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Abstract 

Moody, P. J. and A. W. Roscoe, Acyclic monotone normality, Topology and its Applications 47 

(1992) 53-67. 

A space X is acyclic monotonically normal if it has a monotonically normal operator M(., .) 
such that for distinct points x,,, ,x._, in X and x, =x,], n::i M(x,, X\{x,+,}) = (d. It is a 

property which arises from the study of monotone normality and the condition “chain (F)“. In 

this paper it is shown that GO, metric, stratifiable and elastic spaces are all acyclic monotonically 

normal. In addition it is established that this property is preserved by closed continuous maps, 

adjunction and domination. It is known that acyclic monotonically normal spaces are I&-spaces, 

this being an open question for monotonically normal spaces. The links between acyclic monotone 

normality, monotone normality and K&paces are further investigated. In particular it is shown 

that the addition of a simple condition to the definition of a K,,-space yields a property, called 

monotonically b, which is equivalent to acyclic monotone normality. 

Keywords: Acyclic monotone normality, K,-spaces, GO spaces, elastic spaces, adjunction, domi- 

nation. 

AMS (MOS) Subj. Class.: Primary 54C20, 54C99, 54D15; secondary 54B17, 54E20, 54F05. 

1. Introduction 

The property of acyclic monotone normality was introduced by the authors 

together with Collins and Reed in [lo], where it was shown to be equivalent to the 

condition chain (F). This condition is a natural generalisation of conditions which 

are equivalent to metrisable and stratifiable. It is known that any acyclic monotoni- 

cally normal space is monotonically normal while the converse is an open question.’ 

Correspondence to: Dr. P.J. Moody, Trinity College, Oxford OX1 3BH, UK. 
’ Added in proof: M.E. Rudin has recently constructed a monotonically normal space which isn’t a 

b-space, and hence not acyclic. 
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In this paper we shall show that all the major classes of monotonically normal 

spaces are acyclic and that acyclic monotone normality behaves in much the same 

way as monotone normality with respect to closed continuous maps, adjunction 

and domination. We also consider the general problem of when monotonically 

normal spaces are acyclic monotonically normal with particular emphasis on K,,- 

spaces. Our final theorem proves that a simple extension of the definition of a 

I&space yields a property which is equivalent to acyclic monotone normality and 

thus chain (F). 

We begin by recalling the definition of chain (F). It applies to topological spaces 

X for each element x of which a family W(x) of subsets containing x is given. Let 

W = {W(x): x E X}. We say that “u’ satisfies chain (F) when it satisfies: 

(1) If x E U and U is open, then there exists an open V = V(x, U) containing x 

such that x E W s U for some WE W(y) whenever y E V. 

(2) W(x) is linearly ordered with respect to inclusion. 

It was stated above that chain (F) is a natural generalisation of conditions which 

are equivalent to metrisable and stratifiable. This is self-evident from the following 

theorems. 

Theorem 1.1 [4]. The space X is metrisable if and only if X has W satisfying chain 

(F) such that for each x E X, every element of W(x) is open, W(x) is countable and 

there is an enumeration of W(x) as { W(n, x): n E N} such that W(n + 1, x) z W(n, x) 

for each n. 

Theorem 1.2 [ 1,4]. The space X is strat$able if and only zyX has countable pseudo- 

character and W satisfying chain (F) such that for each x E X, W(x) is countable and 

there is an enumeration of W(x) as { W(n, x): n EN} such that W(n + 1, x) E W(n, x) 

for each n. 

The conditions above have previously gone by the names of “open decreasing 

(G)” and “decreasing (G)” respectively. 

It was observed in [5] that spaces with W satisfying chain (F) are monotonically 

normal. The property of acyclic monotone normality is closely related to monotone 

normality and is formally stronger. Recall that a space X is monotonically normal 

if there is an operator M(. , -) which assigns to each x and each open set U containing 

x, an open set M(x, U) containing x which satisfies: 

(1) M(x, U) c M(x, U’) whenever x E U G U’, and 

(2) M(x, X\{yl> n M(Y, X\(x)) = 0 if x tf Y. 
If in addition M(. , .) satisfies 

(3) n::d M(xi, X\{x,+,}) = 0 whenever n 2 2, x0,. . . , x,-, are distinct and 

& =x0, 
then M(. , .) is an acyclic monotonically normal operator. A space is acyclic 

monotonically normal if it has an acyclic monotonically normal operator. Observe 

that by taking n = 2 in (3) we obtain (2). Hence (3) can be seen to be a simple 

strengthening of (2). As stated above, the following theorem was proved in [lo]. 
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Theorem 1.3. A space is acyclic monotonically normal ifand only ifit has Wsatisfying 

chain (F). 

Notation and conventions. All our spaces will satisfy the T, separation axiom. For 

a set A, A” will denote the interior, and A the closure, of the set A. If X is a space 

and Y a subset of X, then ylv is the subspace topology on Y. (a,, . . . , a,,) will 

denote an ordered n-tuple, while (a, b), [a, b), (a, b] and [a, b] will represent the 

usual intervals in an ordered space. Finally, N is the set of natural numbers. 

2. Spaces which are acyclic monotonically normal 

From Theorem 1.2 we know that any stratifiable space, and hence any metric 

space, has an acyclic monotonically normal operator. Indeed it is an easy exercise 

to show that the usual monotonically normal operators on stratifiable and metric 

spaces are in fact acyclic. The other important class of monotonically normal spaces 

is the class of generalized order (GO) spaces [7]. Our first result demonstrates that 

GO spaces are acyclic monotonically normal. 

Theorem 2.1. Every GO space is acyclic monotonically normal. 

Proof. We shall establish that every GO space is acyclic monotonically normal by 

showing that the monotonically normal operator defined by Heath, Lutzer and 

Zenor on a linearly ordered space (LOTS) [7] is an acyclic monotonically normal 

operator. 

Let (X, <, 9) be a LOTS and suppose that 4 is a well ordering of X. We shall 

recall the definition of the monotonically normal operator defined in [7]. Suppose 

that p E X and U is an open neighbourhood of p. Define I(p, U) to be the convex 

component of U which contains p. If I_(p, U) = {y E Z(p, U): y <p> # 0 let xl,,“) 

be the 4 -first element of I_( p, U) and let y+U) be the a-first element of I+(p, U) = 

{y E I(p, U): y > p} if I+(p, U) # 0. Finally define 

M(P, w = 

I 

(xt,~), Y+,& if I-(P, u> # Id tf I+(P, W, 

[P? Y(P,“J? if I-(p, U> = 0 Z I+(p, U), 

(X<,,Ub PI> if ZL(p, U) f 0 = Z+(p, U), 

{Pl, if ZL(p, U) = 0 = I+(p, U). 

By [7], M(., *) is a monotonically normal operator on X. We shall show that M(. , .) 

is an acyclic monotonically normal operator. 

Suppose x0, . . . , x,_, are distinct elements of X and x, = x,,. Since M(. , .) is 

known to be a monotonically normal operator it will be sufficient to consider the 

case when n 2 3. Let i and j be such that 

x,=min{x,:O~m~n-1) and x,=max{x,:OCmmn-1}, 
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and define y to be the Cl-first element of the interval (x,, x,) (observe this interval 

is nonempty because n 3 3). Since x, <xi+, < xj we see that 

M(x,~ x\{xi+ll) C (+ P Y), 

where ( +, y) = {x E X: x < y}. Similarly 

M(xj, x\{xj+ll> C (Y, + 13 

where (JJ, + ) = {x E X: x > y}. Hence 

M(x,, x\{x!+r]) n M(xj, x\{xj+ll) = 0 

and thus n::; M(xk, X\{x,+,}) = 0. Therefore M(*, .) is an acyclic monotonically 

normal operator. q 

Stratifiable spaces have been generalised by Vaughan to linearly stratifiable spaces 

[ 131 and further, by Tamano and Vaughan, to elastic spaces [ 111. Borges established 

in [3] that elastic spaces are monotonically normal. It should be noted that the 

operator he defined will not, in general, be acyclic. However, as we shall see, his 

proof may be modified to yield such an operator. 

Recall that a pair-base 9 = {P = (P, , PJ} for a space X is a collection of pairs 

P = (P, , P2) of subsets of X such that P, is open, and for each x E X and neighbour- 

hood U of x, there exists (P, , P2) E 9’ such that x E P, E P2 s U. Let 9, = {P, : P E 9}, 

CT’2 = {Pz : P E Y} and define f: 9, + 9’* by f(P,) = P2. A space is elastic provided it 

has a pair-base 9’ and a transitive relation - on 9, such that 

(1) P1,P~~~,,P,nP:#03P,-P~ or Pi--P,, and 

(2) if 9; 5 9, and if there exists P, E 9, such that (Pi E CF’;=+P; - P,), then 

us; E UMP,): P, E 99. 
Now, by the proof of [ll, Lemma 21, there is a relation = on 9, such that 

(a) PI n Pi # 0=3(P, = Pi or Pi = P,) whenever P,, Pi E 9,. 

(b) If 9’: c 9, and is nonempty, then there is a P{ E CT?‘: such that P, + Pi whenever 

P, E 9: and P, # Pi. 

(c) If 9’; c 9, and if there exists Pi E 9, such that P, = Pi for every PI E 9?‘;, then 

there exists P: E 9, such that P, - P: for every P, G 97’;. 

Using the = relation, rather than the - relation as in Borges’ proof, define for 

each open U in X and P = (P, , PJ E 9, 

Up = IJ {V, : (V, , VJ E 9, V, c V, G U and V, = P,}. 

Observe that, by condition (c) for the relation = and condition (2) for the rela- 

tion -, 

<cl_J{V2:(Vl, V,)E~‘, V,c Vzc U and V,-P,}G U. 

Now suppose that 0 is an open neighbourhood of the point x. Pick a P(0, x) E 9 

which satisfies 
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Define 

0” = P(0, x)l\[(x\~x~)P,o,x,l 

and note that XE 0”. Finally define for each x and open set U containing x 

M(x, U) = IJ { 0”: x E 0 c U and 0 open}. 

Clearly M(x, U) is an open neighbourhood of x. We shall show that M( *, *) is 

the required acyclic monotonically normal operator on X. First observe that if 

U c U’, then M(x, U)C M(x, I/‘). Thus it will be sufficient to show that if 

x0,..., x,-r are distinct points of X and x, =x0, then 

n M(xt, X\{Xi+l)> = 0. 
i=o 

So suppose that this were not the case. Pick a point x 

Then for i = 0,. . . , n - 1 there is an open set Oi for 

x E OF. Thus 

x E p(“i, x,)l\[(x\{x,}),,,,,~~l . 

which lies in the intersection. 

which X, E Oi c X\{X,+,} and 

Since { P( Oi, xi), : i = 0, . . . , n - l} is a nonempty subset of ??, there is, by (b) above, 

an i such that for each j = 0, . . . , n - 1 either 

F(O,, x;), = P(O), x,)1 

or 

But x E P( Oi, xi), n P( 0,, x,), , thus by (a) above, P( Oi, x,), = P( O,, x,), . Either i < 

n-l or i=n-1. 

Suppose i < n - 1. Hence P( 0,, x,), = P( O,,, , xi+ ,), , but 

X E P(Oi, Xi), G P(O,, X,),G 0; G X\{Xi+,}. 

Therefore, by definition, x E (X\{xi+~})~(~,+,,x,+,), which is a contradiction because 

x E O:;;l. The case when i = n - 1 is similar. Thus M(. , .) is an acyclic monotonically 

normal operator for the space X. 

Hence we have the following theorem. 

Theorem 2.2. Any elastic space is acyclic monotonically normal. 

3. The stability of acyclic monotone normality 

Heath, Lutzer and Zenor established in [7] that the class of monotonically normal 

spaces is closed under closed continuous maps and asked whether a space X must 

be monotonically normal provided that X is dominated by a collection of such 
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subspaces. Miwa answered this question in the affirmative in [9] and also showed 

that the adjunction of two monotonically normal spaces is a monotonically normal 

space.2 In this section we shall extend these results to acyclic monotonically normal 

spaces. This demonstrates that acyclic monotone normality appears to be as stable 

a condition as monotone normality and that it is not possible to construct a nonacyclic 

monotonically normal space by using closed maps, adjunction and domination. 

It is an easy exercise to extend Heath, Lutzer and Zenor’s result to the acyclic 

case. Thus we shall simply note the following theorem. 

Theorem 3.1. Kke image of an acyclic monotonically normal space under a closed 

continuous map is acyclic monotonically normal. 

Extending Miwa’s adjunction theorem is not so easy. Recall that if X and Y are 

disjoint spaces, F a closed subset of X and f: F + Y is a continuous map, then the 

adjunction X u fY of X and Y, with respect to F and f, is the set 

1(x>: x E X\F] u {{y] uf-‘(y): Y E Y> 

with topology 5, where U E 3 if and only if h-‘(U) and k-‘(U) are open in X 

and Y respectively, with h : X + X u,~Y and k : Y + X u +Y being defined by 

{xl, xsz F, 

{f(x)> ‘Jf-‘(f(x)), XEF’ 

k(y) = {yl uf-‘(y), Y E Y 

In order to prove that a space which is dominated by a collection of acyclic 

monotonically normal subspaces is acyclic monotonically normal we require the 

acyclic monotonically normal operator on the adjunction space to satisfy some 

addition conditions which are stated in the theorem below. 

Theorem 3.2. Suppose X and Y are acyclic monotonically normal spaces, with operators 

Mx(. , .) and MY(. , +) respectively. In addition suppose F is a closed subset of X and 

f: F + Y is a continuous mapping. Then the adjunction Z = X u,,Y of X and Y, with 

respect to f and F, has an acyclic monotonically normal operator Mz(. , .) which satisjes 

(1) M,({x}, U) n k( Y) = 0 whenever x E X\F and U is an open neighbourhood of 

ix>, 
(2) M,({y} u f-‘(y), U) n k( Y) = k( My(y, kP’( U))) whenever y E Y and U is an 

open neighbourhood of {y} uf’(y). 

Proof. X has an acyclic monotonically normal operator, hence X has W satisfying 

chain (F). Suppose that z E 2 and U is an open neighbourhood of z. We shall define 

an open neighbourhood M,(z, U) of z. 

* Added in proof: These results were originally proved by San-ou. Reference: S. San-ou, A note on 
monotonically normal spaces, Sci. Rep. Tokyo Kyoiku Daigaku 12 (1974) 214-217. 



Acyclic monotone normality 59 

First suppose that z = {x} where x E X\F. Define A(z, U) = {x} and let H(z, U) = 

K’( U)\F. Set 

O(z, U)={{a}: ~EX\F,~WE W(a), WnA(z, U)f0~ WsH(z, U)}’ 

and define Mz(z, U)= O(z, U). Clearly M,(z, U) is open. Observe that 

h( V(x, K’( U)\F)) is open in Z and so 

{X}E h( V(x, h-‘( U)\F)) c O(z, U) 

( V( *, *) is the operator associated with “chain (F)“). Hence Mz(z, U) is an open 

neighbourhood of z. 

Now suppose z = {y}ufP’(y), where y E Y. Define A(z, U) to be 

f-‘(M,(y, k-‘(U))) and set 

H(z, u) = hP1( U\(F\f-‘(MAY, k-‘( W))). 

Observe that H(z, U) is open and that A(z, U)C H(z, U). As above set 

O(z, U)={(a): ~EX\F,~WE W(a), WnA(z, U)f0~ WcH(z, U>}’ 

and define Mz(z, U) = O(z, U)u k(My(y, kp’( U))). Clearly z E M,(z, U). It can be 

shown that K’(M,(z, U)) and kp’(M,(z, U)) are open in X and Y respectively, 

thus Mz(z, U) is open in Z. 

We shall show that Mz( *, .) is the required acyclic monotonically normal operator. 

First, it is clear that conditions (1) and (2) of the theorem are satisfied. Also observe 

that if ZE U G U’ where U and U’ are open in Z, then Mz(z, U)s M,(z, U’). 

Therefore it only remains to show that if zO,. . . , z,_, are distinct elements of Z and 

z, = z,,, then 

n-l 
n M_&, Z\{zi+‘>) = 0. 
,=” 

Suppose this were not the case, then pick a z E Z which lies in the above intersection. 

Either z = {y} uf’(y) for some y E Y or z = {x} for some x E X\F. 

Suppose z = {y}uf-‘(y) where y E Y. Since, for each i = 0,. . . , n - 1, 

O(Z’, Z\{Z,+‘})C h(X\F), z& O(zi, Z\{z,+‘}). Thus for each i, there must exist a 

yi E Y such that Z’ = {yi}uf-‘(y,). Observe that yo, . . . , y,_, are distinct and set 

Y, =yo. For i=O,...,n-1, ZE k(Mv(y,, kP1(Z\{z’+‘)l)). Hence ye 

My(yir Y\{yi+‘}) which is a contradiction since MY( ., .) is acyclic. 

Therefore z = {x} where x E X\E For i = 0, . . . , n - 1, z E O(z,, Z\{z,+,}). Thus 

we can pick, for each i, an element W, E W(x) for which W, nA(zi, Z\{z,+,})#0 

and W, G H(z,, Z\{z,+,}). Since W(x) is linearly ordered with respect to inclusion, 

there is an i such that W, E W, for j = 0,. . . , n - 1. Suppose that zi = {xi} where 

xi E X\F. We shall show that this leads to a contradiction when i > 0, and a similar 

contradiction may be found if i = 0. 

If zip’ = {xi_‘} where xi_, E X\F, then 

W, G Wi_, G H(z;_, , Z\{z,})= h-‘(Z\{z,})\F 

= (X\F)\{x,). 
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But Wi n A(ziy Z\{Zi+l}) # 0. However this is a contradiction because 

A(zi, Z\{z;+r)) = {xi}. Thus zi-1 = {y;_l> u~~‘(JJ_~), where y,_r E Y. AS above 

= h~‘(Z\{zi})\(F\f-‘(My(Y,-, 3 k-‘(Z\{z,l)))) 

C h~‘(Z\{Zi}) = X\{Xj}. 

But as above this is a contradiction since xi E W,. 

Hence Zi = {yi} ufp’(yi) for some yi E Y. Suppose that there is aj c n - 1 for which 

zj = {x,} where x, E X\F. By the definitions 

Wj E H(zj, Z\{z;+r>)= h-‘(Z\{zj+r])\Fs X\F, 

and hence WG X\F. However A(z,, Z\{zi+l})n W, #0 and A(zj, Z\{zj+,}) is a 

nonempty subset of F; hence we have a contradiction. Thus for each j = 0,. . . , n - 1, 

z, = {yj} uf-‘(yj) for some yj E Y. Hence for each j, 

W, E H(zj, Z\{zj+r)> 

Recall that Wi n A(zi, Z\{z,+,}) # 0; hence W, nf-‘(M,(y,, Y\{y,+,})) # 0. Pick a w 

in this intersection and observe that, by the above, for each j, w E 

f-‘(M,(Yj, Y\{Yj+i)>). Hence 

n-l 
f(w) E ,c, MY& Y\{Y;+J) 

which is a contradiction since MY(. , *) is acyclic. 0 

We are now in a position to prove that a space which is dominated by a collection 

of acyclic monotonically normal spaces is itself acyclic monotonically normal. The 

concept of a space being dominated by a collection of subsets is due to Michael 

[S, Definition 8.11. 

Let X be a space and z?% a collection of closed subsets of X which covers X. 

Then 3 dominates X if, whenever A c X has a closed intersection with every element 

of some subcollection 3, of % which covers A, then A is closed. 

In [8], Michael establishes that a space is paracompact if and only if it is dominated 

by a collection of paracompact subspaces. Analogous results have been obtained 

for stratifiable spaces and monotonically normal spaces by Borges [2] and Miwa 

[9] respectively. Having proved that the adjunction of two acyclic monotonically 

normal spaces is acyclic monotonically normal and that the operator satisfies 

conditions (1) and (2) of Theorem 3.2, the proof that a space dominated by a 

collection of acyclic monotonically normal spaces is acyclic monotonically normal 

is essentially the same as Miwa’s proof in the nonacyclic case. Thus we just note 

the following theorem. 
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Theorem 3.3. A space X is acyclic monotonically normal if and only if it is dominated 

by a collection of acyclic monotonically normal subspaces. 

4. Acyclic monotone normality and K,,-spaces 

A space X is said to be a I&-space if for every subspace Y of X there is a function 

k from 9-U to & such that 

(1) Ynk(U)= U for each UEF~, 

(2) k(U) n k(V) = k( U n V) for each U, VE 9-v, and 

(3) k(0) = 0. 
k is called a K,-function. 

It was established in [lo] that any acyclic monotonically normal space is a 

b-space, it being a question of van Douwen [ 121 as to whether every monotonically 

normal space is a K,-space. There are I&spaces which are not monotonically 

normal, for example any retractifiable space is a K,-space [12]. However, it is a 

natural question as to whether monotonically normal b-spaces are acyclic 

monotonically normal. We phrase this as a conjecture. 

Conjecture 4.1. Every monotonically normal b-space is acyclic monotonically 

normal. 

Our aim is to investigate the structure of any counterexample to the above 

conjecture. However, our first result does not require that our space be a b-space. 

It establishes that if a monotonically normal space is locally acyclic monotonically 

normal, then it is acyclic monotonically normal. 

Theorem 4.2. A monotonically normal space X is acyclic monotonically normal if and 

only if it can be covered by a collection of open acyclic monotonically normal subspaces. 

Proof. Clearly if X is acyclic monotonically normal, then it can be covered by a 

collection of open acyclic monotonically normal subspaces. So, suppose that % = 

{U, : a < K} is an open cover of X such that each Ua has an acyclic monotonically 

normal operator M,(. , .). Let V( ., .) be a monotonically normal operator on X 

and define for each x in an open set U, 

M(x, U) = V(x, u n U,) n M,(x, u c-7 U,) 

where cy is minimal such that x E U,. We will show that M(x, U) is the desired 

acyclic monotonically normal operator on X. First observe that M(x, U) is an open 

neighbourhood of x and, since V(. , .) and Ma(. , .) are monotonically normal 
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operators, M(x, U) G M(x, U’) whenever x E U G U’. So suppose that x0, . . . , xn_, 

are distinct elements of X and x,, = x0. Further suppose that 

x E n M(xi, X\{xi+J). 
i=O 

Let (Y; be minimal such that x, E U,, . We may assume that one of the following two 

cases occurs: 

(1) There is an (Y such that (Y = cri for every i. 

(2) a,> aI. 
Supposecase(l).Foreachi=O ,..., n-1,x~M,(x,,U,\{x,+,}).Butx, ,..., x,_, 

are distinct elements of U,, so this contradicts the fact that M,( -, -) is an acyclic 

monotonically normal operator. 

Suppose case (2). Observe that 

x E M(xo, X\{xJ) G Vbo, ue,,\{x,l) E V’ixo, X\{x,>). 

However, cro > (Y, and so x,E U,,. Thus 

x E M(x, , X\{x,>) c V(x,, U,,\{x,l) c Vb, , X\{x,l). 

But Vbo, X\{xd) n Vb, , X\{xo>) = 0 an so we have our contradiction. d 

Our next lemma considers the situation where a monotonically normal 

the union of two acyclic monotonically normal subspaces, one of which 

cl 

space is 

is open. 

Its corollaries are used to derive a result concerning the structure of any counter- 

example to Conjecture 4.1 and a result concerning scattered monotonically normal 

spaces. 

Lemma 4.3. Suppose that X is a monotonically normal space such that X = Y u Z 

where Y and Z are both acyclic monotonically normal spaces. In addition suppose that 

Y is open and that there is a function k : Fz + TX which satisfies 

(1) U&k(U) foreach UE~=, 

(2) U E U’+k( U) G k( U’) for each U, U’E .Tz, and 

(3) n:=, U, = 0+n:=, k( U,) = 0 where U, E Fz and i = 0,. . . , n. 

Then X is an acyclic monotonically normal space. 

Proof. Let V( *, .) be a monotonically normal operator on X and suppose MY(. , .) 
and M,(., .) are acyclic monotonically normal operators on Y and Z respectively. 

Define, for each x E X and each open set U containing x 

M(x, U)= 
1 

M,(x, U n Y) n V(x, Y), if xE Y, 

k( M,(x, U n Z)) n V(x, U), if x .@ Y 

By a method similar to one employed in the proof of Theorem 4.2, it can be shown 

that M( *, -) is an acyclic monotonically normal operator on X. 0 
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It should be noted that (l)-(3) above are the minimal conditions on the function 

k required for the proof of Lemma 4.3 to work. It turns out that if a space X is 

such that every subspace 2 of X has a map k : Fz + J cx satisfying conditions (l)-(3) 

of Lemma 4.3, then, essentially by [12, Proposition 1.5.61, X is a K,-space. The 

converse of this proposition is also true and is mentioned in the proof of our first 

corollary of Lemma 4.3. 

Corollary 4.4. If X is a monotonically normal RI-space and is the union of two acyclic 

monotonically normal subspaces, one of which is open, then X is acyclic monotonically 

normal. 

Proof. Suppose that Y and 2 are acyclic monotonically normal subspaces of X 

such that X = Y u 2 and assume that Y is open. Let k: Fz + TX be a K,-function. 

It is easily verified that k satisfies (l)-(3) of Lemma 4.3. Thus X is acyclic monotoni- 

cally normal. 0 

Corollary 4.5. If the monotonically normal space X = Y u {x} where Y is an acyclic 

monotonically normal space, then X is acyclic monotonically normal. 

Proof. Observe that Y is open since X satisfies the T, separation axiom. Define 

k : Ffc\-r + TX by 

V(x)) =X, 

k(0) = 0. 

Clearly k satisfies (l)-(3) of Lemma 4.3 and {x} is an acyclic monotonically normal 

space. Therefore X is an acyclic monotonically normal space. q 

We may now prove our result on the structure of any counterexample to Conjecture 

4.1. It establishes that any counterexample contains a subspace which is a counter- 

example not just globally, but locally as well. 

Theorem 4.6. Zf the space X is a counterexample to Conjecture 4.1, then there is a 

nonempty subspace X’ of X, every nonempty open subset of which is a counterexample. 

Proof. Let 

Y = {x E X: x has an open neighbourhood which is an 

acyclic monotonically normal space}. 

Clearly Y is open and by Theorem 4.2, Y is an acyclic monotonically normal space. 

Define X’ = X\ Y and observe that X’ is nonempty. Suppose that U G X’ is open 

in X’ and has an acyclic monotonically normal operator. By Corollary 4.4, since 

Yu U is a monotonically normal K,,-space, Yu U is an acyclic monotonically 

normal space. However, Y u U = X\(X’\ U) and X’\ U is closed in X. Thus by the 

definition of Y, Y u U G Y, hence U = 0. Therefore every nonempty open subset of 

X’ is a counterexample to Conjecture 4.1. 0 
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Clearly Lemma 4.3 is fundamental to the proof of the above theorem. Hence, by 

the note following Lemma 4.3, the requirement that X be a &-space is essential 

to the proof. 

A corollary of Theorem 4.6 is that every scattered, monotonically normal KO-space 

is acyclic monotonically normal. One simply observes that every nonempty subspace 

X’ of X contains a point x such that {x} is open in X’, and finite spaces are always 

acyclic monotonically normal. However, this result may be deduced for non-K,- 

spaces by applying the method of proof as before, but using Corollary 4.5 rather 

than Corollary 4.4. Thus we have the following result. 

Theorem 4.7. Every scattered, monotonically normal space is acyclic monotonically 

normal. 

Notice that if a family of closed sets {C u : a < K} dominates the space X, then 

U p<a C, is closed for each (Y < K. Hence our next theorem can be seen to be a 

generalisation of Theorem 3.3, although here we must assume that our space is 

monotonically normal and also satisfies a condition weaker than being a b-space. 

Theorem 4.8. Suppose that X is a monotonically normal space, that K is a cardinal 

and {C, : CY < K} is a cover of X such that 

(i) each C, is acyclic monotonically normal, 

(ii) there is a K,-function from Tc_ to Fx for each a, and 

(iii) Up<, C, is closed for each a. 

Then X is acyclic monotonically normal. 

Proof. Let V(. , .) be a monotonically normal operator on X, let M,( *, *) be an 

acyclic monotonically normal operator on C, and let k,, : FCC, + TX be a &-function. 

Suppose x E X, and let (Y be the least Q < K for which x E C,. Whenever U is an 

open neighbourhood of x define 

We shall show that M( . , .) is the required acyclic monotonically normal operator. 

First observe that if XE U G U’, where U and U’ are open, then M(x, U) is an 

open neighbourhood of x and M(x, U) c M(x, U’). So suppose that x0,. . . , x,-, 
are distinct elements of X and x, = x0. For each i, let (Y~ be the least (Y < K for which 

Xi E C,. Without loss of generality we need only consider the following two cases: 

(1) There is an cr such that cr = (Y; for every i. 

(2) a0<a1. 
Suppose case (1). For each i, 
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and thusn::: M(xi, X\{Xi+i})=0since M,( ., *) is an acyclic monotonically normal 

operator and k, is a &-function. 

Suppose case (2). Notice that 

M(x,, X\{%]>c_ V(x,, X\{xJ), 

and that 

M(X,,X\{X*~)G v(xJ\og, +c V(Xl,X\{X”~), 

since (Ye < (Y, and x,, E C,,. Hence 

M&J, X\{x,]) n M(x, 3 X\{xJ) = 0, 

and thus n;Z; M(x,, X\{x,+,}) =0. 

Therefore M( . , .) is an acyclic monotonically normal operator on X. 0 

A corollary of Theorem 4.8 is that every monotonically normal space which is 

countable is acyclic monotonically normal. Simply enumerate X as {x, : n E N} and 

define C,, = {x,} for each n. Alternatively, observe that every countable space is 

semistratifiable [6]. Thus every monotonically normal space which is countable is 

stratifiable [7] and hence acyclic monotonically normal by Theorem 1.2. 

We finish by demonstrating that the addition of a simple condition to the definition 

of a K,-space yields a property which is equivalent to acyclic monotone normality. 

The additional condition is given below. 

A space X is monotonically & if for every subspace Y of X there is a function 

k,:FI, + Tx such that k, is a b-function and 

(4) If U c U’ and ( Y\ U) z ( Y’\ f-J’), then ky( U) G kyz( U’), where U, U’ are 

open in Y, Y’ respectively. 

Observe that by setting A = U, A’ = U’, B = Y\ U, B’ = Y’\ U’, H(A, B) = k,( U) 

and H(A’, B’) = ky,( U’) condition (4) can be written as 

ifAcA’and BzB’, then H(A, B) s H(A’, B’), 

which is precisely the monotonic part of the version of monotone normality for 

pairs of disjoint closed sets [7]. 

Theorem 4.9. The following are equivalent for a space X. 

(i) X has 74” satisfying chain (F). 

(ii) X is acyclic monotonically normal. 

(iii) X is monotonically I&_ 

Proof. The equivalence of (i) and (ii) was established in [lo]. We show that (i) 

implies (iii). Let V( ., .) be the operator associated with chain (F) and define for 

each open subset U of X and each subset A of U 

H(A, U)={XEX:~WE W(x),(W& U)r\(WnA#fl)}. 
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Now suppose that Y is a subspace of X and define k, from 3-v to 3x by 

k,(u) = H( u, X\( Y\ u)>O. 

It was shown in [lo] that k, is a b-function. Suppose that U c U’ and ( Y\ U) 2 

( Y’\ U’), where U, U’ are open in Y, Y’ respectively. Suppose that x E k,( U), so 

there is a WE W(x) for which 

WzX\(Y\U) and WnUf0. 

Hence W s X\(y’\), since ( Y\ U) 2 ( Y’\ U’). Also W n U’ # 0, since U c U’. 
Thus x E H( U’, X\(y’\)) and so ky( U) G ky’( U’), because ky( U) is open. There- 

fore X is monotonically b. 

We shall now show that (iii) implies (ii). Define for each x in an open set U, 

M(x, U> = k~,~sc,u,({xl). 

Observe that M(x, U) is an open neighbourhood of x. Furthermore, if x E Us U’, 

then setting Y = {x} u (X\ U) and Y’ = {x} u (X\ U’), we have that Y\{x} =, Y’\(x) 

and thus 

M(x, U) = ky({x}) G ky({x}) = M(x, U’). 

It remains to show that M( ., .) is acyclic. So let x0,. . . , x,-, be distinct elements 

of X and x,=x0. For each i, M(xi, X\{X,+,})= ki,,,_x,+,l({xi}). If we let D= 

{x0,..., xn_,}, then 

4 x,,x,+,}({xO) C kD(D\{xi+r}). 

Thus 

n--l n-1 

(7 Mbi, X\{x,+,l) G f-l M~\{x,+J) 
i=o i=O 

= k, (?I’ (D\b,+,H) 
,=O 

= k,(0) = 0. 

Hence M( . , .) is an acyclic monotonically normal operator on X. 0 

Observe that the above proof of “(iii) implies (ii)” only required the k, had all 

the monotonically K, properties for finite D. In fact it can be shown that a space 

X is acyclic monotonically normal if and only if there is a monotonically normal 

operator H( *, *) on disjoint closed sets [7], such that if D is a finite subset of X, then 

k,(Y)=H(Y, D\Y) 

is a l&-function from yl> to &. 



Acyclic monotone normality 67 

References 

[l] Z. Balogh, Topological spaces with point-networks, Proc. Amer. Math. Sot. 94 (1985) 497-501. 

[2] C.J.R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966) 1-16. 

[3] C.J.R. Borges, A study of monotonically normal spaces, Proc. Amer. Math. Sot. 38 (1973) 211-214. 

[4] P.J. Collins, G.M. Reed, A.W. Roscoe and M.E. Rudin, A lattice of conditions on topological 

spaces, Proc. Amer. Math. Sot. 94 (1985) 487-496. 

[5] P.J. Collins and A.W. Roscoe, Criteria for metrisability, Proc. Amer. Math. Sot. 90 (1984) 631-640. 

[6] G.D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970) 47-54. 

[7] R.W. Heath, D.J. Lutzer and P.L. Zenor, Monotonically normal spaces, Trans. Amer. Math. Sot. 

178 (1973) 481-493. 
[8] E. Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956) 361-382. 

[9] T. Miwa, Adjunction spaces of monotonically normal spaces and spaces dominated by monotonically 

normal subsets, Proc. Amer. Math. Sot. 87 (1983) 536-538. 
[lo] P.J. Moody, G.M. Reed, A.W. Roscoe and P.J. Collins, A lattice of conditions on topological spaces 

II, Fund. Math., 138 (1991) 69-81. 
[ll] H. Tamano and J.E. Vaughan, Paracompactness and elastic spaces, Proc. Amer. Math. Sot. 28 

(1971) 299-303. 
[12] E.K. van Douwen, Simultaneous extension of continuous functions, Thesis, Vrije Universiteit, 

Amsterdam (1975). 

[13] J.E. Vaughan, Linearly stratifiable spaces, Pacific J. Math. 43 (1972) 253-266. 


