
"

i

DENOTATIONAL SEl'1ANTICS
. FOR '

I

occam2. i -.

!'
I

Copyright @ 1993 M. H. Goldsmith, A. W. ~oscoe, B. G. O. Soott

Oxford UnlveJ;'slty Computing Laboratory :
Programming Research Group I
11 Keble Road

Oxford OXl 3QD

England .
i

Electronic mal!: Brian. Scott@comlab.6x.ac.uk
i

by

M. H. Goldsmith
A. W. Roscoe

B.G. O. Soott i ,
I
, I,
i

I
I

I,

I

!

TechnicalMonograph PRG-I08
ISBN0-902928-85-6

June 1993

Oxford University Computing Laboratory
Programming ResearchGroup
11Keble Road
Oxford OXl 3QD
England

Copyright @ 1993 M. H. Goldsmith, A. W. ~oscoe, B.G. O. Scott Denotational Semantics for occam 2

Oxford Univ~sity Computing Laboratory ;
Programming Research Group
11 Keble Road,
Oxford OXl 3QD
England

i
Electronic mai!: Brian.Scott@comlab.c?x.ac .uk

I
I
!

M. H. Goldsmith"
A. W. Roscoe
B.G. O. Scott

i
I
I

I

I

I

I

Abstract

This paper gives an untimed denotationalsemantics for the concurrent programming language occam 2.
It draws heavily on the semantics for a large subset of proto-occam {26], but addresses the complete ex-

tended language (to the extent that the model allows). The semantic domain used is a 'failures/divergences'
model, modified to allow machine states to be properly dealt with. This means that issues of fairness and
priorityarenotaddressed. .

"Fonnal Systems (Europe) Ltd., 3 Alfred Street, Oxford, OX14EH

2 1 INTRODUCTION

. maxval- used to return the largest element of a given type;

. disjoint - used to check whether the left hand sides of a multiple assignment are disjoint;

. inchans- used to isolate the input channels from a parallel declaration;

. outchans- used to isolate the output channels from a parallel declaration;.ownchans- used to isolate the internal channels from a parallel declaration;

. addrs - used to isolate the mutable variables from a parallel declaration;

. Wv - used to allocate channels to processes defined in parallel;

. newchan- used to provide the infonnation necessary for newly-declared channels;

. newtim - used to provide the information necessary for newly-declared timers;

. newport - used to provide the infonnation necessary for newly-declared ports.

Care has been taken to ensure that this paper is not only applicable to particular implemen-
tations of occam 2, but remains valid for all probable implementations. Maintenance of such

generality restricts the assumptions which can be made regarding the structure of the store, and
for this reason it has not been possible to give definitions of those auxiliary semantic functions
whose definitions depend on the store. Given an implementation of the store, the definition of
each of the functions is straightforward. The functions whose definitions are necessarily omitted
are

. lookup - used to read the contents of a variable from the store;

. update - used to update the contents of a variable in the store;.El)- used to combine the infonnation contained in two stores;.! - used to ignore part of the infonnation conveyed by a store;.contents - used to calculate the addresses accessed while evaluating an expression;

. abode - used to calculate where the contents of a variable reside within the store;

. startaddr - used to calculate the position of an array component within the store;.W L - used to allocate store to processes defined in parallel;

. new - used to provide an area of store to hold the contents of a variable;

. markaddr- used to keep note of the utilisation of areas of the store;

. restrict- used to prevent variables altering within the scope of a value abbreviation.

The first part of the paper is concerned with the construction of a suitable model; the resultant
model shares many characteristics with that used in [26], but requires richer value domains to
reflect the greater expressive power of occam 2. An explicit alphabet for processes has been
incorporated into the model, and the structure of the refusal sets in the model has been altered
(recording channel names and not communications) to obtain a more natural congruence with
the language. The second part of the paper uses the model to give a denotational semantics to
occam 2, in the style of [22, 26, 29, 30].

~

3

2 Construction of the model

Throughout this paper, P(X) will denote the full powerset of X (the set of all subsets of X),
while p(X) will denote the finite powerset of X (the set of all finite subsets of X). X. will
denote the set of all finite sequences of elements of X, with () denoting the empty sequence and
(a, b,..., z) denoting the sequence containing a, b,..., z in that order. If s, t EX., st denotes the
concatenation of s and t (e.g., (a, b, c)(d, e) = (a, b, c, d, e»),and s :$ t (s is a prefix of t) if there
is some u E X. with su = t.

As in [26], the semantic domain for occam is based on the failures/divergences model for
communicating processes. This has now effectively become the standard semantic model for
studying and applying Untimed CSP. Included below is a summary of the laws which must
be satisfied by a process; the interested reader is referred to [6, 7, 8, 25) for descriptions and
motivations concerning the construction of the model. The version used here is that of [8);recent
additions to deal with the possibilities of unbounded nondeterminism are not directly relevant
to this paper. It is, however, proposed to describe in a future paper how the infinite traces model
for CSP can be modified in order to deal with certain fairness concepts for occam.

The sets of failures and divergences of a CSP process satisfy the laws below (see [8]). If a
process P (complete with the set aP of events in which it can participate) has representation
(F, D), where F ~ (aPt x P(aP)and D ~ (aPt, then

NI) traces(P)[= {s E (aP)" I (s,0) E F}) is nonempty and prefix closed
(Le., traces(P) :F0, and if s E traces(P) and t :$ s then t E traces(P»)

N2) if (s,X) E F and Y ~ X, then (s, Y) E F

N3) if(s,X) E Fand Y n {a E aP I sea) E traces(P)} =0, then(s,Xu Y) E F

N4) if(s, Y) E Fforeach YE p(X), then (s,X) E F

N5) if sED and t E (aP)., then st E D

N6) if sED and X ~ aP, then (s, X) E F

The failures/divergences model N is defined to be the set of all pairs (F,D) satisfying these
laws.

If PEN, f(P) will denote the first component of P, and d(P) the second. There is a
natural partial order on N given by P !; P' if and only if f(P) :2 f(P') and d(P) :2 d(P').
If P !; pi, then pi can naturally be thought of as being more deterministic than P, for it has
fewer possible actions. N is a complete semilattice with respect to !;; its minimal element is
«aPt xP(aP), (aPt) (which represents the completely unpredictable process) and its maximal
elements are the deterministic processes. These can neither diverge nor have any choice about
whether or not to accept any communication.

The above model is adequate to represent the behaviour of programs written in CSp, with
all the CSP operators translating naturally to continuous functions over N. It is well suited to
reasoning about the nondeterminism which arises from distributed systems, and to reasoning
about deadlock. Axioms N5 and N6 correspond to the assumption that following the possibility
of divergence, subsequent behaviour is irrelevant. Hence divergence is something to be avoided
at all costs. The inclusion of these laws makes for considerable technical simplification at what
does not appear to be a very great cost. Since the model has well-defined close links with
behaviour, it is a good medium for expressing many correctness properties of processes.

4 2 CONSTRUCTION OF THE MODEL 5

Purely parallel languages can be given an adequate denotational semantics by models whose
only primitives are communications, since one part of a program can only influence a disjoint
part by communication. However, in occam, one part of a program can influence another in two
ways. Firstly, it can communicate along channels with its parallel partners. Secondly, it can, by
assignment to common variables, influence the behaviour of its successors. Any mathematical
model for occam will have to incorporate both these methods.

The first step in the construction of a model for occam is to provide the alphabet for an
occam process P. Communication over occam channels is directional, and so it is no longer
enough merely to provide the set aP (which will now be the set {X',8 I X E CHAN !I ,8 E x}
where X, given a more specific description on page 11, is the set of values communicable over the
channel X and hence determined by the protocol associated with X) of atomic communications.
In addition to aP, the direction of all the channels which the process could theoretically use
is useful, as are the areas of store which can be written to and those which can be read from.
The most convenient means of storing this information is to add two components to a process

description. The first component, representing the channels and denoted C, will be a partial
function from CHAN (the set of channels) to DIRECTION x PROT (the cartesian product of

the set {in, out} representing channel direction, and the set of denotations of possible protocols
of an occam channel). The second component, representing the accessibility of portions of the
store and denoted L, will be a partial function from ADDR (the set of addresses in the store) to
ACCESS (the set {TO, rw}). A process can read from but cannot write to areas of the store with

addresses mapped to TO,while it can read from or write to areas whose addresses are mapped
to rw.

The treatment of communication will be similar to that of [26], except that it is necessary

to take account of the way in which occam processes communicate over channels. Since the
handshaking that occurs in occam is tied to the channel, not to the value which passes along
that channel, it does not make sense to say that a process can refuse to communicate some
communications over a channel but not others!. Therefore the alphabet used for communication

is separated from the one used for refusal sets, consisting of the channel names alone plus ./,
which is used to denote refusal of termination (see below). Since the set of channels used in

any particular program is finite, in order to avoid the complexities of axiom N4 above, it will
be assumed that for any process dom(C), the set of channels which can be used, is finite. To
avoid any errors being caused by a process not being able to claim the space in the store which
it requires, it will be assumed that the set ADDR of store addresses is infinite. Despite this, any
given process will use only a finite number of store addresses.

A process which can accept at least one value on an input channel must be able to accept them
all. In general, a process would be expected to specify precisely the value it is outputting; it is
possible for nondeterministic choice and ALTs to make more than one value possible, but never
an infinite number. This is important since it means that, when two processes are put in parallel
and the communications which pass between them are hidden, no infinite branching (which
leads to unbounded nondeterminism) arises. It will be assumed that no non-divergent process

ever has an infinite number of possible outputs over X after a given trace, since the presence of
finite branching means that an infinite number of different outputs are only possible on traces
where it is also possible for the process to engage in an infinite sequence of internal actions - in
other words to diverge.

In occam, parallel processes can read from a shared area of store provided that none of the
processes can write to that area. Otherwise, at most one process can have access to an area at
any point in time. This restriction can be checked by examining the second alphabet component
(the partial function L) of a process description.

One process can communicate with another at any time before it terminates, but can only
pass on its final state when it terminates successfully. (Since the sharing of variables by parallel
processes is not permitted, its intermediate states cannot directly affect another process.) In
purely parallel models (for example in [7, 12]) successful termination has been modelled by the
communication of some special symbol: usually ./. Thus all successful terminations looked the
same.

Perhaps the most obvious way of letting a process pass on its final state is to have not one but
many ./s - one for each possible final state. If this solution were adopted then a large proportion
of the alphabet of 'communications' would consist of these ./s. A number of problems would
arise if all of these different ./s were simply included in the traces and refusal sets.

Two of these problems are the same as previously addressed when considering communica-
tion over channels. Firstly, it would not be appropriate to have a process which offered a choice
of which state it terminated in - when a process terminates, it terminates and gives the final state

it happens to be in. The solution to this is a single termination symbol ./ for use in refusal sets.
(This symbol is necessary since it provides the only means of distinguishing between a process
that always terminates and one which may nondeterministically choose to do nothing at all.)
The second problem would arise if the set of states were infinite and it were possible to have a
process that could choose from an infinite set of states to terminate in. Since sequential com-
position hides the value of the state, infinite branching and hence unbounded non determinism
would result. In fact this situation cannot arise in occam without the immediate possibility of
divergence, because of the finite branching properties discussed above. Thus it will be assumed
that a process which cannot diverge on a given trace has only a finite number of states in which
it can then terminate. This condition is trivially satisfied in any language where the set of all
states for a given progr~ is finite.

Finally. in a model where termination plays a more important role than before, the technical
complexities introduced by allowing non-terminal./s in traces are unacceptable (as well as being
unnatural).

The first two problems could be solved by treating ./ as though it were a channel; however the
difference between termination and communication and the final problem make the following
more attractive. First, remove ./ from the traces of processes (hence leaving only 'real' commu-
nications). A single symbol ./ remains in the alphabet used for refusal sets, indicating that a
process can refuse to terminate successfully. The second component is expanded. Instead of
merely recording the possible divergences, the possible final states (contents of locations which
can be altered by the process) from successful termination after any trace are recorded. It be-
comes a function from (aPt to p(S) U{1.}, where S is the space of final states and 1. represents
possible divergence. Further information about S will be given as the details of the model are
filled in; all that is necessary is that S contains enough information to enable processes to pass
on the values of variables still within scope to their successors.

Thus each process P is now represented by a quadruple (F, T, C,L), with components
F ~ (aPt x P(dom(C) U {./}), T : (aPt --+ p(S) U {1.}, C: CHAN -- {in, out} x PROT,
and L : ADDR __ {TO,rw}. The interpretation of the behaviour of a process P, represented by
(F, T, C,L), is as follows.'This statement applies even to inputs over variant protocols. Indeed this statement is particularly true, in some

sense, of conununications over channels with these protocoIs. See the discussion on page 27 when the semantics of
input over channels with variant protocol is discussed in detail. (i) F (the failures of P) lists all possible traces of the process, together with all sets of channels

6 2 CONSTRUCTION OF THE MODEL 7

on which, after the trace, the process can refuse to communicate once it has stabilised.
(Hence if, after some trace, the environment offers to communicate over a set of channels
which is not a refusal set the process must, once internal activity has ceased, accept some

element.) A process is said to have stabilised if internal activity has ceased and no further
activity will commence until communication with an external source occurs. The notion
of stability is necessary since without it there is no guarantee that the failures following a
given trace will remain invariant.

In the above s ranges over (aP)", X ranges over CHAN, X and Y range over P(dom(C)U{v'}).
These laws are just the natural extension of the laws governing N to the revised structure; if

P is represented by (F, T,C,L),thendefinel(P) = F, tIP) = T, c(P) = C,and I(P) = L. In
what follows, B ~ .L,B U .L=.L for all B ~ Sand q E.Lfor all q E S. Moreover, .LE9q =.L and
q E9.L=.L for all q E Sand.L! A =.L for all A E p(ADDR).

The new model clearly has a great deal in common with the old one. Because of the different
set of communications possible for processes with different alphabets, it is not generally useful
to compare processes with different C or L components. However, if P and P' are processes
with c(P) = c(PI) and I(P) = I(PI), then a comparison can be meaningful. On the assumption

that S has no important partial order of its own, if Q(C.L) is the set of processes P with c(P) = C
and I(P) = L, Q(C,L)has a natural partial order;

P!;;;P' <* I(P);2 I(P') /I Vs E traces(pl). t(P)s ;2 t(P')s

(H) One of the possible elements of the refusal sets is v' - this indicates that the process may fail
to terminate successfully (even though there may be some final states possible for the given
trace). Thus it is possible to discriminate between a process which will always terminate
successfully and one which may nondeterministically deadlock or terminate successfully.
Termination must take place only when the set {v'}cannot be refused.

(Hi) Termination can take place on any trace s for which T(s) is a nonempty set of states.
Although T(s) may consist of more than one element, previous limitations mean it may
only consist of a finite number. When T(s) contains more than one element, the choice
of which final state occurs is non deterministic. (T will be referred to as the tennination
component of P.)

(iv) If T(s) =.L, then the process is considered to be broken. The process might diverge or do
anything else at all.

(v) C lists the abstract channels which may be used by the process, and the direction of each
such channel. Within the component the structure of communications which may occur
along each abstract channel the process can use are also recorded.

(vi) The access which a process has to areas of the store is recorded by L. A process can read
from but cannot write to areas of the store with addresses mapped to ro. This permits
more than one parallel process to safely use the same piece of store. A process can read
from or write to areas of the store with addresses mapped to rw. In such a situation, it is
not safe for another process in parallel to read from or write to the area of store with this
address. As time progresses, and parallel constructs terminate or are created, the store is
repartitioned.

P !;;; P' can be interpreted as meaning that P' is more deterministic than P. With respect to

!;;;, Q(C,L) is a complete semilattice whose minimal element is (FJ., TJ., C, L) (denoted .L(C.L»),
where FJ. = (aP)" x P(dom(C)u {v'}),and TJ.(s) =.L for all sE (aP)". .L(C,L) is the completely
unpredictable process with the appropriate alphabet; it may diverge immediately. The maximal

elements of Q(C.L) are the deterministic processes, which are divergence free and never have
any internal decisions to make. A process P is deterministic if and only if it satisfies

(s,X) E lIP) =:- X n {x E dom(c(P» 13/3Ex. s(x./3)E traces(P)}=0
and

(s, {x}) ~ lIP) /I (3p E PROT. c(P)x = (out,p» =:-
{/3EX I s(x./3)E trnces(P)}is a singletonset

and

t(P)s", 0 =:-(s,{v'}) ~1(P)/I t(P)s is a singletonset.

The assumptions that all sets of final states are finite, and that following any trace of a non-
divergent process only a finite number of communications on any output channel are possible,
correspond closely to an assumption of bounded determinism. Of course, if the set S of states
associated with any given area is finite, or if the set of communicable values for every channel is

finite, this assumption is vacuous.
With aP, CHAN and ADDR as described above, and a set S of final states, the space Q of

all processes P is thus represented by the set of all quadruples (F, T, C, L) which satisfy the
following ten laws.

Fl) traces(P)[= {s E (aP)" I (s, 0) E F}] is nonempty and prefix closed
F2) (s, X) E F /I Y ~ X ~ (s, Y) E F
F3) (s, X) E F /I Y n {x 13/3 Ex es(x./3) E trace~(P)} =0 ~ (s, X U Y) E F

Tl) (s,X) E F /I T(s) = 0 ~ (s,X UV}) E F
1'2) T(s) =.L 11t E (aP). ~ T(st) =.L
T3) T(s) =.L /I X ~ dom(C)u {v'} ~ (s,X) E F
T4) T(s) '" 0 11X ~ dom(C) ~ (s,X) E F

Cl) {x 13/3 Ex; sE (aP)" . s(x./3) E traces(P)} ~ dom(C)
C2) s(x./3)E traces(P)11(3p E PROT. C(x) = (in,p»~ {s(x.')') 1 ')' E x} ~ traces(P)
0) T(s) ",.L11(3pE PROT . C(x) = (out,p» ~ {s(x.')') I ')' Ex} n traces(P) is finite

Limitations of the model There is no concept of time in the model. Thus the occam 2 timing
constructs (TIMERand AFTER)cannot be modelled directly, either for use in a process or as an
ALTguard. The mechanisms for dealing with time are now well understood for CSp, and their
application to occam will form the subject of a separate paper; here input over a timer is identified
with the nondeterministic assignment of an unspecified 'random' INT to the designated variable,
delayed input within a process is identified with SKIP and a branch of an ALTguarded by a
delayed input is not followed (such branches are included as a 'timeout' to allow recovery from
erroneous behaviour and following them would result in the possibly unacceptable omission of
parts of the process).

Another main feature lacking is an analogue of priority; there is no way of telling from the
model that a process would rather communicate' a' than 'b' (say). An operational semantics for
the purely parallel aspects of occam exists (4), and it is possible that a denotational semantics
along the same line could be developed; however, for the sake of simplicity, any treatment of

8 2 CONSTRUCTION OF THE MODEL 9

priority will be omitted, either between processes or among ALT guards, and PRI PAR will be
identified with PAR, and PRI ALT with ALT.

The net effect of these omissions is to give a semantics to a program which is less deter-
ministic than one which took into account the timing and priority infonnation: some execution

sequences which are apparently allowed by the semantics will in fact be excluded by a correct
implementation. This means that the correctness of a large part of an implementation can be
judged against this semantics, since any implementation which gives a value to a process which
is not a refinement of that given here is certainly incorrect; what then remains is to check that it
is a refinement allowed when the effects of priority and real-time behaviour (which are, in any

case, to some extent implementation dependent) are taken into account.
Similarly, any effect of placement of processes on processors has not been taken into account.

PLACED PAR is identified with PAR, and the command PROCESSOR and its associated expression

are ignored. This has no effect on the semantics of well-behaved programs, but may provide a
different interpretation of error and divergence in a network than expected.

The placement of channels, timers or variables at an absolute location in store is entirely
dependent on the particular implementation of the store and is thus not considered. Hence the
command PLACE. . .AT and its associated expression are ignored.

Finally, while giving a denotational semantics to the language, output over ports is identified
with SKIP and input over ports with the assignment of an unspecified 'random' value to the
designated variable. The motivation behind this decision centres around the fact that only com-
munications with external devices may take place over ports, and the modifications (complete

with their inherent complexities) necessary to give a more accurate interpretation do not appear
justified.

processes defined in parallel, syntactic analysis of the processes cannot be guaranteed to allocate
the channel to a particular component.

The need for parallel declarations comes about from the decision to use as the semantic

domain a derivative of the failures/divergences model for CSp, with parallel composition and
hiding. rather than a derivative of a model for CCS, with parallel composition and restriction.

The inclusion of parallel declarations means undeclared channels are given a more natural
meaning. and promotes conventions which are, in any case, good programming practice.

Additions to the language Within this paper, an extension of occam 2 will be included. On

defining processes in parallel, the option of prefixing each of the processes with a Parallel Decla-
ration (U E PD) will be given. When processes are defined in parallel, it is necessary to set up
local alphabets for each individual process. Normally within occam 2 the necessary infonnation
comes from syntactic analysis of the parallel processes. Here the infonnation can come in two
forms. Firstly. if parallel declarations do not accompany the processes, it is possible by syntactic
analysis of the parallel processes to determine consistently which channels are for input, which
for output and which are internal. It can also be determined to which global variables each
process intends to assign. Secondly, if each parallel process carries with it a parallel declara-
tion, these declarations provide a concrete indication of the intended channel use of each of the

processes, splitting the global channels each process intends to use into three categories.
OWNCHAN means that the channel(s) are for internal use by the process.

INCHAN means that the channel(s) are to be used by the process for inputting.
OUTCHAN means that the channel(s) are to be used by the process for outputting.

For simplidty2 it is insisted that if a process carries with it a parallel declaration, the declaration
must also mention to which global variables the process intends to be able to assign.

U ::= USING (OWNCHAN{chan}, INCHAN {chan}, OUTCHAN{chan}, VAR {var })

At first glance it may appear that the inclusion of parallel declarations is superfluous. This is not
the case since if a channel which is currently in scope is not mentioned by any of a collection of

2Although the issue of mentioning variables explidtly is orthogooal to that of mentioning channels explidtly.
the resultant exponential increase in the number of clauses necessary to deal with parallel canposition makes the
inclusion of both options independently undesirable.

10 3 DENOTATIONAL SEMANTICS 11

3 Denotational semantics update takes in a store, an area of store which houses a variable and a storable value. The result

is the supplied store, modified to map the given area of store to the storable value. Within the
language it is possible to pass an array prefixed by an integer (indicating how many elements
of the array should be considered) along a channel. The presence of this option means that the
function update must allow assignment to part of an array, not corrupting the information held
in the remainder of the array while doing so. update is strict in each of its arguments.

As the semantics are developed, and the set of mutable areas (set of addresses whose contents

can be altered) changes, the need to deal with stores with different areas will become apparent.
If UI and Uf are two stores, they can be combined using $.

In this section, the model previously constructed will be used to give a natural denotational
semantics to the whole of the language occam 2, up to the restrictions discussed at the end of
the previous section. Having constructed what is essentially a hybrid model, one might expect
to be able to adapt work on purely parallel and sequential languages. This does indeed turn out
to be the case, as there are few parts of the language which make demands on both aspects of
the model.

For ease of presentation, occam syntax has been linearised in this paper. For example,
SEQ (PI, Pt Pn) is written instead of $:SxS-S

SEQ
PI
Pt

Pn

UI $ U! joins two stores together, allowing u! to influence the result on addresses they have in
common.

The importance of restricting stores has already been emphasised; 1 will be used for this
purpose.

lockup:S- LOCt - VT

!: S x p(ADDR) - S

u 1 A returns the store which is formed by picking the contents of u indexed by addresses
contained in A.

Each of the above rely heavily on the particular implementation of the store under consider-
ation, and consequently their definitions are not included.

A separate environment will be used to map identifiers to locations, constant values, channels,
procedures, protocols and so on.

This distinction between environment and store is a familiar idea in denotational semantics;
the way the present model is constructed means it is again appropriate here. The management
of environments and stores relative to sequential languages is well understood, and as in (26)
the only potential problem is with handling the store within a PARconstruct. .As previously
described, parallel occam processes do not use shared variables for communication. Global
variables may only be used in a very restricted way: either one process can use a given variable
normally orall processes can read from the variable but none can write to it. This idea corresponds
to giving each parallel process a distinct portion of the store and reserving the remainder as read
only for the duration of the parallel command. The state will be constructed at the end of a
parallel construct by the 'distributed termination' property of occam processes - a PARconstruct
can only terminate when each of its components can terminate (and thus yield its own component
of the final state).

In order to give a denotational semantics to occam processes, it is necessary to know the
structure of the alphabet of communications between processes. As noted earlier, each commu-
nication will have two components - a vessel along which the value passes (an abstract channel

of some protocol), and the value to be communicated (in the case of a non-variant protocol,
a collection of storable values; in the case of a variant protocol, a collection of storable values
prefixed by a tag).

Given that a process Pusesthechannels {XO,XI , Xn}, the set of possible communications
along channels which the process can undertake is, as was previously mentioned on page 4,
aP = {X;.,B liE {J,..., n} I\,B E Xi}. (Throughout this paper, X will be used as shorthand
for p - the set of values communicable over an occam channel with protocol p -where p is the
protocol associated with X in the current scope. The definition of p for an arbitrary protocol p
will be given later, on page 16, when the form in which protocols appear in the environment has
been described.) Note that no distinction is made between 'input' and 'output' communications,

In the previous section an abstract space S of final states was introduced. In devising the

space of machine states it is necessary to bear in mind the role which states play in the model:
passing on information from one occam process to its successor. The only way one occam
process can influence its successors is by modifying (through assignment or input) the values of
variables: it cannot change the binding of identifiers outside its own text in any other way. In

order to protect against a process altering the contentsoflocations from which it is only permitted
to read, and to avoid unwanted distinctions between processes, final states will only record the
contents of locations which may be written to. Thus the states will resemble the restriction of
the 'store' - a function from locations to storable values (see below) -to the writable locations of

the process.
Throughout this paper the store will be thought of as a map from addresses (the identifiers

of atomic pieces of store) to atomic pieces of information. Because any process is capable
of accessing only a limited set of variables, the store associated with any process will be a
partial function. Reference to variables involves the use of multiple addresses, the number being

dependent on the particular implementation of the store under consideration, and for this reason
the decision. has been taken to abstract away from addresses where possible and use 'locations'

_ pairs containing the starting address of the variable's contents in the store and the type of the
variable (from which, given the implementation, it is possible to calculate how many addresses
are used to refer to the contents of the variable). This abstraction limits the retyping which can

be modelled but is necessary if maximal generality is to be maintained.

Because of the implementation dependent nature of the store, all access to it will be via the
auxiliary functions lockup and update and the operators $ and 1.

lockup takes in a store and an area of store which houses a variable and returns the contents of
the variable in the store. Use of the domain VT(the domain formed by lifting each element of V
above the new element .l v while maintaining the internal order of V) allows .l v to be returned
if the variable has not been initialised. lockup is strict in each of its arguments.

update: S -LOCt- VT- S

12 3 DENOTATIONAL SEMANTICS 3.1 Semanticdomains 13

since the relevant information already appears in the alphabet components of the process and

would be confusing to duplicate.

In the domain (X"h, formed by lifting each element of X" above the new element ol while

maintaining the internal order of X", concatenation of sequences is strict in both arguments (i.e.,
ol s =ol and sol =ol for any sequence s).

H SEX", srn] (0::; n < #s) denotes the nth element of s,and s[n...m] (0::; n,n::; m,m:$
#s) denotes the sequence containing the nth to (m - 1) th elements of s inclusively.

In order to give a denotational semantics to the language, several specific semantic domains
need to be constructed. This is done using the above notation.

Processes (P E Proc] The definition of the syntactic domain of processes, based on [20), is
included in the appendix. All the constructs of the occam 2 language are present, but the
restrictions previously discussed mean that certain constructs may be given a less deterministic
meaning in the semantic domain than expected.

LOC =ADDR x TYP

3.1 Semantic domains

The existence of the following semantic domains is supposed:

v E V - domain of storable values. This contains elements of all data types and arrays thereof.

u E TIMER - domain of timers. An abstract set of tokens allowing identification of timers.

~ E PORT - domain of ports. An abstract set of tokens allowing identification of ports.

X E CHAN - domain of abstract channels, as referred to in the previous section.

a EADDR - domain of addressesin store,as referredto in the previoussection.

elements () = 0
elements (x : xs) = {x } U (elements xs)

elements (xs : xss) = (elements xs) U (elements xss)

LOC is the domain of locations, used to provide access to blocks of store representing variables.
A location is a pair - the first component contains the starting address of the block and the
second component contains the type of variable stored in the block. From this information (and
the particular implementation of the store under consideration) it is possible to determine which
addresses make up the required block. Within the definition of LOC the domain TYP of types
of variables has been used. The definition of this domain (which consists of a set of tokens),
along with those of the other domains concerned with type information, are included next.

TYP = N. x ({BOOL}u INTEGERUREAL)
INTEGER = {BYTE, INT, INT16, INT32, INT64}

REAL = {REAL32,REAL64}

TYP is intended to provide the type of variables. Within the definition primitive and array types
must be catered for, and to facilitate later work it is beneficial to have separate subcomponents for
each family of types. For simplicity the syntactic names of occam types (e.g., BOOL, BYTE, INT)
have been used as the abstract tokens. Arrays are represented by a natural number sequence

recording the dimensions (e.g., [1][2][3] INT is represented by «(1,2,3), INT»). For any type t,
the set of elements of type t will be denoted 1. Care must be taken to make this distinction, since

INT (a set of values) differs considerably from INT (simply a token).

CTYP1 = TAG DATA"
CTYP2 = DATA'"

DATA = TYP + (INTEGER:: TYP)

CTYP1 and CTYP2 are the domains of communicable types. They contain the types which
a communication along a channel may have, and hence must deal with variable length arrays
and communications on channels with variant or sequential protocols. In order to facilitate the
construction of the domain of channel protocols, one domain (CTYP1) has been used to deal
with tagged types and another (CTYP2) has been used to deal with untagged types.

PTYP =(N U {ol})" x ({BOOL}U INTEGER uREAL)

PTYP is the domain of parameter types which will be used in procedures and functions. The
difference between this domain and the one used to record variable types is that if a parameter
is an array. it need not explicitly give the size of any of its dimensions. To deal with this, an extra
token olhas been included in the set of possible array dimensions.

PROT ={ANY}u CTYP1'" U CTYP2

PROT is the domain of channel protocols. As expected the definition draws heavily on that of
communicable types, but it is also necessary to take account of the anarchic protocol ANY.Com-
munication on a channel with non-variant protocol must always consist of the same sequence

, E TAG - domain of tags. An abstract set of tokens.

x E /DE - (syntactic) domain of identifiers.

[For the language under consideration, Vhas the form ('OO<%')'i6+ (BYTE)'i6+ (INT)'i6 +(INT16)'i6+
(INT32)'i6 + (INT64)'i6 + (REAL32)'i6 + (REAL64)'i6 where 1 is the set of elements of type t (e.g.,
BOOL = {true,Pllid) and X'i6, as defined below, is the domain of arrays with components drawn
from X.I

There is no need in this work to suppose that any of the above domains is partially ordered
or contains a 'bottom' element. It will, however, be necessary to deal with errors. Given any
semantic domain X, the domain X U {error}will be denoted X+. If X is partially ordered, then
errorwill be incomparable with the other non-bottom elements of X+.

For any semantic domain X, the domain of arrays each of whose components is drawn
from X, X'i6, is of the form I:!J'EN'Xis where X i () = X and X i (n)s = (X i s)n. Use of
this seemingly complicated definition ensures that for every dimension of the array, each of the
components is of the same type. When the domain X'i6 is used, it will often be useful to be able
to extract the set of elements contained within a particular instance of the domain. This will be
done with the aid of the auxiliary function elements which for x E X is defined

Given a domain X, X" will denote the domain consisting of sequences of zero or more
elements of X, and X'" will denote the domain consisting of sequences of one or more elements

of X. Notationally, elements of X" and X'" will be regarded as partial functions from N to X. If
X has a partial order, in X" and X'" sequences of the same length are ordered component-wise,
with sequences of different lengths being incomparable.

14 3 DENOTATIONAL SEMANTICS 3.1 Semantic domains 15

of types, but communication on a channel with variant protocol may consist of anyone of a
number of tags followed by its corresponding (possibly empty) sequence of types. The decision
to provide two domains of communicable types allows this restriction to be clearly conveyed.

ENV =(IDE --+ D+) x VSTATUS x LSTATUS

~ means that within the current scope the address is associated with a variable having
unrestricted use. That is, the variable associated with the address can be written to as well
as read from.

The domains VST A T US and LST A TUS contain the infonnation necessary to fonn the alphabet
components of a process description.

ENV is the domain of environments. The constituent domains are defined below, along with
a brief explanation as to their purpose. The use of D+ allows identifiers which have not been
declared in the scope to map to eITOr.

If P E ENV then PI, Pv and PLwill denote the first, second and third components respectively
(so thatp = (PI,PV,PL)). If x E IDE then p[x] will mean PI [x]; similarly p[x] will meanpv[x]
(X E CHAN)and p[a] will mean pL[a] (a E ADDR). If x E IDE and.5 E D+ then p[.5/xJwill
denote the environment which is the same as P except for mapping x to.5. Corresponding
interpretations will be put on p[r/xJ and p[r/a].

VSTATUS =CHAN -- (PROT x {['~,i,£})

D = LOC + (.!!x p(ADDR) x LOC) + V + TIMER96+
(TYP x PORT96) + PROT + CHAN96+ NP + TAG

D is the domain of denotable values, storing the infonnation associated with an identifier which
will not change. Each component deals with a particular genre of object which an identifier
could denote.

LSTATUS = ADDR -- {[,!:,~}

LOC deals with variables. As previously mentioned, given the starting address and type of a
variable, one can uniquely determine the area of store in which its current value can be
found. The variable may be of primitive or array type.

!! x p(ADDR) x LOC deals with variables abbreviated within the current scope. The only
access to such a variable which is allowed is a further abbreviation of a disjoint part of
the variable. Verifying that further abbreviations refer to disjoint parts is made possible
by keeping a record, in p(ADDR), of the addresses associated with the variable whose
contents are currently abbreviated.

V deals with constants. In occam the type of a constant, again of primitive or array type, can
be uniquely detennined from its value and hence type information need not be included
here.

TIMER96 deals with timers, mapping each such item to an abstract timer. Although with the
current interpretation of timing it would be sufficient to map every timer to the same token,
this is unnatural and would lead to problems if timing were to be modelled.

1YP x PO~ deals with ports. As with timers the fact that it would be sufficient to map each
port to the same token is ignored. TYP records the intended type of each of the ports.

PROT deals with named protocols, the fonn of the protocol being stored for future examination.

CHAN96 deals with channels. The protocol associated with an occam channel can be extracted
by examination of the function VSTATUS and hence protocol information need not be
included here.

VSTA TUS is the domain of functions intimating the status of those abstract channels which can

be used within the current scope. Abstract channels not in the domain of VSTATUS cannot
be used within the current scope; this protects against parallel processes attempting to claim
the same abstract channel for different and unconnected purposes. In any particular function,
each such abstract channel is mapped to a pair, the first component indicating the protocol of
the occam channel currently associated with the abstract channel and the second component a
token depending on the use of the abstract channel.

L means that the channel has not been assigned to a particular identifier within the current
scope, but is free to be associated with one if required.

~ means that the channel has been assigned to a particular identifier within the current scope,
but has not had its direction determined.

i means that the channel has been assigned to a particular identifier within the current scope,
and is restricted to participating in only input communications.

£ means that the channel has been assigned to a particular identifier within the current scope,
and is restricted to participating in only output communications.

LSTATUS is the domain of functions intimating storage use. Addresses not in the domain
of LSTATUS cannot be used within the current scope; this affords protection against parallel
processes using the store in an unacceptable way. A typical member maps each address accessible
within the current scope to a token, the choice depending on the status of the address.

L means that within the current scope the address is not associated with a variable, but can
if necessary be associated with a 'read-only' or 'read/write' variable.

!: means that within the current scope the address is associated with a global 'read-only'
variable or a variable which is the subject of a value abbreviation. The variable associated
with the address can be read from but not written to.

NP deals with named procedures and functions. Its precise fonn will be defined later (on
page 48) when it is required.

TAG deals with the tags necessary for channels of variant protocol.

Within the above definition of D, domains of the fonn X96 (arrays whose components are drawn

from the set X, as described on page 12) appear. The use of such domains is necessary since
when arrays of channels, timers or ports are declared, one abstract channel, timer or port must
be associated with each individual component of the array.

In the course of defining semantic functions a few further semantic domains will be used.

Definitions will be given as the semantic domains appear.

16 3 DENOTATIONAL SEMANTICS 3.2 Thesemantics 17

domain. The present approach, however, has the advantage of simplicity. The identification of
errors with the bottom element uses the strictness of the model and semantic operators to give
a severe if elegant view of errors. Just as understanding the implications of an execution error
in one component of a parallel network on the behaviour of the whole is more complex than
in a sequential one, so the introduction of detailed error-handling into the naturally-occurring
domain and the semantics is more trouble than is warranted in most circumstances, though it
could be done by introducing extra error elements throughout the domain.

Communicable values Having described the semantic domains above, it is now possible to
give a concise definition of t? for each instance of ".

For" E PROT, t? is to be the set of communicable values over a channel of protocol ,,; for
" E TYP, t? is to be the set of elements of type" 3. Hence:

(vo ... Vn-I Ln)

(vo ... Vn-I (Lnwn»)

(Po... Pn)

s::t

((n)ns,T)

BOOL

ANY

(Vo ... Vn_I)U{Ln}

(vo ... Vn-I) U ({Ln} X wn)
Cl

Ct

<p

cp

Proc-- ENV-- S-- P((aP)"X P(dom(C)u {v'}»

Proc -- ENV -- S -- ((aP)"-- peS)U {.L})

ENV -- (CHAN --- {in, out} x PROT)
ENV -- (ADDR ___ {ro,rw})

Po x . . . X Pn

maxvals
U {k} x (l)k

k=O

((ns,T)f

{true,fillg}

These functions calculate the individual components of C (p J p<7,so that

C(pJP<7 = (Cl (pJP<7,Ct(pJP<7,<pp,cpp).

s {n I minval s ~ n ~ maxval s}

the set of values expressible in the real type f

maxval INT

U (BYTE)k
k=1

The third and fourth components of C (PJp<7 do not depend on the state <7; passing around

additional arguments on which functions do not depend is unnatural and for this reason (as well

as considerations of clarity) the decision was taken not to supply <7as an argument to either <p or
cp.

7

V : Decl --ENV --ENVr[Here T stands for an arbitrary primitive type, t stands for an arbitrary primitive or array type,
s stands for an integer type (including BYTE). and minval and maxval respectively denote the
smallest and largest values expressible in a given type. An arbitrary element of the domain
DATA is denoted by Pj, an arbitrary sequence of elements of DATA by Wj, and an arbitrary
sequence of elements of DATA prefixed by a tag by Vj. The symbols Lj denote elements of the
domain of abstract tags (TAG).]

3.2 The semantics

This function carries out the modifications to the environment caused by declarations. When
an error occurs, the value produced is the bottom environment .L. 10 what follows an arbitrary
member of Decl will be denoted Lt

A: Spec --ENV --S --ENVr

Detailed descriptions of several of the necessary semantic functions will be given, with most
attention being paid to the 'higher level' semantic functions. The remainder are fairly standard,
and should not prove too taxing for the reader to define. The main semantic functions are listed
below.

In occam it is possible to use specifications (abbreviations and retyping) as well as declarations

within a process. This function carries out the modifications to the environment caused by
specifications. Erroneous specifications lead to .L being returned. An arbitrary member of Spec
will be denoted e.

C:Proc-- ENV-- S-- Q

This is the function used to give a semantic meaning to an occam process. Given a program
segment, an environment and a store it yields an element of Q. In the definitions below, all
execution errors map a process to the minimal element with appropriate alphabet (e.g., an
erroneous process P - with environment p (yielding the alphabet components C and L) and

store <7- is mapped to .L(C.L»)from the point in its communication history where the error arises.
There is no reason why more sophisticated semantics could not be devised which allowed for

a certain amount of error recovery, perhaps by introducing extra elements into the semantic

3SincePROT incorporates TYP asa specificcase.by defining the operator over PROT the (expected)meaning
over TYP is automatically inherited.

cv : (CHAN'*'+ TIMER'*'+ (TYP x PORT'*'»__
(IN'i'+ (INT x IN'i'» -- (CHAN'*'+ TIMER'*'+ (TYP XPORT'*'»+

Iv : LOC-- (INT+ (INTXINT»-- LOC+

These are important auxiliary functions which simplify the definitions of the main semantic
functions by extracting components of arrays. cv returns the portion of its supplied array
of channels, timers or ports referred to by its second argument; Iv returns the portion of its
supplied location referred to by its second argument. The definitions should help to clarify
the store model being used and the distinction between locations (pairs of types and starting
addresses) and addresses.

---.

18 3 DENOTATIONAL SEMANTICS

The definition of the function cv is:

cv xs n xs[n]
if xs € CHAN'*' /I 0 ~ n < #xs

xs[n]
if xs € TIMER'*' /I 0 ~ n < #xs

(r,xs[n))
if (r,xs) E TYP X PORT'*' /I 0 ~ n < #xs

xs[n...n+m]
if xs E CHAN'*' /I 0 ~ n /I 0 ~ m /I n + m ~ #xs

xs[n...n+ m]

if xs E TIMER'*' /I 0 ~ n /I 0 ~ m /I n + m ~ #xs

(r,xs[n...n+m))
if (r,xs) E TYP X PORT'*' /I 0::; n /I 0 ~ m /I n + m ~ #xs

cv xs n

cv (r, xs) n

cv xs (n, m)

cv xs (n, m)

cv (r,xs)(n, m)

cv y z error
otherwise

While that of Iv is:

Iv(a,«z)zs,r))n = (a',(zs,r))
wherestartaddr(a,«z)zs,r)) n = a'
ifO~n<z

Iv (a,«z)zs,r))(n,m) = (a',«m)zs,r))
wherestartaddr(a, «z)zs, r)) n = a'
ifO~n/lO~m/ln+m~z

Iv >.y = error
otherwise

In the definition of Iv the auxiliary function startaddr has been used. This function takes in a
store location (which is currently associated with an array) and an index and returns the starting
address of the array component with the given index. Its definition is implementation dependent
and hence is not included.

t: Exp - ENV - S - Er
Within the definition of this function the domain E has been used. E is the domain of expressible
values and has the form

E = LOC + (.!!.x p(ADDR) x LOC) + CHAN'*' + TIMER'*' + (TYP x PORT'*') + vi'

It is necessary to include V&as a component of E in preference to V since value processes in
occam are not restricted to returning a single expression.

The purpose of this function is to evaluate the natural value of expressions (e.g., if the
expression refers to a location, the location and not its contents is returned) with the aim of
minimising the amount of work which must be repeated to deal with expressions as I-values
and r-values. The result of the function is an element of Er, the domain derived from E by the
addition of an extra element Le which will represent all 'errors', both those detectable at run-time
and those which result in non-termination. The domain is ordered with Le below each of the

3.2 The semantics 19

elements of E. Use of this domain allows all expression evaluation errors to be mapped to the
same element, while allowing refinements to accommodate a certain amount of error recovery.
One possible refinement would be the use of the domain (E+h, with immediately detectable
errors (e.g., division by zero) being mapped to error,and all other errors (e.g., a looping function
call) being mapped to LE.

tv : Exp-ENV-S-Vr
tVI<: Exp- ENV- S - (V&)r
tL : Exp- ENV- S - LOCr
tc : Exp- ENV- S - (CHAN+ TIMER+ (TYPx PORT)h

These functions evaluate an expression and return an element of a particular form. The target
domain of each of the functions is Xr for some X; in order to avoid a proliferation of 'bottom
values', which would in turn lead to unwanted distinctions between processes, the bottom
elements of each of the domains will be naturally identified with LE.

t v takes in an expression, environment and store and returns a storable value (the r-value of
the expression)4. If the expression evaluates to a storable value, it is returned; if it evaluates to a
location, the contents of the location are returned; otherwise LE is returned.

t VI<takes in an expression, environment and store and returns a sequence of storable values
(the sequence of r-values of the expression). For all non-erroneous expressions except value
processes (VALOF) this sequence will have as its only element the result of tv; value processes,
however, may have more than one storable value as their result and in this case the sequence of
results of the value process is returned.

tL takes in an expression, environment and store and returns a location (the I-value of the
expression)5. If the expression refers to a slice or component of an array of variables, the starting
address returned is that of the particular portion of the array referred to, and not necessarily the
starting address of the array itself. If the expression does not evaluate to a mutable variable, LE
is returned.

tc takes in an expression, environment and store and returns a channel, timer or port (the
channel value or c-value of the expression). If the expression evaluates to a single channel, the
abstract channel returned; if it evaluates to a single timer, the timer is returned; if it evaluates to

a single port, the port along with its associated type is returned; otherwise LE is returned.
The functions are all obtained by suitable coercions of t.

{

(t[e]pa)[O]
tv [e]pa = lookup a (t[e]pa)

LE

if t

(
e

]

pa E vi' /I #(t
(
e]pa)= 1

if tepa E LOC /I t e]pa = (a, t) /I p[a] E {!:,.!!}
otherwise

{

t[e]pa if t (
e

]

pa E V&
tVI< [e]pa = (Iookup a (t[e]pa)) if tepa E LOC /I t[e]pa = (a, t) /I p[a] E {.!:,.!!}

LE otherwise

t re] a=
{

t[e]pa ift[e]~aELOC/lt[e]pa=(a,t)/lp[a] =.!!
L P Le OtherwIse

'This function is often referred to as 'R-in the literature. Within this paper the existence of channels means that the
use of 'R-is not particularly suitable.

'This function is often referred to as C in the literature. Again the existence of channels within this paper limits
the suitability of the use of C.

~

20 3 DENOTATIONAL SEMANTICS 3.2 The semantics 21

!

E

l

e

j

pq
E e pq

Ec[e]pq = E e pq
.Le

if E

l

e

j

pq E CHAN1\E[e]pq = X 1\p[x] EHp,.!!),(p,.!),(p,£)}
if E e pq E TIMER
if E e pq E (TYP x PORT)
otherwise

Since only type correct programs are considered, it is not necessary to include a collection of
rules summarising acceptable conversions between types. The only step which must be carried
out is transferring the evaluated expression to the correct part of V. This task is achieved by the
auxiliary function convert, the definition of which is not difficult and hence left for the reader.
For any type T, the function convert T is strict.

The next step will be to concentrate on the four main semantic functions in turn. Each of the
clauses will be given a brief explanation.

E[TROUND e]pq = (round T (Ev[e]pq»)J.

(1) THE FUNCTION E Several of the clauses contain one or more conditions 'provided. . .'
which exclude error conditions. When these conditions are not met, the value of the clause is
always .Le. Throughout the definition of E, (. ..) J. has been used in place of the more usual (. . .).
The operator (. . .)J. is a strict sequence constructor (returning .Le if any of its arguments are .Le
but otherwise agreeing with (. . .)) and is used in order to maintain strictness when considering
erroneous expressions. Within the definition of E, when operators are applied, the auxiliary
function 0 appears. This function, which is assumed to produce results strict in each of their
arguments, translates a syntactic operator to the relevant function; its definition is standard and
hence omitted. The definition of N, an auxiliary function evaluating literals, is also standard
and omitted for brevity.

Type conversion can be coupled with rounding. The behaviour is similar to that of the type
conversion described above, except that the auxiliary function must now act on the result in a
different way. The function round (again left for the reader to define) is assumed to carry out this
task. For any type T, round T is strict.

E(T TRUNC e) pq = (trune T (E v [e]pq») J.

E[op e]pq = (O[op](v»)J.

whereEv[e]pq =v

Applying a monadic operator to an expression first involves evaluation of the expression. Once
this has been done, the operator is applied. The assumption of type-correct programs means
that the result of the evaluation of the expression is guaranteed to be within the domain of the
operator.

A third form of type conversion exists in occam. Instead of rounding an answer, it is possible to
insist instead on truncation. The only semantic difference is the form of the auxiliary function;
the auxiliary function trune (again left for the reader to define) is assumed to carry out truncation.
For any type T, trune T is strict.

!

p[x]

E(x] pq = (p[x]) J.
.Le

if p[x] E LOC + (!! x p(ADDR) x LOC) +
CHAN'*' + TIMER'*'+ (TYP x PORT'*')

if p[x] E V
otherwise

{
ifElg) if Ev [edpq =fEJg
(Ev[ed pq) J. otherwise

provided Ev [eI] pq E BQill;

The boolean operator ANDis not strict in its right argument. For this reason it is necessary to
include explicitly the clause dealing with its evaluation.

E[eI ANDet]pq
Evaluation of an identifier depends on its current use. If the identifier represents a location
(of an abbreviated or unabbreviated variable), a channel (or array thereof), a timer (or array
thereof), a port (or array thereof), the information contained in the environment is returned; if
the identifier represents a constant, the sequence containing the constant as its only element is
returned; otherwise .Le is returned.

E(edet])pq

ifE eI pqEV&1\E(edpq=vS1\O::;n<#(vs[Oj)

if E eI pq E LOC 1\E[edpu = A 1\ Iv A n;6 error
if E eI pu E (!! x p(ADDR) x LOC) 1\

E eI pu = (!!, A, A) 1\ Iv A n ;6 error
if E eI pu E CHAN'*' + TIMER'*'+

(TYP x PORT'*')1\

E[edpu = x 1\cv x n;6 error
.Le otherwise

where Ev [et]pu = n

provided Ev [et]pq E INT

(vs[O][n])J.
Iv A n

(!!, A, Iv A n){ (true) if Ev [edpu = true

(Ev h]pu) J. otherwise

provided Ev [e I] pu E BQill;

The boolean operator OR is not strict in its right argument. Again it is necessary to include
explicitly the clause dealing with its evaluation.

E(eI OR et]pu =

cv x n

E(eI op et]pu = (O[op](vJ,Vt»J.

where Ev [eI]pu = VI 1\ Ev [et]pu = Vt

When applying a dyadic operator to two values, the first step is the evaluation of both of the
arguments. Next the operator is applied. As before the type-correctness assumption guarantees
a pair of values within the domain of the operator.

E[T e]pu = (eonvertT(Ev[e]pq»)J.

In the case of an indexed expression, the index is first evaluated. Once this has been done, the
remainder of the expression is evaluated and the relevant action (dependent on the form of the
evaluated expression) is taken. The cases of indexed locations and indexed arrays of channels,

timers or ports are dealt with by the auxiliary functions Iv and cv defined previously.

22 3 DENOTATlONALSEMANTlCS 3.2 The semantics 23

(vs[O)[n...n +m]).L
if E(eJpu E V&!\ E(eJpu = vs!\

o ::; n!\ 0 ::; m!\ n + m ::; #(vs[O))
Iv A(n,m)

if E(eJpu E LOC!\ E(eJpu = A!\

Iv A(n,m) # error
(.!!,A, Iv A(n, m»

if E

(
e

)pu E (.!!x p(ADDR) x LOC)!\
E e pu=(.!!,A,A)!\lv A(n,m) # error

cvx(n,m)
if E(eJpu E CHAN'*' + TIMER'*' +

(TYP x PORT'*')!\

£(eJpu = x!\ cv x (n, m) # error
.le otherwise

where Ev (e/ Jpu = n!\ Ev (etJpu = m

provided Ev (e/ Jpu E INT!\ Ev (etJpu E INT

Array slices are treated in the expected way, again relying of the functionality of the previously
defined auxiliary functions Iv and cv.

EHe FROM e/ FOR etj)pu

on occam processes force the body of a VALOF command to be a deterministic, sequential and
non-communicating process. If precisely one termination state results, the required expressions
are evaluated in the store updated with the information contained in the termination state. A

VALOF command is restricted in what it can return: either it can return a sequence of one or more
values each consisting of a single expression or it can return precisely one value consisting of
a sequence of one or more expressions. Checking that this condition is satisfied is a necessary
feature of the clause. Notice that a VALOFcommand attempting to return an erroneous expression
is dealt with by the strictness of concatenation of sequences previously described.

£(Ll: eJpu = £(eJ(V(LlJp)u

provided V (LlJp #.1

If a declaration occurs before a (valof) expression, the necessary updating of the environment
must take place before the expression is evaluated.

£(e : eJpu = £(eJ(A(eJpu)u

provided A(eJpu #.1

E(vJpu = (Af(vJ).L

When a specification (an abbreviation or retyping) precedes a (valof] expression, the environment
is updated as appropriate before the expression is evaluated.

The only clause left to define is that concerning functions. This is dependent on the way
in which named functions are stored in the environment by declarations, and is consequently
delayed until the function V has been defined.

Within an expression it is possible to include literals. Such expressions are treated in the obvious
way. The syntax of occam is such that the type of any literal is unambiguous.

EHe/,et,...,enj)pu = ((v/,Vt,...,vn).L).L

where Ev [edpu = v/ !\ Ev (etJpu = Vt!\...!\ Ev (enJpu = Vn

Evaluating tables involves evaluating each element of the table. If any of the constituent expres-
sions evaluate to .le, it is necessary to return .le; otherwise the table of evaluated expressions is
returned.

£(MOSTPOS rJpu

£(MOSTNEG rJpu

(maxvalrh

(minval r).L

(2) THE FUNCTION C This is the semantic function which gives meaning to an occam process.
Many of the operators used are similar to those of [26), or those used in giving a semantics to CSP
over the failures/ divergences model. The construction of several of the operators is explained in
detail in [7, 8). Several of the clauses contain one or more conditions 'provided. . . ' which exclude
error conditions. When these conditions are not met, the value of the clause is always the bottom
element with appropriate alphabet. For brevity, when no confusion as to the intended alphabet
could arise, the bottom process with appropriate alphabet will be referred to as .lQ. The third
and fourth components of the semantic function (ePand <p)are global, and suitable definitions
for them are thus given first.

The two clauses above give respectively the largest and smallest elements of any integer type.

The functions necessary to calculate such elements already exist and have thus been used directly.

ePPX

{

(in,p)
(out,p)
undefined

if P(x)= (p,i)
if p X = (p,E.)
otherwise

E[VALOFPRESULT e/,...,enJpu = VS/VSt ...VSn

where Ct (pJpuO = {u'} !\ 0' $ 0" = 0''' !\
Ev" (edpu" = vs/ !\...!\ Ev" (enJpu" = VSn

provided Ct (pJpuO E p(S)!\ #(Ct (pJpuO) = 1 !\
(n = 1 V

'Vi E {1,..., n} . #(EV" (ejJpO''') = 1)

A VALOF command is evaluated by first calculating the termination states resulting from the body
of the command with empty trace. It is sufficient to consider only such states since the restrictions

{

1'0

<ppo = rw
undefined

~fP(
O

)=!:.
If po =.!!.
otherwise

Below are given the semantic clauses of the language. Several clauses are split into separate
definitions of C/ and Ct to aid clarity.

C/(STOpJpu

Ct (STOpJpus

{(O,X) I X ~ (dom(ePp)u{--'})}
o

--- "

(«(), X) I X ~ (dom(4>p)u {,;} - {x})} u
(«x..8),X) I X ~ dom(4)p)}

{
{a! {a I 'Ppa= rw}} if s = (x..8)o otherwise

where Ec[c]pa =X I\U[oe]pax =.8

provided U [oe] pa(Ec[c) pa) t- .le 1\
3p E PROT. 4>p(Ec[c]pa) = (out,p)

Output over a channel proceeds by passing the communicable value along the channel then
terminating in an unchanged state. In such a situation it is necessary to verify that the channel

is suitable for output within the current scope and that the output expression is not erroneous.
The semantic function U evaluates communicable values.

24 3 DENOTATIONAL SEMANTICS 3.2 The semantics

stopp~ will be used as an abbreviation for C [STOP] pa. STOP never communicates or terminates.
It merely refuses everything offered to it. .JCO 1 [c!oe]pa

Cl [SKIP]pa

Ct[SKIP]pas

(«(),X) IX ~ dom(4)p)}

{
{a Ha I 'Ppa = rw}} if s = ()
o otherwise

.JCO t [c!oe]pas

skip~ will be used as an abbreviation for C[SKIP]pa. SKIP never communicates, but must
terminate leaving the contents of all mutable addresses unchanged.

C[el := et]pa = skip~,

where Ev [et]pa = v 1\EL[el]pa = A 1\a' = update a A v

provided Ev [et]pa t-.le 1\EL[el]pa t-.le

This process also terminates without communicating, but modifies the termination state to take
account of the assignment. In order to maintain strictness it is necessary to ensure that the right
hand side is not erroneous and that the left hand side refers to a mutable variable.

25

{

UT[oe]pa if 3p E CTYP1&. p[x] = (p,£)
U[oe]pax = Us[oe]pa if 3p E {ANY}U CTYP2. P[X] = (p,.Q)

.le otherwise
Cl [el"'" en := 11,... .Jm]pa {«(),X) I X ~ dom(4)p)}

{
{an Ha I 'Ppa = rw}} if s = ()
o otherwise

where EL[eJ]pa = Al 1\...1\ EL[en]pa = An 1\
Ev" [11]pa = vs 1 1\...1\ Ev" [/m]pa = VSm 1\
VS = VS1VSt . . . VSm1\

al = update a Al vs[O]1\...1\
an = update an-l An vs[n- 1]

provided EL[e1
]
pa t-.le 1\...1\ EL[en]pa t-.le 1\

Ev [11 pa t-.le 1\...1\ Ev [/m]pa t-.le 1\
(m = 1 V m = n) 1\disjoint(el, . . . ,en)

Multiple assignments are possible in the language. The right hand sides are all calculated before
any updating of the left hand sides occurs. The process terminates without communicating,
modifying the final state to take account of each of the assignments. It is necessary to ensure
that the left hand sides of a multiple assignment are disjoint, a task achieved by the auxiliary
function disjoint; the definition of this function is straightforward but verbose and hence not
included. The disjointness rules of occam (together with the severe anti-aliasing laws) mean
that, once all the right hand sides have been calculated, the order in which the assignments are
done is unimportant. An arbitrary decision has been taken to carry out the assignments from
left to right.

Ct [el, .. ., en := 11,. . . .Jm]pas

Auxiliary semantic functions (UT and Us) have been used to split the evaluation of communicable
values into two parts; UT deals with the case of channels with tagged protocols and Us deals with
the case of channels with simple or sequential protocols. Propagation of erroneous expressions
in the desired manner is aided by use of the strict tupling constructor (. . .h.

UT [x] pa p[x]
if p[x] E TAG

(UT [x]pa,Us [oe]pah

.le
otherwise

Ur[x; oe]pa

Ur[oe]pa

Once the tag has been removed from a communicable value over a channel with variant protocol,
the remainder of the communicable value may be dealt with as if it were a communicable value
over a channel with simple or sequential protocol.

Us [e]pa

Us [el :: et]pa

Us [el ; et;...; en]pa

{

.Jco lc!oelpa if Ec
I

c

)
pa E CHAN

C[c!oe]pa = .JPo c!oe pa if Ec c pa E TYP x PORT
.l Q otherwise

Us [oe]pa =

Ev[e]pa

(.81,.8th
where Evlet]pa = v 1\ Ev [eJ]pa = .81 1\ v[O.. ..81] = .8t

if 0 ~ Ev eJ]pa ~ #(Ev [et]pa)

(.8h .8t,.. ., .8nh
where Us

,
e1

l
pa = .81 1\ Us [et]pa = .8t 1\ .. . 1\

Us en pa = .8n

.le
otherwise

The way in which a process outputting an output expression (oe) behaves depends on the
destination of the expression. Hence the above clause uses two auxiliary semantic functions,
one to deal with output over a channel and the other to deal with output to a port.

Communicable values over a channel with simple or sequential protocol can be variable length
arrays. When this is the case there is no reason to pass on any part of the array outwith that
specified by the length prefixing the array.

--- "

26 3 DENOTATIONAL SEMANTICS 3.2 The semantics 27

Because a communicable value may not consist of an atomic item, it is not possible to alter the
store directly with the function update already defined. This problem is overcome by the use of
the auxiliary function newstore.

.JPOI [doe)PlT = {((),X) I X !;;dome 4>p)}

.JPo [I) _
{

{IT!{al'l'pa=rw}} ifs=()
t c.oe plTS - 0 otherwise

provided Ev [oe)plT :F .Le

Output to a port is identified with SKIPwithin the current model; strictness, however, must be
ensured.

news tore [e) plT,8

newstore[el :: et)plT(,8h,8t)

newstore[el ; . . .; e.)plT(,8h' .. ,,8.)

newstore [ie) plT,8

update IT(EL[e)plT),8

updateIT' (EL[et)PlT'),8e

whereupdatelT(EL[eI]plT),81 = IT'

newstore[et; . . .; e.)plT'(,8e,. .., ,8.)
where IT'= newstore[eI) plT,8I

.Ls

otherwise

{«(),X) I X!;; (dom(4>p)U{.I} - {X})} U

(«X./),X) I X !;; dom(4)p) A I E X A p[tag) = I} U
{«X./~)S, X) I X ~ (dom(4>p) U {,I}) A I~ E X A p[tag) :F I}

{

{IT! {a I cppa = rw}} if S = (X./) A I E X A P[tag) = I
.L if S ~ (X./~) A I~ E X A p[tag] :F I
o otherwise

where Ec[c)plT = X

provided Ec[c]plT E GRAN A p[tag) E TAG A
3p E PROT. 4>p(Ec[c]plT) = (in,p)

In occam it is possible to construct a process which expects to receive input over a channel
with variant protocol prefixed by a particular tag. Above is given the clause which deals with

the case where the expected tag does not carry any data with it. If the tag received does
not match the expected tag, the inputting process behaves like the bottom process from the
communication onwards. In order to improve clarity, within the above clause X.I,8 has been

used as an abbreviation for an arbitrary tuple of length greater than or equal to one ;'hose first
element is the tag I.

j

.JTT

(

C?ie

j
PlT if Ec

(

C

j
PlTE TIMER

C[?) _ .JPl c?ie plT if Ec C plT E TYP x PORTc.le plT - .JCT c?ie plT if Ec c plT E GRAN
.LQ otherwise

The above clause relies on the fact that all occam types are finite, since without such an assump-
tion it would not be possible to provide a finite set of termination states in the second component

of the process description. As with output, the behaviour of a process which inputs an input
expression (ie) depends on the source of the input; auxiliary semantic functions deal with each
of the cases.

The first case to be dealt with is that of input from a timer. Within the current model, this is
to be identified with the assignment of a random member of INT to the variable.

.JTTI [c?ie)plT = {((),X) I X ~ dom(4)p)}

.JTT [?]
_

{
{(updateq(EL[ie)plT)z)!{al'l'pa=rw}lzEINT} ifs=()

e c.le plTS - 0 otherwise

Next to be considered is input from a port. The decision was taken to model such actions by
the assignment of a random value of appropriate type to the variable.

.JP1dc?ie)plT = {((),X)IX~dom(4>p)}

.JPl [?,] _
{

{(updatelT(EL[ie]plT) v)! {a I cppa= rw} I v E I} if S= ()
e c. le plTS - 0 otherwise

where Ec[c]plT = (t,w)

Finally, input can be over a channel. Such an action proceeds by first accepting a value on
the channel (it cannot refuse any communicable value) then terminating in the final state which
results when the value inputted has been substituted into the current store. Errors result on an
input over a channel if any variable mentioned cannot be written to, if the channel cannot be
used for input, or if arrays are accessed out of bounds.

.JcTdc?ie)plT = {«(),X)IX~(dom(4>p)u{,;}-{X})}U
{«x.,8), X) I X ~ dom(4)p) A,8 E X} U
{((x.,8)s,X) I X ~ (dom(4>p) U {,I}) A,8 E XAnewstore[ie] plT,8=.Ls}

j

{(newstore[ie)plT,8)! {a I 'l'pa = rw}}
if S = (X.,8)A,8 E X Anewstore ie plT,8:F.Ls

.L if S ~ (X.,8)A,8 E X Anewstore(ie)PlT,8=.Lso otherwise

where Ec[c]plT = X

provided 3p E PROT. 4>p(Ec[c)plT) = (in,p)

Cl [C?CASE tag]plT

Ce [c?CASE tag]plTs

Cl [C?CASE tag; ie]plT

Ce [C?CASE tag; ie)plTs

.JCTe [c?ie)plTs

{((), X) I X !;; (dom(4>p) U {,I} - {X})} U

{((X .1,8), X) I X !;; dome 4> p) A 1,8 E X A P [tag) = I} U

{«X.I,8)S,X) I X!;; (dom(4>p)U {.I}) A 1,8 E X A

p[tag] = I A newstore [ie) plT,8 =.Ls} U
{«X.lmS, X) I X !;; (dom(4>p) U {,I}) A I~ E X A p[tag) :F I}

{(newstore[ie]plT,8)! {a I cppa = rw}}
if S = (X .1,8) A 1,8 E X A

P [tag) = I A news tore [ie] plT,8 :F.is

.L if S ~ (X.1,8)A1,8EX A
p[tag) =1A newstore [ie) plT,8 =.Ls

.L if S ~ (X./~) AI~ E X Ap[tag) :F I
o otherwise

where Ec[c)plT =X

provided Ec[c]plT E GRAN A p[tag] E TAG A
3p E PROT. 4>p(Ec[c)PlT) = (in,p)

,-

28 3 DENOTATIONAL SEMANTICS

Above is given the clause which deals with the case where the expected tag carries data with
it. If the tag received does not match the expected tag. the subsequent behaviour is again
equivalent to the bottom process. X.Lf!..has again been used as an abbreviation for an arbitrary
tuple containing Las its first element and within the clause a second abbreviation appears; X.L{3
is used as an abbreviation for an arbitrary tuple of length greater than one whose first element
is the tag L.

{

sk . if n = 0
JpfH7 .

C[SEQ (PI, Pt,..., Pn)]pu = g!,l(C[pdpu) (C[SEQ(Pt ,Pn)]p)u OtherwIse

Here g!,l is the function which takes arguments of type Q, S - Q and S and returns an element
of Q. Notice that the third argument (of type S) is necessary since it is used in order to provide
the correct contents of 'read-only' variables with which to calculate the process description. The
function g!,l is defined

f(g!,l AB u) = {(s,X) 1(s,XU {.;}) E f(A)} U
{(su, X) 13 u' . u' E t(A)s i\ (u, X) E f(B(u El)u'm U
{(su,X) 1t(A)s =.L i\ (s,X) E f(A)s}

!

U{t(B(u El)u'»v 13u. s = uv i\ u' E t(A)u}
if (s,0) E f(g!,l AB u) i\ t(A)s;H i\

~u,v,u'. s = uvi\u' E t(A)ui\ t(B(uEl)u'»v =.L
.L if t(A)s =.L v

3u, v,u'. s = uv i\ u' E t(A)u i\ t(B(u El)u'»v =.L
° otherwise

t(g!,l AB q)s

If n = 0 then SEQ(PI, Pt, ..., Pn) behaves exactly like SKIP (terminating, without commu-
nicating, in an unaltered state). Otherwise process PI is run until it terminates successfully,
the initial store of SEQ(Pt,..., Pn) being formed by updating the initial store of PI with the
information contained in the final state of PI' Note that PI cannot refuse a set X of channels
unless it can refuse X U {.;}; otherwise it would be able to terminate (invisibly) and pass control

to SEQ (Pt,..., Pn).

C[SEQ x = elFOR et p]pu !:2§!J.({3I,{3t,X) (C[p)) pu

where£v[edpu ={31 i\ £v[et]pu = {3t

provided £y [el]pu E INT i\ £y [et]pu E INT

Here!:2§!J. is the function which takes arguments of typeINTx INTx !DE,ENV - S - Q,
ENV and S and returns an element of Q, and is defined

!

skipfH7 if {3t = 0

!:2§!J.({3h {3t, x) D pu = g!,l (D(p({3d x])u) (!:2§!J.({31+ 1, {3t - 1, x) D p) u
if 0 ::; {31 ::; MOSTPOSINT i\ 0 < {3t

.LQ otherwise

This process carries out a replicated sequential command. The number of the iteration currently
being executed is recorded with the help of an auxiliary variable, stored in the environment as a
constant in order to avoid it being used in an unacceptable way during an iteration.

I

I
'.
I

3.2 Thesemantics 29

I

,
I

'1

{

stop" ifn=O
CIFfcdpu if n > 0 i\ I[CdPu = true
C[IF (Ct,..., Cn)]pu otherwise

provided I[IF (Cl,"" Cn)]pu '# .Lt

Care must be taken to ensure that if, on traversing the branches of the process in order, an
erroneous guard is encountered before a guard which evaluates to true the process is mapped to
the bottom element (.LQ).

C [IF (Ch"" Cn)]pu

C[p]pu

C[IF (Cl,'''' Cn)]pu

C[IF x = el FOR et C]pu

CIF[C] (V [..1] p)u

provided 1'[..1]p ,#.L

CIF[C](A[e]pu)u

provided A[e]pu ,#.L

Giving a meaning to a branch of a conditional closely resembles giving a meaning to a process;
the only difference is the boolean guard at the innermost level which must be dropped.

The auxiliary function I is necessary in order to allow for the possibility of nested 'IF'S. The
function returns a value indicating whether a given branch should be followed, taking account

of the status of any nested guards.
When nested replicated conditionals appear, a much clearer description results from the

decision to explicitly substitute the index value into the body of the conditional. Distinct en-
vironments for each index value could, if desired, be used to avoid this substitution, but their

inclusion was not thought necessary.

CIF [b p]pu

CIF [IF (Cl,"" Cn)]pu

CIF[IF x = el FOR et C]pu

CIF[..1: C]pu

CIF [61 : C]pu =

I[b p]pu £y [b]pu

!

fElg if n = 0
true if n > 0 i\ I Cl pu = true
I[IF (Ct,..., Cn)]pu if n > 0 i\ I(cJpu = fElg
.Lt otherwise

I[IF (C[{3dx],..., C[{31+{3t -l/x]))pu
where £[edpu = {3/ i\ £fet]pu = {3t i\
if £

l

el

j
Pu E 1NT i\ £(et pu E -mT i\

£ et pu > 0 i\
£ el pu + £h]pu - 1 ::;MOSTPOSINT

I[C](V [..1) p)u
if V[..1]p ,#.L

I[C](A [e)pu)u
if A [e]pu ,#.L

.Lt
otherwise

I

(

I[IF (Cl,"" Cn)]pu

I[IF x = e/ FOR et C)pu

1[..1: C]pu

1[61 : C]pu

I[C)pu

--- "

30 3 DENOTATIONAL SEMANTICS

A conditional with zero branches behaves like STOP. If one or more branches are present, the

branches are traversed in order, the body of the first branch whose guard evaluates to true being
executed.

C[IF x = el FOR et C]pq = rcond ({31,{3t,X) [C]pq

where £v [el]pq = {31 /\ £v [et]pq = {3t

provided £v[edpq E INT /\ £v[et]pq E INT

Here rcond is the function defined

stop u if {3t =0
C/Ff C](p[{3dx])q if I[C](p[{3dx])q =true /\

o :$ {31 :$ MOSTPOS INT /\ 0 < {3t

rcond ({3h{3t,x) [C]pq = < rcond (/31 + 1 ,(3t - 1, x) [C)pq
if I[C](p[{3dx])q =f9lg /\

o :$ {31 :$ MOSTPOS INT /\ 0 < (3t

.LQ otherwise

This process carries out a replicated conditional command. Again an auxiliary constant stored
in the environment records the number of the current iteration. A replicated conditional re-
evaluates the guard(s) on each iteration; the body is carried out with the value of the index equal
to the smallest integer which makes the guard evaluate to true.

C[C?AFTER e]pq = skippu
provided £v [e]pq E INT /\ £c [c]pq E TIMER

Input delay is equated with SKIP in the model. It is, however, necessary to check that the
expression is suitable and that the timer is not erroneous by dint of the value of subscripts. The
acceptability of equating input delay with SKIP is due to the fact that the presence of AFTER
within a process does not determine the behaviour of the process (e,g., influence which branch
of execution is followed); it merely alters the timing characteristics (which are not dealt with by
the model).

C[WHILEb p]pq =(UFn(.L(S_Q(C,L»»q
n=O

where F : (8 -+ Q(C,L» -+ (8 -+ Q(C,L» is the function defined

i

gQ(C[P]pq')Bq' if£v (
b

jpq'=true

F(B)q'= skippu' iffy b pq'=f9lg
.LQ(C,L) otherwise

This is the only form of recursion allowed in occam, and the functionality of the above definition

depends only on the continuity of~, In fact all the operators used are continuous.

{

~.pu ifn=O
C[CASE e (Ch"" Cn)]pq = case (£v [e]pq) 0 (C[STOP]p) P [Ch"" Cn)pq

otherwise

r
~
I

3.2 Thesemantics 31

Here ~ is the function defined

case {3A B (! [Cl, Ct,.,., Cn]pq =

Bq if n = 0 /\ {3"" .Le

~{3 (A U {ELSE}) (C[p']p) (! [Ct,..., CnJuq
if n > 0 /\ Cl = ELSE p' /\

ELSE ~ A /\ {3~ A
~{3(A U{ELSE}) B (! [C!,..., Cn]uq

if n > 0 /\ Cl = ELSE p' /\
ELSE~A/\.BEA

case.B (A U {£v [edpq,.. " £v[em]pq})
(C[p']p) (! [C!,.." Cn](!q

ifn> 0/\ Cl = (el,...,em)P'/\
£v[edpq ~ A /\.../\ £v[em]pq ~ A /\
fit {3[Cl]pq = true

case.B (A U {£v [el]pq,.,., £v [em]pq})
B (! [Ct,.. " Cn]uq

if n > 0/\ Cl = (el," "em) P' /\
£v[edpq ~ A /\.../\ £v[em]pq ~ A /\
fit .B[cd pq = f9lg

case {3A B (! [C, Cf,.." Cn]('D[L1]p)q
if n > 0/\ Cl = L1:C /\ V[L1]p "".L

~.B A B (! [C, Cf,.." Cn](A[e]pq)q
if n > 0/\ Cl = e : C /\ A [e]pO' "".L

.LQ otherwise

It is necessary to supply the initial environment ((!) as an argument to ~ since declarations or
specifications prefixing one branch of the CASE command must not be allowed to' influence later
branches. When it has been decided that a particular branch should not be followed, not only is

the process contained within the branch dropped, but the initial environment is also reinstated.
Care must be taken to ensure that ~ is strict - even if the expression of a CASE command is
erroneous, a branch with an erroneous guard must not be followed (although both are mapped

to .Le by £ v). While traversing the branches of the CASE command, a note of the values which
have already appeared as guards must be kept since it is not permitted for the same value to
prefix more than one branch. A branch prefixed by an ELSE guard requires special consideration,
since its body may not influence the behaviour of the process.

Within the definition of case an auxiliary function fit appears. The purpose of this function
is to determine whether a given branch of the CASE construct should be followed.

fit .B [C] pO'

!

true

f9lg
Vi=lfit.B [e; p]PO'
.Le

(where V is strict)

if C = e P /\ £v

(
e

jpq "" .Le /\ £v (
ejpO' =.B

if C = e P /\ £v e pO' "" .Le /\ £v e pO' i- .B

if C = (el,'''' en) P
otherwise

This process carries out a CASE command. The (necessarily unique) choice whose guard matches
the given expression is followed, subject to the restriction that a choice guarded by ELSE is
followed only if each of the other guards evaluate to M&. The guard ELSE matches any proper
expression; in any given CASE command of an occam process, only one guard may be equal to

""-

I -Y'

32 3 DENOTATIONALSEMANTICS

ELSE. A CASE command with no branches (or one where the given expression does not match

any of the guards) is equivalent to STOP.

C[PRI ALT(AI, A!,..., A.)]pu = C[ALT(AI, A!,..., A.)]pu

As previously described, priority is not considered, and so a rather less detenninistic meaning
than expected may result.

C [PRI ALTx = el FOR e! A]pu =C[ALTx =el FOR e! A]pu

Priority is also ignored in replicated alternations.
It is necessary, however, to model alternations accurately. In occam, apart from CASEcon-

structs or nested alternations, there are two types of guard (input guards and SKIP guards)
which can appear within an alternation. The existence of SKIP guards provides a slight com-
plication since they work differently from input guards. The neatest solution is to extend the
domain of C to include all guarded processes and to invent an auxiliary semantic function, n,
which will serve a similar purpose to the one used for conditionals and tell whether any SKIP
guard is ready. In what follows, G will represent a guard not containing a boolean (either SKIP
or c?e or c?AFTERe).

C[G p]pu

1

c[p]pu if G = SKIP

C[SEQ(G,P)]pu ifG=c?e
stoPpq if G = c?AFTERe /I

£c[c]pu E TIMER /I £v [e]pu E INT

I

stoPpq if £v[b]pu =fElg
C p]pu if £v b pu = true /I G = SKIP

C[b&GP] u = C(SEQ(G,P)]pu ~f£)bJpu=true/lG=c?e
p stoppq If £v tbjpu = true /I G = c?AFTERe /I

£c[c]pu E TIMER /I £v[e]pu E INT
1.'1 otherwise

{

stoppq if £ v[b]pu =fElg
C [b&CASE(Tit..., T.)]pu = C [CASE(TI'"'' T.)]pu if £v[b]pu = true

1.'1 otherwise

Above is the extension which must be added to C to simplify alternations. Although not in itself
complex, it provides a great simplification in what follows.

Notice that the behaviour of a branch guarded by a delayed input (with or without an
accompanying boolean) is equivalent to STOP,providing the guard is not erroneous. This ties
in with the decision that such branches should not under any circumstances be followed.

CdALT(AI,...,A.)]pu = {«),X) 13i. n

~

Ai

~

pu = true/l «),X) E Cl [Ai]pU} U
{«),X) 1Vi. n Ai pu =fElg/l «),X) E Cl [Ai]pU} U
{((), X) 13 i .C! Ai pu() =1.} U

{Is, X) Is f: () /13i. (s, X) E Cl[Ai]pU}

U{C![Ai]pUS1i E {l,...,n}}

provided n[ALT (AI,'''' A.)]pu f: Lt

C! [ALT (AI,"" A.)]pus

If any SKIP guard is ready then the process may choose (invisibly) to behave like the correspond-

ing guarded process. If no SKIP guard is ready then the process must wait for something to be
communicated to it along one of the channels of the input guards. Note that if every alternative
contains a boolean expression evaluating to fgJg, then ALT (AI,"" A.) is equivalent to STOP.

1

fElg if G = c?e /I £c[c]pu E CHAN
£v [b]pu if G =c?e /I £c[c]pu E TIMER
~ if G =c?AFTER e /I £c[c]pu E TIMER
£v[b]pu if G =c?e /I £c[c]pu E TYP x PORT
£v[b]pu if G =SKIP
Lt otherwise

if £v[b]pu E BOOL

1

~ if £c

f

c

J

PUE CHAN
true if £c c pu E TIMER
true if £c c pu E TYP x PORT
Lt otherwise

fElg
if £c[c]pu E TIMER

V':=In[A;]pu

V':=In[Ai]pu

n[ALT(A[.8dx],...,A[.81 +.8! -l/x])]pu
where £v [eI]pu =.81/1 £v fe!]pu =.8!
if £v

f

el

j

Pu E INT /I £v[e! pu E INT /I
£v e! pu ~ 0/1
£v el pu + £v[e!]pu - 1 ::; MOSTPOS'INT

n[ALT (A[.8dxJ,...,A[.81 +.8! -l/x])]pu
where£v[eI]pu =.81/1 £v fe!]pu =.8!
if£v

f

el

j

PUE INT/I£v[e! puE INT/I
£v e! pu ~ 0/1
£v el pu + £v[e!]pu - 1 ::;MOSTPOSINT

~
if £c[c]pu E CHAN

~
if £c[c]pu E CH AN /I £v[b]pu E BOOL

n[A] (V [.a]p)u
ifV[.a]p f:1.

n[A](A[e]pu)u
if Are]pu f:1.

3.2 The semantics

n[b&G p]pu

n[c?e p]pu

n[c?AFTER e]pu

n[ALT (AI,'''' A.)]pu

n[PRI ALT (AI,"" A.)]pu

n[ALT x = el FORe! A]pu

n[PRI ALTx = el FOR e! A]pu

n [c?CASE(TI" .., T.)]pu

n[b&c?CASE (TI"'" T.)]pu

n[.a: A]pu

n[e: A]pu

n[A]pu

33

Lt
otherwise

(where V is strict)

Any guard dependent on a future input cannot possibly be ready and so cannot take value
true. However, when considering such guards prefixed by a boolean, it is necessary to maintain

I-Y

34 3 DENOTATIONALSEMANTICS

strictness. This is achieved by explicitly checking for erroneous boolean expressions. Branches
guarded by delayed input must not be followed; this is despite the fact that input from a timer
is not visible and is neoessary in order to prevent the premature exit from an alternative and
the resultant curtailed behaviour. As a result of the above, the availability of recovery from a
deadlocked process is removed, but its reinstatement in order to meet timing constraints remains
a valid refinement.

Nested replicated alternations can occur. The readiness of a particular branch in such a
situation can be calculated independently of the other branches, since the property of being
ready cannot be influenced by the other brances. The substitution of the index value within the
body of a nested replicated alternation is carried out directly in order to aid clarity; it would be
possible to adapt the environment separately for each branch, but such action was not thought
warranted in this instance.

C[ALT x =eJ FOR et AJp17 = mlt «(3J,(3t,x) [AJp17

where Ev[edp17 = (3J A Ev[etJp17 =(3t

provided Ev

(

eJ

j

P17E INT A Ev [etJp17 E INT A
Ev et p17 ~ 0 A
Ev eJ p17 + Ev [etJp17 - 1 ~ MOSTPOS INT A

R-[ALT (A[(3dx],..., A[(3J + (3t - 1 /x])JP17 # 1.£

Here mlt is the function defined

f(mlt «(3J,(3t, x) [AJp17) = {«), X) I 3 i E {(3J,... ,(3J + (3t - l) .
R-[A](p[i/x])17 = true A «(), X) E CJ [A](p[i/x])17} U

{«),X) IVi E {(3J,...,(3J +(3t -l).
R-[A](p[i/x])17 =fElg A «), X) E CJ [AJ(p[i/x])17} U

{«(),X)13i E {(3/,...,(3J +(3t -l).
C,(A](p[i/x])17() =1.} U

{Is, X) Is # () A3 i E {(3J,..., (3J+ (3t - 1} .
(s, X) E CJ [A](p[i/x])17)}

t(mlt «(3J,(3t, x) [AJp17)s = U{Ct [A](p[i/x])17s liE {(31,'" ,(3J + (3t - 1}}

The definition of a replicated alternative differs substantially from the other clauses concerned
with replicated processes since it is necessary to consider all branches at once. (Unlike a condi-
tional or sequence, the behaviour of a constituent part is not independent of those following it.)
An auxiliary constant stored in the environment records the value of the index at any point, and
care must be taken to ensure that the environment is correct throughout. Note that a replicated
alternation in which any of the branches are indexed by a value greater than MOSTPOS INT is
identified with the bottom process (1.Q).

CdC?CASE(T/,..., T.)Jp17 = {«), X) IX ~ (dom(cPp)U{v'}- {X})} U
{((X.I(3)S, X) I 1(3 E X A

- (i,X) Ef(actionIf!.p [TJ,..., T.Jp17)}

i
t(action If!.p [TJ,..., T.Jp17)s'

if S = (X.I(3)S' A 1(3 EX
o otherwise- -

where Ec(cJp17 =X

provided"Ec(cJp17 E Cl/AN A
3p E PROT. cPp(Ec(cJp17) = (in,p)

Ct [C?CASE(TJ,..., T.)Jp17s

3.2 Thesemantics 35

In the above clause an auxiliary function action has been used. This function calculates the
behaviour of the process after the tagged input. The function action requires the initial envi-
ronment as an argument since declarations and specifications must not be allowed to have any
influence outwith their scope. As with the clauses concerning input over channels with variant
protocol, If!. has been used as an abbreviation for an arbitrary value communicable over the
channel.

action If!. (! [TJ, Tt,..., T.Jp17 =

1.Q if n = 0

action If!. (! [Tt,. . ., T.Ju17
if n > 0 A TJ = tag P Ap[tagJ # 1

action If!. (! [Tt,. . ., T.Ju17
if n > 0 A TJ = tag; e P A p[tagJ # 1

C

(
P

J

P17 if n > 0 A TJ = tag P Ap[tagJ =1

C P p(news tore [e Jp17 f!.)

if n > 0 A TJ = tag; e P A p[tagJ = 1 A

newstore[eJp17f!.#1.s
action If!.(! [T, Tt,..., T.](V[..1Jp)17

if n > 0 A TJ = ..1: TA V [..1Jp #1.

action If!.(! [T, Tt,..., T.](A[eJp17)17
ifn> OA TJ = e :TAA[eJp17#1.

1.Q otherwise

Giving a semantic interpretation is made more complicated by the fact that the action depends
on the input in a deterministic way. At first glance, it may appear that the easiest solution would
be to store the input and then act as for a CASE command. This is unacceptable since it requires
tags to be storable - an assumption better not to make if it can be avoided. When the input
carries data with it the auxiliary function newstore is used in order to correctly deal with the case
where the data is not an atomic value.

C[PRI PAR (QJ,..., Q.)JP17
C[PRI PAR x = eJ FOR et QJP17

C[PLACEDPAR (QJ,...,Q.)JP17
C[PLACED PAR x = eJ FOR et QJP17

C [PROCESSORe QJp17

C[PAR(QJ,' .., Q.)]P17

C [PAR x = eJ FOR et QJp17

C[PAR(QJ,' .., Q.)JP17

C[PARx = eJFORet QJP17

C[QJP17

provided Ev [eJp17E INT

Above is included a selection of clauses which result from the decision not to model priority and
placement within the mathematical model. Care must be taken to maintain the desired strictness
properties.

C[PLACE x AT e: pJP17 = C[pJP17

provided Ev [eJ p17 E !FW

The decision was taken not to model the allocation of channels, timers or variables to absolute

locations in store. Provided the expression is not erroneous, the placement is ignored.
Next the semantic definition for the parallel construct will be given. As was found in [26],

this proves to be the most complicated to define. The first part of the definition shows how the

"-

~

36 3 DENOTATIONAL SEMANTICS

local environments required for each individual process are set up. The second part shows how
the processes interact once they are running. Overall this gives

{skip~ if n =0
(0"1I7=j(C[p;)piO"))/Y otherwise

h P
{

Qi if Qi E Proc
w ere i = P if Qi = Ui : P with Ui E PD and P E Proc

C[PAR(Qj,...,Q.)]pO" =

The processes are run in parallel (11) with their respective environments (Pi). The communications
local to the network are then hidden UY).

It was mentioned previously that the inclusion of parallel declarations was to be optional.
When such declarations are not included, it is necessary to calculate the local environments by
syntactic analysis. Because of this, calculation of local environments will be split into two cases.

Parallel declarations present Given that parallel declarations accompany each process, the
first step is to use them to calculate the necessary information concerning store and channel use.
This is done by the following semantic functions, the definitions of which are not difficult but
are omitted for brevity.

inchans
outchans

oumchans
addrs

PD --ENV -+ S -- 'P(CHAN)+
PD -- ENV -- S -- 'P(CHAN)+
PD -- ENV -- S -- 'P(CHAN)+
PD -- ENV -- S -- 'P(ADDR)+

To be declared as an input channel by inchans [Ui]PO", X must have status.!! or i in P; output
channels must have status.!! or £ in P; internal channels must have status.!! in p. If an undirected

(.!!)channel of P is declared as an input (output) channel by one of the parallel declarations, then
it must be declared as an output (input) channel by another. To be declared as an address of a
variable which can be assigned to, 0 must have status.!! in p.

In addition, the parallel declarations accompanying a parallel construct must satisfy the
following collection of equations:

inchans[Ui]pO" n
outchans[Ui] pO" n
inchans[Ui] pO" n
inchans[U;)pO" n

outchans[Ui] pO" n
addrs[Ui]PO" n

oumchans[Uj] pO"

oumchans[Uj] pO"

outchans [Ui] pO"

inchans [Uj] pO"

outchans [Uj] pO"

addrs [Uj] pO"

o
o
o
o whenever i f. j

o whenever i f. j
o whenever i f. j

The first component of each Pi is the same as that of p, and

j

.!! if X E oumchans[Ui] pO"
i if X E inchans [Ui] pO"

. [] _ £ if X E outchans [Ui] pO"
P, X - L or undefined if P[X] = L subject to

Pi [X] = L ~ Pj [x] =undefined whenever i f. j
undefined otherwise

3.2 The semantics 37

Since it has been assumed that there are an infinite number of abstract channels, it will be assumed

that an infinite number are allocated to each Pi. Thus problems will not manifest themselves
when it becomes necessary, due to the presence of declarations, to allocate abstract channels to

each process.

j

.!!
r

;ndefined
Pi [0] = Lor undefined

undefined

if 0 E addrs [Ui]PO"
if p[o] E {r,.!!}110 ItU

j
~=j addrs[Uj]pO"

if 3j f. i .0E addrs[Uj pO"

if p[o] = Lsubject to
Pi [0] = L ~ Pj [0] = undefinedwhenever if. j

otherwise

An assumption of an infinite number of addresses within the store has already been made, and
so it will be assumed that an infinite number of free addresses (chosen in such a way to ensure
that each process can allocate suitable store space for each of its local variables) will be allocated
to eachPi.

Parallel declarations absent Without parallel declarations, it is not possible to derive a suitable
local environment for each process by consideration of the process alone. This is because it is
impossible to tell from examination of a process whether its input and output channels are shared
by exactly one other process defined in parallel. The solution is a pair of semantic functions (WL
and Wv) which input all the parallel processes and return suitable store and channel allocations
respectively.

Wv : Proc&--ENV --S --VSTATUS&

WL: Proc& -- ENV --S -+ LSTATUS&

Using these functions (the definitions of which, as intimated earlier, are not included) it is trivial
to provide suitable local environments. The first component of each Pi is again the same as p.
For the other components,

Pi [x] Wi

where Wv [Pj,..., P.]PO"= (Wj,... ,w.)

Pi [0] Wi

where WL[Pj,..., p.]PO"= (Wj,.. .,w.)

This completes the definition of the local environments. The set of channels on which com-
munications are to be hidden (Y) is found by examination of the local environments and is
defined

Y = {x I3 i,j .Pi [X] = ill Pj [x] =£}

The parallel operator (11)and hiding operator (/ Y) defined below are derived from the

........

I]I -Y'

38 3 DENOTATIONAL SEMANTICS

corresponding CSP operators of (8).

f(ull:'=lAi) = ((s,X) 13s1""'S.,X1,...,X..
SI = S tdom(c(AJ)) A... As. = s tdom(c(A.» A
(shXJ)Ef(AJ)A".A(s.,X.)Ef(A.)AX S;; Xl U...UX.}u

{(su,X) I X S;; (Ui:l dom(c(Ai» U {v'}) A
s t dom(c(AJ) E traces(Ad A... A
s tdom(c(A.» E traces(A.) A3;. t(Ai)(S tdom(c(Ai))) =.L}

j

.L if sE traces(ull:'=l Ai) A
3 u ~ S. (1/; . ut dom(c(Ai» E traces(Ai» A. A (3; · t(A;)(u t dom(C(Ai))) =.L)

t(ulli=l i)S = {(UEl)Ul El)'''EI)U.) Ha 13;. a E dom(I(Aj))} I
1/;. Ui E t(Aj)(s tdom(c(Ai»))}

otherwise

Here s t X is the restriction of trace s to the set of channels X, so that

OtX = 0

{
s t X if a = x.fJA X ~X

s(a)tX = (stX)(a) ifa=x./3AxEX.

Note that within the definition of the final states of the process, the contents of all readable
addresses (not solely those which are mutable addresses of one of the constituent processes)
are retained. This is necessary in order to preserve the information pertaining to addresses not
mentioned by any of the constituent processes.

The parallel operator works by allowing each process to communicate only in its own al-
phabet, and only allowing a given communication to occur when each process whose alphabet
it belongs to agrees. Termination can only take place when all the processes agree. The final
states of a parallel process are calculated by collecting the final states from each of the constituent
processes and combining them. Because it is not necessary to allow each mutable address to be
altered by one of the constituent processes, it is necessary to include the initial state (u) in the
combination of states. If u and u j differ on the value of the contents of an address, the contents of
Ui must be taken; if two Ujdiffer on the value of the contents of an address, then either value can
be taken, since by the disjointness rules this can never occur in occam. As soon as one process
diverges, the whole system does.

f(AIY) = {(st(dom(c(A))-Y),X)I(s,XUY)Ef(A)}U
{(s, X) I {u E traces(A) I u t (dom(c(A» - Y) ~ s} is infinite}

{

.L if {u E traces(A) I u t (dom(c(A» - Y) ~ s} is infinite
t(AI Y)s = U{(t(A)u) ! {a II(AI Y)a = rw} I u t (dom(ciA)) - Y) = s}

otherwise

The hiding operator is used to conceal communications over channels which are internal to the
parallel system. The above definition is continuous provided that only finitely many outputs can
occur on any channel and that Y is finite. (The assumption of finite outputs over any channel
has already been made; the finiteness of Y is a consequence of the assumption of any process
using only a finite number of channels.)

The operator I Y transforms communications over channels in Y into internal actions which
occur automatically. Thus AI Y cannot refuse any set X unless A can refuse X U Y, as an

3.2 Thesemantics 39

(internal) action over a channel in Y may bring the process into a state where it can accept an
element of X.

This completes the definition of the parallel operator PAR.

_ _
{

skip(X1 if {3t = 0
C[PAR x - el FOR et Q]pu - (ullf;l(C[p]uiu»/Y otherwise

where tv[edpu =/31 A tv[et]pu = /3t A

Ui = Pi[.81 + ; - 1 Ix] A

p_
{

Q ifQEProc
- P if Q =U: P with U E PD and P E Proc

provided tv

(

e1

)

pu E INT Atv [et]pu E INT A
tv et pu? 0 A
tv el pu + tv [et]pu - 1 ~ MOSTPOSINT

Once the framework to carry out a parallel command exists, replicated parallel commands offer
no extra difficulty. Notice that each of the constituent processes is supplied with a different
environment, taking account of the index value as well as the information provided by the

parallel declarations or syntactic analysis.

C[Ll: p]pu = C[P](V[Ll]p)u

provided V [Ll]p E ENV

If a declaration precedes a process, the necessary changes to the environment are made before
the process begins.

c[e: p]pu = C[p](A[e]pu)u

provided A[e]pu E ENV

The clause dealing with processes prefixed by a specification is exactly as expected, with the
relevant changes to the environment being carried out before the process commences.

The only clause left to define is that concerning procedures. This is dependent on the way
in which named procedures are stored in the environment by declarations, and is consequently
delayed until the function V has been defined.

(3) THE FUNCTION V Within this section, the existence of the following semantic functions

will be assumed. The definition of new is extremely implementation dependent; those of newchan,

newtim and newport are verbose but not difficult. Hence none of the definitions are included.

new
newchan

newtim
newport

TYP --ENV --LOC
N' __ PROT -- ENV -- CHAN'16
N' __ p(TIMER) -- ENV __ TIMER'16
N' __ p(PORT) -- TYP -- ENV -- (TYP x PORT'I6)

The function new takes in a type and environment. It returns a location which may be used to
store the current value of a variable of the supplied type. The location returned will be such that
it refers to a contiguous area of store, all of the addresses of which had been mapped to Lunder

the third component of the environment. Any such contiguous area of the store is suitable;

,--.

40 3 DENOTATIONAL SEMANTICS

the particular allocation strategy used will depend on the implementation of the store under
consideration.

The function newchan takes in a natural number sequence (indicating the array structure of the
required set of channels), protocol (that intended for each channel of the array) and environment
and returns a sequence. This sequence contains the infonnation concerning the array of channels
(the sequence of abstract channels used to represent the array) which must be stored in the first

component of the environment. Each of the abstract channels returned will have been mapped to
L under the second component of the environment, and any such abstract channels are suitable.

The function newtim takes in a natural number sequence (indicating the array structure of the
required set of timers), collection of abstract timers and environment and returns a sequence of
abstract timers; the structure of the sequence returned will match that suggested by the natural
number sequence. None of the abstract timers returned will previously have been allocated,
and none will be contained within the collection of abstract timers, but no further restrictions on

those which can result need be imposed.

The function newport takes in a natural number sequence, collection of abstract ports, primi-
tive or array type and environment and returns a pair consisting of a sequence of abstract ports
(mirroring the desired array structure) and the type intended for each of the ports being declared.
None of the tokens returned by the function will have been previously allocated, and none will
be contained within the collection of abstract ports, but any such tokens will do.

In the clauses which follow it will often be necessary to evaluate expressions consisting solely
of constants or operations thereon. The expression evaluation semantic function has already been
defined and adequately carries out this task. However, before applying this function, a state is
required regardless of whether it is ever examined. When a state is required, but cannot sensibly
be accessed, Uerr will be used. This state maps every location to error, and hence any expression
dependent on it evaluates to .Le.

Below are given the semantic clauses, using the functions above as necessary. Several of the
clauses contain one or more conditions 'provided. . .' which exclude error conditions. When
these conditions are not met, the value of the clause is .L.

V([ed...[en] _
rXJ,...,XmJp - !

p ifm=O

Um[Al /xd. ..[Am /Xm] if m> 0 A Um rH
.L otherwise

where £v [el]puerr = {31A... A £v [en]pU,rr = {3n A
new (({31, . .. , {3n},T) P = A1 A .. . A
new «{31,... ,{3n}, T) Um-l = Am A
markaddr Al P = Ul A... A markaddr Am Um-l = Um

provided £v [el]PUerr E INT A... A £v [en]puerr E INT A
T E ({BOOL} U INTEGER uREAL)

In the clause above the function markaddr has been used. This function takes in a location and an

environment and returns the environment which results when all the addresses referred to by the
location have been mapped to.!!. The definition is dependent on the particular implementation
of the store under consideration and is hence not included.

Declaration of variables involves allocation of suitable locations and relevant marking of the
addresses which are to be used to store part of the values of the variables. Errors result if T is not

a primitive data type. The type of each of the variables being declared is calculated before any
updating of the first component of the environment is done since otherwise array dimensions

3.2 The semantics 41

containing the names of any of the variables being declared would not be given the correct
treatment.

V([el]'" [en] CHANOF
[h].. .(fn'] T Xl," .,xm]p

V([elJ.. .[en] CHANOF Tl ::
[](fl]'" !!n'] T2 Xl,,,,, xm]p

V[[el]" .[en] CHANOF

ANY Xl," .,xm]p

........

!

P ifm=O
Um[YSJ/XJ!... [YSm/xm] if m > 0 AUm;l.L
.L otherwise

where £v ledpu,rr = {31A... A£v [enlpuerr = {3n A

£v h]PUerr = 11 A... A £v [In' PUerr = 1n' A

{3 = ({31,. . ., {3n} A 1 = (11t..., 1n') A

newchan {3 (-y, T) P = YSl A ... A

newchan {3 (-y, T) Um-l = YSm A

markchans (-y,T) YSl P = Ul A... A

markchans (-y, T) YSm Um-l = Um

provided £v
l
edpuerr E INT A... A£v [enlpuerr E INT A

£v h]puerr E INT A... A £v [In' PUerr E INT A
T E ({BOOL} U INTEGER UREAL)

{

P ifm=O
Um[ySJ/xd.. .[ysm/xm] if m> 0 AUm;l.L
.L otherwise

where £v

(el]PUerr ~ {31 A... A £v [en]PUerr ~ {3n A
£ v h) pu err - 11 A . . . A £ v [In'] pu err - 1n' A
{3= ({31,...,{3n) A1 = (11,...,1n') A
newchan{3(Tl ::(-y,T2»P= YSl A...A
newchan {3(Tl :: (-y,T2» Um-l = YSmA
markchans(Tl :: (-y,T2» YSl P = Ul A... A
markchans(Tl :: (-y,T2» YSmUm-l = Um

provided £v (edpuerr E INT A ... A £v len

J

puerr E INT A

£v /1]PUerr E INT A ... A £v In' PUerr E INT A
Tl E INTEGER A

T2 E ({BOOL} U INTEGERu REAL)

!

P ifm=O

Um[YSl /Xl]'" [ysm/xm] if m > 0 A Um;l.L
.L otherwise

where £v [edpuerr = {31A... A £v [en]puerr = {3nA
{3= ({31," ., {3n}A
newchan {3ANYP = YSl A ... A
newchan {3ANY Um-l = YSm A
markchans ANY YSl P = Ul A ... A

markchans ANY YSm Um-l = Um

provided £ v h] pu err E INT A .. . A £ v[en] pu err E INT

42 3 DENOTATIONAL SEMANTICS

{

p ifm=O

I.'m[ysI/xd.. .[ysm/xm] if m> 0 A I.'m ;t.L
.L otherwise

where Ev [edp<7err =!31 A... A Ev [en]p<7 =!3n A
!3 = (!31," . , !3n) A
newchan!3 (P

/

X

/

) P =YSl A... A
newchan !3(p x) I.'m-l = YSmA
markchans(p x) YSl P = 1.'1A... A
markchans(p x) YSmI.'m-l = I.'m

provided Ev [edp<7errE INT A... AEv [en]p<7errE IN'!' A
p[x] E PROT

In the four clauses above the function markchanshas been used.

markchanspOP = P
markchans P (X: xs) P = markchans P xs (p[(p,.0/x])

markchansP (ys: yss) P = markchans P YSS (markchans P ys p)

Declaration of channels involves two stages. First, suitable sequences of abstract channels
are found for each identifier and marked in the environment with the protocol of the channels
being declared and the token.!!. Second, the environment which results is altered to associate
each of the identifiers with its corresponding sequence of abstract channels.

[

{

p ifm=O
V [ed...[en] .

TIME] = p[ysI/xd. ,,[YSm/Xm] If m> 0 A p;H
R Xl,"" Xm P.L otherwise

where Ev [el]P<7err=!31 A... A Ev [en]p<7'TT =!3n A
!3 = (!31,.. . , !3m) A
newtim!3 0 P = YSl A... A newtim!3 Am-l P = YSm A
elements YSl = Al A ... A elements YSm-l = Am-l

provided E v[e d p<7err E IN'!' A .. . A E v[en] P<7 E INT

Declaration of timers involves updating the environment in order to associate suitable ab-
stract timers with each of the identifiers. Care must be taken avoid allocating the same abstract
timer to more than one identifier being declared at the same time; newtim achieves this.

[

{

p ifm=O
V [ed. ..[en] PORTOF .

(J] It]] = P[(tl' YSl)/Xl]" .[(tm, YSm)/xm] If m> 0 Ap;H
1 ... n' T Xl,"" Xm P .L otherwise

where Ev

(el]p<7 = !31 A ... AEvlem]p<7 = !3nA
Ev Idp<7 =1'1A... AEv In']P<7 = 1'n' A
!3= (!31,...,!3n)A1'= (")'1,...,1'n')A
newport!3 0 h, T) P = (tl, YSl) A . . . A
newport!3 Am-l (1',T) P = (tm, YSm)A
elements YSl = Al A... Aelements YSm-l = Am-l

provided Ev (el]p<7 E INT A... AEvlenlp<7.TTE INT A

Ev 11]P<7errE INT A... A Ev In' p<7errE INT A
T E ({BOOL} u INTEGER UREAL)

V[[ed.. .[en] CHANOF
XXI,...,Xm]p

3.2 Thesemantics 43

Declaration of ports involves updating the environment in order to associate suitable abstract

ports with each identifier. As with declaration of timers, allocating the same abstract ports to
distinct identifiers must be avoided; newport deals with this situation.

V [PROTOCOLX IS led .. .[en]T]p = p[«(!3J,' ..!3n), T»)/X]

where Ev [el]P<7.TT=!31 A... A Ev [en]p<7'TT =!3n

provided Ev (el)p<7errE INT A... A
Even P<7'TTE INT A
T E ({BOOL} U INTEGERu REAL)

Identifiers may be declared to represent named protocols in occam. Above the case of simple

protocols not consisting of variable length arrays is dealt with.

V [PROTOCOLX IS Tl :: [] led ...[en] Tt]p = p[(Tl:: «!3J,...!3n),Tt»/X]
where Ev

(
el

)p<7'TT=!31 A ...A
Even P<7'TT= !3n

provided Ev (
el

)p<7errE INT A... A
Even P<7'TTE INT A
Tl E INTEGER A
Tt E ({BOOL} U INTEGERu REAL)

The extension to simple protocols consisting of variable length arrays poses no problems.

V [PROTOCOLX IS PI ;Pt; ...;Pn]P = p[YSl...YSn/X]
where YSl = (V (PROTOCOL x IS Pl)P)(

X

)
A... A

YSn= (V PROTOCOLx IS Pn p) x

provided V (PROTOCOL x IS Pl)P;t.L A... A
V PROTOCOLx IS Pn P;t.L

The most convenient method of storing a sequential protocol in the environment is to treat
each part of the protocol separately and then concatenate the relevant contents of the resulting
environments.

V[PROTOCOL x IS CASE
(tagl ;pd,...,(tagn;Pn)]P = pILI/tag 1] .. .[Ln/tagn][(Ll YSl,"', Ln YSn)/ x]

where (V (PROTOCOL x ISPl)P)(
X

)=YSl A...A
(V PROTOCOLx IS Pn p) X = YSn

provided V (PROTOCOL x IS Pl)P;t.L A... A
V PROTOCOL x IS Pn P;t.L

Care must be taken when storing a variant protocol in the environment. The first step is the
allocation of a disjoint set of tags to the identifiers which appear at the start of each option of the
protocol. The particular choice of tags is unimportant, and for this reason a sequence (without
repetitions) of the elements of TAG {(Ll' Lt,..., Ln,.. .)) has been assumed. Once tags have been
allocated, the next step is to calculate the protocols corresponding to each clause of the variant
protocol. Finally, the necessary changes to the environment are combined. The tags which prefix
each clause of a variant protocol declaration must be distinct; this is a consequence of the rules
of occam.

~J

44 3 DENOTATIONAL SEMANTICS

The only clauses left to define concern procedure or function declarations. While considering
such clauses it will be assumed, for clarity, that the identifiers which appear as fonnal parameters

of procedures or functions do not appear outwith their associated procedure or function. Such
a restriction can be verified during type-checking and failure to satisfy it can, if necessary, be
rectified by simple textual renaming of the identifiers. In giving a semantic definition to such
objects, the aim is to model the effect of copying the procedure or function body into the process
at the point of call, sequentially replacing each of the formal parameters by its corresponding
actual parameter. The substitution required (both for value and for reference parameters) closely
resembles that necessary to deal with the abbreviation present in occam, and for this reason the
decision has been taken to mention explicitly the dependence on the semantic function which
deals with abbreviation. Although slightly unconventional, it is felt that within the context of

this paper the increased clarity warranted such action.

V [PROCq(IF)=P]p = p[1I"/q] ' () >'Y.>'u'.C [p](£[Y][IF](PI.W,UL)U')U'where 11"= A UV,UL .

Above is the clause governing procedure declarations. Free variables appearing within the
procedure body are statically bound to the name used in the procedure declaration. The binding
of identifiers used for any procedure call is that of the environment at the point of declaration;
the second and third environment components used, however, are those from the point of call,

since this affords protection against illegal channel or variable use by parallel processes. Within
the above clause the auxiliary function £ appears. This function updates the environment in
order to correctly associate the formal and actual parameters.

£[VI,...,Vn][,pI,...,,pn]PU =

P if n = 0
£(ye,..", Ym,Ve,..., vn]

[VAL(Xe,..., Xm,,pe,..., ,pn](A[VAL XI IS YI]pu)u
if n > O/l,pl =VAL (Xl,' " ., Xm /I

VI =YI,''',Ym/lm > 1 /I
A[VAL Xl IS ydpu;H

£ [Ve,.. ., Vn][,pe,.. ., ,pn](A [VALX IS y]pu)u
if n > O/l,pl =VAL (X /I VI = Y /I

A[VAL X IS y]pu ~1.
£[Ye,..., Ym,ve,..., vn]

[(xe,. .., Xm,,pe,.. ., ,pn](A[Xl IS ydPu)u
if n > 0 /I ,pI =(Xl' .. ., Xm/I

VI = Y1, .. . , Ym /I m > 1 /I
A[XI IS ydpu ~1.

£ [ve,.. ",vn] [,pe,..., ,pn](A[x IS y]pu)u
if n > O/l,pl = (X /I VI = Y /I

A[x IS y]pu ~1.
1. otherwise

Within the function £, errors are captured by the use of the semantic function A.

V[TI,...,TmFUNCTIONg(IF)=e]p = p[1I"/g)
where 11"= >'(UVd.>L). >.Y. >'u'.

Ev.. [e](£[Y] [IF](PI, £lV, UL)U')U'

3.2 Thesemantics 45

Declaring functions whose body consists of a VALOFcommand is very similar to procedure
declaration; the only noticeable difference is that the semantic function Ev" is applied instead of
the semantic function C.

V[TI"'" Tm FUNCTION
g(IF)ISe"e.,...,e..]p = p[1I"/ g)

where 11"= >'(UV,UL). >.Y. >'u'.
(Ev.. [ed (£ [Y] [IF](PI. £lV,£lL)U')U').. .

(Ev.. [en](£IY] [IF](PI,£lv, UL)U')U')

The declaration of functions whose body does not consist of a VALOF command proceeds in the

expected way. The items to be returned need not be atomic expressions.

(4) THE FUNCTION A Several clauses contain one or more conditions 'provided. ".' which
exclude error conditions. As before failure to meet these conditions causes the result 1. to be
returned.

A[VAL X IS e]pu = (restrict e p)[,8/x)

where Ev [e](augment p)u = ,8

provided E v [e](augment p)u ~ Le /I contents e n varabbr p = 0

Here augment p is the environment whose second and third components are identical to those
of p and whose first component is formed by replacing each occurrence of (!!, A, >') by>'. Use of
this environment allows value abbreviations to make reference to unabbreviated components of

arrays even if the array is the subject of a current variable abbreviation. Collating the addresses
which are the subject of a current variable abbreviation is the task of varabbr, defined

varabbr p = U{A I 3>' E LOe. (!!, A, >')E PI}

The above clause deals with the abbreviation of an expression. On first glance it may appear
that this situation should be covered by the semantic function V, but the dependence on the state

u makes this impossible. Within the definition, the auxiliary functions restrict and contents have
been used. The purpose of restrict, whose definition is not difficult but depends on the particular
implementation of the store under consideration, is to mark all addresses of any variable upon
whose value the expression depends with 1:. This prevents the values of any such variables
being altered within the scope of the abbreviation. The function restrict is strict. The function
contents, again implementation dependent and hence not defined, returns all addresses which
must be accessed in order to evaluate the expression. This facilitates verifying that no variable-
abbreviated addresses are referred to within a value abbreviation. In a value abbreviation the

new identifier is associated with a constant, the value of the constant being that of the expression
at the point of the abbreviation (and maintained throughout the scope of the abbreviation by the

restriction imposed on the environment by the function restrict).

A[VAL (X IS e]pu = A[VAL X IS e]pu

When considering only type correct programs, the inclusion of a specifier within a value abbre-
viation is superfluous. In order to give a semantic definition to the clause, the specifier is first
omitted.

'

46 3 DENOTATlONAL SEMANTICS

{

p[(a,t)/x][(!!,A,(a,t»/y] ifP(Y] E LOC"p[y] = (a,t)"
A[x IS y]pu = p a] E {.!:,.!!}"abodey = A

.L otherwise

This clause carries out the abbreviation of a variable. The new identifier is associated with the

location holding the value of the variable to be abbreviated, and the environment is further

updated to prevent the abbreviated variable being used within the scope of the abbreviation.

Calculation C?fthe addresses holding the contents of the variable is left to the auxiliary function
abode; the definition of this function is implementation dependent and hence not included. Since
the value remains at the same position in the store (although the name by which it is referred to

is altered, its contents are left untouched), no difference in treatment is necessary regardless of
whether it was permitted to write to the variable.

A[x IS edef])pu

(restrict ef {!)[(a, t)/x][(.Q., A, (a, t))/y]

iU:[edef])pu E LOC" £ [edef])pu = (a, t)"
p[a] E {.!:,.!!}"A[x IS eI]pu = {!

(restrict ef {!)[(a, t)/ x][(!!,A U B, (a', t'))/y]
if £

l

edef])PUE (!! x p(ADDR) x LOC)"
£ edef] pu = (!!,B,(a,t»"p[a] E {.!:,.!!}"
p y] = (!!, B', (a', t'» " B = B' "
An B = 0" A[x IS el](p[(a', t')/y])u = {!

.L otherwise

whereabode(edef]) =A"name el =Y

provided £h [ef])pu E LOC + (!! x p(ADDR) x LOC)

When abbreviating a component of an array. there are several complications which need to be
dealt with.

Firstly, it is necessary to ensure that any variables which appear in subscript expressions
are prevented from altering within the scope of the abbreviation; for this purpose the function
restrict is used.

Secondly, it is the name of the identifier (and not merely a component of it) which must be
marked as abbreviated within the environment; extracting the name of an identifier from an
expression can be achieved by use of the function name, which (assuming that x represents an
identifier) is defined

name x

name (eded)

name [eFROM el FOR ef]

x
name e1
name e

Thirdly, a list of the addresses whose contents have been abbreviated must be kept in order
to ensure that further abbreviations refer to disjoint parts of the array. The function abodewhich
appears within the clause dealing with variable abbreviation can be used to adequately carry
out the technical aspect of this task; the required list of addresses is precisely the union of those
previously the subject of an abbreviation (and hence already stored in the environment) plus
those pickedout byabode.

l

3.2 The semantics 47

A[x IS [eFROM
el FOR ef])pu

(restrict el (restrict et P»[(a, t)/ x H(!!, A, (a, t))/ y]
if £

l

[e FROM el FOR et])pu E LOC "
£ [e FROMel FORef] pu = (a, t)"
P a] E fr,.!!}"A [x IS e]pu = {!

(restrict el (restrict et p))[(a, t)/x][(!!, A UB, (a', t'»/y]
if £

l

leFROM el FOR ef])pu E (!! x p(ADDR) x LOC)"
£ [e FROM el FOR et] pu = (!!,B, (a, t»"
p a] E {r,.!!}"p[y] = (!!,B',(a',t'))" B = B'"
An B = 0" A[x IS e](p[(a', t')/y])u = {!

.L otherwise

where abode ([e FROM el FOR et]) =A"name e =y

provided £He FROMel FORefJ]pu E LOC +
(!! x p(ADDR) x LOC)

Slices of an array may also be abbreviated. Again the clause makes use of the functions restrict,
name and abode to prevent variables appearing in subscripts altering, to find the identifier asso-
ciated with the component of an array and to calculate the addresses holding the contents of the
slice being abbreviated.

A[, x IS y]pu =A[x IS y]pu

A[, x IS edef])pu =A[x IS eI!ef])pu

A[, x IS [e FROMel FORef])pu =A[x IS [e FROMel FORef])pu

As with value abbreviations, the inclusion of a specifier within a variable abbreviations is redun-
dant.

A [VAL ffd . . . ffn] r

x RETYPES e) pu

1

(restrictep)~(lookupu'(a,("Ih...,"In),r)))/x] ,
If£v[e]pu =,8 ",8 E (,81...,8m),r)"

r' = r",81 X ... X,8m= "11X ... x "In"
new «,8h'" ,,8m), r') p = (a, t)"
u' = update u (a, t),8

.L otherwise

where £v [h]pu ="11 " ..." £v [fn]Pu = "In

provided £v (h]pu E INT" ..." £v[fn]Pu E INT"
£v e]pu =F.Le

The only expression retyping which is to be modelled is the reshaping of arrays. Producing a
suitable clause for the semantic function is made more difficult by the detailed checking which
must be carried out to verify that a given retype makes sense. The extra detail and possible
ambiguity which allowing unquantified dimensions ([]Iwould introduce was not considered
warranted for the very restricted form of retyping modelled, and so it is insisted that every array
dimension contains an integer expression.

'-

-y

48 3 DENOTATIONAL SEMANTICS

A([/J)... fin) T
X RETYPESy] pO' {

p[(a, \(il,' . ., in), T»/X)[(~, A, (a, (/31" . . ,/3m)T')}/yj
If pry] E LOC /\ pry] = (a,«(/3t....,/3m),T» /\

p[a] E {!:,.!!}/\ T' = T /\ /31X... X/3m= il X... x in
.1 otherwise

where [Y [11] pO'=il /\ .../\ [Y [In]PO'= in /\ abodey =A

provided [y [It] pO'E1NT /\ ... /\ [y [In]pO'E TIff

A[fl/]" .fin]T

X RETYPES ede,J]pO'
{

U[(a,«(il,".,in),T»/x)
if U[x] = (a, «(/31" .., /3m),T'») /\

T' = T /\ /31 X ... X /3m= il X ... X in

.1 otherwise

where [v[1t] pO'= il /\ ... /\ [v[ln]PO' = in /\
A[x IS ede,J]pO' = U

provided [y [11] pO'E INT /\ ... /\ [y [In]pO'E INT /\
A[x IS ede,J]pO';H

{

U[(a,«(il"'im),T»/X]

if U[x] = (a, «(/31.. ./3m),T'» /\

T'=T/\/31 X ",x/3m =il X"'Xin
.1 otherwise

where [v[/I] pO' = il /\ ... /\ [v[ln]PO' = in /\

A[x IS [e FROM el. FOR e,J]pO' = U

provided [v[1t] pO' E INT /\ .. . /\ [v[ln] pO' E 1NT /\
A[x IS [e FROM el FOR e,J]pO'~.1

As previously explained, the implementation dependent nature of RETYPES means that a
generic semantic definition cannot be given. However, for one particular use of the constructor
(reshaping of arrays), a semantic definition can be useful. Because of the similarity between

retyping and abbreviation, the semantic definition given for retyping draws heavily on that of
abbreviation. As with expression retyping, it is insisted that every array dimension contains an
integer expression.

A[fld.. .fin) T X RETYPES

[e FROM el FOR e,J]pO'

(5) FUNCTION AND PROCEDURE CALLS Having given the clauses for procedure and
function declarations, the form of the domain NP is known. NP consists of two distinct parts,
one to deal with procedures and the other to deal with functions:

NP = NPROC + NFUNCT

NPROC = (VSTATUS x LSTATUS) _ Exp'_ S_ Q

NFUNCT = (VSTATUS x LSTATUS) - Exp'- S- (v&}r
It is beneficial to make a clear distinction between the two components of the domain since it
allows one to determine in which way to act immediately given a particular identifier.

l

3.2 The semantics 49

With the semantic function V having been defined, it is now possible to complete the defini-
tions of C and [by giving the clauses for procedure and function calls respectively.

C[q(Y)]pO' = p[q) (py,PL)[r]0'
providedp[q) E NPROC

Having carefully designed the information to be stored in the environment when dealing with
procedure declarations, the semantic clause to deal with procedure calls does not provide any dif-
ficulties. All that is necessary is to supply the relevant arguments (second and third environment
components from the point of call, actual parameters of the call and current store).

£[g(Y)]pO' = p[g](PY,PL)[r]O'
provided p[g] E NFUNCT

As expected, the treatment of function calls is very similar to that of procedure calls; the only
difference is the part of the domain NP in which the information associated with the identifier
lies. There is no difference in the treatment of function calls where the function body consists
of a VALOF command and those where the function returns an expression list; the difference in
behaviour is dealt with by the clauses of V.

This completes the definition of the main semantic functions. A denotational semantics has
now been given for occam (as far as the model allows). The semantics gives an interesting

illustration of how the domain Q defined in the first part of the paper can be used to model
concurrent languages, by means of reference to a specific example.

Throughout the construction of the model, simplifications which could be made due either to
the structure of occam or to decisions not to attempt to model particular aspects of the language
were not made. This, along with the power of the failures/divergences model on which it
was based, means that the model (sometimes with minor modifications) can cope with many
possible extensions to the language. These include more sophisticated value domains, recursive
procedure definitions, and additional operators on processes.

It is also possible to refine the model used in order to provide finer distinctions between
processes. Within the semantic function [, forinstance, no attempt has been made to differentiate
between detectable and non-detectable errors. If such distinctions are desirable, the form of the

domain of expressible values, E, can be changed (along with relevant changes to a small number
of clauses of the semantic functions [and V) without necessitating major alterations to the other
clauses.

I ~.

50 4 CONCLUSIONS 4.2 Applications 51

4 Conclusions .The relationships of the semantics of occam and CSP have been exploited several times,
including investigations of deadlock (28) and fault-tolerance (5). The existence of a model-
checking program for CSP (10) is thus exploitable rather directly on occam systems.

.occam has been used by several researchers, for example [24, 9), as the input to systems
which compile programs to silicon.

.Major use has been made within INMOS of occam as a language for describing and
designing VLSI. A variety of formal techniques have been used in connection with this
work by INMOS and by Formal Systems (Europe), as described, for example, in (27) and
(21).

.One major component of the previous item, and entirely attributable to the clean semantics
of occam, was the development of "ghosting" tools which permit the automatic trans-
formation of an occam program to one which computes symbolic representations of the

values in chosen types.

Work is currently taking place on a number of topics, including:.Translation between CSP and occam. It will be possible to discover subsets of the two
notations where there is a close correspondence, allowing translation either way, and both
at the Timed and Un timed levels. Transformational techniques should help in getting the

source language into the correct form for this automated translation.

.It is hoped to exploit the above in a methodology for developing real-time occam processes
via Tuned CSP.

.Wood (31) is developing a refinement calculus similar to that of Morgan's [23] for languages
akin to occam, using the semantic models presented in this paper.

4.1 The structure of the semantics

In the course of constructing a mathematical model and calculating the denotational semantics,

many decisions were made. It is useful to examine some of these, incorporating a brief study of
how certain of the restrictions imposed might have been relaxed.

Most of the major decisions arose during the construction of the mathematical model; once
the model is fixed, the semantics of most constructs are determined by their roles in the language.
Several factors influence the choice of model - it should be at the right level of abstraction; it

should have sufficient power to specify desired correctness properties; it should be able to cope
with all the constructs of the language; it should be as simple, elegant and understandable as

possible.

It is possible to do without 'states' in the model. Variables can be replaced by suitable
processes which run in parallel with the 'main' process for the duration of their scope; reading
from and writing to variables is then equivalent to communicating with the relevant process.

Because one can use a 'purely parallel' semantic model, the task of constructing a suitable model
is greatly simplified. The definitions of the semantic functions, however, become more complex
and the balance does not seem right. Many of the advantages gained from similar experience
with other languages are lost; in particular, the semantics of a 'purely sequential' occam fragment

no longer bears much resemblance to a relation on states. Nevertheless, on programs without
free variables, this approach would lead to a semantics congruent to that given in this paper.

The model Q was devised with occam processes in mind. One of the restrictions of occam is
that it is not possible for a process to include 'selective inputs' (for example a process cannot be
prepared to input any even integer on channel X but refuse all other inputs over that channel). If
such behaviour were permitted then it would not be sufficient to include solely channel names in
the refusal sets of a process. A semantics for occam which were capable of modelling processes
including 'selective inputs' (and which was congruent to that given) could be constructed using
(aP)" x 'P(aP U {,I}) rather than (aP)" x 'P(CHAN U {,I}) to represent the failures of P.

The techniques employed in this paper to incorporate the model N into Q would work
for other alternatives to the failures model. A number of examples of this are currently under
examination, including models for Tuned CSP.

Once the main model was decided, the majority of the semantic definitions were fixed. Some

decisions, however, were still made. An example of such a decision was the way in which
communications over ports and timers were modelled.

Acknowledgements

Thanks must be given to Bryan Scattergood whose advice helped clear up several misunder-
standings concerning technicalities of the language. Thanks are also due to INMOS Limited
for the provision of the syntax from which the appendix was adapted. This work was carried
out with support from INMOS Limited, ESPRIT Project 2701: PUMA, the US Office of Naval
Research and SERC.

4.2 Applications

There has already been much successful work based around the clean mathematical theory
underlying occam. The language was designed with the need for a clean semantics in mind,
and all of this work has taken advantage, directly or indirectly, of the semantics. The threads of
existing formal work include the following:

.The denotational semantics of proto-occam (26) were used to derive a congruent algebraic
semantics (16), which subsequently became the basis of the occam Transformation System
(11). This in turn was used in a variety of ways, most notably in the design of the TBOO
Floating-Point Unit (18).

'

"

52

A Syntactic summary

A SYNTACTICSUMMARY

conditional (P)

This appendix contains a syntactic summary of the language considered in this paper. It is closely
related to the occam2 languagesummary of [201,but as previously mentioned is augmented to
allow parallel declarations in the language. The syntactic objects are listed in alphabetical order.

WithiI:I the syntactic summary, op appears. This is the set of operators on expressions which
are available within the language; differences between implementations mean that its form
cannot be described more concretely.

Following each syntactic object, the means by which the object is referred to during the
course of the paper is included within parenthesis. Throughout the paper the same symbol is
used to refer to several different classes of object; more precise distinctions than those present
were not deemed necessary and their omission led to more consise descriptions without causing
the introduction of any ambiguity.

actual (Y)

alternation (P)

alternative (A)

declaration (.:1)

element

expression

ALT (alternative!,. . ., alternativen)
ALT identifier =

expression! FOR expression! alternative

PRI ALT (alternative! , . . . , alternativen)
PRI ALT identifier =
expression! FOR expression! alternative

input process
boolean & input process
boolean & SKIP process
alternation

channel? CASE (variant! , . . . , variantn)
boolean&
channel? CASE (variant! , . . . ,variantn)
declaration: alternative

specification: alternative digit (0 or . . .or 9)

expression element (e or f)

'character'

element exponent (e or f)

boolean process
conditional
declaration: chioce

specification : choice

53

IF (choice!,. . ., choicen)
IF identifier =

expression! FOR expression! choice

[expression d.. .[expressionnJ primitive. type
identifier! , . . ., identifierm

[expression!] . . .[expressionn] CHAN OF

[expression!]... [expressionn,] primitive. type
identifier!,. . ., identifierm

[expression d.. .[expressionn] CHANOF
primitive.type! :: [J[expression!]

. . . [expressionn,]
primitive. type! identifier!,. . ., identifierm

[expression!] . . . [expressionn] CHAN OF
ANY identifier!,. . ., identifierm

[expression!] . . . [expressionn] CHAN OF

identifier identifier!,. . ., identifierm
[expression!] . . . [expressionn] TIMER

identifier!,. . ., identifierm
[expression!]. . .[expressionn]PORT OF
[expression!]... [expressionn,] primitive. type

identifier!, . . ., identifierm
PROTOCOL identifier IS

protocol! ; . . . ; protocoln
PROTOCOL identifier IS

CASE (tag! ; protocol!), . . ., (tagn ; protocoln)
PROC procedure.name(formal!,

. . . ,formaln) = process

primitive. type! ,.. .primitive.typen FUNCTION
function.name(formal!,... ,formaln) = valof
primitive. type! ,.. .primitive.typen FUNCTION
function.name(formal!,... ,formaln) IS

expression! , . . ., expressionm

0111213141516171819

identifier
element [expression]
[element FROM expression! FORexpression!]

+digit! .. . digitn

-digit! ... digitn

I '-'

boolean (b)

byte (eor f)

channel (c)

choice (C)

.

54

expression

formal

(eor f)

(1Ji)

function.name (g)

input

hex.digit (0 or. . .or F)

(P)

input.expression

integer

loop

(ie)

(e or f)

(P)

A SYNTACTIC SUMMARY

op expression
expression I AND expression:
expressionl OR expression:
expression I op expression:
MOSTPOS primitive. type
MOSTNEG primitive. type
primitive. type argument
primitive. type ROUNDargument
primitive. type TRUNC argument
argument

operand

specifier identifierl , . . ., identifier..
VAL specifier identifierl, . . ., identifier..

identifier
option

digit IA IB I CID IElF

channel? input. expression I;
. . .; input. expression..

channel? CASE tag
channel? CASE tag; input.expressionl;

. . .; input. expression..

output.expression

parallel

timer? variable

timer? AFTER expression
port? variable

variable
variable :: variable

digit I . . . digit..

#hex.digitl ... hex.digit..

WHILE boolean process

parallel. declaration

55

(e or f) TRUE
FALSE

integer
byte

integer(primitive. type)
byte(primitive.type)
real(primitive.type)
string
element
table

(expression)
(valof)
function.name(expression I ,. . ., expression..)

(0) (expressionl'. . ., expression..) process
ELSE process
declaration: option
specification: option

(oe) expression
expressionl :: expression:

(P) PAR (Processl'. . ., process..)
PAR identifier =

expression I FOR expression: process
PAR (parallel.declarationl : process I ,

. . . ,parallel.declaration.. : process..)
PAR identifier =
expressionl FOR expression:

parallel. declaration : process

PRI PAR (process I , . . . ,process..)
PRI PAR identifier =

expression I FOR expression: process
PRI PAR (parallel.declarationl : Processl,

. . ., parallel.declaration.. : process..)
PRI PAR identifier =

expression I FOR expression:
parallel. declaration : process

placed .parallel

(U) USING (OWNCHANchannel1,. . ., channel..,
INCHAN channel1,..., channel..,
OUTCHAN channell' . . ., channel",
VAR variable I , . . ., variable..)

I '-'

1'-

11'

56 A SYNTACTIC SUMMARY 'S7

placed.parallel (P) = PLACED PAR (placed .parallell , protocol (p) = [expressionl] . .. [expressionn] primitive. type

. .., placed.paralleln) I primitive.typel :: [][expressiond
PLACED PAR identifier = .., [expressionn]primitive. type!
expressionl FORexpression! placed.parallel
PROCESSORexpression process real (e or f) = digitl' oodigitm.digitl" .digitn
PROCESSORexpression I digitl ... digitm.digitl... digitnE exponent

parallel.declaration : process

port (c) element selection (P) = CASEexpression (optionl,' . ., optionn)=

primitive. type (r) BOOL sequence (P) = SEQ (Processl,' . ., processn)=
BYTE I SEQ identifier =
INT expressionl FOR expression! process

INT16
INT32

I

specification (e) = specifier identifier IS element
INT64 I identifier IS element
REAL32 I VALspecifier identifier IS expression
REAL64 I VALidentifier IS expression

type identifier RETYPESelement

procedure. name (q) = identifier

J

I VALtype identifier RETYPESexpression

process (P) = SKIP specifier «) = primitive. type

STOP I [] specifier

PLACEidentifier ATexpression: process
I [e]specifier

variable := expression
variablel, . . ., variablen := I string (e or f) = [bytel,"" byten]

expression 1, . . . , expressionm
channel! output.expressionl;

I

table (e or f) = [expressionl, . . ., expressionn]
. . .; output.expressionn I table[expression]

channel! tag I [tableFROM expressionl FORexpression!]
channel! tag; output.expressionl;

. . .; output.expressionn
Iport! expression tag (tag) = identifier

channel? CASE(variantl, . . ., variantn)
input I timer (c) = element
sequence
conditional

,
(eloo.enr) primitive. typeselection type =

loop I [expression]type

parallel
alternation valof (e or f) = VALOFprocess
procedure.name(actuall," ., actualn) RESULTexpressionl ,. . ., expressionn
declaration: process I declaration: valof
specification: process I specification: valof

variable (e or f) = element

..

58

variant

A SYNTACTIC SUMMARY

(T) tag process
tag; input.expressiont;

.. .; input. expression. process
declaration: variant
specification: variant

REFERENCES 59

References

(I) Apt, KR., Formal justification of a proof system for communicating sequential processes,]ACM
Vol. 30, No. 1 Uan 1983) ppI97-216.

(2) Apt, KR., Francez N., and de Roever, W.P., A proof system for communicating sequential
processes, Trans. Prog. Lang. Syst. 2,3 Uuly 1980) pp359-385.

(3J Barrett, G., Formal methods applied to a floating point number system, Tech. Report PRG-58,
Oxford University Programming Research Group, 1987.

(4J Barrett, G., The semantics and implementation of occam, D.Phil. thesis, Oxford University,
1989.

(5J Brock, NA, and]ackson, D.M., Formal VerifU:ation of a Fault Tolerant Computer.

(6J Brookes, S.D., A model for communicating sequential processes, D.Phil. thesis, Oxford Univer-
sity. 1983.

(7) Brookes, S.D., Hoare, CAR., and Roscoe, A W., A theory of communicating sequential processes,
]ACM 31, 3 Uuly 1984) pp560-599.

(8J Brookes, S.D., and Roscoe, AW., An improved failures model for communicating processes,
Camegie-Mel1on Tech. Report 1984.

(9) Brunvand, E.L., and Starkey, M., An integroted environment for the design and simulation of
self-timed systems, in VLSI 91,1991, pp4a.2.1-4a.2.10.

(lD) Formal Systems (Europe) Ltd., Failures Divergence Refinement: Users Man~l and Thtorial,
1992.

(11) Goldsmith, M.H, The Oxford Occam Transformation System (Version 0.1) (Draft user documen-
tation), PRG, Oxford.

(12J Hoare, CAR., A model for communicating sequential processes, Tech. Report PRG-22, Oxford

University Programming Research Group, 1981.

(13) Hoare, CAR., Communicating sequential processes, CACM 21, 8 (August 1978) pp666-676.

(14) Hoare, CAR., Communicating sequential processes, Prentice-Hall International, 1985.

(15J Hoare, CAR., and Roscoe, AW., Programs as executable predicates, Proceedings of FGCS 84,
North-Hol1and 1984.

(16J Hoare, CAR., and Roscoe, AW., The laws of occam programming, Tech. Report PRG-53,
Oxford University Programming Research Group, 1986.

(17J IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, New York, 1985.

(18J INMOS Ltd., Communicating Process Architectures, Prentice-Hall International, 1988.

(19J INMOS Ltd., The occam Programming Man~l, Prentice-HalI International, 1984.

(20J INMOS Ltd., The occam 2 Reference Man~l, Prentice-Hall International, 1988.

I -Y'

60 REFERENCES

[21] May. D., Barrett, G., and Shepherd, D., Designing chips that work, in Mechanized Reasoning
and Hardware Design, Prentice-HaIl International, 1992.

[22] Milne, R.E., and Strachey, c., A theory of programming language semantics, Chapman Hall,
London, and Wiley, New York, 1976.

[23] Morgan, c.c., Programming from Specifications, Prentice-HaJI InternationaJ, 1990.

[24] Page, I., and Luk, W., Compiling occam into Field Programmable Gate Arrays, FPGAs, Proceed-
ings of InternationaJ Workshop on Field Programmable Logic and Applications, Oxford,
1991, pp271-283.

[25] Roscoe, AW., A mathematical theory of communicating processes,D.Phil. thesis, Oxford Uni-
versity, 1982.

[26] Roscoe, A W., Denotational semantics for occam, Springer- Verlag LNCS 197, 1985.

[27] Roscoe, AW., occam in the specification and verification of microprocessors, in Mechanized
Reasoning and Hardware Design, Prentice-HaIl International, 1992.

[28] Roscoe, AW., Routing messages through networks: an exercise in deodlock avoidance, Proceedings
of OUGTM 7, Grenoble, 1987.

[29] Stoy, J.E., Denotational semantics, MIT Press 1977.

[30] Tennent, R.D. Principles of programming languages, Prentice-HaIl InternationaJ, 1981.

[31] Wood, K.R., A Pragmatic Basis for the Formal Development of Distributed Systems, Proc. of
7th InternationaJ Workshop on Software Specification and Design, IEEE Computer Society
Press (to appear), 1993.

[32] Zhou Chaochen, The consistency of the calculus of total correctness for communicating processes,
Tech. Report PRG-26, Oxford University Programming Research Group, 1982.

.....

