ¥ are separable (and hence strongly
1-star-Lindelof), but neither is ¥,-compact. O

Example 3.2.3.2. A CCC (and hence 1-star-Lindel6f) Moore space that is not strongly
1-star-Linde!Zf.

Proof. Let X be the Pixley-Roy topology obtained from R, i.e., X ={x<R: x is
finite} and a basic open set takes the form [x, U]={ye X: xc yc U}, where xe X
and U is open in R. Such a construction was first described in [19] and makes X
a Moore space.

Let # be some countable base for R. Defining

B*={|J F: F is a finite subset of A},

then B* is countable. Obviously if [x, U] is a basic open set in X, there is some
B e B* such that [x, Bl< [x, U]. If {[x,, U,]: @ <w®,} were an uncountable collec-
tion of nonempty basic open sets, then, because 8* is countable, for some a # a’,
B, = B,.. But then

Xa U Xy € [xa, Ba] N [xa's Ba'] = [xus Ua] N [xa's Ua']’

So no uncountable collection of nonempty open sets in X can be pairwise disjoint,
i.e., X is CCC and hence is 1-star-Lindelof.

However, X is not strongly 1-star-Lindelof. Consider the cover % ={[{t}, R]:
teR}. If A={x, € X: n€ w}is any countable subset in X, then |_J A =R is couniable.
Pick some se R—|J A. Then {s}e U € U if and only if U =[{s}, R]. If An[{s}, R]#
@, then for some x,€ A, {s}< x, =R, contradicting the choice of s. Hence An
st({s}, U) = An[{s},R]=0 and therefore {s}&st(A, U). So if A< X is countable,
st(A, U#) # X, i.e., X is not strongly 1-star-Lindelof.

So X is a Moore space that is 1-star-Lindel6f but not strongly 1-star-Lindelof. []

Example 3.2.3.3. A 1-star-Lindel6f Moore space which is not CCC.

Proof. Let H and K denote a pair of Bernstein sets in the real line, i.e., each of H
and K is uncountable, H n K =0, each uncountable subset of H has = .t soint
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in K, and each uncountable subset of K has a limit point in H. Let X =H UK,
and give X the inherited real-line topology except that points of K are isolated.
Clearly X is a regular, Lindelof, first countable space which does not have the CCC.
From Theorem 3.2.2.1 and the fact that the CCC is invariant under the Moore space
machine, it follows that #(X) is the desired Moore space. [

Example 3.2.3.4. A strongly 2-star-Lindeléf Moore space which is not 1-star-
Lindelof.

Proof. Let X denote w, with the order topology, and let {U,(x)} denote a non-
increasing local base of countable, clopen sets at each point of w,. As pointed out
in [21], #(X) is 2-separable and hence strongly 2-star-Lindel6f. This follows
immediately from the fact that #(X) is DCCC and locally separable. To see that
A (X) is not 1-star-Lindelof, consider a covering % by basic open sets. Given any
countable subset ¥ of 4, | ¥ is countable. Hence pick a nonlimit ordinal x € w,
such that no element in | 7 is identified with x. It follows that no basic open set
in % containing (x,) € S,,, meets |_} ¥~ Alternatively, observe that any locally separ-
able 1-star-Lindelof Moore space is separable. [

Example 3.2.3.5. A 2-star-Lindelof Moore space which is not strongly 2-star-
Lindelof.

Remark. The existence of a 2-star-Lindelof Moore space which is not strongiy
2-star-Lindelof has now been established by the second author. It is also an example
of a DCCC Moore space with a o-locally countable base (hence a o-para-Lindelof
space) which is not Lindelof. This space was obtained after the second author had
seen a regular nonfirst countable space with these properties constructed by Heath;
both spaces answer questions raised in [2] and will appear in [10].

Question 3.2.3.6. The construction in Example 3.2.3.5 is a complex variaton of the
Moore space machine given above. It is not known in general whether (X) must
be a strongly 2-star-Lindelof Moore space if X is a regular, first countable strongly
2-star-Lindelof space. However, there is an open mapping from .4i(X) onto X.
Hence, it does follow that if #(X) has cither of the star-Lindelof properties, then
so must X. Example 3.2.3.4 shows that #(X) need not be 1-star-Lindelof if X is
1-star-Lindelof.

3.3. Non-Moore space examples

Although the examples in 3.2 are by no means trivial, we have distinguished the
most important star-Lindelof properties using Moore spaces. In this section, then,
the aim is twofold. Firstly, using a technique similar to Sarkhel’s scheme, we
distinguish the star-Lindelof properties for Hausdorff spaces. Secondly, several

examples are presented to show how products of star-Lindeldf spaces behave.
Fix a positive integer, n.



Star covering properties 99

Example 3.3.1. A Hausdorff space which is n-star-Lindelof but not strongly n-star-
Lindelof.

Proof. The long segment (X, J) is constructed from the ordinal space [0, w,] by
placing between each ordinal a and its successor «+1 a copy of the unit interval
I'=(0,1). X is then linearly ordered and it is given the order topolgy. This makes

(X, ) compact, T, and connected

1y SV FFENE £ 2 SRae SNIRRIST MY W =

Let A,, Az, ., Asp 4 be pairwise dlSjOlnt dense subsets covering X, with 0 and

all limit Grdiﬂals in A2n+l . Let Ez,.;.; = nz, (v rlz,.H " 112,+2 for i= \‘}, Lyeoo,Fi and
E,;=A, fori=1,2,...,n, where A;=A, and A,,.,=A,,.;.
A | Py

Define a new topology 7, on X as follows: U is open in X if for every xe U
there is some interval in the order topology I, >x such that I, .\ E,,< U, where
n(x) is the unique integer k satisfying x € A,.

This topology makes X Hausdorff. We will show that (X, J,,) is n-star-Lindelof
but not strongly n-star-Lindelof.

Claim 1. X is n-star-Lindelof (in fact n-starcompact). Identical to the proof in
Example 2.3.8, since (X, ) is compact.

Claim 2. X is not strongly n-star-Lindelof. Define x, =0 and choose y,€ A,,., with
xo<Yyo<w,; and y, not in the (0, 1) segment containing or immediately following
Xo. Suppose we have defined x;, yg in A,,.forall B <asuchthatO=x,<y,<---<
Xg<yg=<---,and xg, yg do not lie in the same (0, 1) segment and

2n
LJp (xya y‘y) =2 LJ‘ Ai N [Oa yﬂ)'
y= i=

Let { =sup{yz: B <a}. Then { <w, and either { is a limit ordinal, or { is one of
the yg. In either case, { € A,,.,. Let x, =¢ and pick y, € Ay, With x, <y, <,
and y, not in the (0, 1) segment containing or immediately following x,. It remains
to show that U, __(x,,y,) 2 U, A;n[O0, y.). Suppose ze ", A;n[0, y.). Then
zZ# X, as X, € Ayp1,, SO either z<x, or z>x,. If z<x,, then z<yg for some g <a
and so zelJ,_,(x,,y,). If, on the other hand, z>x,, then ze€(x,,).)S
U, <a(x,, »,). Hence, by induction, {(xa, ¥.): a < ,}is a pairwise disjoint collection
of nonempty inwryals covering U>", A,

If we now let U = {Egnﬂ}u{(xa, Vo )NE:a<w,,i=1,2,...,2n}, then, U is an
open cover of (X, 7,,). Pick z, € (x., v.) " A,. Let B be any countable subset of X.
Because the (x,, y, ) are pairwise disjoint, there is some a, such that (x,,, ya,) N B =0.
Now, by the construction of %,

Stk(zaoa 0”) c {xaﬁ, yoro) N (E! v Elu T EZn) & (xaga yﬂ’g)

for k< n. Therefore for any countable Bc X, st"(B, %)# X, ie., (X, J,) is not
strongly n-star-Lindelof. []
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A similar method (with X =A,u - -U A,,) generates a T, space that is strongly
n-star-Lindelof, but not n — 1-star-Linde!of.

Example 3.3.2. A Hausdorff space which is w-star-Lindel6f but not n-star-Lindelof
forany n<w.

Proof Tet ¥ — Yy!nl with tonolog gy g

i AUVEe AJvi Japn L A

T, as above and Y ={0}u D, ., X,. A basic
open set containing 0 takes the form {0} U

n Y is a Hausdorff space
If % is open cover of Y, pick Ue ¥ that contains 0. Then U2{0}ulJ,. . X,

for some m. Let B, < X, be countable and satisfy st“(By, U) = X,, for 1sksm
Then B ={0} UlU,-x<. Bx is a countabie subset of Y such that st™ ‘
shows that Y is w-star-Lindelof.

Now let 7, be an open cover of X,, witnessing that X,, is not strongly m-star-

Lindelof. Then

1721
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( )
6” = CI/m v i{o}u U Xn} U{Xn: n< m}
is an open cover of Y that shows Y cannot be strongly m-star-Lindelof. Hence Y
is w-star-Lindelof, but not m-star-Lindelof for any m. [

Example 3.3.3. A space that is the product of a Lindelof space and a strongly
1-star-Lindelof space but which is not strongly 1-star-Lindelof.

Proof. Let X =w, with the usual topology and Y =w,+1 with the following
topology: if @ <w,, then {a} is open. A set containing w, is open if and only if its
complement in Y is countable. With this topology, Y is T; and Lindel6f. The claim
is that X X Y is not strongly 1-star-Lindelof, despite X being strongly 1-star-Lindelof
and Y being Lindelof.

For each a <w, the set U, = X x{a} is open in X x Y. For each 8 < w,, the set
Vs =[0, B]1x (B, w,] is open in X x Y. Certainly, the collection % ={U,: a < w,}uU
{Vs: B<w,} is an open cover of X X Y. Now, let B={(x,,y,)€ X x Y: neN} be
some countable subset of X X Y.

We now pick y <w, such that y # y, for all n and then pick x € X such that x>y
and x> x, for all n. If (x, y) € U,, then U, n B=0, because a =y. Also, (x,y)2 V,
for any B <w,, for otherwise (x, y) € [0, 8] % (B, w,] which contradicts x> y. Hence
we see that (x, y)€st(B, %). As B was an arbitrary countable subset of X x Y, this
space cannot be strongly 1-star-Lindeiof. O

A simple modification of Theorem 2.4.2 proves that the product X x Y of an
n-star-Lindelof space X with a compact space Y is n-star-Lindelof. A further
modification shows that X x Y is strongly n-star-Lindelof if X is strongly n-star-
Lindelof and Y is compact and separable. However, as we will now see, X XY
need not be strongly 1-star-Lindeldf if X is and Y is only compact.
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Example 3.3.4. A space that is not strongly 1-star-Lindelof, despite being the product
of a strongly 1-star-Lindelof space and a compact space.

Proof. Let X be the space ¥ in Examp.e 2.2.5 and index S as {s,: a <«k}. As X
is separable, it is strongly 1-star-Lindelof. Let Y ={y,: a <k}u {0} where all
elements of Y are distinct. Each {y,} is open and open sets containing c have finite
complement. With this topology, Y is compact T>.

Using the notation of Example 2.2.5, we define an open cover of X X Y as follows:

U={X x{y.}: a<k}U{N;, XY —{y.}:a<k}u{{n}xY:neN}.

Observe that (s,, y,)€ U € ¥ if and only if U = X x{y,}. If B€ X x Y is countable,
there is some a <k such that Bn(X x{y,})=0 (as S is uncountable). By our
observation, (s,, y,)€st(B, %). So X x Y is not strongly 1-star-Lindelof, despite X
being strongly 1-star-Lindelof and Y compact.

Although X X Y is not 1-starcompact, a similar argument to that used in Example
2.2.5 shows that for any basic open cover % there is a finite BN x Y such that
st(B, #)2Nx Y. AsNx Y is dense in X x Y, st’(B, #)=X x Y and hence X xY
is strongly 2-starcompact. []

This example also shows that star-Lindelof is not an inverse invariant of proper
mappings. After all, the projection 7: X X Y - X is proper if Y is compact. Fleisch-
man’s example verifies that the same is true for starcompactness.

As the Sorgenfrey line shows, the product of Lindel6f spaces need not be Lindelof.
With this result in mind, it would be nice if we could show that the product of
Lindel6f spaces had to be strongly n-star-Lind<l6f for some fixed n. Sadly this is
not the case for n=1.

The space described here is an example of Przymusifiski’s cited in Burke’s
handbook article [3] and uses the following result of Kuratowski:

Theorem 3.3.5. There exists a partition {A,: k eN} of R such that |A, N F|=c for any
k eN and any uncountable closed subset F of R.

Example 3.3.6. Pick such a set A. Let X =R — A have the induced metric topology.
Let Y be the set R with each point of R— A isolated and points of A having metric
neighbourhoods. Both X and Y are Lindeldf (the property of A ensures that Y is).
Furthermore, both spaces are T and first countable, so their product is T first
countable also.

Let D={(x,x)e X x Y: xe X}. Then D is uncountable as A has uncountable
complement. We claim that D is closed and discrete. For (x, x) € D, X X {x} is open
in X x Y and has intersection {(x, x)} with D. For (x,y)£ D, let e =3|x—y|>0.
Then B.(x) x B.(y) is open in the product space (as Y’s topology is finer than the
metric one), contains (x, y) and does not meet D. This verifies the claim. It is now
easy toshow that {(X X Y) — D} U {X x{y}: y e R— A} is an open cover that witnesses
that X x Y is neither strongly 1-star-Lindelf nor CCC.
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In fact, this space is 1-star-Lindel6f, despite not being CCC. Let % be any basic
open cover of X X Y. X XA is a separable metric space and hence Lindelof. So
there is a countable ¥'< ¥ covering X X A. It is sufficient to show that for at most
countably many yeR— A, X x{y} —st(lJ ¥, U) #@, because then for each such y
we can get a countable subset of 4, covering X x {y} (which is Lindelof). The
collection ‘V sting of all the sets in these countable subsets together with all
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