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Abstract 

Van Douwen, E.K., GM. Reed, A.W. Roscoe and I.J. Tree, Star coverfng properties, Topology 
and its Applications 39 (1991) 71-103. 

In this paper, the authors investigate starcompact properties between countable compactness and 
the discrete finite chain condition (i.e., pseudocompactness), and star-Lindeliif properties between 
the Lindeliif property and the discrete countable chain condition (i.e., the pseudo-Lindelof 
property). This work represents a unification and extension of concepts previously studied by 
several authors in the literature. Theory is developed to establish connections between the various 
star properties and other covering conditions, and a large collection of nontrivial examples is 
given to make distinctions. 
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Several questions concerning chain conditions in Moore spaces were raised in 

[21]. Most of these questions were answered in [5]. However, van 

Reed were unable to decide if there exists a 3-separable (equals D 
space which was not 2-separable (see Section 3.2 for details). The following 

definitions arose in the attempt to analyse this question. 
Recall that if B c X and X is a collection of subsets of 

{HE%‘: HnBZfd} and st’(B,%‘)=UST’ 

{HE%: Hnst”(B,%‘)#@} and st”+‘(B,%)= 

write ST( B, 2’) for ST*( B, Z), st( B, %?) for st’ 

n E N+, the set of strictly positive inte 
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efinition 1.1. A space X is said to be n-starcompact if for every open cover % of 
X, there is some finite subset ‘V of % such that st”(U “Ir, %) = X. 

eiinition 1.2. A space X is said to be strongly n-starcompact if for every open cover 

% of X, there is some finite subset B of X such that st”( B, (-3) = X. 

efinition 1.3. A space X is said to be n-star-Lindeliif if for every open cover 5% of 

X, there is some countable subset ‘V of % such that st”(U Y, %) = X. 

efinition 1.4. A space X is said to be strongly n-star-Lindekf if for every open 

cover % of X, there is some countable subset B of X such that st”( B, %) = X. 

It is easy to see that if X is strongly n-starcompact, then X is n-starcompact, 

and if X is n-starcompact, then X is strongly n + I-starcompact. A similar hierarchy 

holds for the star-Lindeliif properties. For T3 spaces, strongly 1-starcompact equals 
countably compact, n-starcompact equals the DFCC (the discrete finite chain 

condition) for n 2 2, and n-star-LindelSf equals the DCCC (the discrete countable 

chain condition) for n 2 2. For Moore spaces, strongly I-starcompact equals compact 
and metrizable, n-starcompact implies separable for n a 1, and I -star-Lindeliif equals 

separable. Hence for Moore spaces, the star properties form a chain of implications 

from compact and metrizable to the DFCC and from separable to the DCCC. Proof 
of these facts will be given in due course. Recall that a completely regular space is 

pseudocompact if and only if it has the DFCC. 

The existence of a 3-separable Moore space which is not 2-separable is equivalent 

:o the existence of a 2-star-LindelSf Moore space which is not strongly 2-stsr- 

Lindeliif. In investigating the above properties in 1984, van Douwen and Reed were 

able to give examples to show that all but three of the possibly distinct classes in 

Moore spaces were in fact distinct. These three were (1) those in the original question 
(i.e., 2-star-Lindeliif and strongly 2-star-Lindeliif), (2) strongly 1-starcompact and 

1-starcompact, and (3) 2-starcompact and strong 2-starcompact. 

The second author finally found a Moore space to answer (1) in 1989 and presented 

it at the Oxford Topology Symposium. Actually, it was a space he had constructed 

in 1987 as an example of a DCCC Moore space with a o-locally countable base 

(hence a-para-Lindeliif) which is not separable. Now, with the aid of the last two 

authors, the lattice of implications for Moore spaces is complete. In fact, for Moore 

spaces the properties of (2) are equivalent under CH (or B = c), and the properties 
of (3) are equivalent in ZFC. 

In this paper, we present not only the study of the above properties in Moore 

spaces, but we also explore their relationships in more general spaces (e.g. first 

countable, regular, Hausdorff, etc.). We show that the equivalence of (2) and (3) 

above for Moore spaces does not hold in the class of regular first countable spaces. 

In particular, we show that the Tychonoff piarG is l-starcompact but not strongly 

l-starcompact, and under the assumption (b = w,), produce such an example which 
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is both regular and first countable. Under CH we exhibit a regular first countable 

Zstarcompact space which is not strongly 2-starcompact. 

We consider also the extension to w-starcompact and w-star-Lindeliif properties. 

nition 1.5. A space X is said to be o-starcompact if for every open cover % of 

X, there is some n E tV+ and some finite subset B of X such that st”( B, %) = X. 

Definition 1.6. A space X is said to be o-star-LindelGf if for every open cover % 
of X, there is some n E N+ and some countable subset B of X such that st”( B, %) = X. 

This paper represents a unification and expansion of concepts already studied 

on several occasions under different terminology. Fleischman introduced the concept 

of strong starcompactness in [7]. Later, Sarkhel in [23] extended his work, and 

defined the concepts of n-starcompactness and o-starcompactness. Matveev defined 

k-pseudocompactness in [ 151 which extended Fleischman’s work to strong n- 
starcompactness. Furthermore, it has recently come to the authors’ attention that 

the strong star-Lindeliif conditions have been studied by Ikenaga, in [ 1 I, 125, who 

named them w-n-star spaces. It is clear that the equivalence (in our terminology) 

of strongly 1-starcompact and countably compact and the equivalence of strongly 

3-starcompact and pseudocompact were known by some of these authors. In addi- 

tion, Scott Williams has informed the authors that he had independently obtained 

certain of our lemmas about the weight of starcompact Moore spaces in unpublished 

work. 

Organisation of the paper 

In Section 2, we present the study of the starcompactness properties, and in 

Section 3, we consider the star-Lindeliif properties. Within each section, we first 

present the positive implications between the various properties in the context of 

the weakest separation. Secondly, we explore the relationships for Moore spaces. 
The rich structure of Moore spaces provides the equivalence of certain of these 

properties, and it ensures nontrivial counterexamples where the properties are not 

equivalent. Thirdly, we consider examples in regular spaces, Hausdorff s 

first countable spaces which distinguish properties that are equivalent in Moore 

spaces. Finally, we consider more general issues about the properties in question. 

2. Starcompactness 

2.1. General positive implications 

The results in this section follow directly from work in [I, 7, 15, 231. For 

completeness, we present proofs in our current terminology. Note that unless 

otherwise specified, space means sim y topological s 

to include T1. 
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The following trivial lemmas instantly set up a hierarchy amongst the starcompact- 
ness properties. 

mma 2.1.1. If X is strongly n-starcompact, then X is n-starcompact. 

Proof. If Q is an open cover of X, by hypothesis there is a finite subset B of X 
such that st”( B, Q) = X. For each 6 E B select some Uh E % such that 6 E U,+ Let 
‘V= { Ub: b E B}. So V is a finite subset of % and 

X =st”(B, %)est”(U ‘V” %)E x. 0 

A similar proof shows: 

nma 2.1.2. If X is n-starcompact, then X is strongly n + 1 -starcompact. 

Also, using this style of argument, it is clear that we could take the following as 
an alternative, though equivalent, definition of o-starcompact (see [ 231). 

Definition 2.1.3. A space X is said to be o-starcompact if for every open cover (49 
of X, there is some n E N’ and some finite subset Yf of % such that st”(U V; Q) = X. 

Obviously, these covering properties are all weakenings of compactness. In fact, 
they all lie between countable compactness and pseudocompactness, as we will 
shortly see. 

The following two theorems are from [7], although the proof of Theorem 2.1.5 
for Hausdorff spaces was omitted. Together, they show that for Hausdorff spaces 
countable compactness and strong 1 -starcompactness are equivalent. 

Theorem 2.1.4. Every countably compact space is strongly I-starcompact. 

Proof. Suppose X is a countably compact space which is not strongly l-star- 
compact. Let “21 be an open cover such that if B G, X is finite, then st( B, %) # X 
(*). Pick any x0 E X and, inductively, pick xn E X - st( { x0, xl , . . . , Xn- I}, %) for n > 0, 
which is possible by (*). Let A = {xn: n EN} and ‘V= (st(xn, %): n E IV}. Note that 
by the choice of the Xn, every member of V contains precisely one element of A. 

Consequently, no finite subset of “cr will cover A. 
If yeA, pick some olpen UE% such that YE U (99 covers X). As UnA#@, 

U n A f: 0 and hence y E st(Xn, %) for some n. Therefore we see that V is a countable 
covering of A’ by sets open in /X. A’ is countably compact, being a closed subset of 
X. Therefore there must exist a finite subset of Y which covers A’ and hence A. 
This contradicts our previous e servatjQn about ‘v: 
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3. Strongly 1 -starcompact Hausdorfl spaces are countably compact. 

roof. Suppose that X is a IIausdorff space that is not countably compact. Then 

there exists D = {x, : n E N} c X, an infinite closed discrete subset. As D is discrete, 

for each n there exists an open set Un such that Un n D = {x,}. 
For every m E N, define Y, = {x, E D: 2” s n < 2*+‘}, so 1 Y,l = 2” - 1. Since Y, 

is finite and X is Hausdorff, there exist disjoint open sets V,, 3 x,, for 2” s n < 2*+*. 
Next, setting v,,, = { V, n Vn : 2” G n < 2”+l } gives a collection of pairwise disjoint 

open subsets of X such that (U,, n V,) n D = {xn}. 
Define v = (X - D} u UmEN vm. Evidently, “Ir is an open cover of X. 
Let A be any finite subset of X, with IAl = M, say. Then IAI < 2M - 1 = 1~~1. So, 

for some 2M G m < 2”+’ -1, (U,,,n V,)nA=P). But t&n V,,, is the only member 

of “Ir which contains x,,,. Thus, x,,, @ st( A, clr). Specifically, st(A, 7r) # X. But A was 
an arbitrary finite subset of X, so X is not strongly 1-starcompact. 0 

The next three theorems show that for Tychonoff spaces, o-starcompact spaces 

are pseudocompact, and that for regular spaces, 2-starcompactness, o-starcompact- 

ness (together with all the properties in between), and the DFCC are equivalent 

conditions. These results can be found under different terminology in [ 1,7, 15,231. 

Every o-starcompact space X has the property that every continuous 
real-valued function on X is bounded. 

roof. Suppose that X is w-starcompact and that f : X 43 is continuous. Define 

%={f-‘(k, k+2): k&Z}. Th en % is an open cover of X and for some n E N+ and 

for some finite “Irr %, st”(U v, %)=X. Let M=max{k+2: f-‘(k, k+2)E w”} and 

m =min(k:f-‘(k, k+2)E ‘Y). 
It is now clear that f(X) c (m -2n,M+2n). ForifxEX,thenfor l+sn there 

are f -‘(kj, kj+2) E Q such that XEf-‘(k,,, k,+2) with f-‘(kj, kj+2)n 

f -‘(kj+, 3 j+l k + 2) # 8 and f -‘( k, , k, + 2) n U "Ir # 0. By construction, f(U v) E 
(m, M). An easy induction now shows that f(x) E (m - 2n, M + 2n), as required 0 

3. If X is DFCC, then X is 2-starcompact. 

Proof. Suppose that X is not 2-starcompact and % is an open cover such that if 

“Ir c % is finite, then st’(U “y; %) # X (*). 

Pick ?J& Q and define ‘& = {U,}. Suppose inductively that we have de 

a discrete collection of k members of % such that vk_, c “Ir, for 1 s k < n. By (*:), 

st’(U K-1 9 %)#X. Pick x,EX-st’(U vn_,,%) and a ?_J,,E% such that X,,E U,,. 

Let “y;l= vn_, u(U,). 

We claim that W;, is discrete. Let y E X and select any V E (49 such that y E V If 

there were distinct U, U’E W;, such that V n U Z 0 and V n U’ P 0 (say U = U,,, 

and U’ = U,,, with n, < n2), 
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But this contradicts the choice of xnt. So for every y E X there is an open V containing 

y which meets at most one element of ‘V”. Hence claim. 

Defining 7r = UnErm Y,,, a similar argument shows that “v” is a countably infinite 

discrete collection of open sets. Therefore X is not DFCC and the result follows. 0 

If X is regular and w-starcompact, then X is DFCC. 

roof. Suppose X is not DFCC and % = { Un: n E NJ} is a discrete collection of 

nonempty open sets; say x,, E Un for n E N. 
Fix n E N. Applying the regularity condition n times yields 

x,EA:“‘EA:“‘E=..EA’,“‘EA’,“‘~. . .EA~‘~_A~‘~ un, 

where each A’,“’ is open in X. Define 

W=X- u A!:“, 
nEfil 

(n) 
Vi = A?‘, 

=A:R(_A(“) 
1 3 

v(“_’ 
n 1 

= A(n) _ A(“_’ n n 1, 

v(n) 
n = U,, -A!,‘!!,. 

Note that each V’,“‘C Un, x, E VE’ if and only if m = 1 and Vi’% V’,“’ # 0 implies 

that ]I - ml s 1. Note also that {A’,“‘: n E NJ) is a discrete collection since Q is discrete 
and A’,“’ C_ Un. Hence W is open and so too is V’,“’ for all m s n and n E N. 

Let Y={ W}u(V’,“‘: m S n, n E N}, a collection of sets open in X. 

Claim 1. ‘If covers X. Since A’,“’ G A’,“L, , it is clear that Ui = I V’,“’ = Un. Furthermore, 

x -UncWI U,,EX-&+,A:)= W. So for x E X, either x E L’, for some n, and hence 
XE V’,“’ for some m and n, or x@ UnE+, Un, in which case XE W. 

Claim 2. 7r witnesses that X is not w-stat-compact. Let B E X be finite and let n E N+. 
Because B is finite and % is infinite, there exist infinitely many Un in % such that 

Un n B = 0. Thus, we can pick IV > n such that UN n B = 0. By the remarks made 

earlier, it is easily seen that st(x,, 7r) = ViN’ G UN and more generally, stm (xN, ‘V) E 

UT”;, VIN’ C UN for m d N In particular, st”(xN, “Ir) E UN, so xN ti st”( B, y). B and 
n were arbitrary, so X cannot be w-starcompact. 0 

The above results complete Fig. 1 and give us stime simple connections 
between our initial definitions. Furthermore, it is well known that pseudocompact 

spaces are DFCC and that (pseudo)normal pseudocompact spaces are countably 

compact (see [6, Section 3.101). So these prop&es are all equivalent in pseudo- 

normal spaces. 
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countably compact 

strongly l-starcompact 

1 -starcompact 

5- 

strongly 2-starcompact 

J 

2-starcompact - DFCC 
* 

5- . . 
i 

strongly n-starcompact 

& 

n-starcompact regular 

4 

strongly n + 1 -starcompact 

J 

5- 
o-starcompact 

I 7;1 

pseudocompact 

Fig. 1. 

2.2. Moose spaces 

As noted in the last section, for T2 spaces, countable compactness is equivalent 

to strong 1 -starcompactness. ence, from [ 171, each strongly l-starcompact Moore 
space is compact and metri ble. Also we know that for regular spaces, 2-star- 
compactness, o-starcompactness and the DFCC are equivalent, and for completely 

regular spaces, these are equivalent to pseudocompactness. Nence, for oore spaces, 

we need only to establish the relationships between 2-starcompactness and strong 

2+tarcompactness, between strong 2-starcompactness and 1 -starcompactness, and 

between 1 -starcompactness and compactness. 

mma 2.2.1 [21]. Each 2-starcompact Moore space is separable. 

ma 2.2.2. Every regular 2-starcompact separable space is strongtj, 2 -starcompact. 

In regular spaces, an equivalent of the erty (and hence 2- 
starcompactness) is that every cou open cover has a finite subset whose union 
is dense [l]. Let D be a countable any open cover. 

collection of open sets {st( cover becW~(~ ,? is 
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both countable and dense. Hence there is a finite B C_ D such that st( B, Q) is dense 
in X and so st’(B, %)=X. Cl 

Hence, we have the following. 

Theorem 2.2.3. Each 2-starcompact Moore space is strongly 2-starcompact. 

Lemma 2.2.4. If X is a regular space which has a closed discrete subset D such that 
IDI = w(X) 3 o, where w(X) is the weight of X, then X cannot be I-starcompact. 

Proof. Let 5.8 be a basis for X with minimum cardinality, so ISl= 1 DI. Because X 
is regular, for each x E D there is a basic B, E 93 such that x E B, and En D = {x}. 

Furthermore, for each y E X - D there is a basic y,. 3 y such that yn D = 0. Let 
% ={B,: XE D}u{ y,.: YE X- D}. Therefore, 

Ial 3 I”u( 2 lm: XE D}l=lDl=lSl, 

so l%l=l~l. Now let ~={FE %: F is a finite subset of %}. Hence, I~l=l”ul= IDI, 

because I Q I 2~. Pick FE% Then F={U ,,..., U,}, say, so thai u F=Uy=,c. 
Therefore IlJ F n 01 = llJ~z, (an D)j s n. Hence for every FE 9, U F meets D 
in at most finitely many points of X. 

Enumerate 9 as {F,: cy < K}. Suppose for each p < Q we have defined some xp E D 
suchthatx&_jFpandx#xyfor/3#y<~<K. 

D-({xP: p<~y}uU F,)#0 as DnU F, is finite, 

so we can pick X,,E D-({x~:/?c~}u~ F,,) and x,, #xp for all P<cv. 
For each x E D, define 

UK = I &nW--U Rx), if x=x, for some a<~, 

B x 9 otherwise. 

In either case, U, is open and contains x. Let 4%’ = {U,: x E D) u { &: y E X - D}, 

so %’ is an open cover of X. If GE %’ is finite, then G = {I&, , . . . , Uy,,} u 

1 yv, 9 l ’ 0 9 Vy,,,}. Let F={B,,, . . . , By,,}u{Vv ,,..., V,,,,,,}, so FE% and U GzU F. -. 
For some Q! < K, F = FLI, so that x,, ti U F, . We observe that 

x,, E st(U G, %‘) if and only if K,, n U G # 0, 

since V,,, is the only element of 42’ containing x~. But I.JV,, = &, -U Fu, so &, n 
LJ GE Uv,, n iJ RI = 0 allO_. hence xl” ti st(l J G, %‘). 

Thus we have constructed an open cover YZ’ of X and shown that if G 5 %’ is 
finite, then st(U G, %‘) % _X* I-Ience cansot be I-starcom 
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Example 2.2.5. There exists a locally compact, strongly 2-starcompact Moore space 

(!P) which is not 1-starcompact. 

roof. Let (NF: s E S}, where N n S = 8, be an infinite family of infinite subsets of 

!+I such that the intersection N, n Nst is finite for every pair s, s’ of distinct elements 

of S and that {NF: s E S} is maximal with respect to this property. 

Generate a topology on the set X = N u S by the neighbourhood system (8?(x): x E 

X}, where 

This topology makes X a locally compact Moore space, and is the space !P described 

in [9, 181. The set S is a closed discrete subset of X which has the same cardinality 

as the weight of X. So, by Lemma 2.2.4, X is not I-starcompact. 

To show that X is strongly 2-starcompact, it is sufficient to show that if % is any 

open cover of X, there is a finite subset B of IV such that N c st( B, %). This is 

because N is a dense subset of X. 

Suppose to the contrary, that there is some basic open cover % such that if B E N 
is finite, then it is not the case that N c st( B, %) (*). Let x0 = 0 and B!:, = {x0}. Suppose 

we have inductively defined distinct elements x0, x1, . . . , rc, of N, such that xi E 

St( Bi_1, %!), where Bi =(x0, ~2,. . . , xi} for 1 6 i G n. Then by the property of %, 
A, = N - st( B,, 9.l) must be infinite (for if it were finite, A, u B,, would be a finite 
subset of N and N c st( A, u Bn, %) contradicting (*)). Hence we may pick x”+~ E A, 
greater than all the elements of B,. As x, _ 1 E A,,, x,+~ E st( B,, %). Now, I3 = 
{x, : n E N} is an infinite subset of N, so by maximality of S, there exists a limit point, 

s, of B with the property that if V is an open set containing s, then 1 Vn BI = 
As % covers X, pick some U E % containing s. Let x,, xkP be distinct elements of 

U n B, with k i k’. Then x+ U E st(xk, Q). In particular, X~‘C st( Bke-l, a), as 
k s k’ - 1. This contradicts the original property of % and the result follows. Cl 

Now, let us show that it is 

compact. 

consistent that each 1 -starcompact oore space is 

Lemma 2.2.6. If X is a Moore space such that w(X ) does not have countable cofinality, 

then there is a closed discrete subset D of X such that 1 

roof. For such a space X, there is an open covering % = ( Wn: 1y < K} such that 

K = w(X) and UP -UaCP U, #fl for all /3 <K. 

were not the case, w could arrange a de ent { (3%: n E N} with 

) and covers %:, ={ su A, < K and K.p - 

UaCP V,, $8 for all PC&,. 

I%?1 < w(X), where %= k),,, N 
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Let _‘rp E Up -4JaKP Ua and E = {xP: /3 C K). Then E, is a discrete subset of X 

where E = tJnEN E, and E,, = (xa: st(x,, 5!$) c Ua}. Furthermore, we can find an m 
such that IE, I= w(X). But every discrete subset of a perfect space is a-closed 
discrete, so there is a subset of E, with cardinality K that is closed discrete. Cl 

C~~oIIa~ 2.2.7. If X is ck I -starcom~act Moore space, then w(X) has countable 

co$nality. 

~r~f. This follows from Lemmas 2.2.4 and 2.26. Cl 

Theorem 22.8 (CH). I-starcompact Moore spaces are compact and metrizable. 

roof. By Lemma 2,2.1, each 1 -starcompact Moore space has w(X) s c. As c does 
not have countable cofinality, under CH, Corollary 2.2.7 implies such a Moore 
space must be second countable. Cl 

To obtain a sharper result than Theorem 2.2.8, we make use of two of the cardinals 
(and the notation) defined in [4]. Define 30 as the set of all functions from o to 
itself. For all J g E 30, we say f s* g if and only if f( n) =i g(n) for all but finitely 
many n. The unbounding number, b, is the smallest cardinality of an unbounded 
subset of (50, d* ). The dominating number, b, is the smallest cardinality of a cofinal 
subset of (%, S* ). It is straightforward to show that ml d b d b s c and it is known 
that q<b=c, ol=b<c and w1 = b <b = c are all consistent with the axioms of 
ZFC (see [4] for details). 

Let L(X) = min(p: each open cover of X has a subcover of cardinality s /3} + o, 
the Lindeliif degree of X. 

Lemma 2.2.9. If X is a regular first countable space with L(X) < b, then X is 
~seudonormul. 

roof. Let H, K be disjoint closed subsets of X with K = (xi: i E N}. Let 3” be an 
open cover of H such that IV1 d L(X) < b and 6 n K = fi for all V E Y’. For each 
x E K, let {G,(x): n E IV} be a countable neighbourhood base at ,Y with G,(x) n H = 8 
and G,,+,(x)c @n(x) for all n. 

For each V E V, there are ni such that K E U/E~ G,,, (x,) and G,l(xi)n V = 8. Let 

f y:iiJ + o by fv( i) = ni. So r(fv: V E 7r}l< b and hence there is some function g : w + u 

such that, for every K f”(i) G g(i) for all but finitely many i, It follows that, if 
%=(Gg&& i&-I}, u % is an open set covering K and mn H =8. Cl 

It follows from Remark 2.1.9, Corollary 2.2.7 and Lemma 2.2.9 that, if 16 = c, 
l-starcompact Moore spaces are corn Bet and m~tri~a 
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If X is a regular first countable 1 -starcompact space with w( X ) < b, 
then X is countabfy compact. 

roof. Let 3 be a base with cardinality less than b and suppose that X were not 

countably compact. Then there is an infinite subset A = {xn: n E o} with no limit 

point. Let {B,(x,): m E o} be an open neighbourhood base for x, such that 

&+,(x,) c_ B,(x,) for all m and &(x,) n I&(X,) =@ unless n = m. 
Let %=(B,(x,): nE@}. For each ~EX-_U %, pick a U_,E%I such that XE Ux 

andqnA=(d. Let 9=(U,:xtiIJ%} and %=%uU. From %, we construct an 

open refinement witnessing that X cannot be I-starcompact. Observe that 1% 1 s 1 %I I< 

b. 

Let 9 be the collection of all finite subsets of 9. Then i 91-c b. For each F E 9, 

define fF E “w as follows: 

fFW = 

For fixed n, each 

‘0, UnB,(x,)=@ for all rncw 
and for all U E F, 

max{ m: U n B,,, (x,) ir 0, U E F}, otherwise. 

U E F can meet at most finitely many &(x,) because 0 n A = 0. 
Hence fF is well defined. But now I(fF E %: FEP}~<~, so there is a ge”o such 

that for each FE 9 there are infinitely many n with g(n) >fF( n). 
Finally, let “Ir= 9 u {B,,,,(x,): n E o} u (I?&) - BpfnI+,(x,J: n E w}. Then ‘V is 

an open refinement of Q. By the construction of g, any finite subset ‘V of V fails 

to meet infinitely many of the Bgcn ,(x,). Hence IA - st( u ‘V’, v)I = w ; so, in par- 

ticular, st(U V, clr) f X. Cl 

.I 1 (b = c). Each 1 -starcompact Moore space X is compact and metrizable. 

roof. X is separable since it is a DFCC Moore space. Hence w(X) < c. However, 
by Corollary 2.2.7, w(X) # c, since c does not have countable cofinality. Therefore 

w(X) <‘a. By Lemma 2.2.10, X is countably compact, and hence compact and 

metrizable. 0 

The relationships between the starcompactness properties in Moore spaces are 

given in Fig. 2. 

2.3. Non- Moore space examples 

First, let us consider examples to show that 2+tarcompactness, 

compactness, l-starcompactness, and strong 1 -starcompactness are 

sistently) all distinct in the class of first countable regular s 

strong 2-star- 

(at least con- 

In [24], Scott describes a regular FCC meta-Lindelof space that is not compact. 

We carefully adjust this ntable 2-starco 2Xt 

space that is not stron fOl- 

enumeratio urposes 
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compact and metrizable 

$ 

strongly 1 -starcompact 

4 1 (‘OfIsISrPfII 

1 -starcompact 

5- T 

strongly 2-starcompact 

24tarcompact - DFCC 

4 

w-starcompact 

Fig. 2. 

This space has been named “fat-psi” because, instead of taking a maximal family 
of almost disjoint sequences from N as in the construction of P, sequences of clopen 
subsets from 2 x o are constructed, for some suitable space 2. To ensure the whole 
space is regular and DFCC, a maximal family of almost disjoint such sequences is 
chosen. The difficulty arises in simultaneously arranging for an open cover to witness 
that the space is not strongly 2-starcompact. This accounts for the complexity of 
the chosen 2. 

Lemma 2.3.1. Let { XA : h E A } be an injnite collection of topological spaces. Let 
K=min{d(X,):hEA}. IfAsX=fl,,, . Xh has cardinality less than K, then A is 
nowhere dense in X. 

Proof. Suppose that A E X is not nowhere dense in X, i.e., there is a nonempty 
basic U = nhE., UA EJ A’. For some &,E A (in fact, for all but finitely many A) 
U,,= X,,. It is easy to show that Q4) is dense in X,,. Hence 

IAI~I’ITho(A)lZd(X~~)3K. Cl 

Observe that the lemma is not true for finite products: the long line X is locally 
separable, but d(X) = K, . 

Example 2.3.2 (CH). A regular first countable 2-starcompact space which is not 
strongly 2-starcompact.’ 

Proof. Let S be the Cantor set on [0, 11. Then S is a compact metric space with a 
countable base consisting of clopen sets. Put the lexicographic order on S x S (i.e., 
(a, 6) < (c, d) if and only if b c d or (b = d and a < c)) and give S x S the order 
topology. Then S x S is compact T2, first countable and has a base of 2” clopen 
subsets. Observe that d (S x S) = 2”. 

Let 2 = (S x S)w, the product of w many copies of S x S. Then 2 is compact T2, 
first countable, Iz~= 2” and Z has a base or^ 2” clopen subsets. By Lemma 2.3.1, if 

’ Added in proofl the fmmh author tm recently constructed a space with these properties within ZFC. 
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A c 2 has cardinality less than 2”, A is nowhere dense in 2. Let Y = Z x w have 

the usual product topology. 

Henceforth assume CH. 

2. We can enumerate C as {Sol: a! c K,} such that if Q! is a limit ordinal, 
U S, n U Up<, Sp = fit As with Claim 1, the proof is postponed. Let 2 = 

{za: a! < N,} and for p < K1, Zp = {za: a < p}. Note that 1~~1 c K1, so Zp is nowhere 

dense in 2. By induction on a! < PIG, , we shall construct Da E C u (0) and A, c C u (0) 
so that the following hold for each Q! c K, : 

(1) 
(2) 
(3) 

(4) 

(5) 

A, =(Dp: psa}; 
elements of A, are almost disjoint; 

there is a DE A, such that D is not almost disjoint from Sol; 

UDacuSu; 

Claim 1. We can write 2 = ULI.+ B, , where the B, are pairwise disjoint, nonempty 
and clopen. The proof of this is temporarily postponed. Let 93 = {B,: Q! < EC,}, 

9l,={Bx{n}: B&l} and J=U,,, 3,. Let r be the set of all countably infinite 
subsets R of J such that for each n, 1 R n a,,1 c 1. Observe that if r’~ r is countable, 
there is an REr with u RnUUr’=@(*). 

Let %’ be the family of all basic clopen subsets of 2 such that % refines @ (i.e., 

if C E %‘, then there is some B E 93 with C c B). Let %‘,, = {C x (n}: C E %} and 

K = U”,” %,,. Let C be the set of all countably infinite subsets S of K such that 

ISn %I!&= 1 for each n. 

TO say that sequences DP and Dpp are almost disjoint, we mean here that d n d’ # 0 
for at most finitely many d E DO and d’ E DPe. 

Suppose that a! < K, and that Do and A, have been defined for all /3 < Q! to satisfy 

(l)-(5). Let A& = (Dp: p < a}; then AL is almost disjoint. If Ab, u {S,) is not almost 

disjoint, let Cya = 0. Otherwise, let M = (n E o: Sa n Vi’,, # 0) and for each n E let 

C”=(Zx(n})nUS,. F or each n E M, there is a CL E 59” such that CL c 

C,, -2’ x (n}. Let Da = (C’,: n E M}. In either case, set A, = Ab, u (Dm}. (l)-(5) are 

clearly satisfied at cy. Furthermore, if ar is a limit ordinal, U Da n lJ Up<, DP = 

0 (**). 
NowletA=U{A,. l a! < K,} - (0). Then A is a maximal almost disjoint subfamil 

of C. Moreover, for any y E Y, {D E A: y E U D} is countable (by (5)), and if 

is countable there are uncountably many DE A with U D n U U A’ = 0 (by (**)). 

Let ILI= EC, with L n Y = 0 and associate each DE A with a unique ID E L. Let 
X = Y u L, and topologize X as follows: Y is an open subspace of X and basic 

open neighbourhoods of points of L take e form (1,) u U ( - F}, where F is a 

finite subset of D. This topology makes X ausdorff, zero-dimensional, first count- 

able, locally compact and meta-Lindelof. Note that L is a closed discrete subset of 

X. 

X is DFCC: Let ‘V={V,,: new) 
of X. Y is open and se i 
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such that Vn n (2 x {m}) # 0 for infinitely many n E o, then the compactness of Z 
ensures some point of 2 x(m) is a cluster point of r/: Otherwise there is an 
S = {S,,: n E O} E C such that S,, G Vn for each n E w, and the maximality of A then 
ensures that some D E A is not almost disjoint from S; therefore ZD is a cluster point 
of “y: 

X is not strongly 2-starcompact: Let V be a basic open cover of X such that 
each I E L is contained in a unique Vi E Y, ‘G ( VI: 1 E L} covers Y and each element 
of this collection is contained in some 2 x {n}. Enumerate the finite subsets of Y 
as {F$ a! < K,}. Suppose that for all a! C p we have defined a distinct I( a) E L such 

. 
that tf Vita, is the unique element of ‘V containing I( a), then V& n U D = 0 

wheneverDEAwithUDnF,#0.ObservethatA’=(DEA:UDnU,,pF,#(d} 
is countable, so there are uncountably many D’E A such that U D’ n U U A’ = 0 

(by (**)) [N.B. crucial use of CH here]. Thus we can pick such a D’ for which 
ID& (1(a): ar <p} and let r(p) = ID-. Notice that Vr(p, n U D = 0 whenever D E A 

and u DnFp#O. 
Define I&) = V I(~) -u (2 x {n}: Fp n 2 x {n} # 0). So l&b is open as Fp is finite. 

Finally, let V’ = { Vifpl: p < K,} u { V E Y: V # Ftp, for any ,~3 < K,}. Then “Ir’ is an 
open cover of X. Now if F is a finite subset of Y, F = F, for some Q! < Kt. If VE T 
and VnF*0, then either V&j Du{lD} for some DEA, or VcZx{n} where 
F n (2 x {n}) Z 0. In either case, Vi,,, n V = 0 by construction. As VI,,, is the unique 
element of V containing Z(a), I(Q) e st2( F, clrl). 

Proof of Claim 1. Let {q,,: n E o} be a countable dense subset of S. Let COc (0, 1) 

be a clopen subset of S containing qo. Suppose we have defined pairwise disjoint 
clopen subsets of S, Co, . . . 9 Cn that are also subsets of (0,l). If lJO_+_ Ci is dense 
in S, then stop. Otherwise pick Cn+, clopen such that- 4m,,,, E Cn+, c 

(0, I)-UOsi<n Ci, where m,+, is the least integer such that qm,,+, e UO~i~,l Ci. 
This process generates a collection J$ of pairwise disjoint clopen subsets of S 

that are dense in S and are all subsets of (0,l). Let &+ = (A x (s}: s E S, AE d}. 

Then sB+ is a collection of pairwise disjoint clopen subsets of the lexicographically 
ordered Cantor square, S x S, and ISQ’I = PC,. If 7r : 2 = (S x S)” + S x S is the projec- 
tion onto the first coordinate, % = {d A: A E s4+} does the job. 

roof of Claim 2. Enumerate C as {T,: a =C N,}. Suppose for cy < p we have defined 
Sol E C such that, if ar is a limit ordinal, U S, n U U,,_ S,, = 0. If p is a successor, 
let SP be TV E 2, where y is the least ordinal such that TV E { Sa E 2: a < p}. For 
limit p, recall that for all cy, S, E R( CY) e r, so by (*), there is an R E I”, and hence 
inZsuchthatURnUU,,pS,=(d.LetSP=R. 0 

le 2.3.3. The Tychonoff plank is a 1-starcompact completely regular space 
which is not strongly I-starcompact. 

roof. Let T = [0, o,] x [0, 01 have the usual product topology and T* = T - (0, , o) 

have the induced topology: The space T* la known as the Tychonoff plank. 
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Let % be a cover of T* consisting of basic open sets. Then for each n c W, there 
is an cy, < w1 such that ((j3, n) E T: cy, </3 c o,}~ ‘4%. Call this set U,. Let ar = 
sup((y, E 0,: n Co}, so Q! < ol. Then {(p, n): a <p s O~}G Ug for each n <w. For 
some VE%, there is an mew such that {(a,+l,n)~T: m<nco}cK Define 
~*={V}u(U,: n s m}. Notice that ‘VI c % is finite and that st(U “u;, %) 2 
(a, 4 x LO, 4. 

Define E = [0, Q! + l] x [0, to] c T”. Clearly, E is compact as a subspace of T*. 
So there is some finite W; s % that covers E. 

Finally, [0, 0,) x {o} is homeomorphic to [0, u,), which is countably compact 
and, in particular, 1-starcompact. Hence there is some finite “u; c % such that 

stcu v;, a) 2 10, 0,) X{@). 
Define “Y = ‘VI u clr, u “u;, so that ‘V is a finite subset of %. Observe that 

T” = ((a, 4 x LO, 4) u ([o, Q + 13 x I?, 4) u W’h 0,) x id) 

C st(U w; %)c T*. 

Thus, we have shown that for any basic open cover % of T*, there is a finite subset 
‘V of % such that st(U V, %) = T*, i.e., T” is 1-starcompact. 

However, T* is not countably compact because A = ((o,, n): n < o} is a closed, 
infinite discrete subset of T*. Hence, by Theorem 2.1.5, T* is not strongly l- 
starcompact. Cl 

Notice that A is a closed subset of T* which has the discrete topology. Hence 
closed subsets of 1-starcompact spaces need not be 1-starcompact. 

We now give a consistent example of a regulr r first countable I-starcompact space 
which is not strongly I-starcompact. It is a modification of an example due to van 
Douwen and Nyikos in [4]. 

0,). There is a dominating D G %I that is well ordered by c*. 

l Q! <w,} be a dominating subset of (@o, s*). Suppose we have 
defined g, E “o for all Q! <p such that fa <* g, and gaI <* g, for all cu’< cy. The 
collection {gLy : CY < p} u {fP} is countable, so there is some gP E % such that gm <* gF 
for all cy < p and fP <* gP. 

The set D = {g,: cy < 0,) is the required dominating family. 

Example 2.3.5 (b = 0,). A regular first countable 1-starcompact 
strongly 1-starcompact. 

cl 

space which is not 

roof. Let D be a dominating subset of Ow well ordere bY <*s Let X=wG 
(o x o) u D and topologize X a lows: points of o >(: o are isolated, basic 

neighbourhoods of points k E o ta e for 

U( k, n) = (k} u ((k} x 
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and basic neighbourhoods of points f in D take the form 

where ge D satisfies g<*f, SE[WXW]<” and L,={(m,n): nsf(m)}. 

With this topology, X is T’ (in fact, zero-dimensional). Because b = wl, D is 

homeomorphic to o1 with the usual topology, and it follows that X is first countable. 

X is not countably compact (and hence not strongly I-starcompact) because w is 
an infinite subset with no limit point. 

In preparation for the proof that X is 1-starcompact, we prove the following 

claims: 

Claim 1. If nk E w for each k E o, there is an f c D such that whenever U is open and 

f E u, u meets (k) X [nk, o) for all but finitely many k. 

Claim 2. If A is an injinite subset of w x o with IA n ({k} x o)I < o for all k, then 

there is a limit point f of A in D. 

Proof of Claim 1. Define h E %I by h(k) = nk for k E w. As D is dominating, there 

is an f E D such that h <*f Consider G(f, g, S) for any g E D with g <*f and 

S+x~]?IfG(_f;g,S)n{k} [ X nk, o) = 8 for infinitely many k, then ( hp - Ls) n 
{k} x [ nk, o) = 8 for infinitely many k (S is finite). Therefore g(k) 3 f(k) for infinitely 

many k, since f(k) 2 nk for all but finitely many k. But this contradicts g <* _f: 

Proof of Claim 2. Define h E %I as follows: 

if there is no n with (k, n) E A, 

min{ n: (k, n) E A}, otherwise. 

As D is dominated and well ordered by <*, let f be the <*-least element of D with 

h s*J Consider G(f, g, S) where g E D satisfies g c* f and SE [o x +? If 

G(f, g, S) n A were finite, G(J g, S) n h would be finite (regarding h as a collection 
of ordered pairs). But G(f, g, S) n h = ((L, - Ln) - S) n h, S is finite and (k, h(k)) E L, 

for all but finitely many k. Hence (k, h(k)) E LR for all but finitely many k, i.e., 

h s* g. This contradicts the minimality of J 

That X is I-starcompact: Let % be any open covering of X. For every k E w, for 

some uk E % and some nk E w, {k} u ({k) x nk, w )) s &. By Claim 1, there is some [ 

f E D such that, if f E V E %, V meets all but finitely many of the sets &. Hence, 

st( V, 42) contains all but finitely many points of w. For each point k E w - st( V, %) 

pick a uk E % with k E Dk. Let %’ be the set containing !:’ and these e/k. Then 

4% % is finite and o z st(U %‘, %). As a subspace of X, D is countably compact; 
so there is certainly a finite Q”E Q satisfying st(U Q”, %) 2 D. Finally, it follows 

from Claim 2 that any infinite subset of w x o has a limit point in o u D. Hence 

X -st<U %‘u U %Y”, %) is a finite subset of o x OJ. So there is certainly a finite 

%“‘cl: ‘J!i covering this remaining subset, The‘, ‘7 = %‘u Q” u %‘I’ is a finite subset 
of % and st(u “I/b Q) = as required. 
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We conclude the regular examples with the following: 

xamp 3.6. A regular space that has every real-valued function bounded (in 
fact, constant) but which is not DFCC. 

roof. Let Y be any space such that 1 Yla 2, Y is T3 and every continuous real-valued 
function on Y is constant (for example, see [6, Section 2.71). Pick any y. E Y Let 
Y= YX(i} and X=ei~~ Yi. Define an equivalence relation - on X as follows: 

(~1, ~I)-(YZ, 4) if and only if ((ul =y2 and i, =i2) or (y,=y2=yo)), 

and let X*=X/-. Then X* is T3 because each Y is. Pick any y E Y -{yo} and 
disjoint open U, U’ in Y such that y. E U and y E U’. Then { r( U’ x ii}): i E N} is 
a countably infinite discrete collection of open sets in X*, where 7~ : X + X* is the 
quotient map. So X* is not DFCC. 

Suppose f” : X* +R is continuous. Then J;: : Yi 48 defined by fi: =f* 0 &, is 
continuous. Because of the property of Y, each J : Yi + IF4 is constant. Therefore for 

any YE a: 

f “(dy, i)) =.tXy, 0 =.tXy0, i) =f %(yo, 9). 

But we know rr(yo, i) = n(yo, j) for all i, j. Hence we have that for any y E Y and 

any i, j, 

f “(dy, 9) =f *My0, 9) =f "hCv0, A). 

From this it is clear that f * is constant on X ‘. Cl 

The situation for starcompactness in regular first countable spaces is summarised 
in Fig. 3. 

Finally, we consider nonregular distinctions between the various starcompactness 
properties. 

countably compac*. 

$ 

strongly 1 -starcompact 

4 + comisrerlt 

1-starcompact 

J + 

strongly 2-starcompact 

4 f comisret*r 

2-starcompact - DFCC 

$ 

o-starcompact 

Fig. 3. 



88 E.K. van Lhwen et al. 

Example 2.3.7. A strongly 1-starcompact T, space which is not countably compact. 

roof. Let X = R with the cocountable topology. Then X is a T, space which is 

not T2. It is certainly not countably compact. 

Let “Ir be any open cover of X and pick any nonempty V& “v: If V. = then 

let B = (0); clearly, st( B, 7r) = X. If V. Z X, then X - V. = (xn: n E fil’} (repetitions 

allowed). For each n E N t, pick some Vn E ‘Zf with x, E V”. Then ‘Y = ( Vn: n E f+J} c_ ‘If 

is an open cover of X. Now, 

x-n V,=U (X-V,), 
nezt?d nclBI 

which is countable ( Vn is open, so X - Vn is countable). Therefore, nnEN Vn is 

nonempty, because X is uncountable. Select any x E n,,, CL, let B = (x} and observe 

that 

X= U Vn=St(X, V”)GSt(B, 7r)EX. 
nEN 

Hence X is strongly l-starcompact. El 

In [23], a scheme is constructed which, fca any n E N+, will generate a HausdorfI 

strongly n + 1-starcompact space that is not n-starcompact. This scheme also enables 

Sarkhel to create a HausdorfI space that is w-starcompact, but not n-starcompact 
for any n E hl+. 

Here, we modify this technique so that, for any n E N+, we also get an n-starcompact 

Hausdorfl space that is not strongly n-starcompact. In the light of Theorem 2.1.8, 

this is the best “construction scheme” that we could hope for. 

Example 23.8. An n-starcompact Hausdorff space which is not strongly n-star- 

compact. 

Proof. Take the compact interval I = [0, I] and express it as the union of pairwise 

disjoint sets A,, . . . , Azn+, , each dense in Z with 0,l E 142n+l. Let & = Ak_, u Ak u 

A k+l for k = 1,3,5,. . . , 2n+l and Ek=Ak for k=2,4,6,...,2n, where Ao=Al 

and Azn+z = Azn+l n 
Notice that Ei n Ej is dense in Z if and only if Ii -jl s 1 or i and 

j are consecutive odd numbers. Note also that for each x E 1 there is a unique index 

k(x) such that x E Aktxl. 

Now let X denote the set Z with the toe: ology 9”(X) consisting of all subsets 
G E I such that for every x E G there is an open interval & satisfying x E I_% n Ektxj c 

G. This topology makes X a Hausdorff space that is n-starcompact, but not strongly 
n-starcompact. 

Let “1’ be any open cover of X. For each x E X we select an open VK E “Ir and an 

open interval Ix satisfying x E Ix n Ektx, c_ Vx (*). Because X is compact in the metric 
topology, X = U { Zb: b E B} for some finite B c X. Then given x E X, we have x E Ib 

for some b E B. It follows that x E st”( Vh, clr); thus X is n-starcompact (take “Ir’ = 
( Vh E “Ir: b E B}), 
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We now show that X cannot be strongly n-starcompact. Fix a strictly increasing 
sequence {Q} c A2n+l converging to 1 with cl = 0. Select ak E Zk A Al , where Zk = 
(ck, c~+~) and let .Zk = (ck, a,) u (ak, Q+~). Then the family % consisting of the set 
E2n+7 together with the sets Zk n El and .Zk n Ei (k = 1,2,. . . ; i = 2,3,. . . ,2n) is an 
open cover of X. Given any finite B E X there is an index m such that none of the 
sets Z,,,nE,, JmnE2,... , J, n Ezn meets B (this is because the sequence { ck} is 
increasing). By the construction of the Jk, a, e st”( B, %). This proves that X is not 
strongly n-starcompact, because st”( B, %) Z X for arbitrary finite B C_ X. 

One final observation is that the collection of sets Zzk n A, for k = 1,2, . . . is 
discrete, so this space does not satisfy the DFCC. 0 

2.4. Properties of starcompact spaces 

Here we consider further properties of starcompactness, such as the combination 
of starcompactness with other covering properties. First, we look at continuous 
images of starcompact spaces and products involving starcompactness. 

Theorem 2.4.1. The continuous image of a strongly n-starcompact (respectively n- 

starcompact) is strongly n-starcompact (respectively n-starcompact ), for 16 n G W. 

Proof. Straightforward. Cl 

In general, the product of two countably compact spaces need not even be 
pseudocompact [6,3. lo]; so no form of starcompactness is even finitely productive. 
Furthermore, Fleischman shows in [7] that the product of a strongly 1-starcompact 
space with a compact space need not be strongly 1-starcompact. However, at least 
we have the following result, which is also proved in [23]: 

(n G 0). 
Zf X is n-starcompact and Y compact, then X >< Y is n-starcompact 

roof. We give the proof for n = o. It is clear how the proof for other valums of n 
can be obtained. 

Suppose X and Y are as above and % is a basic open covering of X >( Y For 
each x E X, % is an open cover of the compact subset (x} x Y of X x Y. Therefore, 
there is a finite subset of % covering (x) x Y, say Uxl x Vxl, . . . , UxnfxJ x P/xncx). 

Define Wx = #z’ U_i, so that Wx is an open subset of X containing x and 

(x)X YCIJ{lVvX yxi: lSiSn(x)} 

EIJ{Ux-X v;Ci: lSiSn(x)}. 

Then W = { Wx: x E X} is an open cover of X. Because X w-starcompact, there 
is some finite subset W’ = { bVx,: 1 <j < r) E W and so EN+ such that 
stN(U wt, W) = x. 

Define %!’ = ( Zlrji x Vx,i: 1 s i s j G r}, so that Q’ is a finite subset of Q. 
Straightforward induction at sttn(U W’, E st”<U Q’, %) an 

hence stN(U %‘, %) = X x Y 0 



90 E.K. van Douwen et al. 

We have already seen that starcompactness does not have the same “closed 
hereditary” property as countable compactness- both the Tychonoff plank, Example 

2.3.3, and !& Example 2.2.5, have infinite closed discrete subsets. However, due to 
the equivalence of the DFCC and 2_starcompactness, we do have an instance where 
starcompactness is preserved in subspaces: 

Theorem 2.4.3. In regular spaces, 2-starcompactness is preserved in regular closed 
subsets. 

Proof. The proof that regular closed subsets of a regular DFCC space are DFCC 
can be found in [l]. 0 

It is well known that a countably compact space that is either Lindeliif or 
metacompact is compact. So it is natural, therefore, to ask whether similar results 
hold for spaces that are both starcompact and have some other covering property. 

Observe that Example 2.3.7 is a strongly l-starcompact, Lindeliif T, space. So 
we immediately see that no form of starcompactness strictly weaker than countable 
compactness, together with the Lindeliif condition, is sufficient to imply compactness. 
Furthermore, the following example is a second-countable Hausdorff space that is 
1 -starcompact but not compact. 

xample 2.44. There exists a 1-starcompact, second-countable T2 space which is 
not strongly 1 -starcompact. 

Proof. Let Y = lJ {[0, l] x {n): n E N} and X = Y u {a}, where a S! Y. Define a basis 
for a topology on X as follows. Basic open sets containing a take the form 
{a} u U {[0, 1) x {n}: n > m} where m E IN. Basic open sets about other points of X 
are the usual induced metric open sets. The topology which this basis generates is 
clearly Hausdorff and makes each of the subsets [0, l] x {n} compact. 

This space is not countably compact since (( 1, n): n E IV} is an infinite closed 
discrete collection of points of X; so X is not strongly l-starcompact. It is, however, 
l-starcompact. Let % be any basic open cover of X. Pick any Ua E % that contains 
a. Then Ua ={al~U{[O,l) 1 1 x n : n>m} for some m. Each [O,l]x(n} for nsrn 
is compact so these sets are covered by some finite 
Q” = %‘w { U,), it is clear that st(U %I’, %) = X. Cl 

However, every regular Lindeliif space is normal. So 
we see that any space that is regular, Lindeliif and 

%‘E %. If we now define 

with Remark 2.1.9 in mind, 
has some starcompactness 

property is compact (using the fact that countably compact Lindelijf spaces are 
compact). 

Notice that Example 2.4.4 is also metacompact. Therefore, l-starcompact meta- 
compact spaces need not be compact, unlike tire case with countable compactness. 
In particular, it shows ihat n-starcompact nMacompact spaces nee not be strongly 
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n-starcompact. We will now see that strong 1-starcompactness is sufficient to imply 

compactness, and how metacompactness does link the starcompactness properties. 

eorem 2.45. Strongly 1 -starcompact metacompact spaces are compact. 

Proof. Let % be any open cover of a strongly 1-starcompact metacompact space 

X. Let V be a point-finite refinement of % There is a finite B c X such that 

st( B, v) = X. As V is point-finite, ST( B, v) is finite and covers X. As “Y refines %, 
for each VE ST( B, clr) we can find UV E % with VE Uv. The collection { UV: VE 
ST( B, Y)} is the required finite subcover. El 

This provides us with an alternative, if roundabout, proof of the fact mentioned 

above: 

Countably compact metacompact spaces are compact. 

Combine Theorems 2.1.4 and 2.4.5. q 

eorem 2.4.7. Strongly n + 1 -starcompact metacompact spaces are n-starcompact. 

roof. Adapt the proof of Theorem 2.4.5. q 

In [24], Scott shows that regular DFCC metacompact spaces are compact. To 
conclude our investigation with metacompactness, we again use the equivalence of 

the DFCC and 2-starcompactness in regular spaces: 

Every regular 24tarcompact wr Ptacompact space is compact. 

Example 2.4.4 shows that regular cannot be weakened to Hausdorff. 

indeiiif condition 

3.1. General positive results 

Let us recall the definitions of Section 1. 

efinition. A space X is said to be n-star-LindeZ6f if for every open cover % of X, 

there is some countable subset “Ir of % such that st”(U ‘V, %) = X. 

finition. A space X is said to be strongly n-star-Lindeltif if for every open cover 

of X, there is some countable subset B of X such that str’( B, %) = X. 

ition. A space X is said to be w-star-Lindel6f if for every open cover % of X, 

there is some n EN+ and some countable subset of X such that sf”( 

As we might expect, th 

that of Section 2. For inst 
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space is (strongly) n-star-Lindeliif for n - -= w. However, the theories are by no means 

completely identical; but when a corresponding theorem does hold in the star- 

Lindelijf case, it is often enough to replace “finite” with “countable” in the proof 

(perhaps with some transfinite induction). Theorem 3.1.1 summarises the results 
analogous to Lemmas 2.1.1 apd 2.1.2 and Theorem 2.1.4. 

Theorem X1.1. (1) Every Lindeliif space is strongly 1 -star-Lindel@ 
(2) Every strongly n-star-Lindeliif space is n-star-Lindel& 
(3) Every n-star-Lindehf space is strongly n -I- 1 -star-Lindel65 
(4) Every (strongly) n-star- Lindeliif is o-star- Li,rdelb’J 

In fact, Theorem 3.1.1( 1) holds for the more general class of &compact (i.e., 

every uncountable subset has a limit point) T1 spaces. 
Being &compact (or by Theorem 2.1.4 and the remark above), o1 with the order 

topology is strongly I-star-Lindeliif. Moreover, o1 is normal but not Lindeliif. Thus, 

we see that Theorem 2.15 does not carry over to the star-Lindeliif case. 

The discrete countable chain condition is described in [25]. By modifying the 

proofs of Theorems 2.1.6 and 2.1.7, we obtain the following: 

Theorem 3.1.2. ( 1) Every DCCC space is 2-star-LindelGJ 
(2) Every regular o-star-Lindeliif space is DCCC. 

Consequently, for regular spaces, the DCCC equals 2-star-Lindeliif equals w-star- 

LindelGf, and all the properties in between. Both Theorems 3.1 .l and 3.1.2 were 

known by Ikenaga [ 11,121. 

Observe that a completely regular space is pseudocompact if and only if every 

continuous real-valued function has compact image. We introduce a definition which 

is the Lindeliif analogue of pseudocompactness, i.e., keeping the “continuous 

function” flavour. Let H be the hedgehog of spininess wl (see [6]). Then H is a 
non-DCCC, connected metric space, with metric d. 

Definition 3.1.3. A space X is pseudo-Lindebf if every continuous f: X + H has 

Lindeliit’ image. 

Theorem 3.1.4. For a completely regular space X, X is DCCC if and only if it is 
pseudo- LindelSJ 

Proof. Suppose f: X + H does not have Lindeliif image, i.e., f(X), as a subspace 

of N, is not Lindeliif. H is metric, so f(X) is too. Therefore f(X) is not DCCC 

[ 251. Let { Vn : a c CO,} be an uncountable discrete collection of nonempty open sets. 
It is easy to verify that (f _ '( V,, ): a < 0,) is an uncountable discrete collection in X. 

Conversely, suppose { Vfl: ay < 0,) is an uxountable discrete collection of open 

subsets of X and nick x,, E Vcf= Let 10, t. a,, be the h th spine of y complete 
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regularity, there is a continuous fh : X + [0, l]* such that fA (xh ) = I and fA (x) = 0 for 
all XE Vol. Define F:X + N by 

F(x) L(X), = if x E Vh (and such a A is unique), 

0, otherwise. 

To show that F is continuous, we show that inverse images of basic open subsets 

ofHareopeninX.FirstobservethatifO<a<b~l,thenF-’((a,b),)=f,-’((~,b),) 

and F-‘((a, l]*) =fT’(( a, llA), which are open by the continuity of fA. If B,,,(O) = 

{h E H: d(0, h) < l/n}, then it remains to show that F-‘( B,,,,(O)) is open in X. But 

F-‘( B,,,(O)) = {x E X: F(x) = 0) u 

and the second half of this union is open in X. We must show, therefore, that for 

each x E X such that F(x) = 0, there is an open U containing x with U c 

F-‘U&,,(O)). S o suppose F(x) = 0. If x E U,,,, VA, then U = X - UAEO, V’ works. 

If, on the other hand, XE UAEW, VA, there is an open W containing x that meets 

precisely one of the V,, say V’,. it follows that U = (X -f L, ([ l/n, llhO)) n W has 
the required properties. Hence F is continuous. Finally, by considering the open 

cover {Bl,z(0)} u ((0, llA : A E A) intersected with F(X), we see that F(X) is not 

Lindeliif. Cl 

If Theorem 3.1.2 is not convincing enough, the next two easily established results 

are evidence that the star-Lindeliif properties are essentially chain conditions. 

Theorem 3.1.5. Every separable space is stronc!y 1-star-LindeliiJ: 

roof. Take B equal to some countable dense subset. Cl 

.6. Every CCC space is 1 -star-Lindelii_J: 

roof. In a CCC space X, for any open cover % of X there is a countable Q’E ‘49 

whose union is dense in X. Cl 

We saw above that wl is a normal, strongly 1-star-Lindeliif space that is not 

Lindeliif. In a sense this unfortunate: it would have been convenient if normal 

star-Lindeliif spaces were Lindelijf. A simple argument shows that a normal collec- 

tionwise Hausdorff space that is not EC,-compact cannot be DCCC. So the search 
for normal spaces that distinguish the star-Lindelijf conditions may weii be difficult: 

such spaces would have to be normal but not collection ausdorff. further 

complication is that, in [S], Fleissner proved that, under 9 all normal spaces 

with character d Kl are collectionwise ausdorff. So any normal space defined . 

ZFC that distinguishes two star-Lin 

normal 1 -star-Lindeliif not strongly 

found in [14]. It has character 
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The search for normal spaces distinguishing the star-Lindeliif properties is reduced 

considerably by a corollary of a result due to Ikenaga [ 121. 

heorem 3.1.7. Let X be a normal DCCC space. If Q is any open cover, there is a 
countable B c_ X such that st( B, %) is dense in X. 

roof. Suppose there were an open cover % that failed to have this property. Then, 

for p < ml, we can pick xP E X - st((x,: a! < p}, %). Let 

Vp =st(xo, Q)-st((x,: Q1 cp}, (8). 

Then VP is open, x0 E VP and Vs n VP,= 0 whenever p #pt. If we let H = 

(x~: LY < u,), N is closed; after all, no U E 91 can contain more than one element 

of H and % covers X. By normality, there is an open U such that H E U E 0 E 

U a i,,I V,. It is easy to verify that ( U n V’ : a < q} is an uncountable discrete 
collection of nonempty open sets. 0 

Corollary 3.1.8. Normal DCCC spaces are strongly 

The question remains whether there are normal 

that are not I-star-Lindeliif. Our final result in this 

2-star-LindeliiJ 

strongly 2-star-Lindeliif spaces 

section shows that there are no 
such spaces that are also perfect. This completes Fig. 4. 
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.9. Every perfectly normal DCCC space is CCC. 

roof. In a similar vein to Theorem 3.1.7. •1 

3.2. Moore spaces 

3.2.1. n-separability in Moore spaces 
The concept of n-separability in Moore spaces served as the inspiration of our 

study of star covering properties. The following results are from [20,2I]. 

nition. The subset X of the Moore space S is n-dense in S with respect to the 
development 3 = { %i} for S provided for each i, S = st”( X, %i). 

Definition. A Moore space S is n-separable provided for each development Ce for 
S, there exists a countable subset K of S such that K is n-dense in S with respect 
to 5% 

efinition. A oore space is wd-normal provided for each open set U in S, there 
exists a sequence {U,,} of open subsets of U such that for each n, Kc U, and 
I/ C_ ij { UJ). (This concept was later renam, Pd (quite sensibly) by Blair as countable 
tiling.) 

heorem. A Moore space has the countable chain condition ifand only ifit is Zseparable 
and has countable tiling. 

Theorem. A Moore space has the discrete countable chain condition if and only if it 
is 3 -separable. 

Example. There exists a Moore space with the discrete countable chain condition 
but without the countable chain condition. 

Does there exist a 3-separable Moore space which is not 2-separable? 

Clearly, (by applying the star-Lindeliif property to each stage of the development) 
it follows that a Moore space is 2-separable if and only if it is strongiy 2-star-Lindelijf, 
and that a Moore space is 3-separable if and only if it is 2-star-Lindelijf. 

3.2.2. The Moore space machine 
In [21, 22], Reed developed a construction tech 

space A(X) to each regular first countable space 
(respectively, locally separable, CCC or DCCC) if 
ing property. This relations has been extende 
calibers) by McIntyre [16]. 
Lindeliif properties, whereby distinctions between tlaeue 
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to be identical for the two classes of spaces. Surprisingly, this is not the case. Whereas 
previously, the construction has been used to raise distinctions between chain 
conditions in simple first countable examples to Moore space examples, it is used 
below to create distinction in the derived Moore spaces which are not made in the 
first countable spaces. 

The construction. Let X denote a regular first countable space. For each x E X, 
denote by { U,,(x)} a sequence of open sets in X which forms a local base at x such 
that for each n, U,,,(x)c_ U”(x). Now, for each m~lV+, let A, = 

{(n,, n2,. . . 9 nd: no = 1 and for 1 s is m, ni EN+}. Let A = U,__ A,,,. For each 
a=(n,,n2,..., n,) E A, denote by Sa a unique copy of X such that all copies are 
pairwise disjoint, and for each x E X, denote by (x,, , x,,~, . . . , x,,) the element of 
Sa which is identified with x. Let d(X) = lJ {$: a E A} and define a development 
for A(X) as follows: For each j~tV+, a=(n,,n,,...,n,,,)EA, and p= 

(Y”l,Yn2,--, ~~~1~s~~ let Gi(P)={~}~{(Xn~,Xn2,~**,Xnrn,~~~,~~2,***,~~r): XE 

X, c~kJ(+ and XE U kl+j(y), for some j such that ki 2 j and 1 G is c}. 

It follows that 9 = { Gj( p): p E A(X), and j E f+J+} is a basis for a topology on 
A(X) and that { gn}, where for each n, +?n ={Gj(p): p~Ju(x) and jan}, is a 
development for the Moore space d(X). 

Theorem 3.2.2.1. If X is Lindelii_f, then .4(X) is 1 -star-Lindel$ 

Proof. Without loss of generality, for each p E d(X), let GP denote a basic open 
set for p, and let % = { GP: p E J&(X)}. It suffices to show that there exists a countable 
subset Y of % such that st(U ‘V, %) covers d(X). In fact, since A is countable, it 
suffices to show that for each a E A, there exists a countable subset Ya of %, = 
{G,,: p E Sq} such that st(U W;, %,) covers S,. 

Let 7~ &uote the natural projection mapping from &(X) onto X, i.e., 

Observe that for each a in A, 7~ restricted to Sa is one-to-one. As noted in [22], T 
is an open countable-to-one continuous mapping from A4 (X) to X, For each n E N+ 
and a=(nl,n2,..., nm)EA, let an denote (nl,n2 ,..., nm,n)EA. 

Now, for each G,, E %,, there exists jp EN’ such that G,, = Gjp( p), Observe that: 

(1) VPE Sa and n %ip, 4 P) E ~(6, n S,,,) = U,t+j~(~(p)), and 
(2) Vn EN’, %” = { ?r( G;, n San,): G,, E 41, and m 3 n} is an open covering of X. 
Since X is Lindeliif, for each n, let X, denote a countable subcovering of R’,, for 

X, and for each U E X,,, let G”,,, E %, such that there exists p E S, and m 2 n such 
that G,, = G,, and n( G,, n S,,,,) = U. Finally, let 7r, = {G”,,: n E &J+, U E Z’,,}. 

st( u V;, Q,) c0ver.s S,. Suppose @ E St, and consider G,, = Gjp( p) E %,. From 
(2), there exists U E Y$, such that n(p) E U and U = n( Gq n S,,) for some q E S, 
and najp. Then G[,E Ya and by (I), TI- ‘[rr(p))n 
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3.23. Examples 
In the last section, we saw that a regular space is DCCC if and only if it is 

2-star-Lindeliif, if and only if it is w-starcompact (and that these are all equivalent 

to pseudo-Lindeliifness for completely regular spaces). Furthermore, it is well known 

that &compact Moore spaces are Lindeliif (see [ 131). Here, we show that there 

exist Moore spaces which distinguish those star-Lindeliif properties which have not 

already been eliminated by these constraints. 

3.1. Strongly I-star-Lindeliif Moore spaces which are not &-compact. 

roof. Both the tangent disc space and V are separable (and hence strongly 

l-star-Lindeliif), but neither is &compact. Cl 

A CCC (and hence 1 -star-Lindel6f) Moore space that is not strong1 y 

e the Pixley-Roy topology obtained from R, i.e., X = {x c Iw: x is 

finite} and a basic open set takes the form [x, U] = (y E X: x E y c U}, where x E X 

and U is open in Iw. Such a construction was first described in [19] and makes X 

a Moore space. 

Let 3 be some countable base for R. Defining 

3* = {U F: F is a finite subset of a}, 

then 3* is countable. Obviously if [x, U] is a basic open set in X, there is Some 

BE 3* such that [x3 B] E [x, U]. If {[ x, , U, ] : (Y < w ,} were an uncountable collec- 

tion of nonempty basic open sets, then, because 3* is countable, for some a! f LY’, 

SO no uncountable collection of nonempty open sets in X can be pairwise disjoint, 
i.e., X is CCC and hence is 1-star-Lindeliif. 

However, X is not strongly 1-star-Lindeliif. Consider the cover % = {I( t}, Iw]: 
t E Iw}. If A = {xn E X: n E o} is any countable subset in X, then U A c R is countable. 

Picksome s~lw-U A.Then{s}~ UE % ifandonlyif U=[{s}$]. IfAn[(s},R]# 
8, then for some x,, E A, (s} C_ x, c R, contradicting the choi 

st({s}, Q) = An [{s}, R] -0 and therefore {s}~ st(A, %). So if 

st(A, %?) # X, i.e., X is not strongly l-star-Lindeliif. 
So X is a Moore space that is I-star-Lindelof but not strongly l-star- eliif. Cl 

A 1-star-Lindelijf ich is not CCC. 
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in K, and each uncountable subset of K has a limit point in Ii. Let X = H u K, 
and give X the inherited real-line topology except that points of K are isolated. 

Clearly X is a regular, Lindeliif, first countable space which does not have the CCC. 

From Theorem 3.2.2.1 and the fact that the CCC is invariant under the Moore space 

machine, it follows that A(X) is the desired Moore space. Cl 

ple 3.2.3.4. A strongly 2-star-Lindeliif Moore space which is not l-star- 

roof. Let X denote ol with the order topology, and let { V,(x)) denote a non- 

increasing local base of countable, clopen sets at each point of al. As pointed out 

in [21], Ju( X) is 2-separable and hence strongly 2-star-Lindeliif. This follows 

immediately from the fact that A(X) is DCCC and locally separable. To see that 
A(X) is not I-star-Lindeliif, consider a covering 41 
countable subset ‘V of %, U ‘V is countable. Hence 

such that no element in U 7r is identified with x. It 

in 41 containing (x,) E S, 1 t meets U 7’. Alternatively, 

able I-star-LindelGf Moore space is separable. 0 

Example 3.2.3.5. A 2-star-Lindeliif Moore space 
Lindeliif. 

by basic open sets. Given any 
pick a nonlimit ordinal x E wl 

follows that no basic open set 

observe that any locally separ- 

which is not strongly 2-star- 

Remark. The existence of a 2-star-Lindeliif Moore space which is not strongly 

Zstar-Lindeliif has now been established by the second author. It is also an example 
of a DCCC Moore space with a c+-locally countable base (hence a o-para-Lindeliif 

space) which is not Lindeliif. This space was obtained after the second author had 

seen a regular nonfirst countable space with these properties constructed by Heath; 

both spaces answer questions raised in [2] and will appear in [LO]. 

Question 3.2.3.6. The construction in Example 3.2.3.5 is a complex variaton of the 

Moore space machine given above. It is not known in general whether A(X) must 
be a strongly 2-star-Lindeliif Moore space if X is a regular, first countable strongly 

2-star-Lindeliif space. However, there is an open mapping from A(X) onto X. 

Hence, it does follow that if JR(X) has either of the star-Lindeliif properties, then 

so must X. Example 3.2.3.4 shows that d(X) need not be l-star-Lindeliif if X is 

1-star-Lindeliif. 

3.3. Non- Moore space examples 

Although the examples in 3.2 are by no means trivial, we have distinguished the 

most important star-Lindelof properties using Moore spaces. In this section, then, 

the aim is twofold. Firstly, using a technique similar to Sarkhel’s scheme, we 

distinguish the star-Lindelof properties for Hausdorff spaces. Secondly, several 

examples are presented to show how products of star-Lindeliif spaces behave. 
Fix a positive integer, n. 
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LindelSf. 
A Wausdorfl! space which is ~-star-Lindel~f but not strongly n-star- 

rocof. The long segment (X, 9) is constructed from the ordinal space [O, or] by 
placing between each ordinal Q! and its successor Q! + 1 a copy of the unit interval 
I = (0,l). X is then linearly ordered and it is given the order topolgy. This makes 
(X, 3) compact, T2 and connected. 

Let At,&,. . . T &n+l be pairwise disjoint dense subsets covering X, with 0 and 
all limit ordinals in AZn+I. Let &i+t = Azi u Aziet u Ati+* for i =O, 1,. . _ , n and 

E,i = Azi for i = II, 2,. . . ) n, where &= Al and A2n+2 = A*,,+, . 
Define a new topology & on X as follows: ZJ is open in X if for every XE U 

there is some interval in the order topology & 3 x such that Ix I 1 Entxt G U, where 
n(x) is the unique integer k satisfying x G Ak. 

This topology makes X Hausdorff. We will show that (X, 9J is ~nst~rgLindel~f 
but not strongly n-star-LindelGf. 

1. X is ~-~~~r-~i~~e~~f (in fact n-~t~$c~~~~&~~. Identical to the proof in 
Example 2.3.8, since (X, 9) is compact. 

claim 2. X is not strongly n-stur~~~n~e~~~ Define x0 = 0 and choose y, E A*,+, with 
x0 < yO < ml and y. not in the (0, I) segment containing or immediately following 
x0. Suppose we have defined xP, yP in A ,,+,forall/3<arsuchthatO=x,~y~~~~-~ 
xp<yp= ’ =, and ;rp, yp do not lie in the same (0,l) segment and 

2rr 

u IX,,Y,mJ 
3-P i=l 

Let 5 = sup(y,: /3 <: cw}. Then & < w1 and either l is a limit ordinal, or 5 is one of 
the yp. In either case, SE A2n+l. Let x, = 6 and pick y, E Azn+, with x, < yu < wl 
and y, not in the (0,l) segment containing or immediately following =rc,. It remains 
to show that Uysor(xy, y,,) I, Us:, Ai n [0, ya). Suppose z E UfE, Aj n [0, y,). Then 
Z#JC, as xaEA1,+l,so either z<x, or z>x,. Ifz<x,,then~<y~forsome/Mcw 
and so z E &&,,, y,,). If, on the other hand, z> x,, then z& (x,, yn) c 
U,,&C~, yY). Hence, by induction, {(in, ya ): cy < w,} is a gairwise disjoint collection 
OF f*esnempt~ &-z~r~&- mwering uf: 1 Ai. 

If we now let %={E,,+,}u((x,, y,)nEi: a+% i=lL,2,..., 24, then, % is an 

open cover of (X, &). Pick z, E (x,, y*) n A,. Let El be any countable subset of X. 
Because the (x,, ya ) are pairwise disjoint, there is some tyo such that (xaO, y,,) R 
Now, by the construction of %!, 

for k s n. Therefore for any counta 
strongly n-star-Lindelaf. U 

St” ( “u) 74 i.e., ( 9,,) is not 
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A similar method (with X = A, u l l l u AZ,,) generates a T2 space that is strongly 

n-star-Lindeliif, but not n - 1 -star-LindetGf. 

Example 3.3.2. A Hausdorff space which is o-star-Lindeliif but not n-star-Lindeliif 

for any n < 0. 

Proof. Let Xn = X x {n} with topology 9,, as above and Y = (0) u @,lEN Xn. A basic 

open set containing 0 takes the form (0) u U,l,,,l Xn. Then Y is a HausdorfI space. 

If 41 is open cover of Y, pick U E % that contains 0. Then U z(0) u U,,, Xn 

for some m. Let Bk E Xk be countable and satisfy st”( Bk, %) = Xk, for 1 s k s m. 

Then ~=WdJlslism Bk is a countable subset of Y such that st”( B, %) = Y This 

shows that Y is w-star-Lindeliif. 

Now let V,,, be an open cover of X,,, witnessing that X,,, is not strongly m-star- 

Lindeliif. Then 

(ill=?f,,,u (0)~ lJ X,, u(X,,:n<m} 
1 n>m I 

is an open cover of Y that shows Y cannot be strongly m-star-Lindeliif. Hence Y 

is o-star-Lindeliif, but not m-star-Lindeliif for any m. Cl 

Example 3.3.3. A space that is the product of a LindelGf space and a strongly 
l-star-Lindeliif space but which is not strongly I-star-Lindeliif. 

Proof. Let X = o1 with the usual topology and Y = ol+ 1 with the following 

topology: if cy < ol , then {a} is open. A set containing w1 is open if and only if its 
complement in Y is countable. With this topology, Y is T3 and Lindeliif. The claim 

is that X x Y is not strongly I-star-Lindeliif, despite X being strongly I-star-Lindeliif 

and Y being Lindeliif. 
For each a! c o1 the set Ua = X x (cy} is open in X x Y. For each p < q, the set 

VP = [0, p] x (p, o,] is open in X x Y. Certainly, the collection % = { U.: ar < w,} u 

(V&3<w,} is an open cover of Xx Y. Now, let B={(x,,,y,,)~Xx Y: nd+4} be 

some countable subset of X x Y. 

We now pick y < w1 such that y f y, for all n and then pick x E X such that x > y 

and x > Xn for all n. If (x, y) E Ua, then Un n B = 8, because (Y = y. Also, (x, y) g VP 

for any p < o1 , for otherwise (x, y ) E [0, p] x (/3, w,] which contradicts x > y. Hence 
we see that (x, y) @ st( B, Q). As B was an arbitrary countable subset of X x Y, this 

space cannot be strongly 1-star-Lindeliif. CI 

A simple modification of Theorem 2.4.2 proves that the product X x Y of an 
n-star-Lindeliif space X with a compact space Y is n-star-Lindeliif. A further 

modification shows that X x Y is strongly n-star-Lindelof if X is strongly n-star- 

Lindeliif and Y is compact and separable. owever, as we will now see, X X Y 

need not be strongly l-star-Lindelof if X is and Y is only compact. 
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A space that is not strongly I-star-Lindeliif, despite being the product 
of a strongly I-star-Lindeliif space and a compact space. 

roof. Let X be the space V in Exampie 2.2.5 and index S as {a: CY < K}. As X 

is separable, it is strongly 1-star-Lindeliif. Let Y = {ya: Q! C K} u (00) where all 
elements of Y are distinct. Each {ya} is open and open sets containing 00 have finite 
complement. With this topology, Y is compact T2. 

Using the notation of Example 2.2.5, we define an open cover of X x Y as follows: 

%={Xx{y,): a!<~}u{N~~x Y-1~~): a<K}u{{n}x Y: n&l}. 

Observe that (s,, ya) E U E % if and only if U = X x {yn). If B G X x Y is countable, 
there is some Q! < K such that B n (X x {yn}) = 8 (as S is uncountable). By our 
observation, (s,, ya) g st( B, %). So X x Y is not strongly 1-star-Lindeliif, despite X 
being strongly l-star-Lindelof and Y compact. 

Although X x Y is not 1-starcompact, a similar argument to that used in Example 
2.2.5 shows that for any basic open cover % there is a finite B c N x Y such that 
st(B,%)?Nx Y. As Nx Y is dense in XX Y, st*(B,%)=Xx Y and hence XX Y 
is strongly 2-starcompact. Cl 

This example also shows that star-Lindeliif is not an inverse invariant of proper 
mappings. After all, the projection v : X x Y + X is proper if Y is compact. Fleisch- 
man’s example verifies that the same is true for starcompactness. 

As the Sorgenfrey line shows, the product of Lindelijf spaces need not be Lindelof. 
With this result in mind, it would be nice if we could show that the product of 
Lindeliif spaces had to be strongly n-star-LindGf for some fixed n. Sadly this is 
not the case for n = 1. 

The space described here is an example of Przymusinski’s cited in Burke’s 
handbook article [3] and uses the following result of Kuratowski: 

There exists a partition (Ak: k E N} of R such that (Ak n FI = c for any 
k E N and any uncountable closed subset F of R. 

Exa . Pick such a set A. Let X = R -A have the induced 
Let et R with each point of IR - A isolated and points of 
neighbourhoods. Both X and Y are Lindeliif (the property of A ensures that Y is). 
Furthermore, both spaces are T3 and first countable, so their product is T3 first 
countable also. 

Let D = {(x, x) E X x Y: x E X}. Then D is uncountable as as uncountable 

complement. We claim that D is closed and discrete. For (x, x) E X x {xi is open 

in X x Y and has intersection {(x, x)} with D. For (x, y) g & =;1x-yl>o. 

Then B,(x) x BE(~) is open in the product space (as Y’s topology is finer than the 
metric one), contains (x, y) and does not meet D. This verifies the claim. 
easy to show that {(X x Y) - 
that X x Y is neither strongly l-star- 
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In fact, this space is I-star-Lindeliif, despite not being CCC. Let %! be any basic 
open cover of X x Y. X x A is a separable metric space and hence Lindeliif. So 
there is a countable YE % covering X x A. It is sufficient to show that for at most 

countably many y E R - A, X x {y} - st(U y, %) f 8, because then for each such y 
we can get a countable subset of %, covering X x {y} (which is Lindelof). The 
collection “Ir’ consisting of all the sets in these countable subsets together with all 
those sets in V is countable and satisfies st(U 7r’, %) = X x Y, as required. 

To this end, suppose X x (y} - st(U V; %) f 0 for uncountably many y E IR - A. 
For each cy < ol, select some U, = Va x {y,) E % such that Ua is not a subset of 

st(U V, Q) and so that distinct a! correspond to distinct ya. Let P be a countable 
dense subset of X. For some p E P, p E V, for uncountably many cy. Let E = 
{y,: p E Va}, so E is uncountable. By the property of A, there exists some y E An E. 

Then (p, y) E V for some V E v (as “I’ covers X x A) and must meet some Ua. 
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