
High Assurance Software

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

875

Advisory Board: W. Brauer D. Gries J. Stoer

Non-interference through Determinism

A. W. Roscoe :I. C. P. Woodcock L. Wulf

Oxford University Computing Laboratory
Parks Road, Wolfson Building, Oxford OX1 3QD, U K

Abstrac t . The standard approach to the specification of a secure sys-
tem is to present a (usually state-based) abstract security model sep-
arately from the specification of the system's functional requirements,
and establishing a correspondence between the two specifications. This
complex treatment has resulted in development methods distinct from
those usually advocated for general applications.
We provide a novel and intellectually satisfying formulation of security
properties in a process algebraic framework, and show that these .are
preserved under refinement. We relate the results to a more familiar
state-based (Z) specification methodology. There are efficient algorithms
for verifying our security properties using model checking.

Keywords
Security, Non-interference, Formal methods, Process algebra,

Determinism, Automatic verification

1 I n t r o d u c t i o n

Security requirements of a computer system are regarded as critical properties
that demand the availability of mechanisms which control or protect programs
and data. Three issues in particular are related to the area of computer security:
(i) confidentiality (secrecy), the problem of protecting information from unautho-
rised disclosure; (ii) integT~ty, the protection of information from unauthorised
modification or destruction; and (iii) denial of service, the avoidance of major
reduction in system performance.

It is possible to regard these security concerns as properties of information
flow within the system and base a specification of security on the absence of
undesired flows. The notion of non-interference captures the idea tha t no infor-
mation can flow from one user to another if the system view of the second is
completely unaffected by actions of the first. We introduce a novel characterisa-
tion of non-interference based on the notion of deterministic views. This elegant
formulation of non-interference has, unlike others described in the literature, the
proper ty of preserving security requirements under refinement.

The development of a secure system entails the construction of an abst ract
security model in addition to the specification of the system's functional require-
ments. The model is intended to capture abstractly the complete set of security
requirements, which are derived from the system's (possibly informal) security

34

policy, and which form part of the total system requirements. Depending on the
level of rigour required during development, it is necessary to either informally
establish or formally prove a correspondence between the functional specification
and the abstract model.

The construction of the security model has been at tempted [Co194, Jon92]
with the same methods as functional specifications, such as the Z notation [Spi92].
We suggest that there are good reasons to employ a process algebraic notation
for this purpose. Firstly, it is not the individual operations of the system, but
the system as a whole that is to satisfy critical properties. Secondly, insecurity
is introduced not by a single operation in isolation but by certain sequences of
operations. And thirdly, it turns out to be possible to express non-interference
constraints directly on a process representation of the system, thus eliminating
the need for constructing a separate abstract model.

We therefore propose a process-algebraic approach (based on CSP [Hoa85])
to the specification of security properties. In particular the property of a pro-
cess being deterministic is fundamental to the conditions we introduce for non-
interference. This property can be verified using standard algorithms on finite-
state systems, such as those implemented in the CSP model checker FDR 1 [Ros94a].

This paper is organised as follows. The following section defines the non-
interference conditions and illustrates some of their properties. The conditions
are generalised to systems with multiple users. Section 3 presents a functional
specification of a file systems that is intended to maintain confidential infor-
mation. A systematic way of mapping this specification into process algebra is
given in section 4, and the particular conditions for non-interference in the pro-
cess model are clearly stated. The security flaw of the system is detected by
automatic verification in section 5, and it is shown how the system can be made
secure. Finally, we present our conclusions in section 6.

2 Non-interference and Determin i sm

There have been a number of CSP formulations of non-interference, such as Ja-
cob's use of inference functions [Jac90]. None of these approaches is based on the
notion of determinism, which has only recently been recognised as the fundamen-
tal concept underlying the various definitions of non-interference [Ros94b]. This
section will introduce some formal definitions of non-interference and analyse
their properties.

2.1 N o t a t i o n a n d C o n v e n t i o n s

We will employ the failures-divergences model of CSP, in which a process is
characterised by its failures and its divergences. We use the following notation
to refer to various observations of a process P.

1FDR (Failures Divergence Refinement) is a product of Formal Systems (Eu-
rope) Ltd., 3 Alfred St., Oxford OX1 3EH, UK.

35

a (P) alphabet set of events process P can engage in
TRACES(P) traces set of finite sequences of events P can engage in

FAreS(P) failures set of pairs (s, X) such that P can refuse
events X after trace s

DIvs(P) divergences set of traces after which P may behave chaotically

The semantics of the failures-divergences model of CSP is detailed in (e. g.)
[Hoa85]. Of particular relevance below will be the concealment and interleaving
operators whose formal semantics are given in the Appendix. Informally, P \ A
is a process that behaves like P except that occurrences of events in set A
are concealed. A concealed event occurs automatically and instantaneously as
soon as it can, without being observed or controlled by the environment of
the process. The [[[interleaving operator models asynchronous composition of
processes: P [[[Q is a process whose trace forms an arbitrary interleaving of
events from processes P and Q. An event can be refused by the composition
only if both component processes refuse it.

We will interpret some processes U~ as users interacting with another process
P called the system. A user U of P is defined by its interface to the system.
For the moment, it is assumed that the system has only two users UH and UL,
with a (P) = H U L and H N L = 0. This latter condition of disjoint set of ac-
tions available to the users is convenient since it prohibits direct communication
between users by synchronisation.

These simplifying assumptions will be relaxed in section 2.5 where the non-
interference conditions will be generalised to multi-user systems.

2 . 2 A b s t r a c t i n g E v e n t s

In a system with two u s e r s U H and UL we will typically want one user (UL) to
be completely unaware of what the other (UH) does. In other words, the system
view of UL should be unaffected by the presence or absence of events user UH
might engage in. If this is the case, we say that there is no flow of information
from UH to UL, or that UH is non-interfering with UL.

In a sense, it is necessary to abstract away from the actual or potential
behaviour of UH and ensure that this abstraction cannot affect how the system
appears to ~fL. There are severM ways this abstraction may be captured, e.g.
by concealing or obscuring Ug's actions. In CSP, the concealment of events
is expressed using the \ hiding operator, and the obscuring of events may be
achieved using]11 interleaving.

It is well-known that conceahnent and interleaving of events may introduce
non-determinism [Hoa85, pp. 113 and 120]. A non-deterministic system may,
under the same conditions, behave differently towards its environment, due to
some internal, uncontrollable choice. Though this choice cannot be observed
directly, its external effects can, and thus provide clues on abstracted activities.
The result of this abstraction will be that Ug's actions become choices which,
though not visibly directly to UL, may resolve non-determinism that is. The
absence of non-determinism under abstraction of Ug's behaviour guarantees the
absence of undesired information flow towards UL.

36

The notion of determinism is formally defined as follows. A process P is
deterministic if it is free of divergence, and if it never has a choice whether to
refuse an event it can engage in.

P det r DIvs(P) = O A (tr^(a) E TRACES(P) =~ (tr, {a)) ~ FAILS(P))

A process lacking this property is non-deterministic; under identical environ-
mental conditions it may behave differently in an unpredictable fashion.

2.3 Non- in ter ference Condi t ions

The conditions we propose are all based on the absence of non-determinism after
the abstraction of "high-security" events, and are justified in detail in [Ros94b].
Concealment is the simplest method of abstracting from events in CSP which
can serve as a first a t tempt to define the notion of non-interference.

Def in i t ion 1. A system P is said to be eagerly secure with respect to tt if
concealment of H events does not introduce non-determinism, i.e.

E - S e c H (P) r (P \ H) det

The terminology will become clear later on. Another way of abstracting events in
CSP is not by concealing but by obscuring their occurrence. This can be achieved
using another process

RUNH = x : H --~ RUNg

and combining it with the original system P by interleaving as P III RUNg.
This process can never refuse an H event since R UNH is always prepared to

contribute one in arbitrary places. An outside observer will not be able to tell
whether such an action came originally from P or from RUNg. As above, we
postulate .that abstraction by interleaving does not introduce non-determinism.

Def in i t ion 2. A system P is said to be lazily secure with respect to H if obscur-
ing H events by interleaving does not introduce non-determinism, i.e.

L - S e c H (P) r (P III RUNg) det

Example 1. Consider the system P with H = {hl, h~} and L = {l} defined

P = (h l P) [] l--, P)

The system repeatedly offers a choice of a single H event followed by action I.
Concealing H permits UL to engage in l whenever desired independently of the
(hidden) choice between hi and h~. Hence Un's view of P \ H is deterministic
and E - S e c H (P) holds. We may doubt, however, whether the system should
really be regarded as secure because the availability of ! depends on the previous
occurrence of an H action. The lazy condition does not make the assumption
that H actions occur so quickly such that no refusal to communicate l may
be recognised by UL. System P therefore fails to be lazily secure, reflecting a
dependence of UL'S system view on activity of the other user. []

37

The terminology of the conditions reflects the semantics of the operators
involved. The \ concealment operator is defined in a way such that hidden (in-
ternal) actions occur instantly. Abstraction of events by concealment iseager in
the sense that the events cannot be prevented or delayed by the environment.

This situation contrasts with the usuM interpretation of communications
between interacting processes. The standard interpretation of the occurrence
of an event is that the process and its environment have agreed on the action;
it cannot occur without mutual consent. The agreement of UH to engage in
H events cannot be assumed to be immediately forthcoming. Abstraction by
interleaving P III I~UNH does not force events from P to happen, it Simply
prevents an observer from knowing whether they came from P or from R UNH.
This lack of urgency explains why this is lazy abstraction. P]]] R UNH can only
be deterministic if the set of L events available before and after any H event of
P are the same, since if the same event is communicated by R UNH the state of
P does not change. Lazy abstraction is thus sensitive not only to the effects of
different actions by Ug, but also to the choice between action and inaction.

The possibility of infinite sequences of H actions give rise to the danger that
a system implementation will prefer them forever, thereby denying UL the op-
portuni ty to communicate--which would be a clear breach of security. The eager
security condition, which entails the assumption that H actions are never de-
layed, is necessarily sensitive to this possibility as P \ H introduces divergence. 2

E~ample2. Let H = {dl,d~,sl,s~} and L = {ll,l~}. In the system

Q = (11 ~ z~ ~ P)
[] (dI ~ s l ~ e)

[] (d~ ~ s2 ~ P)

there is the possibility of an infinite sequence of H actions. This potentially
endless delay of UL'S request is flagged by the eager condition since Q \ H
diverges, so Q is not eagerly secure. The system also fails the lazy condition
since event 11 will be removed from the interface when UH engages in either dl
or d~. Thus UH will delay the system by communicating dl or d~ until a further
s action is taken. User UL will recognise that the system refuses a request 11
before Ug's request is complete. []

Whether the lack of lazy security in Example 2 should be regarded as a
security breach depends on the nature of events {sl , s2}. If these are events
which occur instantaneously--such as a system message appearing on the user's
screen-- then they are indistinguishable to UL from the ordinary internal actions
of Q. As long as these "signal" events are guaranteed to occur instantaneously
there will be no refusal of a request by UL at the interface to the system.

The H events can therefore be divided into two categories: signal events S
which are guaranteed to occur instantly, and events D which cannot occur with-
out the agreement of UH and may thus be delayed. In many systems, delayable

2The lazy condition (where H actions may be subject to delay) assumes that the
implementation is sufficiently fair to avoid this insecurity.

38

events take the form of inputs whereas the signals appear as output communi-
cations to the environment (including users).

Since S events resemble internal system actions we can abstract from them
by hiding while we still use interleaving for ordinary events such as {dl, dz }
above. The combination of the two forms of abstraction results in a mixed non-
interference condition.

Definition 3. A system P whose H events can be partitioned into delay events
D and signal events S satisfies M-Sec(D,s)(P) if (P \ S) I[I RUND is determin-
istic.

2.4 Properties of Conditions

From the eager and lazy conditions based on the notion of determinism it is pos-
sible to derive conditions involving only observations of the process concerned.
Eager security can be paraphrased as stating that nothing which is observed in
L after trace tr will allow the H events which happened during tr to be inferred.

Proposition 4. I f system P satisfies E-SecH(P), then P \ H is free of diver-
gence, and for any two traces tr, tr ~ E TRACEs(P),

tr [L = tr' [L ~ (P / t r) \ H --FD (P/ tr ') \ H

A corresponding consequence can be derived from the definition of lazy security.

Proposition 5. / f system P satisfies L-SecH(P), then P is free of divergence,
and for any two traces tr, tr f E TRACEs(P),

tr [L = tr' [L ~ (P / t r) III RUNH --FD (P/ t r ') III RUNH

The approach of postulating determinism after abstraction of high-security events
can be generalised by analysing various models of UH. The framework in which
this can be done is provided by the condition

(P [[g]] U) \ H det (1)

for a suitably chosen process U which has to synchronise with P on every event
in H. Process U can be regarded as a model of user UH.

The user with the widest range of behaviour is one whose actions are un-
predictable and uncontrollable. Such activity is represented in CSP by a process
CHA OS defined as

CHAOSH = STOP [q(x : H ---* CIIAOSH)

displaying the most non-deterministic behaviour which is free of divergence. A
system with such a non-deterministic user will lack interference only in the case
of both eager and lazy security.

Proposition 6. A system P satisfies E-SecH(P) and L-SecH(P) if, and only
if, the process (P][H]I CHA OSH) \ H is deterministic.

39

It is shown in [Ros94b] that all three non-interference conditions (eager, lazy,
and mixed) can in fact be expressed in the form of (1). For eager security, the
model for user UH is simply identical to RUNH since P I[H]I RUNI~ = P for all
processes P.

Corresponding formulations for lazy and mixed security require a more pow-
erful model of CSP. In the infinite traces model [Ros93] the failures-divergences
representation of a process is augmented with its set of infinite traces. The model
of user UH required for lazy security is a process FINITEH which behaves just
like CHAOSH but without ever engaging in an infinite trace. This restriction
prohibits the occurrence of infinite H sequences resulting in divergence under
concealment.

Proposition 7. Eager, lazy, and mixed security can be all be expressed in the
general form of (I) as follows.

E-SeeH(P) r (e I[H]I RUNH) \ H det
L-SeeH(P) r (e I[H]I FINITEH) \ H det

M'Sec (o , s) (P) r (P I[H]I(RUNs III FINITED)) \ H det

These various 'users' suggest a more general approach to security specification:
for a particular context, choose a process U which characterises all possible
behaviours of UH under which it is expected that confidentiality will be main-
tained. Usually this will be all its behaviours, but it is possible to imagine other
circumstances, for example if the system P represents a mail system where it is
allowable for a high-security user to send a message to a low-security one, we
might expect to maintain confidentiality so long as no such messages are sent.
(This type of property is known as conditional non-interference.)

The more non-deterministic the abstract model U the stronger is the equiva-
lent security condition. When a more deterministic process is substituted for U,
the properties of CSP refinement guarantee the preservation of non-interference.

More precisely, if P is a system component in context C, then refinement of P
- replacing it with a less non-deterministic component - preserves determinism
of the original system:

C(P) de t A P ~ P ' :=~ C(P ') de t

It is equally a consequence of this fact that refining P preserves the determinism
of (P I[H]l U) \ H, and that therefore each of our non-interference properties is
preserved under refinement. This is a result which may be exploited in system
development or maintenance.

P r o p o s i t i o n 8. Eager, lazy, and mixed security are preserved under refinement:

E-SecH(C(P)) A P E P' :=~ E-SecH(C(P'))

L-SecH(C(P)) A P E_ P' =:> L-SeeH(C(P'))

M-Sec(D,s)(C(P)) A P C_ P' =v M-SeC(D,s)(C(P~))

40

A number of additional results concerning the composition and decomposition
of secure systems may be derived; see [Ros94b]. One such result is that a system
P may be decomposed into two non-interacting parts if it is lazily secure with
respect to two disjoint alphabets.

P r o p o s i t i o n 9. Let A, B be disjoint alphabets. L-SecA(P) and L-SecB(P) hold
of a system if, and only if, there are two deterministic processes PA with c~(PA) =
A and PB with a(PB) = B such that P = PA]] PB.

Further properties of our non-interference conditions as well as the proofs of the
propositions in this section may be found in [Ros94b].

2.5 G e n e r a l i s a t i o n

We will now generalise the determinism conditions for multi-user systems. If
F is the system whose non-interference properties we attempt to establish, the
system model can be described as

S Y S T E M = Users [[F where Users = [[[i>0 Ui

It is assumed that there is a security classification associated with each user. Let
CLASS be the partially ordered set of these classifications. The total function
cl : Users --+ CLASS assigns one classification to each user process. A further
assumption is a(Ui) f3 a(Uj) = ~ whenever el(Ui) # cl(Uj).

The function above : CLASS ~ I~c~(SYSTEM) is used to define the set
of events that should be hidden from a user operating on a particular level of
classification, which is given by

above(c) -- a(S Y S T E M) - above- 1 (c)

where

above-'(c) = I cl(Ud <

The non-interference conditions of section 2.3 hold for a multi-user system if
they hold on each security level of the system.

Def in i t ion 10. A multi-user system P is eagerly and (respectively) lazily-secure
if,

V ci E CLASS �9 E-Secgj (P) , and

V ci E CLASS �9 L-SecHj (P)

where ttj = above(el).

In a realistic system it is typically the mixed non-interference condition that
requires verification on each security level, as will be illustrated in the following
case study.

4]

3 A "Secure" F i l e System

This arid the following section will illustrate the framework in which our non-
interference conditions can be applied. The example is tha t of a file sys tem in
which confidential da ta is to be maintained.

It is widely accepted tha t a formal specification can increase the level of
assurance tha t a system will meet its security requirements [Gas88]. In fact
governmental s tandards for the development of secure systems mandate the use
of formal methods and proof. The Z notat ion [Spi92] is particularly suited for this
task since (i) it has a well-defined semantics; (ii) it has been successfully employed
in industrial scale software development; and (iii) it has become increasingly
popular for the specification and verification of secure systems [Co194, Jon92].

We begin the specification of the file system by introducing some basic types.
The set of users of the sys tem is represented by type USER, each of which holds
an associated security classification from the set C L A S S . FID represents the
set of file identifiers, and D A T A refers to the set of possible da ta that may be
stored in a file. This type contains a special vahie N U L L representing invalid
data. These are the basic types we will use

[USER, C L A S S , FID, DATA]

There is a security classification associated with each user. We use a global func-
tion cl to obtain the appropriate class by supplying it with a user identification.
It is declared as a total function; there cannot be users without classification.

[cl: USER --+ C L A S S

3.1 F i le M o d e l

Each file has the structure 3

_ File
class : C L A S S
data : D A T A

where the class component relates to the level of security of the stored data.
Each file initialised with the level of clearance at which the file is created.

_ Init
File ~
clear? : C L A S S

clasJ = clear?
data t = N U L L

3In Z, formal notation is separated from informal descriptions by so-called schema
boxes. A schema contains a number of declarations and, if there are any constraints on
these declarations, a separating line followed by appropriate predicates. Schemas are
used to represent structured state as well as operations on structures.

42

We follow a standard convention of decorating inputs with ?, outputs with !, and
states after completion of the operation with a prime ~. Unprimed variables or
schemas refer to states before the operation.

Two operations are provided on files: reading stored data, and writing new
data, provided the file access is carried out with the appropriate clearance. Read-
ing is permit ted only when the operation is carried out with appropriate access
permission clear? > class, in which case stored data is output as data!. The
notation ~ F i l e indicates that reading a file does not change its state.

_ R d O
E File
clear? : C L A S S
data! = data

clear? > class
data! -= data

Storing new data in a file is carried out with a WrO operation which is permit ted
only if the user clearance is equal to the file classification. The AFi le schema
component indicates that writing data changes the file state; the input data
new? is stored in the data component of File.

_ W r O

A File
clear? : C L A S S
new? : D A T A

clear? = class = class'
data' = new?

To indicate the success or failure of an operation, we define the system's response
as type

R E S P ::= ok [fai l

Each operation on a file is accompanied by an indication of whether it has
succeeded. The output message is defined by the (horizontal) schemas

Success -~ [respl : R E S P [resp! = ok]

Failure ~- [resp! : R E S P I r e s p ! - fail]

We do not give the user any indication of whether a failure was caused by a
functional error or a security breach, in order to avoid a potential channel of
information flow.

If a request for file access is carried out without valid clearance the operation
fails, and the file status remains unchanged (~Fi l e) . The case of invalid read
access is described as

43

_ NoRdAccess
~ File
Failure
clear? : CLASS
data!: DATA

clear? < class
data! = NULL

The corresponding error condition for writing is

_ No WrA ccess
~ File
Failure
clear? : CLASS

clear? # class

The total read and write operations are Rd and Wr specified as

Rd ~ (RdO A Success) V NoRdAccess

Wr ~ (WrO A Success) V NoWrAecess

If the request is carried out with appropriate clearance the sys tem reports with
ok, otherwise the user just receives a fail message and the file remains unaltered.

3.2 File System

Our file system is given by

~ FileSystem
files : FID -~ File

Component files is declared as a partial function from file identifiers to files. This
means tha t no two files can have the same name. The system initially contains
no files:

Flnit -Q [FileSyslem; I files;= 0]

In addition to the initialisation occurring when a file is created at the system
level, we want the operations of reading and writing a file to be available at the
system interface. This is a achieved by promoting the schemas Init, Rd, and Wr
with the aid of two "framing" schemas:

AFileSystem
file? : FID
user? : USER

clear? = cl(user?)
f i les ' = f i les ~ {file? H OFile'}

r =

? e a-ore files
[OFile = files(file?)

44

The promoted operations will require both a file name (file?) and a user identi-
fication (user?) as input. The user's classification is then the clearance at which
the file operation is carried out. The three operations available at the interface
are

CrealeO

ReadO

Write6

~- 3 File' * (r A Init)

-~ 3 AFile �9 (q~2 A Rd)

~- 3 AFile �9 (~2 A Wr)

It is necessary to ensure that no operation is carried out on files which do not
exist. This error condition can occur if the user supplies an invalid file identifier.

i UnknownFile
~FileSystem
Failure
file? : FID

-YiT? 7--om files

Similarly, a request for file creation cannot succeed if the suggested name has
already been used for another file.

_ FileExists
~FileSystem
Failure
file? : FID

file? E dora files

The total operations available at the file system interface are then given by

Create 2~ (CreateO A Success) V FileExists

Read ~ ReadO V UnknowuFile

Write ~. WriteO V UuknownFile

We suggest tha t a security analysis is best carried out on a process algebraic
representation of the system. This representation may be regarded as a security
model [Gas88] which can in fact be derived by translation. I t is therefore unnec-
essary to engage in an error-prone a t t empt to prove a correspondence between
model and specification. In the coming section we map the functional specifica-
tion of the file sys tem into CSP and state the non-interference conditions tha t
require verification.

45

4 Z into CSP

The Z specification may be translated into CSP according to the technique de-
scribed in [Woo94]. The theoretical basis for this work may be found in [WM90].

First we interpret the Z specification as an action system [BKS83] whose
state is specified by File. It has two actions corresponding to the operations Rd
and Wr. However, each of these operations also has an output, and we must be
careful to separate the two parts of the operation and associate an action with
each, since we cannot regard input and output as happening simultaneously.
When a user has invoked an operation, but has not consumed its output, then
the system will do nothing else while that output is pending. When no output
is pending, all operation actions are enabled.

This interpretation of a Z specification is informal (albeit systematic), but it
does correspond to the intuitive meaning given to Z specifications (see [Spi92],
for example).

Consider the Wr operation. We must separate it into two parts: the first part
consumes the input and then stores its output in the state; the second part waits
for the opportunity of delivering its output. Define a new free type that is either
a response or nothing:

RESP+ ::= nullresp l outresp((RESP))

and augment the state of a file with a component that contains the pending
output (if it exists)

_ File+
File
wrpend : RESP+

The first part of the operation is as follows

_ Wr+
AFile+
clear? : CLASS
new? : DATA

wrpend = nullresp
3 resp! : RESP] wrpend ~ = oulresp(resp!) �9 Wr

and the second part is

_ _ W r _

AFile+
EFile
resp! : R E S P

wrpend ~ nullresp
resp! -: outresp ~(wrpend)
wrpend ~ = nullresp

46

We can prove that the only change we are making to Wr by splitting into two
is to delay its output:

~- Wr = 3 wrpend, wrpend ~ : RESP+ �9 Wr+ ~ Wr_

According to [Woo94], we can now translate our specification of the write oper-
ation into two actions.

wr?clear?new A wrpend = nullresp --+ Wr+

wrout!(outresp~(wrpend)) A wrpend 5s nullresp ---* wrpend := nullresp

Thus, upon receipt of the communication of a clearance and some new data,
then, providing that there is no write-output pending, the Wr+ operation is
performed. Output may be transmitted whenever it is pending.

We can make similar transformations for the other operations.
The actions may now be embedded in a CSP-framework process. We now

have a CSP process which is formally equivalent to the File abstract data type.

File = lair?class --. File(class, NULL, (nullresp, nulldata), nullresp)

File(class, data, rdpend, wrpend) =
i f rdpend = nnllresp A wrpend = nuilresp
t h e n

rd? clear
i f clear > class
t h e n File(class, data, (outresp(ok), outdata(data)), wrpend)
else File(class, data, (outresp(fail), outdala(NULL)), wrpend)

t:] wr? clear? new ---+
i f clear = class
t h e n File(class, new, rdpend, outresp(ok))
else File(class, data, rdpend, outresp(fail))

else
i f rdpend ~ nullresp
t h e n rdout! outresp~ (rdpen d)

File(class, data, (nullresp, nulldata), wrpend)
else wrout! outresp~ (wrpen d)

-+ File(class, data, rdpend, nullresp)

The File process may now be transformed using the laws of s and, if desired,
the state variables containing the pending outputs elided.

In [Woo94], the connection is made between the technique of promotion in
Z, and the use of subordination or the means of sharing through interleaving. In
this way, the file system can be created as a system of CSP processes.

The structure of the resulting CSP implementation is illustrated in Figure 1.
FILES will be a shared pool of files accessible through the interface FSYS. Each
file has an associated name and classification, and may contain arbitrary data.
The process File models a file waiting to be initialised.

File = Jail?file?class --+ File(file, class, NULL)

47

User i

Use U

FileSystem

I FSYS

I

I
FILES

Fig. 1. The file system implemented by communicating processes.

A file after initialisation may be read or written to.

File(file, class, data) = Rd(file, class, data) D Wr(file, class, data)

The read operation is implemented by process Rd as

Rd(file, class, data) = rd.file? clear --*
i f clear > class
t h e n rdout.file!ok!data --~ File(file, class, data)
else rdout.file!fail!NULL --* File(file, class, data)

Storing new data in a file is realised with process

Wr(file, class, data) -- wr.file ? clear? new --~
i f clear = class
t h e n wrout.file!ok --~ File(file, class, new)
else wrout.file!fail --* File(file, class, data)

The total pool of files is given by

FILES = III0<_,< File

4.1 T h e S y s t e m I n t e r f a c e

I t is not possible to conjoin FILES with the set of user processes directly because
users must be protected from a number of functional errors, such as reading a
file which does not exist. To this purpose, we will provide a system interface
process F S Y S which manages access to the individual files.

~(FSYS) --- (create, createout, read, readout, write, writeout,
init, rd, rdoui, wr, wrout, clear)

F S Y S holds state variable files, the set of current file names

FSYS(fi les) = Create(files) [] Read(files) O Write(files)

48

The three services available at the interface are implemented with processes
Create, Read, and Write respectively.

Create(files) = create?user?file
i f file ~ files
t h e n clear.user?class --+ lull!file!class ~ createout.user!ok

FSYS(f i l e s U {file})
else createout.user!fail --* FSYS(f i l es)

k

Read(files) = read?user?file --+
i f file E files
t h e n clear.user?class --+ rd.file ! class ~ rdout.file ? resp ? result

--+ readout.user.file!resp!result --+ FSYS(f i l e s)
else readout.user.f i le!fail!NULL --* F S Y S (files)

Write(files) = write?user?fi le?new --*
i f file E files
t h e n clear.user?class --~ wr.file!class!new --~ wrout.file ? resp

---* writeout.user.file!resp --~ FSYS(f i l e s)
else writeout.user.file!fail --* FSYS(f i l es)

Process C L E A R A N C E provides the appropriate classification of a user when
required.

C L E A R A N C E = ([3 clear.u!(cl(u)) --~ C L E A R A N C E) for all u E USER

The complete file system is given by parallel composition of the interface process,
the file pool, and the clearance process, with intermediate channels concealed.

FileSystem = (F S Y S (o) II F I L E S II C L E A R A N C E)
\ {init, rd, rdout, wr, wrout, clear}

4.2 Security Specification

Any particular instance of the file system can be subjected to the security con-
ditions presented in section 2. We will consider the case of three users with the
following classifications.

USER
Lisa
Mari
Nina

CLASS
3 (highest)
2
1 (lowest)

It is convenient to partition the events at the system interface into "delay" and
"signal" events on each level of user classification (except the top level).

H2d = { create.user. f ie, read.user.file, write.user.f i le.data [user E {Lisa} }
H2s = { createout, user. resp, readout, user.file, resp. data,

writeout.user.fi le.resp I user E {Lisa} }

49

H1 d = { create, user.file, read. user.file, write, user.file, data
I user E {Lisa, Mari} }

H l s= { createout, user. resp, readout, user.file, resp. data,
writeout.user.file.resp I user �9 {Lisa, Marl} }

The file system satisfies E-Sec(FileSystem) if

(FileSystem \ (H2d U H2s)) (let A (FileSystem \ (gld U H/s)) det

The file system is lazily secure if

(FileSystem Ill RUN(H~duHZs)) det A (FileSystem Ill RUN(HlduHls)) det

The file system satisfies the mixed security property if

((FileSystem \ HRs) I11 RUNH~d) d e t A
((FileSystem \ His) III R UNHI.) det

It turns out that none of these conditions is met - i. e. that the system contains
undesired information flows. Since it may not be obvious that the conditions fail
to hold (and why not), we employ a verification tool.

5 A u t o m a t e d V e r i f i c a t i o n

The effort of formulating the eager/ lazy/mixed non-interference conditions would
be futile without a method of verifying them. Luckily, the absence of non-
determinism on which the conditions are based can be automatically verified
using standard algorithms on finite-state systems. We show that the CSP proof
tool FDR can be used to complete the security analysis.

5.1 FDR

The FDR tool [Ros94a] has been originally designed to verify behavioural CSP
specifications, in particular refinement relations between processes. These re-
finement checking capabilities are employed to decide whether a given process is
deterministic using the following algorithm:

1. Search through the state space of P, resolving all non-determinism that is
encountered. In a "stable" state (in which internal progress is impossible)
a single representative for each available action is selected, whereas in a
state where internal actions are possible we chose one of these arbitrarily.
This search either finds a divergence of P (in which case it is clearly non-
deterministic) or yields a deterministic process Q that refines the original P.

2. Use the refinement checker to confirm whether Q E_ P. The check succeeds
if, and only if, P is deterministic.

The algorithm is justified by the fact that the deterministic processes are max-
imal in the failures-divergences model of CSP, and are therefore incomparable.
Thus, for some arbitrary deterministic refinement Q of P,

P det <=> P ~-FD Q

50

5.2 Making the File System S e c u r e

Checking the security specification of section 4.2 using FDR confirms that the file
system is neither eagerly nor lazily secure. The reasons for this lie in the basic
structure of the system interface: a menu of services is offered to users with
various classifications, and a choice of service by a particular user is followed by
a system response on the same security level.

This structure resembles that of the (much simpler) process Q of Example 2
which was already observed to be insecure under the eager and lazy conditions.
As was motivated there, these conditions are inappropriate for a system struc-
tured like Q or FileSystera, and it becomes necessary to parti t ion events into
delay and signal events in order to apply the mixed condition.

However M-Sec (F i l eSys t em) fails to hold as well, which must be of serious
concern to the system designers. A check using FDR shows the reason for this to
be the possible failure of a request to create a file. The file system was specified to
prohibit the existence of two files with the same name. This feature is a security
flaw since a user who at tempts to create a file (with identifier id say) and fails
has learned that a file named id of higher classification exists. This clear breach
of non-interference is reflected in the failure of the mixed condition.

The question remains how the flaw can be overcome. One idea may be to
change the Create operation so that a request of file creation always succeeds.
This approach is probably unsatisfactory ff creation of a file which already exists
results in stored data to be lost. A more promising approach is to somehow
associate classifications with file identifiers in order to guarantee that files on
different security levels have different names.

A simple way of implementing this is to provide pairwise disjoint sets of
identifiers for the different levels. For the system in section 4 one might consider
partitioning the set FID into three sets (say)

FID1 -- {a, b}, FID~ - (c, d}, FIDs -- { e , f }

so that for all i E CLASS

FID = [.J FIDi

Doing so entails the re-definition of the Create operation which now needs to
confirm whether the use of a particular identifier is valid with regard to the
user's classification:

Create(files) = create?user?file --*
i f file ~ files
t h e n clear.user?class --*

i f file E FIDclass
t h e n init!file!class -~ createout.user!ok --~ FSYS(f i les U {file})
else createout.user!fail --~ FSYS(f i les)

else createout.user!fail --~ FSYS(f i les)

Verification of the mixed security condition now shows that M-Sec (F i l eSys t em)
does indeed hold, provided that the number of files available through the system is

51

equal to or exceeds the combined total of identifiers for all levels of classification.
So if

F I L E S = Fire

we require n >_ s i ze(FID) . Without the proviso the file system does not pass the
mixed condition, again because an attempt of file creation may fail. This time
the security breach is caused by the potential exhaustion of the pool of available
files.

6 Conclusion

This paper presents process algebraic specifications as a practical framework for
the development of systems with security constraints. The approach is illustrated
with an example of a file system intended to maintain secret data, but in fact our
results apply equally to systems with security concerns other than confidential-
ity. This is a consequence of defining general non-interference conditions which
require the system view of particular users to be unaffected by the actions taken
by others.

Our non-interference conditions are based on the notion of deterministic
views. This elegant characterisation of secure systems has only recently been
recognised as the fundamental concept underlying various definitions of non-
interference, such as those surveyed in [Gra92]. Although these alternative def-
initions are cast in rather different notation without employing determinism,
Roscoe [Ros94b] demonstrates that many are either straightforward consequence
of, or closely related to, the conditions for eager, lazy, and mixed security. For
example our lazy property L-SeeH(L) corresponds precisely both to Graham-
Cumming's own non-interference property and those of Allen [Al191] and Ryan
[Rya91] for systems whose overall behaviour is deterministic (as opposed to the
abstractions used in formulating our properties). A significant advantage of our
conditions in comparison to others is the preservation of non-interference under
refinement, thus eliminating the potential compromise of security during devel-
opment. A detailed discussion of this phenomenon, and an explanation of why
it is desirable, may be found in [Ros94b].

The general framework envisaged for the development of secure systems falls
into two parts: functional specifications of the system using state-based notations
as for general applications, followed by an analysis of non-interference properties
of a process-algebraic representation of the system. The main advantage of this
method is in avoiding the complex treatment of establishing a correspondence
between the specification and a separate generic security model. In contrast, the
mapping of the specification into process algebra can in many cases be carried
out by direct translation (tool support for this task is, however, at present not
available). Process algebras such as CSP based on possible sequences (traces) of
events provide an ideal notation for non-interference analysis since they naturally
incorporate the notion of (non-)determinism, thus permitting the application of

52

the conditions of section 2. These conditions can then be automatically verified
using a currently available proof tool.

Initial experience with the CSP model checker FDR [Ros94a] shows that a se-
curity analysis as illustrated in section 5 can be carried out within minutes. This
result propounds the hope that the verification approach will scale up to sys-
tems of realistic size. The size of problem we can deal with will benefit from the
proposed development [Ros94a] of FDR to incorporate implicit model-checking
techniques such as the hierarchical compression of intermediate state-spaces.
Verification speed will further increase by the exploitation of behavioural inde-
pendence of processes from particular values of data communicated. This prop-
erty of data-independence [RMacC94] has already shown promise in significant
reduction of state spaces as well as the induction of properties of arbitrary data
types based on finite checks.

Future work is required to formalise the mapping of state-based specifica-
tions to process descriptions. The techniques of [WM90, Woo94] still have to be
extended to be applicable to specifications with complex semantics, an.d utilised
to provide tool support for the translation into process algebra. We intend to
apply these techniques and the framework outlined in this paper in a case study
of a large-scale secure system. A further avenue of research is to explore po-
tential applications of our determinism-based conditions for non-interference on
systems with critical requirements other than security, such as in the areas of
safety-critical systems, fault tolerance, and feature independence.

References

[Al191]

[BKS83]

[Co194]

[GasS8]

[Gra92]

[HoaSS]
[Jac9O]

[Jon92]

[Ros93]

[RosO4a]

P.G. Allen. "A comparison of non-interference and non-deducibility using
CSP", Proc. 1991 IEEE Computer Security Workshop, pp 43-54. IEEE Com-
puter Society Press 1991.
R-J. R. Back, R. Kurki-Suonio. "Decentralization of process nets with cen-
tralized control", Proc 2nd Annual Symposium on Principles of Distributed
Computing, Montreal, 1983.
R. Collinson. "Proving Critical Properties of Functional Specifications", Proc
FME'94 Symposium, Springer-Verlag LNCS, Barcelona, October 1994.
M. Gasser. Building a Secure Computer System, Van Nostrand Reinhold,
1988.
J. Graham-Cumming. The Formal Development o] Secure Systems, Oxford
University DPhil Thesis, 1992.
C. A. R. Hoare. Communicating Sequential Processes, Prentice Hall 1985.
J. L. Jacob. "Specifying Security Properties", in C. A. R. Hoare (ed), Devel-
opments in Concurrency and Communication, ACM Press, 1990.
R. B. Jones. "Methods and Tools for the Verification of Critical Properties",
in C. B. Jones, R. C. Shaw, T. Denvir (eds) Proc 5th Refinement Workshop,
Springer Verlag, London, 1992.
A. W. Roscoe. "Unbounded Non-determinism in CSP", Journal of Logic and
Computation 3, 1993.
A. W. Roscoe. "Model Checking CSP", in A. W. Roscoe (ed) A Classical
Mind, Prentice Hall 1994.

53

[Spi921

[WM90]

[Woo941

[Ros94b] A.W. Roscoe. "CSP and Determinism in Security Modelling", in prepara-
tion.

[RMaeC94] A. W. Roscoe, H. MacCarthy. "Verifying a replicated database: A case
study in model-checking CSP", submitted for publication.

[Rya91] P .Y.A. Ryan. "A CSPformulation of non-interference", Cipher, pp 19-27.
IEEE Computer Society Press, 1991.
J.M. Spivey, The Z Notation: A Reference Manual (2nd ed.), Prentice-Hall
International, 1992.
J. C. P. Woodcock, C. Morgan. "Refinement of State-b~ed Concurrent Sys-
tems", Proc VDM Symposium 1990, LNCS 428, Springer Verlag.
J. C. P. Woodcock. "CSP Interpretations of Z Specifications", in preparation.

A CSP Reference

In the failures-divergences model of CSP, two processes are regarded as equal if
they agree in their failures and their divergences:

P --FD Q I=~ FAILS(P) ----- FAILS(Q) A Dlvs(P) "- Dlvs(Q)

When a process Q is more deterministic than another process P we say that P
is refined by Q. This relation is written P _ Q and formally defined by

P E Q r FAILS(P) _D FAILS(Q) A DIVS(P) D DIvs(Q)

The semantics of the hiding operator in the failures-divergences model is given
by

DIVS(P \ A) = { (s \ A)^t [s E DIvs(P) } tO
{ (s \ A) ^ t I (g n E I N . (3 u E A * . # u > n A s ' u E T a A C E S (P))) }

F A I L S (P \ A) = { (u , X)] u E D I v s (P \ A) } t 0
{ (s \ A , X) I (s, X U A) � 9

The semantics of Ill interleaving is defined as

Dlvs(PIII Q) = { u I 3 s , t . u i n t e r l e a v e s (s , t) A
(s �9 Dtvs(P) A t �9 TRACES(Q)) V
(s �9 TaACES(P) A t �9 DIvs(Q)) }

FAILS(P Ill Q) = { (u ,X) I u �9 DIvs(P III q) } u
{ (u, X) I 3 s, t �9 u interleaves (s, t) A

(s ,X) �9 FAILS(P) A (t , X) �9 FAILS(Q)}

