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Abstrac t .  The standard approach to the specification of a secure sys- 
tem is to present a (usually state-based) abstract security model sep- 
arately from the specification of the system's functional requirements, 
and establishing a correspondence between the two specifications. This 
complex treatment has resulted in development methods distinct from 
those usually advocated for general applications. 
We provide a novel and intellectually satisfying formulation of security 
properties in a process algebraic framework, and show that these .are 
preserved under refinement. We relate the results to a more familiar 
state-based (Z) specification methodology. There are efficient algorithms 
for verifying our security properties using model checking. 
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1 I n t r o d u c t i o n  

Security requirements of a computer system are regarded as critical properties 
that  demand the availability of mechanisms which control or protect programs 
and data.  Three issues in particular are related to the area of computer  security: 
(i) confidentiality (secrecy), the problem of protecting information from unautho- 
rised disclosure; (ii) integT~ty, the protection of information from unauthorised 
modification or destruction; and (iii) denial of service, the avoidance of major  
reduction in system performance. 

It  is possible to regard these security concerns as properties of information 
flow within the system and base a specification of security on the absence of 
undesired flows. The notion of non-interference captures the idea tha t  no infor- 
mation can flow from one user to another if the system view of the second is 
completely unaffected by actions of the first. We introduce a novel characterisa- 
tion of non-interference based on the notion of deterministic views. This elegant 
formulation of non-interference has, unlike others described in the literature, the 
proper ty  of preserving security requirements under refinement. 

The development of a secure system entails the construction of an abst ract  
security model in addition to the specification of the system's  functional require- 
ments.  The model is intended to capture abstractly the complete set of security 
requirements, which are derived from the system's  (possibly informal) security 
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policy, and which form part  of the total system requirements. Depending on the 
level of rigour required during development, it is necessary to either informally 
establish or formally prove a correspondence between the functional specification 
and the abstract model. 

The construction of the security model has been at tempted [Co194, Jon92] 
with the same methods as functional specifications, such as the Z notation [Spi92]. 
We suggest that  there are good reasons to employ a process algebraic notation 
for this purpose. Firstly, it is not the individual operations of the system, but  
the system as a whole that  is to satisfy critical properties. Secondly, insecurity 
is introduced not by a single operation in isolation but by certain sequences of 
operations. And thirdly, it turns out to be possible to express non-interference 
constraints directly on a process representation of the system, thus eliminating 
the need for constructing a separate abstract model. 

We therefore propose a process-algebraic approach (based on CSP [Hoa85]) 
to the specification of security properties. In particular the property of a pro- 
cess being deterministic is fundamental to the conditions we introduce for non- 
interference. This property can be verified using standard algorithms on finite- 
state systems, such as those implemented in the CSP model checker FDR 1 [Ros94a]. 

This paper is organised as follows. The following section defines the non- 
interference conditions and illustrates some of their properties. The conditions 
are generalised to systems with multiple users. Section 3 presents a functional 
specification of a file systems that  is intended to maintain confidential infor- 
mation. A systematic way of mapping this specification into process algebra is 
given in section 4, and the particular conditions for non-interference in the pro- 
cess model are clearly stated. The security flaw of the system is detected by 
automatic verification in section 5, and it is shown how the system can be made 
secure. Finally, we present our conclusions in section 6. 

2 Non-interference and Determin i sm 

There have been a number of CSP formulations of non-interference, such as Ja- 
cob's use of inference functions [Jac90]. None of these approaches is based on the 
notion of determinism, which has only recently been recognised as the fundamen- 
tal concept underlying the various definitions of non-interference [Ros94b]. This 
section will introduce some formal definitions of non-interference and analyse 
their properties. 

2.1 N o t a t i o n  a n d  C o n v e n t i o n s  

We will employ the failures-divergences model of CSP, in which a process is 
characterised by its failures and its divergences. We use the following notation 
to refer to various observations of a process P. 

1FDR (Failures Divergence Refinement) is a product of Formal Systems (Eu- 
rope) Ltd., 3 Alfred St., Oxford OX1 3EH, UK. 
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a ( P )  alphabet set of events process P can engage in 
TRACES(P) traces set of finite sequences of events P can engage in 

FAreS(P) failures set of pairs (s, X)  such that  P can refuse 
events X after trace s 

DIvs(P)  divergences set of traces after which P may behave chaotically 

The semantics of the failures-divergences model of CSP is detailed in (e. g.) 
[Hoa85]. Of particular relevance below will be the concealment and interleaving 
operators whose formal semantics are given in the Appendix. Informally, P \ A 
is a process that  behaves like P except that  occurrences of events in set A 
are concealed. A concealed event occurs automatically and instantaneously as 
soon as it can, without being observed or controlled by the environment of 
the process. The [[[ interleaving operator models asynchronous composition of 
processes: P [[[ Q is a process whose trace forms an arbitrary interleaving of 
events from processes P and Q. An event can be refused by the composition 
only if both component processes refuse it. 

We will interpret some processes U~ as users interacting with another process 
P called the system. A user U of P is defined by its interface to the system. 
For the moment,  it is assumed that  the system has only two users UH and UL, 
with a ( P )  = H U L and H N L = 0.  This latter condition of disjoint set of ac- 
tions available to the users is convenient since it prohibits direct communication 
between users by synchronisation. 

These simplifying assumptions will be relaxed in section 2.5 where the non- 
interference conditions will be generalised to multi-user systems. 

2 . 2  A b s t r a c t i n g  E v e n t s  

In a system with two u s e r s  U H and UL we will typically want one user (UL) to 
be completely unaware of what the other (UH) does. In other words, the system 
view of UL should be unaffected by the presence or absence of events user UH 
might engage in. If this is the case, we say that  there is no flow of information 
from UH to UL, or that  UH is non-interfering with UL. 

In a sense, it is necessary to abstract away from the actual or potential  
behaviour of UH and ensure that this abstraction cannot affect how the system 
appears to ~fL. There are severM ways this abstraction may be captured, e.g. 
by concealing or obscuring Ug's actions. In CSP, the concealment of events 
is expressed using the \ hiding operator, and the obscuring of events may be 
achieved using ]11 interleaving. 

It is well-known that  conceahnent and interleaving of events may introduce 
non-determinism [Hoa85, pp. 113 and 120]. A non-deterministic system may, 
under the same conditions, behave differently towards its environment, due to 
some internal, uncontrollable choice. Though this choice cannot be observed 
directly, its external effects can, and thus provide clues on abstracted activities. 
The result of this abstraction will be that Ug's actions become choices which, 
though not visibly directly to UL, may resolve non-determinism that  is. The 
absence of non-determinism under abstraction of Ug's behaviour guarantees the 
absence of undesired information flow towards UL. 
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The notion of determinism is formally defined as follows. A process P is 
deterministic if it is free of divergence, and if it never has a choice whether to 
refuse an event it can engage in. 

P det  r DIvs(P)  = O A (tr^(a) E TRACES(P) =~ (tr, {a))  ~ FAILS(P)) 

A process lacking this property is non-deterministic; under identical environ- 
mental conditions it may behave differently in an unpredictable fashion. 

2.3 Non- in ter ference  Condi t ions  

The conditions we propose are all based on the absence of non-determinism after 
the abstraction of "high-security" events, and are justified in detail in [Ros94b]. 
Concealment is the simplest method of abstracting from events in CSP which 
can serve as a first a t tempt  to define the notion of non-interference. 

Def in i t ion  1. A system P is said to be eagerly secure with respect to tt  if 
concealment of H events does not introduce non-determinism, i.e. 

E - S e c H ( P )  r (P  \ H) det 

The terminology will become clear later on. Another way of abstracting events in 
CSP is not by concealing but by obscuring their occurrence. This can be achieved 
using another process 

RUNH = x : H --~ RUNg 

and combining it with the original system P by interleaving as P III RUNg. 
This process can never refuse an H event since R UNH is always prepared to 

contribute one in arbitrary places. An outside observer will not be able to tell 
whether such an action came originally from P or from RUNg. As above, we 
postulate .that abstraction by interleaving does not introduce non-determinism. 

Def in i t ion  2. A system P is said to be lazily secure with respect to H if obscur- 
ing H events by interleaving does not introduce non-determinism, i.e. 

L - S e c H ( P )  r (P III RUNg) det  

Example 1. Consider the system P with H = {hl, h~} and L = {l} defined 

P = ( h l  P) [] l--, P) 

The system repeatedly offers a choice of a single H event followed by action I. 
Concealing H permits UL to engage in l whenever desired independently of the 
(hidden) choice between hi and h~. Hence Un's view of P \ H is deterministic 
and E - S e c H ( P )  holds. We may doubt, however, whether the system should 
really be regarded as secure because the availability of ! depends on the previous 
occurrence of an H action. The lazy condition does not make the assumption 
that  H actions occur so quickly such that  no refusal to communicate l may 
be recognised by UL. System P therefore fails to be lazily secure, reflecting a 
dependence of UL'S system view on activity of the other user. [] 
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The terminology of the conditions reflects the semantics of the operators 
involved. The \ concealment operator is defined in a way such that  hidden (in- 
ternal) actions occur instantly. Abstraction of events by concealment iseager  in 
the sense that  the events cannot be prevented or delayed by the environment. 

This situation contrasts with the usuM interpretation of communications 
between interacting processes. The standard interpretation of the occurrence 
of an event is that  the process and its environment have agreed on the action; 
it cannot occur without mutual consent. The agreement of UH to engage in 
H events cannot be assumed to be immediately forthcoming. Abstraction by 
interleaving P III I~UNH does not force events from P to happen, it Simply 
prevents an observer from knowing whether they came from P or from R UNH. 
This lack of urgency explains why this is lazy abstraction. P ]]] R UNH can only 
be deterministic if the set of L events available before and after any H event of 
P are the same, since if the same event is communicated by R UNH the state of 
P does not change. Lazy abstraction is thus sensitive not only to the effects of 
different actions by Ug, but also to the choice between action and inaction. 

The possibility of infinite sequences of H actions give rise to the danger that  
a system implementation will prefer them forever, thereby denying UL the op- 
portuni ty  to communicate--which would be a clear breach of security. The eager 
security condition, which entails the assumption that  H actions are never de- 
layed, is necessarily sensitive to this possibility as P \ H introduces divergence. 2 

E~ample2. Let H = {dl,d~,sl,s~} and L = {ll,l~}. In the system 

Q = (11 ~ z~ ~ P )  
[] (dI  ~ s l  ~ e )  

[] (d~ ~ s2 ~ P )  

there is the possibility of an infinite sequence of H actions. This potentially 
endless delay of UL'S request is flagged by the eager condition since Q \ H 
diverges, so Q is not eagerly secure. The system also fails the lazy condition 
since event 11 will be removed from the interface when UH engages in either dl 
or d~. Thus UH will delay the system by communicating dl or d~ until a further 
s action is taken. User UL will recognise that the system refuses a request 11 
before Ug's request is complete. [] 

Whether  the lack of lazy security in Example 2 should be regarded as a 
security breach depends on the nature of events {sl ,  s2}. If these are events 
which occur instantaneously--such as a system message appearing on the user's 
screen--  then they are indistinguishable to UL from the ordinary internal actions 
of Q. As long as these "signal" events are guaranteed to occur instantaneously 
there will be no refusal of a request by UL at the interface to the system. 

The H events can therefore be divided into two categories: signal events S 
which are guaranteed to occur instantly, and events D which cannot occur with- 
out the agreement of UH and may thus be delayed. In many systems, delayable 

2The lazy condition (where H actions may be subject to delay) assumes that the 
implementation is sufficiently fair to avoid this insecurity. 
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events take the form of inputs whereas the signals appear as output communi- 
cations to the environment (including users). 

Since S events resemble internal system actions we can abstract from them 
by hiding while we still use interleaving for ordinary events such as {dl, dz } 
above. The combination of the two forms of abstraction results in a mixed non- 
interference condition. 

Definition 3. A system P whose H events can be partitioned into delay events 
D and signal events S satisfies M-Sec(D,s)(P) if (P \ S) I[I RUND is determin- 
istic. 

2.4 Properties of Conditions 

From the eager and lazy conditions based on the notion of determinism it is pos- 
sible to derive conditions involving only observations of the process concerned. 
Eager security can be paraphrased as stating that nothing which is observed in 
L after trace tr will allow the H events which happened during tr to be inferred. 

Proposition 4. I f  system P satisfies E-SecH(P), then P \ H is free of diver- 
gence, and for any two traces tr, tr ~ E TRACEs(P), 

tr [ L = tr' [ L ~ (P / t r )  \ H --FD (P/ tr ' )  \ H 

A corresponding consequence can be derived from the definition of lazy security. 

Proposition 5. / f  system P satisfies L-SecH(P), then P is free of divergence, 
and for any two traces tr, tr f E TRACEs(P), 

tr [ L = tr' [ L ~ (P / t r )  III RUNH --FD (P/ t r ' )  III RUNH 

The approach of postulating determinism after abstraction of high-security events 
can be generalised by analysing various models of UH. The framework in which 
this can be done is provided by the condition 

(P [[g]] U) \ H det (1) 

for a suitably chosen process U which has to synchronise with P on every event 
in H. Process U can be regarded as a model of user UH. 

The user with the widest range of behaviour is one whose actions are un- 
predictable and uncontrollable. Such activity is represented in CSP by a process 
CHA OS defined as 

CHAOSH = STOP [q(x : H ---* CIIAOSH) 

displaying the most non-deterministic behaviour which is free of divergence. A 
system with such a non-deterministic user will lack interference only in the case 
of both eager and lazy security. 

Proposition 6. A system P satisfies E-SecH(P) and L-SecH(P) if, and only 
if, the process ( P ][H]I CHA OSH) \ H is deterministic. 
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It is shown in [Ros94b] that  all three non-interference conditions (eager, lazy, 
and mixed) can in fact be expressed in the form of (1). For eager security, the 
model for user UH is simply identical to RUNH since P I[H]I RUNI~ = P for all 
processes P. 

Corresponding formulations for lazy and mixed security require a more pow- 
erful model of CSP. In the infinite traces model [Ros93] the failures-divergences 
representation of a process is augmented with its set of infinite traces. The model 
of user UH required for lazy security is a process FINITEH which behaves just  
like CHAOSH but without ever engaging in an infinite trace. This restriction 
prohibits the occurrence of infinite H sequences resulting in divergence under 
concealment. 

Proposition 7. Eager, lazy, and mixed security can be all be expressed in the 
general form of (I) as follows. 

E-SeeH(P) r (e I[H]I RUNH) \ H det 
L-SeeH(P)  r ( e  I[H]I FINITEH) \ H det 

M'Sec (o , s ) (P )  r (P I[H]I(RUNs III FINITED)) \ H det 

These various 'users' suggest a more general approach to security specification: 
for a particular context, choose a process U which characterises all possible 
behaviours of UH under which it is expected that  confidentiality will be main- 
tained. Usually this will be all its behaviours, but it is possible to imagine other 
circumstances, for example if the system P represents a mail system where it is 
allowable for a high-security user to send a message to a low-security one, we 
might expect to maintain confidentiality so long as no such messages are sent. 
(This type of property is known as conditional non-interference.) 

The more non-deterministic the abstract model U the stronger is the equiva- 
lent security condition. When a more deterministic process is substituted for U, 
the properties of CSP refinement guarantee the preservation of non-interference. 

More precisely, if P is a system component in context C, then refinement of P 
- replacing it with a less non-deterministic component - preserves determinism 
of the original system: 

C(P)  de t  A P ~ P '  :=~ C(P ' )  de t  

It is equally a consequence of this fact that  refining P preserves the determinism 
of (P I[H]l U) \ H, and that  therefore each of our non-interference properties is 
preserved under refinement. This is a result which may be exploited in system 
development or maintenance. 

P r o p o s i t i o n  8. Eager, lazy, and mixed security are preserved under refinement: 

E-SecH(C(P)) A P E P' :=~ E-SecH(C(P')) 

L-SecH(C(P)) A P E_ P' =:> L-SeeH(C(P')) 

M-Sec(D,s)(C(P)) A P C_ P' =v M-SeC(D,s)(C(P~)) 
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A number of additional results concerning the composition and decomposition 
of secure systems may be derived; see [Ros94b]. One such result is that  a system 
P may be decomposed into two non-interacting parts if it is lazily secure with 
respect to two disjoint alphabets. 

P r o p o s i t i o n  9. Let A, B be disjoint alphabets. L-SecA(P) and L-SecB(P)  hold 
of a system if, and only if, there are two deterministic processes PA with c~(PA) = 
A and PB with a(PB)  = B such that P = PA ]] PB. 

Further properties of our non-interference conditions as well as the proofs of the 
propositions in this section may be found in [Ros94b]. 

2.5 G e n e r a l i s a t i o n  

We will now generalise the determinism conditions for multi-user systems. If 
F is the system whose non-interference properties we attempt to establish, the 
system model can be described as 

S Y S T E M  = Users [[ F where Users = [[[i>0 Ui 

It is assumed that  there is a security classification associated with each user. Let 
CLASS be the partially ordered set of these classifications. The total function 
cl : Users --+ CLASS assigns one classification to each user process. A further 
assumption is a(Ui) f3 a(Uj)  = ~ whenever el(Ui) # cl(Uj). 

The function above : CLASS ~ I~c~(SYSTEM) is used to define the set 
of events that  should be hidden from a user operating on a particular level of 
classification, which is given by 

above(c) -- a( S Y S T E M )  - above- 1 ( c) 

where 

above-'(c) = I cl(Ud < 

The non-interference conditions of section 2.3 hold for a multi-user system if 
they hold on each security level of the system. 

Def in i t ion  10. A multi-user system P is eagerly and (respectively) lazily-secure 
if, 

V ci E CLASS �9 E-Secgj  (P) , and 

V ci E CLASS  �9 L-SecHj (P) 

where ttj = above(el). 

In a realistic system it is typically the mixed non-interference condition that 
requires verification on each security level, as will be illustrated in the following 
case study. 
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3 A "Secure"  F i l e  System 

This arid the following section will illustrate the framework in which our non- 
interference conditions can be applied. The  example is tha t  of a file sys tem in 
which confidential da ta  is to be maintained. 

It  is widely accepted tha t  a formal specification can increase the level of 
assurance tha t  a system will meet its security requirements [Gas88]. In fact 
governmental  s tandards for the development of secure systems mandate  the use 
of formal methods and proof. The Z notat ion [Spi92] is particularly suited for this 
task since (i) it has a well-defined semantics; (ii) it has been successfully employed 
in industrial scale software development; and (iii) it has become increasingly 
popular  for the specification and verification of secure systems [Co194, Jon92]. 

We begin the specification of the file system by introducing some basic types.  
The  set of users of the sys tem is represented by type USER, each of which holds 
an associated security classification from the set C L A S S .  FID represents the 
set of file identifiers, and D A T A  refers to the set of possible da ta  that  may be 
stored in a file. This type contains a special vahie N U L L  representing invalid 
data. These are the basic types we will use 

[ USER,  C L A S S ,  FID,  DATA] 

There is a security classification associated with each user. We use a global func- 
tion cl to obtain the appropriate class by supplying it with a user identification. 
It  is declared as a total function; there cannot be users without  classification. 

[ cl:  USER --+ C L A S S  

3.1 F i le  M o d e l  

Each file has the structure 3 

_ File 
class : C L A S S  
data : D A T A  

where the class component  relates to the level of security of the stored data. 
Each file initialised with the level of clearance at which the file is created. 

_ Init  
File ~ 
clear? : C L A S S  

clasJ = clear? 
data t = N U L L  

3In Z, formal notation is separated from informal descriptions by so-called schema 
boxes. A schema contains a number of declarations and, if there are any constraints on 
these declarations, a separating line followed by appropriate predicates. Schemas are 
used to represent structured state as well as operations on structures. 
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We follow a standard convention of decorating inputs with ?, outputs with !, and 
states after completion of the operation with a prime ~. Unprimed variables or 
schemas refer to states before the operation. 

Two operations are provided on files: reading stored data, and writing new 
data, provided the file access is carried out with the appropriate clearance. Read- 
ing is permit ted only when the operation is carried out with appropriate access 
permission clear? > class, in which case stored data is output  as data!. The 
notation ~ F i l e  indicates that  reading a file does not change its state. 

_ R d O  
E File 
clear? : C L A S S  
data! = data 

clear? > class 
data! -= data 

Storing new data in a file is carried out with a WrO operation which is permit ted 
only if the user clearance is equal to the file classification. The AFi le  schema 
component indicates that  writing data changes the file state; the input data 
new? is stored in the data component of File. 

_ W r O  

A File 
clear? : C L A S S  
new? : D A T A  

clear? = class = class' 
data' = new? 

To indicate the success or failure of an operation, we define the system's response 
as type 

R E S P  ::= ok [ fai l  

Each operation on a file is accompanied by an indication of whether it has 
succeeded. The output  message is defined by the (horizontal) schemas 

Success -~ [respl : R E S P  [ resp! = ok] 

Failure ~- [resp! : R E S P  I r e s p ! -  fail] 

We do not give the user any indication of whether a failure was caused by a 
functional error or a security breach, in order to avoid a potential channel of 
information flow. 

If a request for file access is carried out without valid clearance the operation 
fails, and the file status remains unchanged (~Fi l e ) .  The case of invalid read 
access is described as 
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_ NoRdAccess 
~ File 
Failure 
clear? : CLASS 
data!: DATA 

clear? < class 
data! = NULL 

The corresponding error condition for writing is 

_ No WrA ccess 
~ File 
Failure 
clear? : CLASS 

clear? # class 

The total  read and write operations are Rd and Wr specified as 

Rd ~ (RdO A Success) V NoRdAccess 

Wr ~ (WrO A Success) V NoWrAecess 

If  the request is carried out with appropriate  clearance the sys tem reports  with 
ok, otherwise the user just  receives a fail message and the file remains unaltered. 

3.2 File System 

Our file system is given by 

~ FileSystem 
files : FID -~ File 

Component  files is declared as a partial  function from file identifiers to files. This 
means tha t  no two files can have the same name. The system initially contains 
no files: 

Flnit -Q [FileSyslem; I files;= 0] 

In addition to the initialisation occurring when a file is created at the system 
level, we want the operations of reading and writing a file to be available at the 
system interface. This is a achieved by promoting the schemas Init, Rd, and Wr 
with the aid of two "framing" schemas: 

AFileSystem 
file? : FID 
user? : USER 

clear? = cl(user?) 
f i les '  = f i les ~ {file? H OFile'} 



r  = 

? e a-ore files 
[ OFile = files(file?) 
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The  promoted operations will require both  a file name (file?) and a user identi- 
fication (user?) as input.  The user's classification is then the clearance at which 
the file operation is carried out. The three operations available at the interface 
are 

CrealeO 

ReadO 

Write6 

~- 3 File' * (r A Init) 

-~ 3 AFile �9 (q~2 A Rd) 

~- 3 AFile �9 (~2 A Wr) 

It  is necessary to ensure that  no operation is carried out on files which do not 
exist. This error condition can occur if the user supplies an invalid file identifier. 

i UnknownFile 
~FileSystem 
Failure 
file? : FID 

-YiT? 7--om files 

Similarly, a request for file creation cannot succeed if the suggested name has 
already been used for another file. 

_ FileExists 
~FileSystem 
Failure 
file? : FID 

file? E dora files 

The total  operations available at the file system interface are then given by 

Create 2~ ( CreateO A Success) V FileExists 

Read ~ ReadO V UnknowuFile 

Write ~. WriteO V UuknownFile 

We suggest tha t  a security analysis is best carried out on a process algebraic 
representation of the system. This representation may be regarded as a security 
model [Gas88] which can in fact be derived by translation. I t  is therefore unnec- 
essary to engage in an error-prone a t t empt  to prove a correspondence between 
model and specification. In the coming section we map  the functional specifica- 
tion of the file sys tem into CSP and state the non-interference conditions tha t  
require verification. 
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4 Z into CSP 

The Z specification may be translated into CSP according to the technique de- 
scribed in [Woo94]. The theoretical basis for this work may be found in [WM90]. 

First we interpret the Z specification as an action system [BKS83] whose 
state is specified by File. It has two actions corresponding to the operations Rd 
and Wr. However, each of these operations also has an output, and we must be 
careful to separate the two parts of the operation and associate an action with 
each, since we cannot regard input and output as happening simultaneously. 
When a user has invoked an operation, but has not consumed its output, then 
the system will do nothing else while that output is pending. When no output 
is pending, all operation actions are enabled. 

This interpretation of a Z specification is informal (albeit systematic), but it 
does  correspond to the intuitive meaning given to Z specifications (see [Spi92], 
for example). 

Consider the Wr operation. We must separate it into two parts: the first part 
consumes the input and then stores its output in the state; the second part waits 
for the opportunity of delivering its output. Define a new free type that is either 
a response or nothing: 

RESP+ ::= nullresp l outresp((RESP)) 

and augment the state of a file with a component that contains the pending 
output (if it exists) 

_ File+ 
File 
wrpend : RESP+ 

The first part of the operation is as follows 

_ Wr+ 
AFile+ 
clear? : CLASS 
new? : DATA 

wrpend = nullresp 
3 resp! : RESP ] wrpend ~ = oulresp(resp!) �9 Wr 

and the second part is 

_ _  W r _  

AFile+ 
EFile 
resp! : R E S P  

wrpend ~ nullresp 
resp! -: outresp ~( wrpend) 
wrpend ~ = nullresp 
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We can prove that  the only change we are making to Wr by splitting into two 
is to delay its output:  

~- Wr = 3 wrpend, wrpend ~ : RESP+ �9 Wr+ ~ Wr_ 

According to [Woo94], we can now translate our specification of the write oper- 
ation into two actions. 

wr?clear?new A wrpend = nullresp --+ Wr+ 

wrout!(outresp~(wrpend) ) A wrpend 5s nullresp ---* wrpend := nullresp 

Thus, upon receipt of the communication of a clearance and some new data, 
then, providing that there is no write-output pending, the Wr+ operation is 
performed. Output  may be transmitted whenever it is pending. 

We can make similar transformations for the other operations. 
The actions may now be embedded in a CSP-framework process. We now 

have a CSP process which is formally equivalent to the File abstract data type. 

File = lair?class --. File(class, NULL, ( nullresp, nulldata), nullresp) 

File(class, data, rdpend, wrpend) = 
i f  rdpend = nnllresp A wrpend = nuilresp 
t h e n  

rd? clear 
i f  clear > class 
t h e n  File(class, data, ( outresp( ok ), outdata( data ) ), wrpend) 
else File(class, data, ( outresp(fail), outdala( NULL) ), wrpend) 

t:] wr? clear? new ---+ 
i f  clear = class 
t h e n  File(class, new, rdpend, outresp( ok ) ) 
else File(class, data, rdpend, outresp(fail) ) 

else 
i f  rdpend ~ nullresp 
t h e n  rdout! outresp~ ( rdpen d) 

File(class, data, ( nullresp, nulldata ), wrpend) 
else wrout! outresp~ ( wrpen d) 

-+ File(class, data, rdpend, nullresp) 

The File process may now be transformed using the laws of s and, if desired, 
the state variables containing the pending outputs elided. 

In [Woo94], the connection is made between the technique of promotion in 
Z, and the use of subordination or the means of sharing through interleaving. In 
this way, the file system can be created as a system of CSP processes. 

The structure of the resulting CSP implementation is illustrated in Figure 1. 
FILES will be a shared pool of files accessible through the interface FSYS.  Each 
file has an associated name and classification, and may contain arbitrary data. 
The process File models a file waiting to be initialised. 

File = Jail?file?class --+ File(file, class, NULL) 
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User  i 

Use U 

FileSystem 

I FSYS 

I 

I 
FILES 

Fig. 1. The file system implemented by communicating processes. 

A file after initialisation may be read or written to. 

File(file, class, data) = Rd(file, class, data) D Wr(file, class, data) 

The read operation is implemented by process Rd as 

Rd(file, class, data) = rd.file? clear --* 
i f  clear > class 
t h e n  rdout.file!ok!data --~ File(file, class, data) 
else  rdout.file!fail!NULL --* File(file, class, data) 

Storing new data  in a file is realised with process 

Wr(file, class, data) -- wr.file ? clear? new --~ 
i f  clear = class 
t h e n  wrout.file!ok --~ File(file, class, new) 
else  wrout.file!fail --* File(file, class, data) 

The total  pool of files is given by 

FILES = III0<_,< File 

4.1 T h e  S y s t e m  I n t e r f a c e  

I t  is not possible to conjoin FILES with the set of user processes directly because 
users must  be protected from a number of functional errors, such as reading a 
file which does not exist. To this purpose, we will provide a system interface 
process F S Y S  which manages access to the individual files. 

~( FSYS)  --- (create, createout, read, readout, write, writeout, 
init, rd, rdoui, wr, wrout, clear) 

F S Y S  holds state variable files, the set of current file names 

FSYS(fi les)  = Create(files) [] Read(files) O Write(files) 
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The three services available at the interface are implemented with processes 
Create, Read, and Write respectively. 

Create(files) = create?user?file 
i f  file ~ files 
t h e n  clear.user?class --+ lull!file!class ~ createout.user!ok 

FSYS( f i l e s  U {file}) 
else createout.user!fail --* FSYS( f i l es )  

k 

Read(files) = read?user?file --+ 
i f  file E files 
t h e n  clear.user?class --+ rd.file ! class ~ rdout.file ? resp ? result 

--+ readout.user.file!resp!result --+ FSYS( f i l e s )  
else readout.user.f i le!fail!NULL --* F S  Y S  (files ) 

Write(files) = write?user?fi le?new --* 
i f  file E files 
t h e n  clear.user?class --~ wr.file!class!new --~ wrout.file ? resp 

---* writeout.user.file!resp --~ FSYS( f i l e s )  
else writeout.user.file!fail --* FSYS( f i l es )  

Process C L E A R A N C E  provides the appropriate classification of a user when 
required. 

C L E A R A N C E  = ([3 clear.u!(cl(u))  --~ C L E A R A N C E )  for all u E USER 

The complete file system is given by parallel composition of the interface process, 
the file pool, and the clearance process, with intermediate channels concealed. 

FileSystem = ( F S Y S ( o )  II F I L E S  II C L E A R A N C E )  
\ {init,  rd, rdout, wr, wrout, clear} 

4.2 Security Specification 

Any particular instance of the file system can be subjected to the security con- 
ditions presented in section 2. We will consider the case of three users with the 
following classifications. 

USER 
Lisa 
Mari 
Nina 

CLASS 
3 (highest) 
2 
1 (lowest) 

It is convenient to partition the events at the system interface into "delay" and 
"signal" events on each level of user classification (except the top level). 

H2d = { create.user. f ie,  read.user.file, write.user.f i le.data [ user E {Lisa}  } 
H2s = { createout, user. resp, readout, user.file, resp. data, 

writeout.user.fi le.resp I user E {Lisa}  } 
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H1 d = { create, user.file, read. user.file, write, user.file, data 
I user E {Lisa, Mari} } 

H l s=  { createout, user. resp, readout, user.file, resp. data, 
writeout.user.file.resp I user �9 {Lisa, Marl} } 

The file system satisfies E-Sec(FileSystem) if 

(FileSystem \ (H2d U H2s)) (let A (FileSystem \ (gld  U H/s) )  det  

The file system is lazily secure if 

(FileSystem Ill RUN(H~duHZs)) det  A (FileSystem Ill RUN(HlduHls)) det  

The file system satisfies the mixed security property if 

((FileSystem \ HRs) I11 RUNH~d) d e t  A 
((FileSystem \ His) III R UNHI.) det  

It turns out that  none of these conditions is met - i. e. that  the system contains 
undesired information flows. Since it may not be obvious that  the conditions fail 
to hold (and why not), we employ a verification tool. 

5 A u t o m a t e d  V e r i f i c a t i o n  

The effort of formulating the eager/ lazy/mixed non-interference conditions would 
be futile without a method of verifying them. Luckily, the absence of non- 
determinism on which the conditions are based can be automatically verified 
using standard algorithms on finite-state systems. We show that the CSP proof 
tool FDR can be used to complete the security analysis. 

5.1 FDR 

The FDR tool [Ros94a] has been originally designed to verify behavioural CSP 
specifications, in particular refinement relations between processes. These re- 
finement checking capabilities are employed to decide whether a given process is 
deterministic using the following algorithm: 

1. Search through the state space of P, resolving all non-determinism that  is 
encountered. In a "stable" state (in which internal progress is impossible) 
a single representative for each available action is selected, whereas in a 
state where internal actions are possible we chose one of these arbitrarily. 
This search either finds a divergence of P (in which case it is clearly non- 
deterministic) or yields a deterministic process Q that  refines the original P. 

2. Use the refinement checker to confirm whether Q E_ P.  The check succeeds 
if, and only if, P is deterministic. 

The algorithm is justified by the fact that the deterministic processes are max- 
imal in the failures-divergences model of CSP, and are therefore incomparable. 
Thus, for some arbitrary deterministic refinement Q of P,  

P det  <=> P ~-FD Q 
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5.2 Making the File System S e c u r e  

Checking the security specification of section 4.2 using FDR confirms that  the file 
system is neither eagerly nor lazily secure. The reasons for this lie in the basic 
structure of the system interface: a menu of services is offered to users with 
various classifications, and a choice of service by a particular user is followed by 
a system response on the same security level. 

This structure resembles that  of the (much simpler) process Q of Example 2 
which was already observed to be insecure under the eager and lazy conditions. 
As was motivated there, these conditions are inappropriate for a system struc- 
tured like Q or FileSystera, and it becomes necessary to parti t ion events into 
delay and signal events in order to apply the mixed condition. 

However M-Sec (F i l eSys t em)  fails to hold as well, which must be of serious 
concern to the system designers. A check using FDR shows the reason for this to 
be the possible failure of a request to create a file. The file system was specified to 
prohibit the existence of two files with the same name. This feature is a security 
flaw since a user who at tempts to create a file (with identifier id say) and fails 
has learned that  a file named id of higher classification exists. This clear breach 
of non-interference is reflected in the failure of the mixed condition. 

The question remains how the flaw can be overcome. One idea may be to 
change the Create operation so that  a request of file creation always succeeds. 
This approach is probably unsatisfactory ff creation of a file which already exists 
results in stored data to be lost. A more promising approach is to somehow 
associate classifications with file identifiers in order to guarantee that  files on 
different security levels have different names. 

A simple way of implementing this is to provide pairwise disjoint sets of 
identifiers for the different levels. For the system in section 4 one might consider 
partitioning the set FID into three sets (say) 

FID1 -- {a, b}, FID~ - (c,  d}, FIDs -- { e , f }  

so that  for all i E CLASS  

FID = [.J FIDi 

Doing so entails the re-definition of the Create operation which now needs to 
confirm whether the use of a particular identifier is valid with regard to the 
user's classification: 

Create(files) = create?user?file --* 
i f  file ~ files 
t h e n  clear.user?class --* 

i f  file E FIDclass 
t h e n  init!file!class -~ createout.user!ok --~ FSYS(f i les  U {file}) 
else createout.user!fail --~ FSYS( f i les)  

else createout.user!fail --~ FSYS(f i les)  

Verification of the mixed security condition now shows that M-Sec (F i l eSys t em)  
does indeed hold, provided that  the number of files available through the system is 
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equal to or exceeds the combined total of identifiers for all levels of classification. 
So if 

F I L E S  = Fire 

we require n >_ s i ze(FID) .  Without the proviso the file system does not pass the 
mixed condition, again because an attempt of file creation may fail. This time 
the security breach is caused by the potential exhaustion of the pool of available 
files. 

6 Conclusion 

This paper presents process algebraic specifications as a practical framework for 
the development of systems with security constraints. The approach is illustrated 
with an example of a file system intended to maintain secret data, but in fact our 
results apply equally to systems with security concerns other than confidential- 
ity. This is a consequence of defining general non-interference conditions which 
require the system view of particular users to be unaffected by the actions taken 
by others. 

Our non-interference conditions are based on the notion of deterministic 
views. This elegant characterisation of secure systems has only recently been 
recognised as the fundamental concept underlying various definitions of non- 
interference, such as those surveyed in [Gra92]. Although these alternative def- 
initions are cast in rather different notation without employing determinism, 
Roscoe [Ros94b] demonstrates that many are either straightforward consequence 
of, or closely related to, the conditions for eager, lazy, and mixed security. For 
example our lazy property L-SeeH(L) corresponds precisely both to Graham- 
Cumming's own non-interference property and those of Allen [Al191] and Ryan 
[Rya91] for systems whose overall behaviour is deterministic (as opposed to the 
abstractions used in formulating our properties). A significant advantage of our 
conditions in comparison to others is the preservation of non-interference under 
refinement, thus eliminating the potential compromise of security during devel- 
opment. A detailed discussion of this phenomenon, and an explanation of why 
it is desirable, may be found in [Ros94b]. 

The general framework envisaged for the development of secure systems falls 
into two parts: functional specifications of the system using state-based notations 
as for general applications, followed by an analysis of non-interference properties 
of a process-algebraic representation of the system. The main advantage of this 
method is in avoiding the complex treatment of establishing a correspondence 
between the specification and a separate generic security model. In contrast, the 
mapping of the specification into process algebra can in many cases be carried 
out by direct translation (tool support for this task is, however, at present not 
available). Process algebras such as CSP based on possible sequences (traces) of 
events provide an ideal notation for non-interference analysis since they naturally 
incorporate the notion of (non-)determinism, thus permitting the application of 
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the conditions of section 2. These conditions can then be automatically verified 
using a currently available proof tool. 

Initial experience with the CSP model checker FDR [Ros94a] shows that a se- 
curity analysis as illustrated in section 5 can be carried out within minutes. This 
result propounds the hope that  the verification approach will scale up to sys- 
tems of realistic size. The size of problem we can deal with will benefit from the 
proposed development [Ros94a] of FDR to incorporate implicit model-checking 
techniques such as the hierarchical compression of intermediate state-spaces. 
Verification speed will further increase by the exploitation of behavioural inde- 
pendence of processes from particular values of data  communicated. This prop- 
erty of data-independence [RMacC94] has already shown promise in significant 
reduction of state spaces as well as the induction of properties of arbitrary data  
types based on finite checks. 

Future work is required to formalise the mapping of state-based specifica- 
tions to process descriptions. The techniques of [WM90, Woo94] still have to be 
extended to be applicable to specifications with complex semantics, an.d utilised 
to provide tool support for the translation into process algebra. We intend to 
apply these techniques and the framework outlined in this paper in a case study 
of a large-scale secure system. A further avenue of research is to explore po- 
tential applications of our determinism-based conditions for non-interference on 
systems with critical requirements other than security, such as in the areas of 
safety-critical systems, fault tolerance, and feature independence. 
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A CSP Reference  

In the failures-divergences model of CSP, two processes are regarded as equal if 
they agree in their failures and their divergences: 

P --FD Q I=~ FAILS(P) ----- FAILS(Q) A Dlvs(P) "- Dlvs(Q) 

When a process Q is more deterministic than another process P we say that P 
is refined by Q. This relation is written P _ Q and formally defined by 

P E Q r FAILS(P) _D FAILS(Q) A DIVS(P) D DIvs(Q) 

The semantics of the hiding operator in the failures-divergences model is given 
by 

DIVS(P \ A) = { (s \ A)^t [ s E DIvs(P) } tO 
{ ( s \ A ) ^ t  I ( g n E I N . ( 3 u  E A * . # u >  n A s ' u E T a A C E S ( P ) ) ) }  

F A I L S ( P \ A ) = { ( u , X )  ] u E D I v s ( P \ A ) } t 0  
{ ( s \ A , X )  I (s, X U A ) � 9  

The semantics of Ill interleaving is defined as 

Dlvs(PIII Q ) = { u  I 3 s , t . u i n t e r l e a v e s ( s , t )  A 
(s �9 Dtvs(P) A t �9 TRACES(Q)) V 
(s �9 TaACES(P) A t �9 DIvs(Q)) } 

FAILS(P Ill Q) = { (u ,X)  I u �9 DIvs(P III q ) } u  
{ (u, X)  I 3 s, t �9 u interleaves (s, t) A 

(s ,X)  �9 FAILS(P) A ( t , X )  �9 FAILS(Q)} 


