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ABSTRACT

A computer program is identified with the
etrongest predicate describing every relevant
observation that can be made of the behaviour
of a computer executing that program. A prog-
ramming language i= & subset of logical and
mathematical notations, which is so restricled
that products described in the lanpguage can be
sutomatically implemented on a computer, The
notations enjoy a number of elegant algebraic
properties, which can be used for optimising
program efficiency. Thie philosophy has  been
taken by INMDS Ltd. as a besis for the desipn
of the occam programming language, a language
which is implemented on networks of communiea—
ting processors {transputers), and so may con-
tribute to the objectives of the Fifth genera—
tion computer project. For simplicity we des-
cribe the types of cbservation required for a
version of occam without timing or priority,
and give a detalled semantice for a subset of
occan .

1 INTRODUCTION

It is the aim of the natural scientizt ko
discover methematical theories, formally expr—
eszed a8 predicates describing the  relevant
observations that can be made of some physical
system. A physical system is fully defined by
the strongest predicate which deseribes it
Such predicates contain fres variables, standing
for values determined by observation, for exa—
mple "a® for acceleration, " for wvelosity,
g for time, ete.

The aim of the engineer is complementary
to that of the scientist, He starts with a
specification, formally expressible as a prad-
ieate deseribing the desired observable behav—
iour of a system or product not yet in exist-
enca. Then, with a limited set of tools and
materiale, within a limited timescale and bud-
get, he must design and construct a product
which meets that specification. The product
iz fullydefined by the strongest specification
which it meets.

For example, an electronic amplifier may
be required to amplify its input veltage by a
facter of ten. A condition of its correct

working is that the input voltage must be held
in the range O to 1 volt. Furthermore, a mar—
gin of error of up to one velt iz allowed on
the output., This informal specification Mmay be
formalised as a predicate, with free variables

?i standing for the ith input veltage

v; standing for the ith ocutput voltage,
Then the specification is

Wi {igg 208V, €1) = |1.rj’— mquI % 1.

Table 1: Two amplifiers

| v L v | v
1] .5 5 1| .5 5
2] .a 5 2| .4
3 5 a4 3 .5 a
4| .3 5 4 [1.3 | 13
5| .8 & 5| .6 6
6| .7 7 & | W7 987

(a) 15}

Table 1 {a) and (b} show the first six
cbeervations made of two different emplifiers.
The firat observation made of each amplifier
shows it working with perfect accuracy at +he
mid point of its range. The second observetien
iz only just within the margin of tolerance. On
the third ebservation the amplifier reveals its
"non-determinism": it does not alwsys give the
same output veltage for the same input voltage.
On the fourth cbservation something goes WEORE .
In the case of 4(a) it is the amplifier thathas
gone wrong, because the five wolt output is
cutside the permitted margin of error. Even if
every subsequent obzervation 'ig satisfactory,
this product has not met its specification, and
should be roturned to its maker. In the case
ef 5(bl, it is the observer who ie at fault in
supplying an excessive input voltage of 1.3,
As a result, the amplifier breaks, and its sub-
sequent behaviour is entirely unconstrained: no
matter what it doea, it continues to meet its
original specification. As a result, on the
sixth observation, it is the observer who ret—
urns to meet his Maker.



The serious point of this exasple is to
illustrate the usefulness of material implica-—
tion (=) in a specification. The consequent
of the implication describes the desired rela—
tionship between the inputs and the outputs of
the system. The antecedent describes the ass—
umptions which muet be satisfied by the inputs
of the system in order for it to comtinue wor-
king. If the assumptions are falsified, +the
product may break, and its subsequent (but not
its previous) behaviour may be wholly arbit-
rary. Evan if it seema for a while to work,
it is completely worthless, unreliable and even

dangerous.

A computer programmer is an epgineer whose
main materials are the notaticns end structures
of his programming langusge. A program is &
detailed specification of the behaviour of &
computer executing that program. Consaquently,
A program can be abastractly identified with a
predicate describing all relevant observations
which may be made of this behaviour. This id-
entification assigna a meaning to the program
(Floyd 1957), and a semantics to the progranming
language in which it is expressed.

Thegse philosophical remarks lead to the
main thesis of This paper, namely that programs
are axecutable predicstea. The aqualification
"executable" is important: consider, for exam-—
ple, any predicate which is wholly uneatisfia—
ble {e.g. the predicate false). This cannot
carrespond to a program. IF it did, the beha-
visur of & computer axecuting that program would
be wholly uncbservable! . Conseguently, every
observation of that behaviour would satisfy
every specification] A product which satisfies
every nesd is known as a miracle, Since such
& product is in prineciple unobgervable, phil-
osophical considerations lead us to suppose
that it does not exist. Certainily anynotation
in which such a miracle could be cxpressed would
nelt bhe an executable prograsming language.
There are also cbvious practical reasons for
énsuring that all predicates expressible as
programs are ln some sense computable. Later,
wa will give a precise definition of the notion
of "executable predicate” for ocoam.

The design of a programming notation requ-
ires a preliminary selection of what are the
relevant observable phenomena, and a choice of
free variables to denote them. A meaning must
then be given to the primitive components of
the language, and te the operators which comsp-
ose programs from amaller subprogrema.  Ideal-
1y, the=ze sperators should have pleasant alg-
ebraic properties, which permit proof - of the
identity of two programs whenever they are
indistinguishable by observation. The achiev-
anant of these idesls is far from easy: so the
language introduced in the next section for
illustrative purposss has been kept wvery
almple.
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2 A SINPLE PROGRAMMING LANGUAGE

The first and szimplest predicate which is
expressible in our simple programming language
iz the predicate "true". If this iz the sitr—
ongest specification of a product, then there
in np constraint whatever on the behavieur or
misbehaviour of the product. The only cust-
omer who is certain to be setisfied with this
product is one who would be satisfied by any-
thing. Thus the program "true" is the meost
ugelesz of all producte, just aem a tavtology is
the most useless of scientific theories.

NHow the most useless of computer programs
is one that immediately goes into an infinite
loop or recursion. SBuch a program is clearly
broken or unstable, and can satisfy only the
most undemanding customer. Thum we identify
the infinitely looping program with the predi-
ecates "trus", This may be a controversial dee—
igion; but in practice the ascription of a
meaning to a divergent process is arbltrary,
because no programmér will -ever deliberately
wankt to write a program which runs any risk of
looping forever. Sinee the faet that aprogram
ig leooping infinitely is not finitely observ-
a@ble, no cbaservation of such a program can be
completed in a finite time. Thus no cbserver
can exclude any observation of such a program.
This iz the reason for its identification with
l‘lmll-

2.1 MNendeterminism

The first and simplest operator of our
programaing language is disjunction. If P and
@ are programs, the program (Fwv Q) behaves eit-
her like P or like @, There is no way of cont—
rolling or predicting the choliee between P and |
Qi the choice ig arbitrary or nondeterministic,
All that is known is that each observation of -
(Pv Q) must be an observation of F or of § ar
of both.

The algebraic properties of disjunction
are very familiar: it is idempotent, symmetric,
agsociative, etc. Furthermore, it is distrib—
utive (through disjunction)

Pvi{QwvR) = (Pv@)v (PvR)
and strict in the sense that
Puvtrue = +trusv P = trus.

This means that if either P or Q may break then
so may {(Pv Q). To an engineer, a product that
may break is as bad me one that doss, because
you can never rely on Lt.

2.2 Assignment

Let x be a list of distinet variables, and
let @ be a list of the same number of express-
ions, and let P(x)} be a program describing the
behaviour of a process as a function of the
initial waluos of x. Then we defins

fer—x—P(x))] & Ple)
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i.0., the result of sisultanecusly substitut-
ing each variable in the list x by the corres-—
ponding expression in the list e, making sure
that freo varisbles of e remaln free after sub-
atitution. We assume for simplieity that all
expressions of ¢ are defined for all values of
the variables they contain. e may thus be re-
gnrded am n Eotal function of these variables.

The predicate (er»—x—3P{x)) describes the
behaviour of a process which first simultaneoc—
usly assigns the walues of e to the varisbles
% and then behaves like P(x). The 4initial
apsignment is an internal action, and ig there-
fore whelly unobservable. In more conventional
programming notatien this would ba written

x=0; Flx).

The reason for the infix notation j—x—%
ias that this permits elegant expression of alg-
abraic properties. Considered as an infix op-
erator between arbitrary formulae, »—x—p is
appociative with unit x:

(Xp—x—3P) = P
[ey=%—3x] = &
{er—x—r(fi—u—3P)) = ((er—x—F)f-u-3P)

Furthermore, if ¥ iz a list of variables, none
af which stcur in the list x,

{gymx—3P} = (e,y—x,y—3F).

These laws are sufficient to reduce nested sub-—
stitutions to a2 single simultanecus substitu-
tien for a list containing all the wvarinbles
invelved. Such reductions lesad to greater
symmetry and abstractness in the appearance
of predicates.

Assignment also distributes overw :
ler—x—3{Pv @)) = (e)—x—3P)v (er—x—30)

2.3 Conditicnal

Let b be a propositicnal formule, i.¢., &
aingle expressien which for all values of its
free variables yields either "true" ar "false".
Let P and § ba programs. Define

Far @ = ({bnPlv (AbAGYH

This is a process that behaves like P if b is
initially true and like Q if b is initially
false. The conventionel programming notatien
for a condltional 1B

if b then P elsa Q.

Agnin, we make use of an infix notation (+bk]
bocause this permits elegant expression of alg-
ebraic properties such as idempotence, assoc—
tativity and distributivity, ¢.g.

a) [F th% P} = P

b] P 4b* (Q+b* R) = (P £b* Q) b} R
= PEb* R

) P ib* {(pvR) = (P bt @)v (P #bt R)
d) (PvQ) €b2> R = (P £b* R)¥ {Q £b¥ R)

el P ib% (0 tet B) = (P £b% Q) kex (P ¢by R)
£) {(P&by @) tc» R = {P €ex B) tby {Q ccr R}
g) PFibdck dr @ = [P eb> Q) fep (P adr Q)
h) P ¢truet Q=P

i) F {falged @ = @

jl  true 4by felse = b .

These laws are simple tautologies. In fact,
ag is shown in (Hoare 19856), laws (@,bB,e,..F)
provide a gemplete axlomatisation of the prop-
oziticnal ealeunlus. This is because avery
propositional formula may be written in terms
of the ternary cperater & % and the logical
conmtants “true” and "false", and because these
laws allow us to reduce each formula toa normal
form. If conditional expressions aresimilarly
defined, they interact with assignment accord-
ing to the law

{er—x—3P) {b} (F3—x—3P)
w ({e 4by £he—n—P).

2.4 Recursion

Let X ba & prodicate variasble, and let
F(X) be a formula constructed from X using any
number of nested assignments, conditionals and
digjunctions, then we introduce the notation

pi.F(X)

to describe the behaviour of & program which
behaves like F(X)}, and whenaver it encountere
¥, eontinues by behaving like pX.FIX) again.
Its meaning may be explained a= a solution for
X in the equation

¥ = F(x).

If there are several sclutiens, uX.F(X) denotes
the one which is thes nondeterministic union of
them all. Such solutions exist because all the
cperators ln F are continuous in the sensa that
if PoyPoyessssPpesss B A BEQUENCE of prog—

4] .
rang h that we have \":..t?iu o Pi}. then

G[‘u’i.F‘l}l = "n‘i.G{Pil
for all such operators G. We can thus define
JE.F(K) @¥n3 0. F {true)
where FO(X) = X
and F'H(x) = F(F(X)) for each n 20.
Recursion 1s itself a continuous operater,
so the use of nested recursions such as
pX FluY.GIX,Y))

is permissible. Continuity is of great impor-
tance if we are to define processes recursiv—
ely. If-= (negation) were in cur programming
language, the notation pX.nX would be meaning-
leas. Throughout the rest of thism paper we
will take care to ensure that all the cperators
we dafine are continuous.



2.5 Example

Let ¥ be a predicate variable. Let =¥,
q,r be wariables taking natural number values.
Then

¥20 2 ({x+y),(xmody)r—a,r—Y)

describes the behaviour of a process  which
first assigns to g the quotient of x and y,
and to r the remainder of the division, and
thern behaves like Y. However, if the value of
¥ is zero, then the process cen do anything at
all. (We assume that the expressions x +y and
xmod y are still defined, to comply with our
earlier assumption. Heowewver the above program
does not have to compute these values.)

The following iz a different way of writ-
ing the same predicate

i0,%x3q,r—2), where
2 =pX.dlg+l, r-yir-aq,r—X) £ 25% ¥).

This method is very suggestive of a progoam
that computes the guotient and remainder by the
method of successive subtraction. In more con-—
ventienal notations, the program would be writ-
ten

g i=90; ri=¥x;
while r 3 y do

begin qi=q+l; ri=r=y end;
Y

This ie an example of the insight reguired
+o understand how programs cen be regarded as
executable predicates.

3 OCCAN

Oceam is a language designed for the des-
cription of processes which communicate on
named channels with their enviromment while
they are running. We can therefore record and
obgerve at any time the sequence of communica—
tions in which the process has engaged. Let us
use the name "tr" to stand for thiscbservation.
it is a sequence which for each process st-
arts empty. Every time the process communic—
gtes some message m on & channel with name <,
the pair {m.c) is sppended to the end of “tr",
glving trfem.ce.

Oceam is also used for the description of
sequential processes, which cperate on the in-
itial values of their variables x,¥,.., @and on
termination pass on the final values. We will
denote the finel values by adding a + to the
variable name:

%, ¥ ceeae o

The undecorated variable will stand for the in-
itial walue. We assume that both initial and
final walues are observable.

We alse assume that we can cbserve if a
process is terminated, or if it is held up
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waiting for an external communication. If it
ig neither then an cbserver will wait until it
comes into one of these states (i.e., Tinishes
its internal computation). We therefore intr-
oduce a variable "st" (ztatus) which takes as
values "waiting” or "terminated". There is a
third possibility, however. A pirocess might
never reach one of these two states however
long ite obeerver walted, because it was loop-
ing and performing an unbroken infinite seque-
noe of internal actions. We say that such a
process is diverging, and introduce a third
value, "divergent", which "st" may take.

Finally, when the process 1s waiting, we
agsume we can obgerve on which channels the
envirenment of the process is attempting (un-
successfully) to communicate with it. This set
of channels is known as a refusal of the proc-—
ess, and is depnoted by the variable "ref".

With each process, we associate the alph-
abet of nemes which can be used in the descri-
ption of that procese. Ignoring the problem
of subscripted names, these can be determined
by the context of the declarations withinwhich
the process is written. For the purpose of
illustration, we will assume that the names are

Y variables
[ input channel
¢ output channel.

3,1 Atomic processes

The simplest of all processes in occem is
S8TOP. This process never inputs, never out-
puts, and never terminates. The trace of ite
activity is forever empty. The predicate which
degcribes ite behaviour is wvery simple

BTOF & gt = waiting A Tt = <>

where <> denotes the empty trace. Note that
this predicate says nothing about the final
wvalues of the wariables. This is because the
process never terminates, so there are no final
values. It also =ays nothing about refusals,
because STOP refuses communication on any sub-
get of the channels comnected to it. There is
no need to say anything about an  observation
that can take any value whatsoever. STOF is
thus a process which forever thinks it is wait-
ing for external communication, but never act-
ually accepts one.

The next simplest process is SKIP, which
communlcates nothing, but terminates . success—
fully with the final values of all wvariables
egqual to their intial values. Since it does
not communicate, it never waits, and its trace
remains empty.

BEIP & tr = <>, st = terminated
aox=x'n ¥y=y".

Nothing is said about the refusals here since
SKIP can never be "waiting".
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Let e be an expression in occcam; then the
assignment iz aimply defined

% ima 2 (ep— x—3S5KIF)

&8 may be verified by carrying out the substit-
ution specified on the right hand side. In gen—
eral, if F ias an arbitrary predicate deseribing
the behaviour of a process, then

x:i=eg; P 2 {er—x—3F),

The next simple process in occam is output
of the value of an expression e on an output
channel c. Thers ere twe obsarvations which
can be made of this process, one before the out-
put and one after. Before the cutputoccurs, the
trace is empty, the process is waiting, and it
refuses te communicate on any channel other than
¢. After the cutput, the trace containe the si-
ngle communication c.e, the process terminates,
and the final wvalues of all varisbles are equal
to the initiel wvalues.

ele & (st = waiting & o fref) ttr=<>3%
{h"ﬂ= c.e hitr! —tr-3 SKIP))

where tr. is the firset communication recorded
in tr and tr' is the rest of tr after removal of
the first communication. Thus

tr = d:ru>"l;r'

whenever tr # <=,

The behaviour of input is very similar, ex-
cept that the wvalue input is not known in adva-
nce; it is equal to the finsl wvalue of the rel-
evant variable.

0?x 2 (et = weiting A b d€ref) &tr = <3
[chanitrﬂl =h A
cunt{trn],'trf —, tr—y SHIE)

where chen and cont are functions giving resp-
ectively the cheannel and message componente of
a communication.

As in the case of assignment, both of these
definitions gonerzlise to arbitrary saguels:

cle; P & (st = weiting a ¢ gref) £tr=<> 3
[tr-D= c.e At —tr— Pl

B?x; P & (st = waiting m béref) ftr=<>
(ehan(tr,) = b &
cﬁnt{tru}, 'y —x, tr— P},

3.2 Simple constructors

We have now described each of the atomic
processes of occcam in terms of predicates desc-
ribing their behavicur. We now turn to methods
of compoeing these simple processes info proce-—
sses with more elaborate behaviour. The aimpl-
est conatructor is the conditional, which  we
will wrdte in the manner introduced in the pre—
vious eection. (The usual wersion of occam
uses a tabulated notation

IF
b
F
hl
=

but it is easy toc translate either sort of con-
ditional to the other.)

The while locp in occcam is alsowritten in
tabulated form

WHILE b

P

but we will use the notation

b * P.
Thia may be defined by recursicn

b *F & pX ((FiX)<b2> SKIP).

This definition uses the sequential composition
operator, which we have not yet defined in pen—
eral. Newvertheless, the cases we have defined
permit us to give ocur first example, a process
which coples every message input on channel c by
ocutputting it on channel b.

COPY = +true * (oPx; blx)
= Yn.P
n
where Pu = trues
and P = o?x; blx; P
r+l n

By induction one can prove
B2 (#r<n) = (st = waiting »
({trfb = trfe & cf ref)w
(Fm.trfc = {tr[bixm>n by ref))

where trfb (tr restricted to b) is the sequence
of messages whose passage along b is recordedin
tr. For example <c.l,b.5,c.2>[c = <1,2>, The
implication above cannot be reversed, for when
nzl the predicate. on the right hand side above
ie not executable, This iz because it allows
traces (for example many of length 22n) some
of whose prefixes (initisl subsequences} are not
allowed. Clearly any process which executed a
trace would previously have executed every pre—
fix. We will return to this issue later.

The division example can also be writtenin
cur version of occam:
g=0; pi= x;
(rzy) * (Qi=gq+1; r i=r -y},
Anether induction easily proves this equal to
¥20 = tr =< 5, st = terminated »
= xhy=yrgiex+yaris xmod y.
Az a final exemple note that
true * SKIF = true

80 the leoping process is indeed identified with
"true" as stated earlier.



3.3 Algsbraic lawg

One of the mein advantages of uaing mathe-
matical prédicates as computar programs is that
it becomes possible to reason mathesatically
about programs and their specifications. To
makea this sasy, it im very desirable that the
programs should cbey reasonably simple and mem-
orable slgébraic laws. These laws can be used
to transform a clear and .sisple specification
into a program which iz more efficient, hut is
otherwise guaranteed %o be correct with respact
to itz specification (i.e. implies ita specifi-
cation). So in this section we give the laws
which govern the occam constructs which we met
in the previous sectiona.

The laws governing the conditional are the
samc as those in section 2.3, with the addition
of

{ble; P) £k (BIf; Q)
= bl{e tk? £); (P<ks Q)

le?x; PY £ ky (e?x:Q) = % [P 4kt )
provided ® does not appear in K.

Theres are several laws governing programs
ef the form x :=e; PB:

¥ := e} BTOP = BSTOP

x:i=@; ¢!lf = clleyr—x=af); x:=e

xi=8; ey = e x:=8 vprovided x & y
ond y does not appear in e

x 1= @&} ¢fx = efx

x :=e;(P £b3 §) = {{x :=e; P} ter—x—3b3

(x immy Q).

The * (WHILE) comstructor is a fixed point
of its defining equation:

b*P = (P; {b* P} ¢b$ SKIP.

The above laws are fll readily proved from
the earlier definition, with the exception of the
final ona, which needs the continuity of the as
yat undefined operator ;. In addition, it is
straightforward to show that each case of ; that
we have met thus far is distributive (over v) in
its second argument, but that b * P need not ba

From here on we will place as much emphasia
on an cperator's laws as on its semantic defin-
itien. In (Hoere and Roscoe 1985) we will show
how these laws can be shown to completely define
the semantios of ocecmm, bacause they oon be used
to transform every WHILE-free program into nor-
mal fora.

3.4 Sequential composition

We have seen several cases of the sequent-
ial composition operator (;), and will now see
how 1t is defined in general. ({Once again, we
choose the binary infix operator : rather than
the tabular SEQ form of standard ccoam.)
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Sequential composition shares many of the
properties of relational composition; it is ss-
sooiative, distributes through v, and has SKIP
sz ite unit:

P; (@;R) = (P;Q); R

P; (QwR) = (P Qv (F;R)
(PvQli B = (P; RIVI{Q:R)
SKIP; P = P;SEIP = P.

It has left zero trum, and distributes ¢o the
right over £b% :

true; P = trus
{(PEb* Q); R = (P;R) €b>» (Q; B} .

It must alase satisfy all the loaws in
gaction.

the last

But there is another important property.
As we have asen, in order for recursion to work
properly it must be continuous. In other words
it must distribute through ascending chains of
predicates:

F;I["I"n.ﬂn} = ¥n.(P; ':l'n]
Mn.l}n}; P = "i’n.[Qn: B}
whenever Vn.{%d Q).

The required definition, somewhat more com=
pléx that those we have seen up to now, ie

P; @ = (P a st # tersinated) v
(Ju,t,%,§. tr=82t A
5,%, ¥, terminated—tr, x st — P
& R —tr X,y —9Q) Vv
divergent y—5t— P .

The first cleuse says that any observation of P
in which it has not terminated ig also an cbse-
rvation of P;Q. The second clause deals with
the case whare P terminatez (alter trace s) and
passes on the final values of its variables to
Q. The final clavse, neceseary to make true a
left zero, says that if P can diverge on trace
tr then so can P;Q.

3.5 Further constructs

The two remaining cccam constructors are
a parallel eonstructor and an alternative cons-
trugtor. We will again use a binary infix ope-
rator (||} rather that the standard PAR. The
alphabets of processes combined in parallel sust
ba disjoint except that any input channel of
ong process can be an output channel of the ot--
her',  When thie happens the channel connects the
two processes, so that all comsmunications on it
are participated in by both processes and hidden
from the environment. MNote that the fact that
alphabets are disejoint implies the - ebmence of
shared variables.

The parallel coperator is symmetric, assoc-
iative, has unit SKIP and zero true, and distr-
ibutes over v,
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Blle = qllp
Plliellz) = {(EllQ} || R
SKIP|[P = P provided the process' alphabats

are disjoint
true||P = true
PlltevR) = {P|lQ}v {P||R)

The following are = few laws governing the
relationship of the parallel operator withother
constructs. Thelr applicability is often Limi-
ted by the disjoint alphabats condition: the
lawa below are universally valid as transforsa-
tions from left to right, but only conditional-
ly walid in reversa.

(x:=e; P)IQ = x:=e; (P|lQ)
(cle: PH|{c?x; Q) = x:me; (P||Q)

{b?y; P)|l(e7x: @) = b?y; (Pll(e?%;Q))
if b is not in the alphabat of the right
hand sido, but ¢ is an output channal of
tha left hand side

Pllta£bsy B) = (PIQ) b3 (E{lR)

The definition of || as an operator onpre-
dicates, which is of the same order of difficu-
lty ms that of ;, is left as an exercisec to the
interested reader.

The constructor ALT (a Fform whichwe retain)
takes a5 arguments not processes, but guorded
procosses. A guard g may take any of the forms

SKIP b & SKIP
e?x b& cfx
ola b& cle

where b is a boolean expression. A guarded
process has the form g P, whére g is aguard and
P i & process. The process

.ﬁLT{glPl....., E‘npn]
walts until one of the g, becomes ready, after

which it behaves like thét Pi’ prefixed by the
communication of By if any.

SKIP is always ready, and b & SKIP is re—
gdy if b evaluates to true. o%x and cle become
ready when the process' environment is willing
to carry out the respective cossunication. The
addition of a boolean to a communication guard
puta an additional restricticn on when it can
become ready: b & e?x is only ready when b is
true and the environsent is willing to cutputon
channel c. (There are no output guards in sta-
ndard oscam. We have added them because they
improve the language's =lgebraic properties.)

The following are a few of the many algebr—
gic properties that ALT enjeys. It is indepen-
dent of the order of its arguments, and further-
mOre

a) ALT() = STOP
b} aLT{G.G.G]I. !-'-i:Gn] = uTtG.G].,"'IﬂTI}

al !.LT[glPl.”.,,gnFn]: Q= ALT{glFI:Q:---EnPh;Q}
d} ALT(b &g F, Gl...”.Gn] =
ALT(g P, Gl...,,r&n}a; b} AL'I'{IJI....,G“:I
e) ALT{g P} = g;P if g is SKIP, e?x or cle
1) (e?x;®)|[(dle;q) = ,
aLT{c?x (P||(dle:Q)), dle ((c7x;P}1IQ})

provided ¢ is not in the alphabet of the
right hand side, and d is not in the al-
phabet of tha left hand side.

g) P 3 ALT{SHIP F,Gl.”.,ﬁnl
Laws (a) and (d) allow us to give a formal
definition of ALT only in the case of non-empty

arpument lists and guards with no boolean comp-
onent. When none of the g, is sKIp Bnd n# O,

&

ALT{glFl,..”,gnPnJ &

':'9'1'1?1'“ - gn-,Pn} LEr =<3} i_'g_l;Plv..vgn;P;
e

ALT(SKIP P,,..,SKIP Pn.glul....gnu.} &

PyV aea¥ PV ttr-!ﬂnlal:ﬁlv ara W gm:um}}
where the final disjunct is false if m=0.

The final types of conatruct we will cons-

ider are declarations of variebles and of chan-
nala. The effect of a channel declaration

chan c: P

ig to add channel c,undirected, to the alphabet
of P. Its direction [input or output) within P
will be altered by parallel operators. A vari-
able declaration is defined

var x:P & (Fx,x%P)] A
[diverpgent>—at-—>F ¥V
st «waiting 2 x=x*)

where % is included in the alphsbet of P, and
the second clause is omitted if x is not in the
external alphebet. This definition would neecd
to be changed if our language included progedu—
res, because of the problems of static binding.

There are many elgebraie laws satisfied by
declaration, of which the following ere asample.

provided x does not appear
free in P

var x: P = var y: {y»—x—>PF) provided y
does not appear free in P

var x: P = P

var x: (F;Q) = (var x: P};Q provided x
does not sppear free in @

3.6 Safety conditiona

We have elready chserved that not all pre-
dicates are executable. For example the "mirs—
cla" false which satisfies all specifications,
and the predicates in section 3.2 which allowed
tracea impoasible by virtue of ~some of thair
prefixes being banned. In this section we will



discover a nusber of "safety conditiona" which
& predicate must satiefy to be exscutable, and
poatulate that a predicate is executable if it
gatisfies these conditions.

Recall that each process is =2 predicate
whose free variables are (at most) st, tr, ref,
and x, %% for x drawn from some Tinite set of
variables (part of the process' slphabet). For
simplicity we will assume that the “messages"
et over which x,%x” range is finite. From now
on x will represent all of the initial wvalues
of a process' varisbles, and x“all of the final
values.

Our first safebty condition is "abaence of
miracles". It says that whatever initial val-
ues we give to a process' variables, there ie
some behaviour possible. )

81 wx.Jst, tr,r&i‘.&'r.P

The second condition deals with the prob-
lem we met in 3.2. It says that if s*t is a
posgible trace of P {for some particular init—
lalisation of its variables), then so is a.

§2 3st,ref,x-. (8*tr—tr—sP)
2 Fst,ref,x?. (8 —tr —P)

The third condition says that Pran always
refuse any subset of what it is already refus-
ing. (If it is waiting, and refusing set ref,
then it would alsoc be refusing ¥rraf.)

53 F = (¥Nref)y—ref—sP

The fourth condition says that if P is
waiting and refusing set ref, then it will =lso
refuse refufc), where ¢ is any channel on wh-
ieh it can never communicate after its current
trace.

S4 B o adm,ref,at,x/ . (tr e mb y—tr—s P)
% refulc)r—ref—3Pp

The final three conditions tell us about
procesges in the three statuses. A waiting
process tells us nothing about the final values
of its variables; a terminated process tells us
nothing about refusals; a diverging process is
identified with true.

86  y, waiting)—xtot—=3F & vwaltingy—at—p
88 X,terminated >—ref,st-5P & terminatedi—st—3p
57 divergent—st =P

% e,st,ref,x ftr* s »—tr —3F)

We define & predicate to be executable if
and only if it satisfies 51-7. (Of course, a
different language would require different sa—
faty conditions.} The predicate. defined by
ecach occam program is executable in this sense.
The class of executable predicates has several
interesting properties, but we do not have
apace to dimcuss them here. It has  much  in
common with the semantic model for occcam given
in (Roscoe 1885).
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4 CONCLUSIONS

This paper has made the claim that o comp-
uter program can be identified with the strong-
est predicate describing all relevant observat-
iong of a computer executing the program. The
claim is illuatrated by the formal definiticns
of the notations of a eimplified wversion of
occam. We hope that it will also be justified
by its promised practical benefits for the spec-
ification and development of reliable programs.
Some ressong for optimlsm on this point are dis-
cussed in (Hoare 1984): possible methods are
described for achieving

P % 8
where F is a program and S is a ppecification.

A second aim ef this paper has been +to
demongtrate the slegance of the occam  language
{INMOS Ltd, 1884). We have shown how ite conz—
tructs can be given simple but expressive sem-
antics in our formalism, and how there are many
useful laws relating occam terms. The approach
in this paper is one of =meveral complementery
ways of giving a semantice to oecam. A rather
more standard denctational semantics is given
in (Regcoe 1984). In (Moare and Roscoe 1984) we
will construct a normal form for finite (WHILE-
free) oscam programs. Two programs are semant-
ically equivalent if and only if they have the
same norsal form. Because we can trensfora ev—
ery finite program to normal form using algebr—
aic laws, these laws completely characterise
the semanties of cecam. (&n infinitary rule is
used to deal with non-finite programs.)
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