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In image processing, workers sometimes wish to display three dimensional objects on a CRT 
screen, and so tools for detecting surfaces by computer need to be developed. In recent papers 
[D. G. Morgenthaler and A. Rosenfeld, Information and Control 51, 1981, 227-247; G. M. 
Reed and A. Rosenfeld, submitted for publication; G. M. Reed, Computer Vision, Graphics, 
and Image Processing 25, 1984, 226-2351 Morgenthaler, Reed, and Rosenfeld have introduced 
the concept of a simple surface point of a subset of Z3. But simple surface points are defined 
by means of axioms, and the axioms do not reveal what simple surface points “look like.” In 
this paper eight of the nine varieties of simple surface points are shown to have natural 
“continuous analogs,” and the one remaining variety is shown to be very different from the 
other types. This work yields substantial generalizations of the main theorems on simple 
surface points that were proved by Morgenthaler, Reed, and Rosenfeld. Q 1985 Academic 

Press, Inc. 

1. INTRODUCTION 

A cuboid Q can be divided into small nonoverlapping cuboids of equal shape and 
size. I In image processing, the small cuboids in such a partition are called “ voxels,” 
the word voxel being a contraction of “volume element.” A subset S of Q can be 
well approximated by the union of a collection of voxels, provided these are very 
small relative to Q; this approximation allows the subset S to be represented in 
computer memory as the set of l’s in a certain n, x n 2 x n3 array of l’s and O’s, 
where ni, n,, and n3 are the numbers of voxels along three perpendicular edges of 
Q. Alternatively, S can be represented in a suitable n, x n2 x n3 array A of “real 
numbers” as the set of those array elements whose values lie between specified upper 
and lower “thresholds.” (In fact the representation of S as the set of l’s in a binary 
array can in theory be regarded as a special case of this in which all elements of A 
are 0 or 1 and the upper and lower “thresholds” are both equal to 1.) 

Three-dimensional “image arrays” of this second type are generated (by the 
method of “reconstruction from projections”-see [3]) in electron microscopy and 
diagnostic radiography. In the former application the subset S might typically be the 
tail of a bacteriophage, and in the latter S might be a hospital patient’s heart. In 
both cases it is convenient to be able to display different views of S on a CRT 
screen, and for this purpose we need to “find” and “store” the outer surface of S. 
(While recognizing their extreme importance, we regard “removal of hidden points,” 
“smoothing,” and “shading” as “cosmetic” operations that are logically separate 
from the process of surface finding.) 

When designing an “outer-surface detection algorithm” in this context we must of 
course specify what that algorithm is intended to detect, because S is essentially 
stored as a discrete set of points in E3 and if we call this set of points p(S) then it is 
not clear how the “outer surface” of p(S) should best be defined. Perhaps the 
simplest approach (which is essentially due to Rosenfeld [S]) is to call the set 
{ p E p(S)lp is not surrounded by p(S)\ { p}} the outer border of p(S). (The term 
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“surrounded by” is precisely defined in [8].) Readers interested in this definition 
are referred to [lo]. Another natural definition of the “outer surface” of p(S) is the 
following: Let V(S) be the collection of voxels in Q corresponding to p(S). Then 
u V(S) approximates S, so it is reasonable to de$ne the outer surface of p(S) to be 
the outer surface of u V(S). The surface of U V(S) is U {FIF is a face of exactly one 
voxel in V(S)}, and the outer surface is a subset of the surface: so if we use this 
definition then it is easy to encode the outer surface of p(S) in computer memory. In 
[2] and [4] Artzy, Frieder, Herman, and Webster propose a surface-tracking routine 
based on this representation of surfaces. Their algorithm accepts as input any one 
face on the outer surface of U V(S) and produces from this the entire outer surface 
of u V(S). The examples in [2] suggest that the algorithm works well. 

But in a series of interesting papers [5, 7, 61 Morgenthaler, Reed, and Rosenfeld 
introduced the concept of a “simple surface point” of a subset of Z3, and it is 
natural to ask if their idea can be used to formulate an alternative definition of the 
“outer surface” of p(S). However, Morgenthaler, Reed, and Rosenfeld defined their 
“simple surface points” axiomatically, and it is difficult to understand this concept 
just by reading the axioms. Accordingly, the main aim of our paper is to prove some 
“structure theorems” which reveal the “geometric meaning” of all but one of the 
nine different varieties of “simple surface point.” (The remaining case appears to be 
quite dissimilar to the other eight.) These results (which are new) are established in 
Sections 3 and 4, and in Section 5 we use our “structure theorems” to derive 
powerful generalizations of the main theorems of [7] and [6]. We also show (in the 
corollary to Proposition 16) that one of the three axioms used by the earlier authors 
to define “simple surface points” can be deduced from the other two-provided we 
exclude the one anomalous variety of “simple surface point” referred to above. 

Our treatment of this subject is original. We transform our (hard) digital topology 
problems into (fairly easy) problems of continuous topology, which we are able to 
solve. An important advantage of this approach to the theory of surface points is 
that readers should get an intuitive understanding of why the main results “must be 
true.” In a future paper a similar technique will be used to prove a strong form of an 
important but fairly deep theorem that was stated without proof by Rosenfeld in [8], 
namely that the outer border (as defined above) of a “connected” subset of Z3 is 
itself “connected.” 

2. BASIC CONCEPTS 

A. Dejinitions of Some Terms and Notations Used in Digital Topology 
The following definitions are essentially equivalent to the corresponding defini- 

tions in Rosenfeld [8] except for Definitions 7 and 8 which are new. In Definition 4 
we insist that a p-path should be a sequence of distinct points to avoid a clash with 
the terminology of graph theory. 

Remark. E 3 denotes the set of all ordered triples of integers. 

1. If p and q are distinct points in H 3 then we say that q is a 2bneighbor of p 
if each coordinate of q differs from the same coordinate of p by at most 1. (Thus p 
has exactly twenty-six 26-neighbors.) 

2. If p and q are distinct points in h3 then we say that q is an lheigbbor of p 
if q is a 26-neighbor of p and at least one of the coordinates of q is equal to the 
same coordinate of p. (Thus p has exactly eighteen 18-neighbors.) 
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3. If p and q are distinct points in Z3 then we say that q is a Cneighbor of p if 
4 is a 26-neighbor of p and q differs from p in exactly one coordinate. (Thus p has 
exactly six 6-neighbors.) 

In all subsequent definitions (Y and /3 denote numbers which may be 6, 18, or 26. 

4. We say p is B-adjacent to q if p is a b-neighbor of q. If IV z Z3 then a 
p-path in W from u to v is a sequence of distinct points (x,10 I i I n) (where n 2 0) 
such that x,, = U, x, = u, xi E W (0 -C i -K n), and xi is B-adjacent to xi+i 
(0 I i < n). 

5. If W c E 3 then W is fl-connected if given any two points x and y in W 
there is a P-path in W from x to y. If T c Z 3 then a /3-component of T is a 
maximal /%connected subset of T (i.e., a /%connected subset of T that is not a 
proper subset of any other P-connected subset of T). 

6. If W E Z 3 then we say W is p-adjacent to u (or, equivalently, u is 
P-adjacent to W), if W contains some b-neighbor of U. 

7. If p E Z 3 then N(p) denotes the set of all points x in W 3 such that each 
coordinate of x differs from the corresponding coordinate of p by at most 1. (So 
N(p) is a cube with sides of length two.) 

8. If W is an expression denoting a subset of h3 then W(p) denotes the set 
Wn N(P). 

9. If I/ c h3 then pdenotes Z3\ I/. 

B. Surface Points and Digital Surfaces 

In [5], [7], and [6] Morgenthaler, Reed, and Rosenfeld define “simple surface 
points” and “simple closed surfaces.” Their definitions can be restated as follows 
(see the remarks after Propositions 14 and 16). 

Let each of (Y and /3 denote one of integers 6, 18, or 26. If p E W G Z3 then we 
call p an (a, p) surface point of W if p is P-adjacent to exactly two P-components 
of w(p) and each o-neighbor of p contained in W is P-adjacent to both of these 
8-components. We say W is an (a, p) digital surface if every point in W is an ( CY, p) 
surface point of W. 

The basic goal of our paper is to present a visual interpretation of surface points 
(except in the case OL = p = 6), and to use this visual interpretation to give very 
natural proofs of several nontrivial theorems about dIgital surfaces. One of the results 
proved is that if (Y and /3 are not both equal to 6 then the c_omplement of an (a, p) 
digital surface is not P-corrected. We also exhibit a (6,6) digital surface whose 
complement is 6-connected, thus showing that (6,6) surface points are quite unlike 
the other kinds of surface point. 

Remark. Observe that a (26,$) surface point of a set S is always an (18, s) 
surface point of S and an (18, p) surface point of S is always a (6, @) surface point 
of s. 

C. Some Abbreviations 
WLOG = “without loss of generality.” 

iff = “if and only if.” 
0 = “The result has been proved ” (0 is similar in meaning to “Q.E.D.“). 
# = “Ibis is a contradiction.” 
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D. Mathematical Terminology 

The definitions in this section are standard in mathematics except for Definition 3. 
Although Definition 3 is not standard it is used by many authors. 

1. R 3 is the set of all ordered triples of real numbers. (Intuitively we think of 
R3 as the set of all points in space.) 

2. If x = (x,, xq, x3) and y = (yi, y,, y3) are any two points in R3 then the 
distance from x to y is d((xr - y1)2 + (x2 - Y,)~ + (x3 - yj)‘). 

(Note that this agrees with our intuitive notion of “distance” in space.) 

3. If x E lR3 and r > 0 then we define B(x, r) to be the set of all points y in 
R3 such that the distance from x to y is strictly less than r. (Thus B(x, r) is the set 
of points inside a sphere of radius r whose center is at x. In fact “B” is for “Ball.“) 
B(x, r) is undefined if r I 0. 

4. A subset U of R3 is open if for each x in U there is a value of r such that 
B(x, r) c U. A subset of R 3 is closed if its complement in F8 3 is open. 

5. If X G IR 3 then the interior of X (written int( X)) is defined by x E int( X) 
iff there is a value of r such that B(x, r) c X. 

6. If X 5 88 3 then the closure of X (written cl(X)) is defined by x E cl(X) iff 
B(x, r) n X # 0 for all r > 0. 

7. If x and y are real numbers such that x < y then (x, y) is sometimes used 
to denote the set { wlx < w < y}. 

E. Definitions of Special Terms and Notations Used In This Paper 

1. If u and u are distinct points in space (i.e., in R3) then uu denotes the 
straight line segment whose endpoints are u and v; if w is a point such that U, u, 
and w are not collinear then AUUW denotes a closed triangle whose comers are U, 
u, and w. (A straight line segment is defined to include its endpoints.) 

2. If Q is a cuboid then aQ denotes the surface of Q. (Thus aQ is a union of 
six closed rectangles.) 

3. A closed unit cell in R3 is a closed cube with sides of length 1 whose 
comers are all in Z3. 

A unit cell in Z3 is the set of comers of a closed unit cell in R3. 

4. Suppose n 2 1 and {x,10 I i I n } is a set of points in space such that 
whenever i f j xix;+1 n x~x~+~ = {x,, x~+~} n {x,, x,+~}. Define y = 
u {xix;+ i 10 I i I n }. Then if the xi are all distinct we shall call y a simple 
polygonal arc joining x0 to x,. If n 2 2, x0,. . . , x,-r are distinct and x, = xg 
then we shall call y a simple closed polygonal curve. 

5. We shall say that a subset C of R3 is polygonally connected if any two 
points in C can be joined by a simple polygonal arc. If a polygonally connected 
subset D of a set X is not a subset of any other polygonally connected subset of 
X then we call D a poIygonaIly com~ected component of X. 
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6. Suppose n 2 0 and { q1.10 s i I n } is a set of closed triangles in space 
such that the following both hold: 

(i) Whenever i # j K n Tj is either a side of both T and I; or a corner of 
both q and q or the empty set. (Strictly speaking the second alterna- 
tive should of course be stated as “a set whose only member is a corner 
of both q and q..“) 

(ii) Each side of a triangle q is a side of at most one other q. 

Thentheset U{7JO~i~n}willbecakdapolyhedralsurface. 

7. If q (0 I i s n) are as in (6) and Z is the union of the q, then the boundary 
of Z (which we shah denote by XX) is U { ~1s is a side of exactly one <}. 

This definition is a little tricky because if Z is a polyhedral surface then there will 
be infinitely many ways of dissecting I: into triangles satisfying 6i and ii: we must 
check that the definition of XZ produces the same set irrespective of the dissection 
we choose. While it is not hard to prove this we will not do so since the result should 
be “obvious” by geometric intuition. 

We shall say that Z is a polyhedral surface witbout boundary if Z is a polyhedral 
surface such that 82 = 0. 

8. A strongly connected polyhedral surface is a polyhedral surface Z with the 
property that if F is any finite set of points then Z \ F is polygonally connected. 
(Thus a square and the surface of a cube are both strongly connected. But the union 
of two triangles that meet at just one point is not strongly connected.) 

9. A polyhedral surface B will be called a plate if 
either 7c is a face of some closed unit cell in R 3 
or IT is strongly connected and satisfies each of the following three conditions: 

(i) There is a unique closed unit cell in W 3 which contains R: this cell will 
be denoted by K(m). 

(ii) &r is a simple closed polygonal curve, and each straight line segment 
contained in da is either an edge of K(Q) or a diagonal of a face of 
K(a)- 

(iii) as = 77 n aK(77). 
10. If s is a plate then a vertex of m is any point in ?r n h3; an edge of rr is a 

straight line segment contained in aT that joins two vertices of 7~. 
11. If p E Z 3 then a plate cycle at p is a sequence ( 7ril 0 I i I n) (where 

n 2 1) of distinct plates such that: 

(i) There is a sequence (e,lO I i I n) in which ei and eitl are distinct 
edges of 7rj (0 I i c n), e, and e, are distinct edges of or,, and p is an 
endpoint of each ei. 

(ii) If i # j then vi n nj is the union of a number (which may be zero) of 
straight line segments each of which is an edge of both plates and a set 
of points each of which is a vertex of both plates. 

(iii) Any edge of a V~ is an edge of at most one other ?ri. 

The plate set of a plate cycle is the set of plates in that plate cycle. 
12. If P is an expression denoting a set of plates and p E Z3 then P(p) 

denotes the set of those plates in P that have a vertex at p. 
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F. The (Plate) Cycle-Finding Algorithm 

Let p be a point in 2 3 and let BP be a set of plates such that the following are all 
true: 

(i) IfnEP(p) d an e is an edge of 7r that contains p then e is an edge 
of at least two plates in P(p). 

(ii) If three plates in lP( p) have an edge in common then p is an 
endpoint of one of the edges common to all three plates. 

(iii) The intersection of any two distinct plates in lP( p) is the union of a 
number (which may be zero) of straight line segments each of which is 
an edge of both plates and a set of points each of which is a vertex of 
both plates. 

Then if 7r’ and 7~” are plates in P that have an edge in common containing p the 
following simple algorithm will generate a plate cycle at p whose plate set is a subset 
of P. 

Cycle-Finding Algorithm 

Arguments 7T ‘) 97 )’ : P 
where r’ and VT” have an edge in common which contains p. 

Let v,, be s ‘. 
Let r1 be ~7 “. 
Let e0 be an edge common to or, and ri that contains p. 
For i = 1,2,3,. . . 

let ej be the edge of ri that contains p but is different from e,-i; 
let 7ri+i be a plate different from 7ri such that e, is an edge of r, + 1. 

until there is m < i such that e, = e,. 
Let n be the largest i for which ei is defined. 
Let m be the (unique) integer less than n such that e, = e,. 
Let result be the sequence ( ri’i( m < i s n). 

G. An Important Result 

PROPOSITION 0. Let X be a closed cuboid in BB 3, and let Z be a polyhedral surface 
contained in X such that 2 n int(X) # 0 and 672 c 8X. Let p be any point in 
Z n int(X). Then p is in the closure of two different polygonally connected components 
of X \ Z. Furthermore, if Z is strongly connected and 32 = Z n 8X then X \ Z has 
exactly two polygonally connected components, and Z is a subset of the closure of each 
of these two sets. 

Remark. This result should be very plausible by “geometric intuition.” A proof 
is outlined in the Appendix, but this is intended for readers who are reasonably 
familiar with the concepts of general topology. 

H. Three Important Remarks 

(a) In a few of the proofs we use a string “abc” (where a, b, and c are digits) 
to denote the point with coordinates (a, b, c) (e.g., 201 denotes the point (2,0, l).) 
Figure 1 should make it easy to follow the proofs which use this notation. 
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FIG. 1. Z3(111). 

(b) In the rest of this paper (Y and /I denote any one of 6, 18, or 26 except 
where there is a statement to the contrary. 

(c) Weuse“by(SP(W),Z3( x 2 ) uuw)” [as in “,, (SP( W), z 3(201), loly’] y ) 
as an abbreviation for the clause “since xyz is an (a, 8) surface point of IV, uuw 
is P-adjacent to each of the two (and only two) /&components of ~(XJJZ) that are 
p-adjacent to XJJZ.” 

3. A THEORY OF PLATES 

Dejnitions 

I. Let Q be a closed cuboid whose comers are in Z3 and whose edges are 
parallel to the coordinate axes. Let S be a subset of Z3 and let /I be 6, 18, or 26. We 
shall say that a collection P of plates is B-natural with respect to (S, Q) iff the 
following conditions (a), (b), (c), (d) hold for every closed unit cell K in Q: 

(a) At most one plate in BP meets int(K). If there is such a plate and V is its 
vertex set then S n K n int(Q) c V G S n K. 

(b) The straight line segment joining two P-adjacent points in S nK does 
not meet any plate in P that is contained in Q. 

(c) If no plate in P meets int(K) then K n S is nonempty and p-con- 
nected. If there is a plate ?r in P that meets int(K) and C is any 
polygonally connected component of int(K)\Ir then cl(C) n s is non- 
empty and &connected. 

(d) Let F be any face of K such that F is not a subset of aQ. Then F E P 
iff all comers of F are in S. Also, if a diagonal of F is an edge of a plate 
in P then the comers of F which are not on this diagonal are in ,?. 

We shall say that P is &natural with respect to S iff (a), (b), (c), and (d) hold when 
Q is replaced by R 3. (We define all3 3 = 0 .) 

Remarks. 1. If P is &natural wrt S then P is &natural wrt (S, Q) for any choice 
of Q. 

2. If P is &natural wrt (S, Q) and p E S n int(Q) then P(p) is B-natural wrt 
(s, NC ~1). 
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II. Suppose p E S G Z 3 and P is a collection of plates. 
We shall say that P satisfies the &form of con&Ion 1 with respect to (S, p) iff the 

following subconditions both hold: 

(a) If P(p) is the plate set of a plate cycle at p then s(p) has exactly two 
b-components. 

(b) If p(p) 2 Bp’u P” where P ’ and P ” are the plate sets of two 
difirent plate cycles at p then s(p) has at least three &zomponents. 

We shall say that P satisfies the (a, B)-form of condition 2 with respect to (S, p) iff 
the following three subconditions all hold: 

(a) If u is a vertex of two plates n,, n2 in lP( p) and up is an edge of 7~~ 
then up is an edge of v*. 

(b) If x E S(p) and y is a /?-neighbor of x that is contained in g(p) 
then the straight line segment xy either does not meet UP{ p) or 
meets UP(p) only at x. 

(c) If n E p(p) and e = up is an edge of 7~ then u is a-adjacent to p. 

The first proposition in this chapter explains why we chose to use the word 
“natural” in I above. 

PROPOSITION 1. Let S be a subset of Z3 and let P be a collection ofplates which is 
B-natural with respect to (S, Q), where Q is a closed cuboid whose corners are in Z 3 
and whose edges are parallel to the coordinate axes. Let p(Q) denote the set of plates 
in P which are contained in some closed unit cell in Q. Then two points in S are in the 
same f3-component of $n Q ifi they are in the same polygonally connected component of 
Q\u YQ>- 

Proof “Only if’ follows trivially from part (b) of the definition of p-natural. 
To prove”if,” let I be a simple polygonal arc in Q \ U P(Q) from x to y where 

X, y are in S nQ. Now there is c > 0 such that the distance from any point on I? to 
any point on u P(Q) exceeds c; hence by modifying I if necessary we may assume 
that I \ {x, y } meets no edge of any closed unit cell in Q. 

Let 1 be the length of T, and for 0 I s I 1 let y(s) denote the point on I whose 
distance from x measured along I, is s. (Thus y(0) = x, and y(l) = y.) Let 
K,,K,... , K, be all the closed unit cells in Q (in any order, provided no cell appears 
twice). 

Define N, = {s E (0, l)ly(s + E) E Ki and y(s - E) E K, for all sufficiently small 
c}. Let M = u{NiJi = 1,2..., n } u (0, I}. Since I’ is polygonal, M is a finite set. 
By perturbing I’ if necessary we may assume that every s such that y(s) is on a face 
of a K, is in M. Let the members of M be 0 = s0 < sr . . . < s, = 1. Then for each 
0 < i < r there is a cell Kmfij containing the set of points { y(s)ls, I s I s,+i}. For 
all i such that 0 < i < r define a face Fi by Fi = Kmciel) n Kmtij. Then y(si) E F,. 
For every 0 < i -C r pick a point ui in s nFi such that the straight line segment 
from y(s,) to ui meets no plate in P(Q). (Such a point exists since by part (d) of the 
definition of “natural” there is a point q in F n g: now if the straight line segment 
from y(s,) to q meets an edge e of a plate in P(Q) then e is a diagonal of F so (by 
d) the comer of F opposite q is also in g, and the straight line segment from y(s,) to 
this comer meets no plate in P(Q).) Define u0 = y(0) = x, u, = y(l) = y. 
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By our definitions of m(i), ui and ui+i there is a polygonal arc in Km(i) from ui 
to ui+1 which meets no plate in P(Q). We may assume WLOG that this arc meets 
aK,+, only at its endpoints (for we can always perturb the arc so as to make this 
true). Hence by part c of our definition of “natural” there is a p-path in 5 nK,(ij 
from ui to ui+i 0 - < i < r). It follows that x = u0 and y = u, are in the same 
/&component of S nQ, as required. [7 

COROLLARY. If P is &tatural wrt (S, Q) then S n Q has exactly as many 
&zomponents as Q \ U P(Q) has polygonally connected components. 

Proof Suppose x E W where W is a polygonally connected component of 
Q \ u F’(Q). Let K be a closed unit cell in Q that contains x. There is E > 0 such 
that B(x, E) meets no plate in lP(Q) so there is a point y in int(K) n W. By part c of 
the definition of “natural” there is q in s such that q E cl(C) where C is the 
polygonally connected component of int(K)\ u P containing y. So q E W. This 
argument shows that every polygonally corrected component of Q \ U P(Q) meets 
c The corollary now follows from Proposition 1. 0 

Remark. Although its proof is fairly simple, Proposition 1 is one of the most 
important results in this paper. 

PROPOSITION 2. Suppose p E S G Z 3 and IFP is a collection of plates satisfying the 
following conditions i, ii, iii: 

(i) If r E P(p) then (sr n JN(p)) p IS recisely the union of the edges of vt that 
do not contain p. 

(ii) If srl, nz are in P(p) then vrl n vr2 is either { p } or an edge of v1 and 7r2 
that contains p or the union of the two edges of 7~~ and vr2 that contain p. 

(iii) P(p) is &natural wrt (S, N(p)). 

Then P satisjies the B-form of condition 1 wrt (S, p). Furthermore, if P(p) is the 
plate set of a plate cycle at p then N(p)\ U p(p) has exactly two polygonally 
connected components, and if x E R E P(p) then x is in the closure of both polygo- 
nally connected components. 

Proof We shall assume throughout this proof that P satisfies i, ii, and iii. 
Case I. P(p) is the plate set of a plate cycle at p. 
It is easy to see from the definition of “plate cycle” that UP{ p) is a strongly 

connected polyhedral surface. If n E P(p) and e is an edge of rr that does not 
contain p then by ii e is an edge of no other plate in P(p), so e c a( U P(p)). 
Conversely, if e is an edge of a plate and e c a( U BP{ p)) then by the definition of a 
plate cycle p E e. Hence i implies that UP(p) n aN( p) = a( U P( p)). The result 
now follows from Propositions 0 and 1 (Corollary). 

Care II. P(p) 2 BD ’ U P ” where P ’ and P ” are the plate sets of two different 
plate cycles at p. 

By the argument given in the previous paragraph, N(p) \ U P’ has two polygo- 
nally connected components K;, K;, and N(p) \ U P ” has two polygonally con- 
nected components K;‘, K;‘. Let s be a plate in P”/lP ‘, and let x be a point on n 
which is not on an edge of 8. Then x is on no other plate in P(p), and x is not on 
aN( p). So WLOG x E int(K;). But (by Proposition 0) x E UP” implies x E cl(K;‘) 
and x E cl(K;‘). Therefore K; n K;’ and K; n K;’ both contain points arbitrarily 
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close to x, whence K; n K;’ \ u lP(p) and K; n K;’ \ U aP( p) are both nonempty. 
By the same type of argument K; \ U P(p) is also nonempty. But if we pick one 
point from each of these sets then these three points must lie in distinct polygonally 
connected components of N(p) \ U BP{ p). S o we are home by Proposition 1 
(Corollary). Cl 

PROPOSITION 3. Suppose p is an (a, p) surface point of the set S, and suppose 
further that g(p) has exactly two &components. L.+ P be a set of plates which is 
p-na_tural wrt (S, N(p)) and which satisfies the p-form of Condition 1 and the 
(a, fi)-form of Condition 2 wrt (S, p). Then FD( p) is the plate set of a single plate 
cycle at p, and evev a-neighbor of p that is contained in S is a vertex of some plate in 
P(P). 

Remark. The proof makes use of the fact that if ab is an edge of a plate 7r then 
if E is positive and sufficiently small (B(a, 6) n N(b)) \ VT is polygonally connected. 
The reader can either prove this or include an extra hypothesis in the statement of 
the proposition to the effect that all plates in OFP have this property. (It is a trivial 
matter to check that every plate introduced in the next chapter satisfies this 
condition.) 

Proof of Proposition 3. Suppose the hypotheses are satisfied. Then p(p) is 
p-natural wrt (S, N(p)). Let v be p or an a-neighbor of p that is contained in S: 
then by the definition of an ((Y, p) surface point there are P-neighbors y,, y, of u 
which are in different b-components of g(p). So, by Proposition 1, yi and y, are in 
different polygonally connected components of N(p) \ U P(p). By Condition 2b 
the straight line segments y,v and y,v can only meet UP(p) at v. Hence 
u E u BP{ p), so v is a vertex of a plate r in P(p). Further, if up is an edge of a 
plate then u is a vertex of a second plate in P(p). For suppose otherwise: then 
choose r > 0 such that (B( v, E) n N(p)) \ ?r is polygonally connected whenever 
0 < c < r (see the remark above). Now choose n( > 1) so large that B( v, r/n) meets 
no plate in IIp( p) except a; then B(u, r/n) n N(p)\ U lP( p) is polygonally 
connected, so there is a path in N(p)\ U BP{ p) from y, to y,, contrary to the 
definition of these two points. 

Next suppose e = xp is an edge of a plate 7r in BP(p). Then by Condition 2c x is 
a-adjacent to p, so by the previous paragraph x is a vertex of a plate 7~’ in lP( p), 
where r’ # r. Condition 2a implies that xp is also an edge of v’. So we have shown 
that any edge of a plate in P(p) that has p as an endpoint is an edge of at least two 
plates in P(p). Now subconditions a and d of B-naturalness, Condition 2a and the 
previous sentence together imply that UD( p) satisfies the preconditions i, ii, and iii of 
the cycle-finding algorithm. On applying this algorithm we get a plate cycle at p. 
Suppose for the purpose of getting a contradiction that there is a plate in aP( p) 
which is not in this plate cycle. 

There may be two plates 7r0, ?~i in IFp( p) such that r,, is in the cycle, V~ is not in 
the cycle, and q, and rri have an edge in common: if so then apply the cycle-finding 
algorithm to P(p) starting from (q,, ai). If two such plates do not exist then apply 
the cycle-finding algorithm to P(p) starting from any pair of plates which share an 
edge containing p but which are not in the cycle already found. In either case we 
obtain a plate cycle that is different from the tirst one. Let P ’ and P ” be the sets of 
plates in the two cycles: then by condition lb s(p) has at least three /3-components, 
contrary to hypothesis. This contradiction proves Proposition 3. 17 

Remark. Proposition 3 is a very powerful tool, as will be seen in Sections 4 
and 5. 
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PROPOSITION 4. Suppose p E S c Z3 and P is the plate set of a plate cycle at p . . . . . . satisfying the hypotheses 1, U, u of Proposition 2. Suppose further that D is a subset of 
N(p) such that int(D) meets UP and D \ U P has exactly two polygonally con- 
nected components C,, C, both of which m_eet S Then C, n S(p) and C, n L?(P) 
are contained in diferent P-components of S(p). 

Proof Suppose the conditions hold. Pick x in int(D) n ( U Op): then by Proposi- 
tion 2 x E cl(K,) and x E cl(K,), where K, and K, are the two polygonally 
connected components of N(p) \ U P. So int(D) n K, and int(D) n K, are non- 
empty. Since D meets both K, and K, it is impossible for either one of K, and K, to 
contain both C, and C,. So WLOGC, c K, and C, G K,. The result now follows 
from Proposition 1. Cl 

4. WHAT DO (a$) SURFACE POINTS LOOK LIKE? 

DEFINITION. If p is an ((Y, p) surface point of W then x(p) and B(p) denote 
the two /3-components of S(p) that are p-adjacent to p. (We do not care which of 
the two /&components is A< p) and which is B(p): the purpose of this notation is 
merely to ahow us to refer to each P-component separately.) 

PROPOSITION 5. Let p be an (a, p) surface point of S and let K be a unit cell in 
Z ‘( p). In the cases where /3 = 6 suppose further that each 6-neighbor of p that is 
contained in S n K is also an (a, 6) surface point of S. Then S n K is p-adjacent top. 

Proof Case I. p = 18 or 26 
WLOGp = 111 and K is the cell { xyzlx, y, z E {1,2}}. Suppose the result fails. 

Then 221,121,122,212,211,111,112 are in S. As {102,202,201, lOl} cannot meet 
both x(111) and &lll) we may assume WLOG that it does not meet x(111). Then 
by (SP(S), E3(111), 112) one of 002,012,022,001,011,021 is in x(111), and by 
(SP(S), E3(111), 211) one of 200,210,220,100,110,120 is in x(111). Therefore, 
since x(111) is P-connected one of 001,011,021 is in x(111), and one of 100,110,120 
is in x(111). Hence none of the nine points in Z3(111) with y = 1 can be in 
B(lll), so either y = 0 for all points in B(lll), or y = 2 for ail points in B(111). 
The former is impossible because 121 E S implies 121 is &adjacent to B(lll), but 
the latter implies that 101 is neither in x(111) nor b-adjacent to B(lll), whence 
101 E A(111) contrary to our earlier assumption. 

CaseII. p=6 
WLOGp = 111 and K is the same cell as before. Suppose the result fails. Then 

121,112,211 are (cy, 6) surface points of S. WLOG 011 E $111) and 101 E E(111). 
Then by (SP(S),Z3(211),111) 110 E S, so WLOGllO E B(111). Since 011 E 
x(111) none of 010,021,012,001 can be in B(111). Hence no 6-path in B(111) from 
101 to 110 can go through Z3(111) \ h3 (211). So there is a 6-path in B(111) from 
101 to 110 which lies entirely within Z(111) n h3(211). This implies that 101 and 
110 are in the same 6-component of S(211), so (SP(S), Z 3(211), 111) is violated. 0 

COROLLARY. If p is an (a, p) surface point of a set S, where p = 18 or 26 then 
S(p) has exact& two /&components, and both are P-adjacent to p. 

Proof TheresuItistriviaIif/3=2_6.If/3=18and KisanyunitceIIinZ3(p) 
then there is some point q in K n S(p) which is M-adjacent to p. Since every 
element of K n S(p) is 18-adjacent to p or q it follows that every 18-component of 
S(p) is 18-adjacent to p, so the corollary follows from the definition of an (cw, rs> 
surface point. 0 
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Z Surface Points 

DEFINITION. Let S be any set of points in Z3 such that no unit cell contains 
eight points in S. Then we define IFz6(S) to be the set of 1 x 1 squares whose 
comers all lie in S. 

We claim that if p E S then F&S) satisfies the z-form of Condition 1 and the 
( OL, %)-form of Condition 2 wrt (S, p) with (Y = 6, 18, or 26. We further claim that 
BIz6(S) is z-natural wrt S. It is easy to confirm the naturalness of lFz6(S) and the . . . . . . validity of Condition 2. Furthermore, Fz6(S) satisfies the hypotheses 1, u, m of 
Proposition 2 with /3 = 26, so IFz6(S) satisfies the %-form of Condition 1 wrt (S, p). 

PROPOSITION 6. If p E S c Z 3 then p is an (a, z) surface point of S iff the 
following all hold: 

(i) No unit cell in N(p) contains eight points in S. 

(ii) F,,( S( p))( p) is the plate set of a single plate cycle at p. 

(iii) If q is an a-neighbor of p that is contained in S then q is a vertex of some 
We in US(~))(P). 

Proof. “only if “1 i follows from Proposition 5. If p is an ((Y, Z) surface point of 
S then S(p) has exactly two P-components, so ii and iii follow from Proposition 3. 

“if “: Suppose i, ii, and iii aII hold. Then by ii and Condition la S(p) has exactly 
two 26components. Let u be p or any a-neighbor of p that is contained in S; by iii 
u is a vertex of some plate s in IF,,(S( p))( p). WLOGp = 111, and the vertices of 
r are 111,121,122,112. Let D, and D, denote the closed unit cells in N(M) 
containing 022 and 222, respectively. Each of D, and D, meets S(111) by i. Further, 
D, \ u lF,(S(lll))(lll) and D, \ u F,,(S(lll))(lll) are both polygonal3 con- 
nected sets,so on applying Proposition 4 to D, U D, we deduce that D, f? S(111) 
and D, n S(111) are contained in different 2bcomponents of S(111). But every 
point in these two sets is 26-adjacent to each vertex of 7~. So p = 111 is an ((Y, 26) 
surface point of S, as required. 0 

COROLLARY. If S c h 3 then S is an (a, x) digital surface iff i, ii, and iii hold for 
all p in S. 0 

ZJ Surface Points 

DEFINITION. If X is a unit ceII in h3, g is the centroid of X, and x, y are any 
two diametrically opposite points in X, then the set u (Auvglu, v are 6-adjacent 
points in X\ { x, y } } wiIl be cakd a compound plate. 

A compound plate is shown in Fig. 2. 
DEFINITION. Let S be a subset of H3 such that no unit cell contains eight points 

in S. Then we define Fig(S) to be the set of plates such that v E IFig i# one of 
the following is true: 

either s is a 1 x 1 square whose comers are all in S, 
or VT is a compound plate whose vertices are ah in S and the unit cell 

containing ?r contains no point in S that is not a vertex of 71. 

We claim that if p E S then Fis(S) satisfies the i&form of Condition 1 and the 
(cu, 18)-form of Condition 2 wrt (S, p) with (Y = 6, 18, or 26. We further claim that 
Fia(S) is n-natural wrt S. It is easy to confirm the naturalness of F r8( S) and the 
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FIG. 2. A compound plate. 

validity of Condition 2. To see that Fis(S) satisfies Condition 1 wrt (S, p) define a 
function f on F,,(S)(p) as follows: 

(i) If B is not a compound plate then i(a) = a. 
(ii) If v is a compound plate with vertices p, ul, u2, u3, o,, u5, where ui is 

6-adjacent to ui+i and p is 6-adjacent to ui and us, then f(a) = (Apulu,) u 

(APw,). 
. . . . . . Now the set f(S,,(S)( p)) satisfies the hypotheses 1, n, m of Proposition 2 with 

/3 = 18. So by Proposition 2 f(F18(S)(p)) satisfies the i&form of Condition 1 wrt 
(S, p). But if P ’ c F,,(S)(p) and P ’ is the plate set of a plate cycle at p then 
f(P ‘) is also the plate set of a plate cycle at p. Hence IF,,(S) also satisfies the 
E-form of Condition 1 wrt (S, p), as asserted. 

PROPOSITION 7. Suppose p is an (a, rs> surface point of a set S, and all 
a-neighbors of p that lie in S are also (a, rs> surface points of S. Then the following all 
hold: 

(i) Each unit cell in N(p) contains at most six points in S. 
(ii) F 18( S( p))( p) is the plate set of a single plate cycle at p. 

(iii) If q is an a-neighbor of p that is contained in S then q is a vertex of some 
Plate in FdS(p)Xp). 

Conuersely, if p E S G Z 3 and i, ii, iii all hold then p is an (a, Ts> surface point 
of s. 

Proof If p E S c Z 3 and p and ah its a-neighbors in S are ((Y, i8) surface 
points of S then i follows from Proposition 5 while ii and iii follow from Proposition 
5 (CoroIIary) and Proposition 3. 

Conversely, suppose S satisfies i, ii, and iii. Then WLOGp = 111. Then by ii and 
Condition la S(111) has precisely two 18-components. Let u be 111 or an 
a-neighbor of 111 that lies in S: then by iii there is a plate B in lF,,(S(111))(111) 
that contains u. If a is a compound plate then WLOG the vertices of ?r are 111,211, 
212, 222, 122, and 121. Let D be the closed unit cell of N(111) that contains 222. 
Then D\ U f(F,,((lll))(lll)) has precisely two polygonahy connected compo- 
nents, C,,C, say, and each of these contains one point in S. By Proposition 4 
(applied to D and f(F,,(S(lll))(lll)) the points in C, n S and C, n s are in 
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different 18-components of S(111). If, on the other hand, r is a square plate then 
WLOG the vertices of Q are 111, 121, 122, and 112. Let D, and D, be the closed 
unit cells in N(lll) that contain 222 and 022. Then by Proposition 4 D, n S and 
D, n S are contained in different l&components of S(111). By i each of these two 
sets contains a point 18-adjacent to u. So in each case Y is 18-adjacent to both 
18-components of S(p). Hence p = 111 is an (cy,18) surface point of S. 0 

COROLLARY. Zf S c E3 then S is an (a, T8) digital surface iff i, ii, and iii holdfor 
every p in S. 0 

-6 Surface Points 

PROPOSITION 8. Supposep is an (18,6) surface point of a set S and K is a unit cell 
in Z 3( p) such that every l&neighbor of p that lies in S f~ K is also an (18,s) surface 
point of S. Then K is identical (after a suitable rotation or reflection) to one of the nine 
cells in Fig. 3. 

Proof Zn this proof “surface point” means “(18,s) surface point of S.” 
Suppose the hypotheses are satisfied. WLOG K is the unit cell in H ‘( 111) that 

contains 222. We shah prove the result by showing that the following four situations 
cannot arise. 

(1) S 17 K contains four comers of a regular tetrahedron. 
(2) S n K contains more than four points. 
(3) S n K consists of three of the four comers of a 1 X J2 rectangle. 
(4) S n K contains exactly two points, and these are diagonally opposite 

comers of a face of K. 

(Proposition 5 implies that if S n K contains exactly four points and (1) does not 
occur then K is identical to (a), (b), (d) or (e) in Fig. 3.) 

Suppose (1) occurs. WLOG111,212,122,221 are in S. Then by Proposition 5 p 
must be one of these four points and so WLOGp = 111. Proposition 5 now implies 
that none of 112, 121, and 211 is in S. Thus WLOG112 and 211 are in the same 

FIG. 3. Unit cells of types (a) to (i). (The points marked 0 are in S.) 
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6-component of S(111). But now { 102,201) either meets S or does not meet S, and 
in both cases 212 is 6-adjacent to just one 6-component of S(111) that is 6-adjacent 
to 111. # 

Next, suppose that (2) occurs. Let us first eliminate the possibility that K contains 
four points in S which are the comers of a face of K: if so then by symmetry we 
may assume that 111, 211, 221, 121, and 112 are in S. By hypothesis either 221 is a 
surface point, in which case (SP(S), Z3(221), 111) is violated, or p = 112, in which 
case 111, 121, and 211 are also surface points, so that Proposition 5 is contradicted 
at 111. Now consider the case in which S n K does not contain four comers of a 
unit square. Since (1) does not occur WLOG 111,112,212,221, and 121 are all in S. 
By symmetry we may assume that p is one of these five points. Then 111 is a surface 
point, and one of 112 and 121 is also a surface point. Assume WLOG that 121 is a 
surface point. By (SP(S), Z3(121), 112) 022 E S. Hence 201 and 210 are in S and 
211 E S by (SP(S), Z3(111), 212) and (SP(S), Z3(111), 221). So (211) is a 6-com- 
ponent of S(111) that is not 6-adjacent to 112, whence 111 is not a surface point. 
# 

Suppose finally that (3) or (4) occurs. Then WLOGlll and 212 are in S and 
112,122,222,221,211 are all in 5 By hypothesis 111 must be a surface point. But 
now (102,201) either meets S or does not meet 9, and in both cases 212 is 
6-adjacent to just one 6-component of S(111) that is 6-adjacent to 111. # q 

If a unit cell is identical to cell (a) in Fig. 3 then we shall say that it is a cell of type 
(a); similarly cells will be said to be of types (b), (c), . . . (h) or (i). 

PROPOSITION 9. If p is an (18,s) surface point of a set S and every 18-neighbor of 
p that lies in S is also an (18,g) surface point of S then each 6-component of S( p) is 
6-adjacent to p. 

Proof Suppose the hypotheses are satisfied, but there is a 6-component of S(p) 
which is not 6-adjacent to p. By inspection of Fig. 3 we see that this 6-component 
cannot contain any of the eight comers of Z 3(p), so it must consist of a single point 
which is l&adjacent but not 6-adjacent to p. Then WLOGp = 011 and (112) is a 
6-component of S(Ol1). This means that 012, 102, 122, and 111 are in S, so (by 
Proposition 8) 101,001,002,121,021, and 022 are in ,?. 

Suppose WLOG that 112 E x(111): then 212 E x(111) (else 011 is not 6-adjacent 
to x(111), a contradiction), and therefore 022,021, and 121 are in B(111) (for if 022, 
021, and 121 are in x(111) then_122 is not 6-adjacent to 8(111), a contradiction). 
Simihuly 002,001, and 101 are& B(lll). So by (SP(S), Z 3(111), 011) 010 E <(ill), 
whence there is a kpath in A(lll) from 010 to 212. Consequently 110 E A(lll), 
which implies that B(lll) is not 6-connected. This contradiction proves the proposi- 
tion. 0 

COROLLARYl. If p is an (18,6) surface point of a set S and every 18-neighbor of p 
that lies in S is also an (18,@ surface point of S then S(p) has exactly two 
6-components, and both are B-adjacent to p. •I 

COROLLARY 2. (This is not a genuine corollary.) If p is an (18,6) surface point of 
a set S and ail l&neighbors of p that lie in S are also (18, is> surface points of S then no 
2 x 1 x 1 cell in N(p) is identical to the cell in Figure 4. 
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FIG. 4. A “forbidden” configuration. (The points marked 0 are in S.) 

ProofI Suppose the hypotheses are satisfied and such a 2 x 1 x 1 cell exists. 
WLOG the cell contains 002,022, and 111, and WLOGOll, 012,102,122,111 are in 
S. Then p = 011, 012, or 111 and so 111 must be an (18,s) surface point of S. 
Hence the argument given in the second paragraph of the proof of Proposition 9 
produces the required contradiction. q 

PROPOSITION 10. If p is a (26,6) surface point of a set S and every 26-neighbor of 
p that lies in S is also a (26,s) surface point of S then every unit cell in Z’(p) is 
identical to (b), (c), (d), (g), or (i) in Fig. 3. 

Proof: Suppose the hypotheses are satisfied. Then WLOGp = 111. By virtue of 
Proposition 8 it suffices to establish the following two assertions: 

(i) If two diametrically opposite comers of a unit cell in Z’(p) are both in S 
then the cell is identical to cell (b). 

(ii) No cell in Z’(p) can be identical to cell (f). 

To prove i, suppose 222 is in S. We claim this implies that the unit cell containing 
111 and 222 is identical to cell (b). For 222 must be 6-adjacent to x(111) and to 
8(111), so WLOG122 E x(111), 221 E B(lll), and 121 E S. Then, since 111 is 
6-adjacent to two 6-components of S(222), 112 and 211 are in S and 212 is in S. So 
our claim is just&d. 

To prove ii, suppose on the contrary that 111,211,212 are in S and 112,122,222, 
221, and 121 are in $ Then by i, 101,102, and 202 are in 9, so 212 is 6-adjacent to 
only one 6-component of S(lll), a contradiction. Cl 

DEFINITION. Let S be a subset of Z3 such that no unit cell contains more than 
four points in S and every cell containing four points in S is identical (after a 
suitable rotation) to cell (a), (b), (d), or (e) in Fig. 3. Suppose further that no 
2 X 1 x 1 cell is identical to the 2 X 1 X 1 cell in Fig. 4. Then we define F6(S) to be 
the set of plates such that IT E IFg(S) iff one of the following [(a)-(d)] applies: 

(a) r is the union of two triangles AABC and ABCD, where A, B, C, and D 
are the four points in a cell of type a which are in S, and BC = ~‘3. 

(b) n‘ is a 1 x 42 rectangle whose comers are the four points in a cell of type b 
which are in S. 

(c) ?r is a (J2,\/2,42) triangle whose comers are the three points in a cell of type 
c which are in S. 

(d) ?T is a 1 X 1 square whose comers are the four points in a cell of type d 
which are in S. 
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?r will be called a plate of type a, b, c, or d depending on which of the above 
applies. 

We claim that if p E S then IF,(S) satisfies the s-form of Condition 1 and the 
((Y, @-form of Condition 2 wrt (S, p), with ar = 18 or 26. We further claim that 
Fe(S) is s-natural wrt S. It is easy to confirm the naturalness of F6(S) and the 
validity of Condition 2 by inspection of Fig. 3. But F,(S) satisfies hypotheses i, ii, 
and iii of Proposition 2 with B = 6. Hence by Proposition 2 F6(S) satisfies the 
&form of Condition 1 wrt (S, p). 

~OPOSITION 11. Suppose p is an (18,s) surface point of a set S and all 
18-neighbors of p that lie in S are also (18,6) surface points of S. Then the following all 
hold: 

(i) No unit cell in N(p) contains more than four points in S and every cell 
containing four points in S is identical to cell (a), (b), (d), or (e) in Fig. 3. 

(ii) No 2 X 1 X 1 cell in N(p) is as in Fig. 4. 
(iii) Fs( S( p))( p) is the plate set of a single plate cycle at p. 
(iv) If q is an 18-neighbor of p that lies in S then q is a vertex of some plate in 

FdS( P))( P>- 

Conversely if p E S G Z 3 and i, ii, iii, and iv all hold then p is an (18,s) surface 
point of S. 

Proof. If p is an (18,s) surface point of a set S and all 18-neighbors of p that he 
in S are also (18,g) surface points of S then i and ii follow from Propositions 8 and 
9 (Corollary 2), while iii and iv follow from Proposition 9 (Corollary 1) and 
Proposition 3. 

Conversely, suppose p E S C E 3 and i, ii, iii, and iv all hold. Then, since 
F6(S( p)) satisfies the g-form of Condition 1 wrt (S, p), iii implies that S(p) has 
exactly two 6-components. Let v be p or any 18neighbor of p that lies in S. Then 
by iv v is a vertex of a-plate ?T in F6(S( p))( p). We assert that v is 6-adjacent to 
both 6-components of S(p). 

If n is a plate of type b or c then this result can be obtained by applying 
Proposition 4 to 6,( S( p)) (taking D to be the closed unit cell in N(p) containing 
the plate). If ?T is of type a or d, then WLOGp = 111, and by symmetry it is enough 
to establish the result in the following four cases: 

I. The vertices of rr are 111, 212, 222, and 122. 
II. The vertices of a are 111, 112, 222, and 121. 

III. The vertices of B are 111, 112, 122, and 221. 
IV. The vertices of n are 111, 121, 122, and 112. 

In each case the desired result can be deduced from Proposition 4 (applied to 
oF,(S( p))( p)): in case I take D to be the closed unit cell in N(p) that contains 222; 
in the other cases take D to be the union of the closed unit cells in N(p) which 
contain 022 and 222 (note that by i and ii the interior of the ceII containing 022 
meets no plate in F,(S( p)) and that this cell always contains a point in S that is 
6-adjacent to v). This argument justifies our assertion, which implies that p is an 
(18,G) surface point of S. 0 
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COROLLARY. If S G Z 3 then S is an (18,6) digital surface iff i, ii, iii, and iv hold 
for all p in S. Cl 

~OPOSITION 12. Suppose p is a (26,6) surface point of a set S and every 
26-neighbor of p that lies in S is also a (26,s) surface point of S. Then the following all 
hold: 

(i) No unit cell in N(p) contains more than four points in S, and every cell 
containing four points in S is identical to (b) or (d) in Fig. 3. 

(ii) lFe( S( p))( p) is the plate set of a single plate cycle at p. 

(iii) If q is a 26-neighbor of p that lies in S then q is a vertex of some plate in 
Ed% P>)( P>. 

Conversely, ifp E S c Z 3 and (i), (ii), and (iii) all hold then p is a (26,6) surface 
point of S. 

Proof If p is a (26,s) surface point of a set S and every 26-neighbor of p that 
lies in S is also a (26,6) surface point of S then i is Proposition 10 while ii and iii 
follow from Proposition 9 (Corollary 1) and Proposition 3. 

Conversely, if p E S E Z3 and i, ii, and iii all hold then by Proposition 1 p is an 
(18,s) surface point of S. Suppose v is a 26neighbor of p that lies in S and v is not 
18-adjacent to p. Then by i and iii v and p are diametrically opposite corners of a 
cell of type b, so on applying Proposition 4 to this cell we deduce that v is 
6-adjacent to two different 6-components of S(p), both of which are 6-adjacent to 
p. Therefore p is a (26,s) surface point of S. 0 

COROLLARY. If S c h 3 then S is a (26,s) digital surface i@ i, ii, and iii all hold 
for every p in S. Cl 

5. FUNDAMENTAL PROPERTIES OF SURFACE POINTS AND DIGITAL SURFACES 

In the previous section we obtained simple “visual interpretations” of eight of the 
nine different kinds of surface point (the exception being the (6,6) surface points). 
We will now use these ideas to establish a number of basic results about surface 
points and digital surfaces. Special cases of Propositions 13 and 18 were proved by 
Morgenthaler, Reed, and Rosenfeld in [5], [7], and [6]. The complexity and subtlety 
of their arguments (which did not make use of “filling-in” algorithms) would seem 
to highlight the benefits of our approach. 

PROPOSITION 13. Let S be an a-connected (a, p) digital surface, where a and B 
are not both equal to 6. Suppose S G int(Q) where Q is a cuboid whose comers are all 
in E 3 and whose edges are all parallel to the coordinate axes. Then s f~ Q has exactly 
two &components, and each /3-component is Badjacent to every point in S. 

Proof; Suppose the hypotheses are satisfied. Then, by Propositions 6ii, 7ii, lliii, 
and 12ii, u IFB(S) is a polyhedral surface without boundary contained in int(Q). We 
claim that u FB( S) is strongly connected. To see this, let P be a maximal subset of 
FB(S) such that u rP is strongly connected. Let p and q be any pair of a-adjacent 
points in S. Then F,r(S)( p) n FB(S)(q) is nonempty, by Propositions 6iii, 7iii, 
lliv, and 12iii. Furthermore, q E S implies BP(S)(q) is strongly connected (this 
follows from Propositions 6ii, 7ii, lliii, 12ii, and the fact that every plate cycle is 
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strongly connected). Therefore if Ffl(S)( p) _C P then Ffl(S)( q) _C P. Since ( p, q) is 
an arbitrary pair of a-neighbors in S, and S is a-connected, it follows that 
EB(S)(r) G P for all r in S. Hence P = lFD(S), and so U lFB(S) is strongly 
connected. 

Hence by Proposition 0 Q \ U lfB(S) has precisely two polygonally connected 
components, C, and C, say, and every point in S is in the closure of both 
components. But F,s(S) is B-natural wrt S, so we deduce from subcondition c of 
naturalness that each of C, and C, contains a point in S(p) for all p in S. 
Furthermore, Proposition 1 implies that C, n S and C, n S are distinct /3-compo- 
nents of S n Q. Combining these two observations with Proposition 5 (Corollary) 
and Proposition 9 (Corollary 1) we get the required result. 0 

Remark. The basic goal of [7] and [6] was to prove this proposition for (6,x) 
and (26,6) digital surfaces. 

PROPOSITION 14. 

(i) Let S be an (a, j?) digital surface, where f3 = 18 or 26 and let p be any point 
in S. Let W be the polygonally connected component of U Efl( S) that contains p, and 
let T = W n Z3. Then T is 6-connected and T is an a-component of S. Furthermore, 
if q E T then ~,dT)(q) = E,dWq). 

(ii) Let S be an (a, is> digital surface, where a = 18 or 26, and let p be any point 
in S. Let W be the polygonally connected component of U lF,( S) that contains p, and 
let T = W n Z3. Then T is 18-connected and T is an a-component of S. Furthermore, 
if q E men W’Xq) = WWq). 

Proof Let P be the subset of F,s(S) such that UP = W. 

(i) Suppose the hypotheses are satisfied. If p and q are two points in W n Z3 
then (since W is polygonally connected) there is a sequence (nJ0 I i I n) of plates 
in P such that p is a vertex of no, q is a vertex of 7rn and wi has a vertex in common 
with 7ri+1 (0 < i < n). But the set of vertices of each ri is 6-connected, so here is a 
6-path in W n h3 from p to q. Hence W n E3 is 6-connected. T is an cw-compo- 
nent of S, for if u E T and u is a point in S that is a-adjacent to u then there is a 
plate 7~ in E,s(S) that contains both u and u (by Propositions 6iii and 7iii): since 
u E W it follows that s c W, which implies u E T. 

Now let q be an arbitrary point in T and let K be any closed unit cell in N(q). If 
K contains a plate in lF,s(S) then K n S must be a-connected, so since T is an 
cy-component of S it follows that K n S = K n T, whence the sets { 7~ E lFs(T) )n G 
K} and {r E F,r( S)]rr E K} are the same. If K does not contain a plate in EBB(S) 
then since T G S it is easily seen that K contains no plate in Efl(T). So, since K is an 
arbitrary cell in N(q), Efl(S)(q) = !FB(T)(q), as asserted. 

(ii) The proof is obtained from the proof of i by substituting “18-connected” 
and “18-path” for “6-connected” and “6-path,” and invoking Propositions lliv and 
12iii instead of 6iii and 7iii. q 

COROLLARY. Suppose (Y and j3 are not both equal to 6. Then S is an (a, a) digital 
surface iff every a-component of S is itself an (a, p) digital surface. 

Proof Let T be an cw-component of an (cu, p) digital surface S, and let q be any 
point in T. Then by the proposition above EB(T)(q) = Es(S)(q), so since S is an 
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((Y, a) digital surface the “only if’ part is an immediate consequence of Propositions 
6, 7,11, or 12 (depending on the values of (Y and 8). To prove the “if’ part, suppose 
every a-component of a set S is an ((Y, p) digital surface. Then lFB( S) exists: for 
suppose there is a unit cell of a “forbidden” type (wrt S) (such as a cell with eight 
points in S); then this cell meets S in an a-connected set and so it is also a 
“forbidden” cell wrt some a-component of S #. Let q be any point in S, and let T 
be the cu-component of S that contains q. Then IFS(S)(q) = IF&T)(q), by the 
argument given in the second paragraph of the proof of part i of the proposition. 
The corollary now follows from Propositions 6,7,11, or 12 (depending on the values 
ofaandp). •I 

Remark. This corollary is the main reason why we did not require that an (a, p) 
digital surface should be a-connected. 

Our next proposition shows that the corresponding result for (6,is) digital surfaces 
is false. (Our proof is essentially the same as the proof of Proposition 16 in [5].) 

PROPOSITION 15. A jinite 6-component of a (6,s) digital surface is never a (6,s) 
digital surface. 

Proof Let T be a finite 6-component of a (6,6) digital surface. Then since T is 
bounded we may assume WLOG that the z coordinate of each point in T is positiue, 
and WLOG 111 E T. Suppose T contains a point p whose z coordinate is strictly 
greater than 1. Then since there is a 6-path in T from 111 to p there must be x, y, 
such that (x, y, 1) and (x, y, 2) are both in T. Then (x, y, 1) is 6-adjacent to exactly 
one 6-component of S((x, y, l)), so T is not a (6,6) digital surface. This argument 
shows that if a 6-component of a (6,6) digital surface is itself a (6,s) digital surface 
then every point in that 6-component has the same z coordinate: similarly every 
point in the 6-component has the same x coordinate, and the same y coordinate, 
whence the 6-component consists of just one point, and so it is not a (6,6) digital 
surface. q 

Remark. If we omit the word “finite” in the statement of Proposition 15 then the 
result is obviously false, since if P is any coordinate plane then H’ n P is a 
6-connected (6,6) digital surface. Nontrivial examples of 6-connected (6,6) digital 
surfaces seem to be quite “rare.” But they do exist, as Fig. 5 shows. 

PROPOSITION 16. 

(i) Suppose p is an (a, 8) surface point of S, where /3 = 18 or 26. Then p is 
a-adjacent to exactly one 6-component of S(p) \ { p }. 

(ii) Suppose p is an (a, 6) surface point of S, and every a-neighbor of p that lies 
in S is also an (a, 6) surface point of S where ar = 18 or 26. Then p is a-adjacent to 
exactly one 18-component of S(p) \ { p }. 

Proof 

(i) Suppose the hypotheses are satisfied. Then E@(S( p))( p) exists and is the 
plate set of a single plate cycle at p by Propositions 3 and 5 (Corollary). But if 
B E lFfl( S( p))( p) then ?z is either a square plate or a compound plate, and in both 
cases s n S \ { p } is 6-connected and 6-adjacent to p. So, since the intersection of 
the vertex sets of two consecutive plates in a plate cycle must contain a point in 
s\ {PI, (UW(P))(P))~ S\ { P> is 6-connected and 6-adjacent to p. By 
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The 0th layer looks like this: 
(Extend the picture to infinity.) 

00000010000 
00000010000 
00000010000 
00000010000 

If N is any positive integer then the Ntb 11110010000 
layer looks like this: 00001010000 
(Extend this picture to infinity in the obvious 00001001111 
way.) 00001000000 

00001000000 
00001000000 
00001000000 

00000010000 
00000010000 
00000010000 
00000010000 
11110100000 
00001110000 
00000101111 
00001000000 
00001000000 
00001000000 
00001000000 

00000010000 
00000010000 
00000010000 
00000010000 

If N is a negative integer then the Nth layer 11111100000 
looks like this: 00000000000 
(Extend the picture to infinity.) 00000111111 

00001000000 
00001000000 
00001000000 
00001000000 

FIG. 5. A 6-connected (6,6) digital surface. (The points on the digital surface are marked 1.) 

Propositions 3 and 5 (Corollary) every a-neighbor of p that lies in S is contained in 
(U lF,JS( p))( p)) n S \ { p }, so p is a-adjacent to just one 6-component of S(p) \ 
{ p }, as asserted. 

(ii) This is analogous to the proof of i: the result follows from Proposition 3, 
Proposition 9 (Corollary l), and the fact that if p E S and R E Fe(S( p))( p) then 
B n S \ { p} is l&connected and 18-adjacent to p. 0 

COROLLARY. If the hypotheses of i or ii hold then p is a-adjacent to exact& one 
a-component of S(p) \ { p }. 0 

Remark. All the earlier authors defined a “simple surface point” of a set S to be 
a point p such that p is an (ar, p) surface point of S and p is a-adjacent to precisely 
one cr-component of S(p) \ { p }. Proposition 16 (Corollary) shows that if one of a! 
and /3 is not equal to 6 then the extra axiom is unnecessary in the sense that it is 
automatically satisfied by every point of an (a, fi) digital surface. (If ly = /3 = 6 then 
the extra axiom is not redundant, as can be seen from any of the five central points 
in Fig. 5.) 
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PROPOSITION 17. 

(i) The only (18, z) digital surfaces are the sets Z 3 n P where P is a coordinate 
plane. 

(ii) If S is a (26, i@ digital surface which is not of the form Z 3 n P for some 
coordinate plane P then IF&S) contains only compoundplates. 

Proof If an ((u, /?) digital surface S is a subset of a coordinate plane P then it is 
plain that S = Z 3 n P. So in proving i and ii we need only consider digital surfaces 
that are not subsets of any coordinate plane. 

(i) Suppose S is an (18, %$) digital surface. Then lF,,( S) is a polyhedral surface 
without boundary. So if IF 26(S) is not a subset of a coordinate plane there must be 
two plates rri and “2 in Fz6(S) such that rri and rz have an edge in common and 7ri 
and 7rz are perpendicular. WLOG the vertices of r1 and rz are {111,121,122,112} 
and {111,121,221,211}. Then by Proposition 6iii 112 and 211 are contained in a 
single plate in IF,,(S) and so 212 E S. Similarly 222 E S. This contradicts Proposi- 
tion 6i and so the result is proved. 

(ii) Suppose S is a (26, i8) digital surface. Then F,,(S) is a polyhedral surface 
without boundary. Suppose F18(S) contains a square plate: then if F1s(S) is not a 
subset of a coordinate plane there are two plates vi and 7~~ in F,,(S) such that r1 
and rz have an edge in common, r1 is a square plate and either rz is a square plate 
perpendicular to q1 or 7rz is a compound plate. In the former case there are vertices 
x, y of rIT1 and rrz, respectively, such that x and y are diametrically opposite comers 
of a unit cell. This contradicts Proposition 7iii. In the latter case WLOG the vertices 
of ni are {111,121,122,112} and WLOGlll and 112 are also vertices of nz. Now 
one of 012, 011, 212, and 211 is a vertex of rr*, so WLOG012 E S. Then there is no 
plate in Fi8(S) which contains both 012 and 121, and this contradiction to 
Proposition 7iii proves the result. q 

COROLLARY. The only (26,z) digital surfaces are the sets Z 3 n P where P is a 
coordinate plane, q 

PROPOSITION 18. Suppose Q is a closed cuboid whose corners are in Z 3 and whose 
edges are parallel to the coordinate axes. Let S be a subset of Z 3 and let T be an 
a-component of S n int(Q) such that each point in T is an (a, p) surface point of S, 
where 0 = 18 or 26 (the same value of /3 is used for each point in T ). Then there are 
two distinct /3-components of S n Q each of which is /3-adjQcent to every point in T. 

Proof Suppose the hypotheses are satisfied. Then T is a-connected. So by the 
definition of an ( CX, s) surface point any P-component of S n Q that is P-adjacent to 
one point in T is P-adjacent to all points in T. Thus it sufhces to prove that each 
point in T is P-adjacent to two different /3-components of S fl Q. 

Define BD = U{lFfl(S(t))lt E T} and define Z = UP. ([FD exists by Proposition 
5.) Then Z is a polyhedral surface. By Propositions 3 and 5 (Corollary) no point in T 
can be on XX. 

Now let 7~ be an arbitrary plate in P. It is readily confirmed that ?T n Z3 n int(Q) 
is 6-connected regardless of which type of plate v is and irrespective of the position 
of r in Q, so every vertex of 7~ is either in T or is on aQ. Hence XX \ aQ contains 
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00000 00000 00000 11110 00000 
00000 00000 11110 00001 00000 
00000 00000 11110 00001 00000 
00000 00000 11110 00001 00000 
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00000 00000 00000 00110 00000 
00000 00000 00000 00000 00000 

FIG. 6. Two cross caps. 

no vertices of T. But by definition of lPfl XS is a union of straight line segments each 
of which joins two 6-adjacent vertices of a plate in P. Hence XS c aQ. 

Let p be any point in T. Then p E Z n int(Q), so by Proposition 0 p is in the 
closure of two different polygonally connected components of Q \ Z. Call these 
polygonally connected components C, and C,. We know P is B-natural wrt 
(S, N(p)) so, by subcondition c of naturalness, C, n s(p) and C, n s(p) are both 
nonempty. By Propositions 1 and 5 (Corollary) these two sets are distinct /3-compo- 
nents of g(p) and they are both B-adjacent to p. But each of C, n 3 and C, n s is 
a union of P-components of s nQ, because it is easy to see that the straight line 
segment joining two B-adjacent points in s cannot meet Z. So the result is proved. 
0 

Proposition 18 is a natural generalization of the main theorem of [7]. The 
proposition may fail if we allow /3 to be equal to 6, because there can be a “gap” 
between a U (U {FJS(t))]t E T}) and the surface of Q. A counterexample to 
Proposition 18 (with B = 6) in which Q is a cube with sides of length four and T 
contains the point at the center of Q is called a cross cap (following Morgenthaler, 
Reed, and Rosenfeld). [7] contains one example, and Fig. 6 shows two others. (In 
Fig. 6 (Y can be 6,18, or 26. The points marked 1 are in S.) Readers should have no 
dit%culty at all in constructing their own cross caps using the concepts discussed in 
this paper. 

In this paper we have said very little about the structure of (6,6) digital surfaces. 
In fact (6,6) digital surfaces are really quite unlike the other kinds of digital surface, 
as Proposition 15 has already shown. A further illustration of the strangeness of 
(6,6) surface points is provided by the following example of a (6,6) digital surface 
whose complement in Z3 is 6-connected-we shall call it a global cross cap. (Recall 
that by Propositions 13 and 14 (Corollary) the complement of an (cy, a) digital 
surface cannot be /?-ccumected if a and /I are not both equal to 6.) The global cross 
cap referred to is a subset of {(x, y, z) E Z31 ] I 6, ]y] I 6, ]z] I 3). In Fig. 7 “Level 
n” is the set {(x, y, n)]x and y are in Z3, Ix] I 6, (y] I 6). The points on the global 
cross cap are labeled “1”. 

6. SUMMARY AND CONCLUSIONS 

If W is an arbitrary subset of Z3 then detine the continuous analog of W to be 
the union of the unit cubes whose comers are all in IV, the unit squares whose 
comers are all in IV, and the line segments of unit length whose endpoints are both 
in W. 
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Level 3 

FIG. 7i. A (6,s) global cross-cap. (Levels 0, 1,2,3.) 

Suppose (a, b,c) E W c Z3 and K = {(x, y, z)(max(]x - aI, ]y - b], Iz - cl) -C 
l}. (So K is the interior of a cube with edges of length two.) In this paper we have 
shown that if we use 6- and 26-connectivity for W and w, respectively, then (a, b, c) 
is a “simple surface point” of W in the sense of Morgentbaler, Reed, and Rosenfeld 
[5, 7, and 61 if and only if the part of the continuous analog of W that lies in K is a 
surface (in the naive sense) which separates K into two regions. 

This result was precisely stated in Section 4 (as Proposition 6), and we have 
proved similar but slightly more complicated results (in Propositions 7, 11, and 12) 
for seven of the eight other varieties of “simple surface point” that were (in some 
cases implicitly) defined by the earlier authors. These results led us to a new and 
more “intuitive” proof of the main theorems of [5], [7], and [6]. (In fact Propositions 
13 and 18 are considerably stronger than the results proved in [7] and [6].) We have 
also discovered (see Proposition 16) that one of the three axioms used by the earlier 
authors to define these surface points is redundant in that it can be derived from the 
other two axioms-unless we use 6-connectivity both for S and for $. 

Unfortunately it is not immediately clear from our “visual interpretation” of 
surface points how one might use them in the design of surface detection algorithms. 
Nevertheless, we hope useful applications of the “surface-point” concept will be 
discovered, and we hope our results will play a part in the discovery of such 
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FIG. 7ii. A (6,s) global cross cap. (Levels - 1, -2, -3.) 

applications. (The earlier authors suggested that surface points might be relevant to 
the theory of “thinning’‘-[9] is a recent paper on thinning.) 

But this paper is intended to be more than just a thorough investigation of surface 
points; we believe that it also illustrates an interesting way of proving theorems in 
digital topology, namely the transformation of the problems we wish to solve into 
problems of continuous topology. Propositions 13 and 18 are two results of digital 
topology that are readily established using this approach, but which are surprisingly 
difficult to prove directly. In a future paper we shall use a similar method to give a 
proof of Theorem 5 in [8]-in fact we shall prove the more general result that if 
S c Z3, C is an a-component of S and D is a /komponent of S, where (Y and /3 
are not both equal to 6, then the set of all points in C that are /?-adjacent to D is 
a-connected. 

APPENDIX: A PROOF OF PROPOSITION 0 

We shall need the following three-dimensional analog of the Jordan Curve 
Theorem: 

THE JORDAN-BROUWER SEPARATION THEOREM FOR A STRONGLY CONNECTED 

POLYHEDRAL SURFACE WITHOUT BOUNDARY. If x is a strongly connecfedpolyhedrul 
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surface without boundary then W 3 \ Z has precisely two components, and one of the 
components is bounded. Z is the boundary of each component. 

Proof See [l]. 0 

PROPOSITION 0. Let X be a closed cuboid in BP 3, and let Z be a polyhedral surface 
contained in X such that Z n int(X) # 0 and aI: E 8X. Let p be any point in 
Z n int(X). Then p is in the closure of two different polygonally connected components 
of X \ 2. Furthermore, if Z is strongly connected and 82 = Z n 8X then X \ >= has 
exactly two polygonally connected components, and Z is a subset of the closure of each 
of these two sets. 

Proof We shall assume throughout this proof that X and Z are as defined in the 
first sentence of the proposition. We shall also assume that Z is strongly connected, 
for the result is certainly true if it holds for each “strongly connected component ” of 2. 
All the sets we consider in this proof are “locally polygonally connected,” so the 
terms “connected,” “path connected,” and “polygonally connected” are inter- 
changeable. 

Suppose 82 -2naX. Theneither ax= 0 or XZ=yluy,~~~uyn where 
n 2 1 and the yi are simple closed (polygonal) curves on 6JX such that y, n y, 
contains only finitely many points whenever i f j. Pick an arbitrary point q in 
8X \ 82. By the Jordan Curve Theorem 8X \ yj has exactly two components: say 
that a point x is outside yi lfi x is in the same component of 8X\ yi as q. Let C, be 
the set of points which are outside an odd number of the yi, and let C, be the set of 
points which are outside an even number of the yi (if 82 = 0 then C, = 0 and 
C, = 8X). The Jordan Curve Theorem states that yi is contained in the closure of 
both components of 8X \ y,. It follows that yi c cl(C) n cl(C,), and it is easy to 
see from this that C, U I: is a strongly connected polyhedral surface without 
boundary. So by the Jordan-Brouwer Separation Theorem R3 \ (C, U 2) has 
exactly two components, one bounded and one unbounded. Let B be the bounded 
component and let U be the unbounded component. It is plain that B is a subset of 
X, and it is also clear that C, is a subset of U. 

We claim that neither one of B u C, and U n X can meet the closure of the 
other. This is plain if C, = 0, so suppose C, # 0 and pick x in C,. By the 
Jordan-Brouwer Separation Theorem x E cl(B). Now pick e so small that B(x, E) 
n ): = 0. Then (B(x, E) n X)\(C, U 2) is connected and so must be entirely 
contained in B. Hence x 4 cl(U n X). Therefore C, n cl(U n X) = 0. As C, u I: 
is a polyhedral surface it is closed so cl(C) n (U n X) = 0. 

We assert that C, is contained in a single component of X \ 2. This is certainly 
thecaseif ZndX=0,forthenC2=8X.If >=ndX#0 thenC,UZisa 
strongly connected polyhedral surface without boundary, so by the Jordan-Brouwer 
Separation Theorem R 3 \ (C, u Z) has a bounded component B’ and C, is con- 
tained in cl(B’): since B’ must plainly be contained in X our assertion is proved. 

Letxand ybeanytwopointsinUnX,andletwbeanypointinU\X.Then 
the paths in U from x and y to w must meet C,. Hence by the previous paragraph 
there is a path in U n X from x to y. This argument shows that U n X is connected, 
and so X \ Z has precisely two components, which are B U C, and U n X. By the 
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Jordan-Brouwer Separation Theorem Z z cl(U). So I: n d(X) G cl(U n X). By 
the Jordan Curve Theorem 3x c cl(C,) G cl(U n X). Hence Z c cl(U n X). By 
the Jordan-Brouwer Separation Theorem 2 c cl(B) c cl(B U C,). So we have 
established the proposition in the case when 6’22 = 2 n 8X. 

It remains to consider the case in which ax is a proper subset of Z n ax. 
Suppose WLOG that the centroid of X is the origin. Define a map f on W 3 such that 
f(x, y, z) = (2x, 2y, 22). Let Y = f(X), and let L be the set whose members are the 
straight line segments joining each point on 82 to the image of that point under f. 
Let 2’ = Z u U L. Then it is easy to see that 2’ is a strongly connected polyhedral 
surface and Z = 2’ n 8Y. So by what we proved in the previous paragraph 
Y \ 82’ has exactly two components, and if p is a point in Z n int(X) then p is in 
the closure of both components, whence p is in the closure of two different 
components of X \ 2. 0 
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