
The Timed Failures-Stability Model for CSP

G.M. Reed and A.W. Roscoe1

Oxford University Computing Laboratory
11 Keble Road, Oxford OX1 3QD, U.K.

Abstract. We present a mathematical model which is the most ab-
stract allowing (i) a fully compositional semantics for timed CSP and
(ii) a natural abstraction map into the standard failures/divergences
model of untimed CSP. We discuss the construction and properties
of this model and ways in which it can be used to give semantics to
CSP reflecting several implementation strategies.

1 Introduction

Although widely used throughout the world in such critical applications as
aviation and nuclear power, real-time programming is a poorly understood
discipline. There are severe problems which arise in understanding the be-
haviour of real-time sequential code, for example relating to scheduling poli-
cies. The complexity of these problems will only intensify as we increasingly
implement distributed real-time systems with the consequent possibility of
nondeterministic behaviour. It is imperative that we begin now to develop
the formal models on which the eventual solutions must be based. The au-
thors have been working in this area for several years now, and have devised
a number of related models for Timed CSP, a straightforward extension of
Hoare’s CSP notation. This paper presents the model which is central to
their work.

Theories of concurrency can be divided into ‘untimed’ ones, which ig-
nore the precise times at which events occur, concentrating only upon their

1The authors gratefully acknowledge that the work reported in this paper was sup-
ported by the U.S. Office of Naval Research under grant xxxxxx.

1

relative order, and ‘real-time’ ones which do record these times. Untimed
theories tend to be simpler to apply and are used when one is not concerned
about the precise timing details of a system (or are leaving these for later)
and when the system does not rely for its correct internal functioning upon
time-dependent features such as timeouts. One of the major contributions
of the CSP/CCS conceptual model of concurrency, with no shared memory
and handshaken communication, is that it does have a rich and usable un-
timed theory and, until a few years ago, the literature concentrated on this
side.

Nevertheless there are occasions where timed analysis is necessary, and
so a number of models and methodologies have arisen for dealing with real
time. The authors’ philosophy in designing real-time models has always
been that the timed theory should not be separate from the untimed one,
but should be a natural extension of it where there are well-understood
ways of using both theories in the same development. Thus one should be
able to prove properties about the untimed behaviour of a system, and be
able to use this information rigorously when later refining it to meet timing
constraints. Equally, if one is building a large and complex system where
one needs to rely on timing only for the correctness of a few components,
then we should have ways of localising the more complex timed analysis to
those components.

To this end we have developed a number of timed models at different
levels of abstraction in such a way that they and the untimed models form
a natural hierarchy, with abstraction maps between them. Aspects of this
work have already been reported and applied in a number of references, for
example []. The key to getting the connection with the untimed models
has been our use of the concept of stability (a form of observation dual to
divergence) together with more obvious ones such as timed analogues of
traces and refusals.

The purpose of this paper is to set down in definitive form the construc-
tion, philosophy and properties of the model that plays the central rôle in
our theory, the timed failures-stablilty model. Though relatively complex, it
turns out to be the simplest model which both gives a fully compositional
congruence for Timed CSP and which extends the standard untimed fail-
ures/divergences model of CSP. The model presented here is somewhat more
refined than the earlier version which we presented in [].

Having constructed the model we then seek to understand it, and also
the nature of nondeterminism in real-time concurrency, by carrying out an

2

in-depth study of the forms of nondeterministic behaviour it predicts.
We will show how the model can be used to give semantics to CSP. It

can be argued that it is wrong to settle on a single semantics for a real-time
language such as Timed CSP, since to do so constrains the implementor too
much. And it is true that if one were implementing the constructs of CSP
there would be a wide range of possible timed behaviours possible, no single
one of which we could say is ‘right’. CSP is, however, essentially a theoretical
and specification language rather than one in which implementations are
built directly. Therefore we will argue that it is sensible to have a single
standard semantics for Timed CSP with as clean and elegant a semantics as
possible. The timing details of implementations can then be built up from
its constituent parts.

Finally, we will survey the growing body of work that is developing
around this and our other models. This includes extensions to our basic
theory, connections with other strands of work such as temporal logic, the
development of methods to make the application of this work easier, and a
number of real applications.

2 Time and topology: the construction of the model

2.1 The syntax of Timed CSP

At this stage it is appropriate to define the language we will use, in order
that we can discuss it properly.

The version of untimed CSP we use is essentially that of [BHR,1984],
[BR,1985] and [H]. Additionally we will denote by ⊥ the diverging process
which performs an infinite sequence of internal actions without communi-
cating. Further, we will allow infinite nondeterministic choices S and the
hiding of infinite sets of events P \ X.

One might think that a wide range of additional operators would be
required to reflect timed behaviour (e.g., timeouts and interrupts). But in
fact, under the standard semantics which we shall see later, it is possible to
produce all of the commonly needed ones as derived operators (i.e., combina-
tions of standard ones) if we introduce a single extra primitive: WAIT t for
each real number t ≥ 0 is the process which for t units of time engages in no
event visible to the environment and which then becomes able to terminate
successfully. Intuitively, SKIP should coincide with WAIT 0. Therefore, for
now at least, we will only add this one construct to the untimed language.

3

In constructing the language, we assume we are given an alphabet Σ
from which all communications are drawn. In the syntax below, a ranges
over Σ; X, Y over subsets of Σ; f over the set of functions from Σ to Σ; and
F over ‘appropriate’ compositions of our syntactic operators. P (a) denotes
a function from the given X to the space of processes and S ranges over
nonempty subsets of the set of processes. p ranges over process variables
(needed to define recursions).

P ::= ⊥ | STOP | SKIP | WAIT t | a → P | a : X → P (a) |
P1�P2 | P1 � P2 | S | P1 ‖ P2 | P1 X ‖Y P2 | P1 P2 |
P1; P2 | P \ X | f−1(P) | f(P) | p | µp.P

Technical notes. In order that the above syntax is properly defined we
need to place a bound on the size of sets over which we allow ourselves to
take nondeterministic choices. This bound can be any cardinal. We will
find later that we need additional restrictions on the range of the function
P (a) and the members of each infinite set over which we apply . These
additional restrictions will be described and discussed later.

2.2 Postulates

Timed CSP inherits more than its syntax from the untimed version of the
language. Our basic understanding of what a CSP process is stays the
same. It is an entity which communicates in some alphabet of atomic events.
These communications are still thought of as instantaneous: the moment
when an event occurs is the time when the handshake which is ‘its essence’
takes place. The fact that each sequential process performing an event
actually takes some time to perform it is reflected in a delay between the
instantaneous occurrence and the time when the sequential process is able
to do anything else. Timed CSP also retains the postulate that any event
that is observable by the environment can only occur when the environment
offers it: a handshake between the process and the environment. This means
that the view the environment has of a process is essentially the same as
that of a another process with which it might be combined in parallel.

We now state and discuss a number of assumptions we make which are
specific to the way we view time. Some we would regard as obvious and
others as ones which could have been varied. Yet others turn out to be
necessary for subtle reasons we seek to explain.

4

(1) Continuous time domain. The time domain consists of the non-
negative real numbers R+, and there is no lower bound on the time difference
between consecutive observable events. The other plausible general-purpose
time domain would be the natural numbers N (i.e., nonnegative integers).
We choose R+ rather than N because the latter implies a granularity which
might be appropriate in modelling a synchronous system, but we wish to
model processes running asynchronously in parallel. Using N in the latter
case would sometimes force us to regard two events as happening simul-
taneously even when they do not, which might lead us into errors when
reasoning about the system where this occurred. It will, nevertheless, be
necessary to allow several events to happen at the same time since there is
nothing to stop a pair of unsynchronised parallel processes communicating
simultaneously.

We do not specify the units being used to model time: they might be
nanoseconds, seconds or years so far as the theory is concerned. However
in describing examples it is useful to follow the convention that the time
consumed by the completion of an event as described above is generally
much less than 1.

(2) A global clock. We assume that all events recorded by processes
within the system relate to a conceptual global clock. This is time as recorded
by some notional environment which interacts with the process and observes
what happens and when. The environment’s clock is not available in any
sense to the processes comprising a network. This single thread of observed
time leads to greater simplicity and abstraction.

When an application requires a clock which processes can refer to, then
we must model the clock directly in Timed CSP, probably as a process
that runs in parallel with the ones which use it. We might well build some
nondeterminism into the definition of such a clock to allow for the fact that
it does not keep perfect time, and if there were more than one such clock
then this nondeterminism would allow for them drifting apart.

(3) Realism. We postulate that no process can perform infinitely many
actions in a finite time. It is necessary to build this postulate into any
semantics we build for CSP. Given the language described above, one would
expect it to be maintained under the condition that any unwinding of a
recursion is assumed to take time bounded below by some positive constant
δ. It also turns out to be necessary, because of the expressive power of our
model, to impose constraints on the domains of infinitary operators such as

and a : X → P (a). This will be discussed more later.

5

(4) Hiding and termination. We wish (a → P) to denote the process
that is willing at any time to engage in the event a and then to behave like
the process P . Clearly, if P = a → P ,we then wish P \ a = ⊥. However,
consider P = a → STOP (the process that is willing to engage in a at any
time ≥ 0 and then to deadlock). What do we wish P \ a to denote?

We have already discussed the principle that, in CSP, observability is
equated with external control. Given the process a → P and an environment
eager to perform an a immediately, we would expect that a would indeed
occur at time 0. By hiding, we remove control over the event(s) hidden.
Hence, any time a process is willing to engage in a hidden action, it is
permitted to do so and we would expect the hidden event to occur if no
other event did. Thus, we assume that each hidden event takes place as
soon as such an event becomes possible.

Our intuitive model of hiding is that of placing a given process within a
box in which all the events to be hidden are constantly on offer, and then
concealing all the hidden events within the box from the environment.

In the above example, we would wish:

(a → STOP) \ a = WAIT ξ; STOP

where ξ is the time (assumed here to be deterministic) for the completion
of the event a.

In order to model this idea of an event occurring as soon as it becomes
available, we will need to record (either explicitly or implicitly) not only
those times at which events are available, but also those at which they can
become available.

Exactly the same argument applies to occurrence of the termination
event

√
in the sequential composition P ; Q. The effect of this composi-

tion is to make such an event invisible and automatic, exactly as in hiding.
Therefore we make the same assumption, namely that the hidden

√
will

occur and enable Q as soon as it becomes available in P .
(5) Stability and the treatment of divergence. As indicated ear-

lier, stability plays the same rôle in the timed models as its dual, divergence
does in the untimed ones. All behaviours we record in the timed models will
come from observations we can make up to some finite time. This means
that they are qualitively very different from the two types of observation
recorded in the failures/divergences model for untimed CSP. There, the fail-
ure (s, X) meant that, after the trace s, the process would refuse X even if

6

it were offered for ever after; s being a divergence means that we can watch
the process performing internal actions, once again for ever. A process be-
comes stable when it loses the capacity to make any further progress without
making some externalcommunication. Importantly we can record the time
at which stability occurs.

What does a stable process look like? For consistency with the untimed
models and in order to be able to make useful deductions about the be-
haviour of a stable process, we take a rather severe view. We assume that
once it becomes stable a process’ available actions remain constant until
one of them occurs, and furthermore that its subsequent behaviour does not
depend on the time when the event occurred. In other words, given the
initially stable process a → P , the ways P can behave if we accept a at time
100 will be exactly the same as those which could have arisen if a happened
at time 0, only with 100 added on the time when everything occurs. (The
effect will be like ‘shifting’ the behaviours of P by 100 time units.)

This view of a stable process is closely related to the principle stated
earlier that no process has access to the global clock of the observer: if P
did in the example above then it could ‘know’ it was being used at different
absolute times and so behave accordingly. It also means that the activity of
any internal clock which a process may start counts as internal actions.

Notice that if we have observed of a process (a) that it has become stable
and (b) is refusing some set of events, then we know it will refuse this set
for ever.

If, informally, we think of a process as having a red light on the side
which stays on as long as the process is making any internal progress, then
it becomes stable at the time when the light goes out.

The untimed theory takes a very uncharitable view of processes which
could perform an infinite sequence of internal actions. All processes with
this potential immediately were identified with the most nondeterministic
one, and considered useless. There are two distinct places in which a timed
theory can be less severe. Consider the process

(µp.((WAIT x; a → p)�(WAIT y; b → STOP))) \ a .

If x < y then (assuming a symmetric implementation of �) we would expect
this process to diverge in the timed theory and offer no communications
to the environment. If, on the other hand, y < x then we would expect
there to be intervals where the event b is enabled and the hidden a is not,

7

meaning that, if we offer this version of the process a b, then – using timing
information – we can guarantee that it will be accepted eventually. Since
an untimed theory cannot make this type of distinction it has to identify
any potential for an infinite sequence of internal actions with divergence.
But as the above example, as well as various others, show, it is possible and
desirable to distinguish the two when we have time to play with.

The second place where untimed theories are severe on divergence is in
the way they treat processes like ⊥ � (a → P) which can diverge but can
also perform some action – either instead of or interrupting the divergence.
For various technical reasons which we will not repeat here the untimed
theories often do not allow us to reason about these actions or what might
happen after them, because they identify any divergent process with the
most nondeterministic one. As soon as a process has the potential to diverge,
these theories treat them as irrecoverably undefined. It will turn out that it
is not necessary to make this type of identification in the timed theory.

In summary, stability will give us the ability to relate the timed the-
ory with the untimed one because the untimed theory is really a theory of
non-divergent processes, in the sense that it treats any process which can
perform an infinite sequence of internal actions as useless. The refusals which
the failures/divergences model records are those after stability. The timed
theory should also let us reason about processes which can perform these
sequences of internal actions, because time gives us the ability to analyse
their behaviour with sufficient precision.

2.3 The metric space approach

In the models for untimed CSP, it is usual to use complete partial orders
with continuous or monotone functions as the basis for defining the meanings
of recursions. Various workers have defined complete metrics over these
and similar models of concurrency, usually based on the number of steps
over which a pair of processes behave indistinguishably. Of course when a
recursion represents a contraction mapping with respect to such a metric, it
has a unique fixed point which must be the same as the one predicted by a
partial order theory. The problem which attaches to this approach is that
not all recursions give rise to contraction maps. Consider the recursion

P = a → (P \ a)

which fails to be a contraction in the number-of-steps metric because the
hiding operator can actually push points further apart by concealing a’s

8

which guard their differences. Indeed, over untimed models this recursion
has as a fixed point any process of the form a → Q, for Q a process which
cannot communicate an a until it has the possibility of divergence.

Over the timed models the cpo approach leads immediately to problems2.
The most obvious of these comes from the need for a least or bottom element.
Experience would suggest that this should be the most nondeterministic
process, but it turns out that there is no such element in the models we
use since it would violate the assumption about only finitely many events
occurring in a finite time. We will see later that a requirement for increasing
sequences to have least upper bounds would also cause problems.

Fortunately the problems which appeared in the untimed models with
the metric approach now disappear. The reason for this is that we now have
a different and more natural criterion for judging the distance between two
processes: the length of time for which they behave indistinguishably.

Consider an implementable operator F acting on a process P . (It is con-
venient to restrict attention to the case of a unary operator, but of course
the situation is no different in the more general case.) Provided we assume
that the observable behaviour of F (P) depends only on what F can observe
of P (rather than seeing into the structure of P in some way that the en-
vironment cannot – an ability which would probably make the definition of
a denotational semantics based on the observations impossible) and that it
cannot somehow speed up P to observe it faster than we could, then the
possible behaviours of F (P) up to a given time must only depend on the
behaviours of P up to the same time. This means that, under the metric
based on the time-of-indistinguishability, every operator will be nonexpand-
ing. Consider the case of the hiding operator which caused us problems
above. Although some of the communications of P are hidden in P \ a, the
length of time which it takes P to complete them is not: every event which
P \a performs is attributable to one that P could have performed at least as
soon. We might christen this healthiness condition of operators as ‘absence
of clairvoyance’.

As a curiosity, suppose we could build an operator F (P) which speeded
up its argument by a factor of η > 1. Then, assuming that recursive unfold-
ing and the completion of the communication a both take time δ exactly,

2These problems are not always insuperable. In one recent case – the infinite timed
failures model [] – the metric space approach was no longer usable but it prove possible,
with considerable effort, to get a (non-complete) partial-order based theory to work.

9

the process
µp.a → F (p)

could perform infinitely many actions in time 2δη
η−1 .

Given that all operators are nonexpanding, and that we have assumed
earlier that every recursive unfolding takes some time bounded below by
a positive constant δ, it turns out that all recursions represent contraction
mappings and so have unique fixed points. For example, the behaviour of
a system up to time nδ will be determined by an n-fold unwinding of the
recursion. (Of course, it may take substantially less unwinding than this for
a given recursion; what we have here is a global upper bound.)

2.4 Exploring compositionality: in search of the right con-
gruence

We have previously mentioned that the model we are developing is rather
complex and the semantics of processes in it can be somewhat intricate.
Before we construct the model it is helpful to review the reasons for this
complexity. Readers who are familiar with the theory of untimed CSP will
know that it is possible to give natural and compositional semantics to it
in reasonably simple models, for example the traces model and the fail-
ures/divergences model.

At this point it is worth discussing just what ‘compositional’ means
in this context. A compositional semantics is one where it is possible to
determine the natural semantic value of any combination, using standard
operators, of processes from the values of the individual processes. Here,
‘natural’ might either relate to some operational or other intuition about
what the semantic values ‘ought’ to be, or more formally could be defined
relative to some operational semantics and an abstraction map which tells
us exactly what the semantic values ought to be. A simple example of a
non-compositional semantics for untimed CSP which lies between the two
compositional ones mentioned above would be to model each process by a
set of traces and an indication of which traces it could deadlock on. The
two processes

(a → STOP) � (b → STOP) and (a → STOP)�(b → STOP)

would have the same value in this semantic model, but if we were to combine
each process in parallel (‖) with itself, the first would be able to deadlock

10

on the first step while the other would not. Thus it simply is not possible
to give an accurate denotational semantics to untimed CSP in this model.
From this simple example (as well as our discussion later) the reader will
see that finding compositional congruences is not always easy.

Given the similarities between untimed CSP and Timed CSP, one would
expect that they could be modelled by similar congruences. In fact this
turns out not to be the case, as we shall shortly see. The essential reason
for this is the same as the theme underlying the discussion of the differences
in the treatment of internal actions and divergence above. This is that in a
real-time theory we have to reason about what a process will do from mo-
ment to moment in response to various stimuli, and thus have the ability to
resolve a lot of the nondeterminism that cannot be avoided when we deliber-
ately abstract away from time in the untimed models. When modelling real
time we are always concerned about what a process can do at a particular
moment, while the untimed models have to be concerned about possibilities
over all future times.

Before proceeding with this discussion it is helpful to introduce some of
the notation we will be using to describe timed behaviour: the notation of
timed traces.

Notation

A timed event is an ordered pair (t, a), where a is a communication and
t ∈ R+ is the time at which it occurs. The set R+ × Σ of all timed events
is denoted TΣ. The set of all timed traces is

(TΣ)∗
≤ = {s ∈ TΣ∗ | if (t, a) precedes (t′, a′) in s, then t ≤ t′}.

If s ∈ (TΣ)∗
≤, we define #s to be the length (i.e., number of events) of s

and Σ(s) to be the set of communications appearing in s (i.e., the second
components of all its timed communications). begin(s) and end(s) are re-
spectively the earliest and latest times of any of the timed events in s. (For
completeness we define begin(〈〉) = ∞ and end(〈〉) = 0.)

If X ⊆ Σ, s\X is the maximal subsequence w of s such that Σ(w) ⊆ X;

s \ X = s\(Σ − X). If t ∈ [0, ∞), s\t is the subsequence of s consisting of

all those events which occur no later than t, while s \t is the subsequence
containing the events which occur before t. If t ∈ [−begin(s), ∞) and s =

11

〈(t0, a0), (t1, a1), . . . , (tn, an)〉,
s + t = 〈(t0 + t, a0), (t1 + t, a1), . . . , (tn + t, an)〉 .

If s, t ∈ (TΣ)∗
≤, we define s ∼= t if, and only if, t is a permutation of

s (i.e., events that happen at the same time can be re-ordered). We will
regard timed traces which are thus congruent as equivalent, simply different
ways of writing down the same observation.3

If s, w ∈ (TΣ)∗≤, Tmerge(s, w) is defined to be the set of all traces in
(TΣ)∗≤ obtained by interleaving s and w. Note that this is a far more re-
stricted set than in the untimed case, as the times of events must increase
through the trace. In fact, Tmerge(s, w) only contains more than one ele-
ment when s and w record a pair of events at exactly the same time, and
even these two traces will be equivalent (∼=).

Given a Timed CSP process P , Traces(P) will denote the set of all timed
traces which are possible for P .

Suppose P1 and P2 are both CSP processes that both perform some
number of internal actions before terminating successfully. Perhaps one is
SKIP and the other is (a → a → SKIP) \ a. Now consider the process
(P1; a → STOP)�(P2; b → STOP).

In the untimed theory we do not know how long P1 and P2 take to
run and do not wish to specify this time. Also we do not know whether the
implementation of the � operator runs both its arguments at once, gives the
left one priority, or does something else. Thus, in the the untimed theory,
there is absolutely no way we can tell which of a and b becomes available
first. Thus, in calculating the value of

((P1; a → STOP)�(P2; b → STOP)) \ a

the untimed theory cannot exclude the possibility that the b will occur (pre-
sumably accepted by the environment at any moment up to the one where
the hidden a becomes available). However, if we now set P1 = SKIP and

3Notice that, given this assumption, the order of events in a timed trace carries no
information that is not also contained in the times of the events. At first sight it might
seem more natural to record process histories as sets of timed events; but the problem
with this is that it is possible in CSP to have a parallel process which performs two copies
of the same event at the same time. One could use multisets instead, the effect of which
would be the same as our timed traces under the above congruence relation. The choice
is very much a matter of taste.

12

P2 = WAIT 1 and put a timed semantics on � in which its arguments are
allowed to proceed together until a communication takes place, it becomes
certain that the a will be available – and hence occur because of our assump-
tions about hiding – before b is possible. Thus, in this case, the timed theory
would tell us that b cannot occur. Real-time analysis lets us make precise
assumptions about how long various aspects of CSP will take to execute
and to draw the appropriate conclusions. (Notice the similarity between
this example and the one used earlier in the discussion of divergence.)

The above example is actually very telling. We knew that the event
b was not possible because we knew that the process before hiding could
only perform a b after being unable to refuse an a. This suggests that in
order to know what traces are possible in P \ a we need to know something
about the pattern of refusals in P . To confirm this suspicion all we have to
do is consider the same process only with nondeterministic choice replacing
external choice.

((a → STOP) � (WAIT 1; b → STOP)) \ a

We can reasonably expect the process before hiding to have exactly the same
timed traces of observable actions as the corresponding part of the original
version. But this one is not obliged to offer an a before offering a b, and so it
can perform a b even after hiding a. This example means that timed traces
without refusal information cannot give us a compositional congruence.

In the failures/divergences model we only have to give information about
what a process can refuse at the end of a trace. This turns out not to be
sufficient in the real-time case. The reasons for this begin to be apparent
from the arguments in the last paragraph, where we knew b was not possible
because of what was refusable before it happened. In fact this example is not
quite good enough, since we can tell, by looking at what refusals are possible
on the empty trace and the times when b is possible, that the b cannot
occur after hiding. Consider, though, what would happen if we composed
the � version of the above process (before hiding) nondeterministically with
STOP :

((a → STOP)�(WAIT 1; b → STOP)) � STOP

On the empty trace this can refuse anything, and can perform exactly the
same events, at exactly the same times as

((a → STOP) � (WAIT 1; b → STOP)) � STOP

13

and behave the same way after each such event. Thus in a congruence
based on timed traces and refusals after last communication, we could not
tell these two processes apart. Nevertheless, if we hid a in them, the first
could not perform a b for exactly the same reason as above, while the second
one clearly could. The congruence could not therefore be compositional.

As a further example, consider

P1 = ((a → STOP)�(b → STOP)) � (a → c → STOP)

P2 = ((a → c → STOP)�(b → STOP)) � (a → STOP)

On the basis of their timed traces and refusals after traces, P1 and P2
are indistinguishable – and note that neither uses WAIT t or hiding in its
definition. However, let

Q = (WAIT 1�(b → STOP)) ; a → c → STOP

Operationally we would expect:

(P1 ‖ Q) \ b �= (P2 ‖ Q) \ b

In particular, we would expect (on the assumption that the event a takes,
or might take, time ξ to complete):

〈(1, a)(1 + ξ, c)〉 ∈ Traces((P1‖Q) \ b) but
〈(1, a)(1 + ξ, c)〉 /∈ Traces((P2‖Q) \ b)

The essential reason for the sorts of behaviour seen in these examples
can be traced to our earlier discussion of the hiding operator. We said
there that all hidden events take place ‘as soon as such an event becomes
possible’. This means that any behaviour of P in which a hidden event has
been possible for a non-zero time does not give rise to any behaviour in
P \ X. In particular, any non-hidden event which is only possible in such
circumstances is always, in P \ X, pre-empted by hidden events.

We infer that we need to know what a process can refuse during its trace,
not only after it or upon achieving stability. We will have to know what the
process could refuse at each time during the trace, these refusals poten-
tially changing due to internal state changes as well as visible actions. This
is a crucial issue in achieving a successful semantics for real-time parallel
languages.

14

Algebraic properties give a useful test of a mathematical model and the
definition of a semantics over it, which is related to the discussion above and
yet, in a sense, more concrete. For our discussion above has been based on
an intuitive feel for how processes ought to behave operationally. We cannot
turn this inuition into rigorous mathematical arguments without defining an
operational semantics formally. Though this has now been done [], in a way
fully congruent with the semantics of this paper, the necessary arguments
are both very complex and are tied to one specific operational viewpoint.

An intermediate standpoint is to use one’s intuition to write down a
number of algebraic identities which are ‘clearly true’ in any reasonable
implementation and then to use these as healthiness criteria for one’s model
and semantics. Examples we might use are the distributivity of any operator
that only uses (at most) one copy of its arguments over nondeterministic
choice, for example

P�(Q � R) = (P�Q) � (P�R)

P ; (Q � R) = (P ; Q) � (P ; R)

(Q � R) \ X = Q \ X � R \ X

The argument for these is that P �Q is intended to represent a process which
can behave like P or like Q, and that therefore the behaviours of (P �Q)\a
(for example) are precisely those possible for P \ a and those possible for
Q \ a. Another example would be the ‘commutativity’ of hiding:

P \ X \ Y = P \ Y \ X

which one would expect to hold under most realistic implementations of
hiding. It would probably be impossible to come up with a ‘complete’ set of
such laws for testing a semantics which was uncontroversial. Indeed to have
a complete set of such laws, in the most obvious sense, would imply that we
had fallen into the same trap of being over-specific that we mentioned above
in connection with a specific operational semantics. Nevertheless, such laws
as these provide a valuable and more tangible supplement to the intuition
used earlier. The failure of such a law or the impossibility of producing a
reasonable semantics in which they hold will tell us that something is wrong.

2.5 The Timed Failures-Stability Model (TMFS)

We are now ready to build a mathematical model based on the intuition
developed in the last few sections. It will model each process by its set of

15

observable behaviours – timed traces with refusals throughout, up to some
finite time – and will match each with the associated stability time. We will
put a metric on it based on the time for which it is impossible to tell two
processes apart.

The main thing which it remains for us to decide is the way in which
stability values are tied in with the timed traces and timed refusals which
we have already discovered we need.

Consider the processes:

P = WAIT 1; a → STOP

Q = (b → STOP
�

WAIT 1; a → (WAIT 1;STOP))

If we once again assume that � runs its arguments in parallel until a
visible action, we see that both can perform the timed trace 〈(1, a)〉 but
Q (i) cannot perform the a without having made b available first and (ii)
becomes stable later. If we were to associate stability values with timed
traces alone then we could not tell that the late stability of P � Q on trace
〈(1, a)〉 only happens when b is offered first, which would mean that we
would be forced to predict the same late stability on 〈(1, a)〉 for (P � Q) \ b.
But Q\ b cannot perform the event a because it is pre-empted, and it would
follow that

(P � Q) \ b �= P \ b � Q \ b

in contradiction to the principle stated earlier. We can deduce from this that
we must associate stability values with trace/timed refusal pairs – namely
the whole observation we are making of a process.

We still have a number of choices: do we record for each trace/refusal
pair the set of all possible observed stabilities for it? And need we record
not only the stability observed at the end of a trace but also those that may
have been observed at intermediate points along the way?

It would be inappropriate only to record the behaviours of a process
which happened to lead to stability in a finite time. Therefore if we were
recording all times at which a process could become stable we would also
have to include a special value, say ∞, representing the fact that the process
happens not to become stable. This would lead to problems related to our
metric space approach, since one could not tell at any finite time between

16

the process that could become stable at any natural number time and the
one which could also remain unstable.

Although we are assuming our ability to see stability, it is not something
which an implemented operator will usually need to observe of a process in
order to determine the timed traces or refusals of its result. Provided this
property holds of all operators – and we will assume it does – we fortu-
nately do not need to know the set of times when a process might become
stable. Indeed, we will assume that the implementation itself has no way of
observing stability: it is simply a tool that we use to reason about processes
externally. Another consequence of this assumption is that the stability of
any construct F (P) at a given time depends only on F and whether P hap-
pens to be stable at the time which F has observed it up to (which, given
our earlier assumptions, is no later than the current time). So in particular
the current presence or absence of stability does not depend upon whether
it happens to have been observed earlier.

The previous two paragraphs together suggest that it is desirable and
sufficient to associate each trace/refusal pair with a single stability time:
the least upper bound of all the times (including ∞) when it might become
stable, given that the trace and refusal have been observed. This is what
we will do.4

Notation

The following are some more components from which our model will be
built. Stability values are as described above. The time intervals we use
are finite nonempty, closed at the left and open at the right. Not only do
intervals of this form the most natural ones for partitioning the interval
[0, ∞) = R+, but this shape of interval also turns out too be the correct
choice for modelling process behaviour: it reflects the idea that an event
which is offered might be accepted immediately, and allows us to reason
correctly about events which happen at the same time.

Notice that although refusal sets may contain infinitely many different
members of Σ, they can only change finitely often in a finite time. This is
essentially an assumption that processes and the environment only undergo
finitely many state-changes in a finite time.

4An equivalent approach is to associate each pair with the set of all times after the end
of the trace when instability might be observed. This has been suggested by Blamey [].

17

α: TSTAB = R+ ∪ {∞} (Stability values)
I: TINT = { [l(I), r(I)) | 0 ≤ l(I) < r(I) < ∞} (Time Intervals)
T : RTOK = {I × X | I ∈ TINT ∧ X ∈ P (Σ)} (Refusal Tokens)
ℵ: RSET = {⋃

Z | Z ⊆ RTOK ∧ Z finite} (Refusal Sets)

We define various functions over RSET , to extract the set of communi-
cations used, times used, beginning and end, shifting and restriction.

Σ(ℵ) = {a ∈ Σ | ∃t. (t, a) ∈ ℵ}
I(ℵ) = {t ∈ [0, ∞) | ∃a. (t, a) ∈ ℵ}

begin(ℵ) = inf (I(ℵ)), ∀ℵ �= ∅
end(ℵ) = sup(I(ℵ)), ∀ℵ �= ∅

begin(ℵ) = ∞, for ℵ = ∅
end(ℵ) = 0, for ℵ = ∅

∀t ≥ −begin(ℵ), ℵ + t = {(t′ + t, a) | (t′, a) ∈ ℵ}
∀t ∈ [0, ∞), ℵ\t = ℵ ∩ ([0, t) × Σ)

∀I ⊆ R+ ℵ↑I = ℵ ∩ (I × Σ)
∀a ∈ Σ, ℵ↓a = {t | (t, a) ∈ ℵ}.

Each process will be modelled as a set of triples (s, α,ℵ), with s ∈ (TΣ)∗≤,
α ∈ TSTAB and ℵ ∈ RSET . The following functions are natural projec-
tions of such sets and operations to ensure (i) that there is one stability value
for each trace/refusal pair and (ii) that all equivalent traces are treated the
same.

Traces(S) = {s | ∃α, ℵ. (s, α, ℵ) ∈ S}
Stab(S) = {(s, α) | ∃ℵ. (s, α, ℵ) ∈ S}
Fail(S) = {(s, ℵ) | ∃α. (s, α, ℵ) ∈ S}
SUP(S) = {(s, α, ℵ) | (s, ℵ) ∈ Fail(S)

∧ α = sup{β | (s, β, ℵ) ∈ S}}
CL∼=(S) = {(s, α, ℵ) | ∃w. (w, α, ℵ) ∈ S ∧ s ∼= w}

The evaluation domain TMFS

We formally define TMFS to be those subsets S of (TΣ)∗≤×TSTAB×RSET
satisfying:

1. 〈〉 ∈ Traces(S)

18

2. (s.w, ℵ) ∈ Fail(S) ⇒ (s, ℵ\begin(w)) ∈ Fail(S)

3. (s, α, ℵ) ∈ S ∧ s ∼= w ⇒ (w, α, ℵ) ∈ S

4. t ∈ [0, ∞) ⇒ ∃n(t) ∈ N.∀s ∈ Traces(S).end(s) ≤ t ⇒ #s ≤ n(t)

5. (s, α, ℵ), (s, β, ℵ) ∈ S ⇒ α = β

6. (s, α, ℵ) ∈ S ⇒ end(s) ≤ α

7.
(

(s, α, ℵ) ∈ S ∧ (s.〈(t, a)〉, ℵ) ∈ Fail(S) ∧
t > t′ ≥ α ∧ t ≥ end(ℵ)

)
⇒ (t′, a) �∈ ℵ

8. (s, α, ℵ) ∈ S ⇒ if t > α, t′ ≥ α, a ∈ Σ and
w ∈ (TΣ)∗

≤ is such that w = 〈(t, a)〉.w′, then

(s.w, α′, ℵ′) ∈ S ∧ ℵ ⊆ ℵ′\t ⇒
∃γ ≥ α′ + (t′ − t) such that
(s.(w + (t′ − t)), γ, ℵ1 ∪ ℵ2 ∪ (ℵ3 + (t′ − t))) ∈ S,

where ℵ1 = ℵ′\α, ℵ2 = [α, t′) × Σ(ℵ′ ∩ ([α, t) × Σ)),
and ℵ3 = ℵ′↑[t, ∞).

9. (s, α, ℵ) ∈ S ∧ ℵ′ ∈ RSET such that ℵ′ ⊆ ℵ
⇒ ∃α′ ≥ α such that (s, α′, ℵ′) ∈ S

10. (s, α, ℵ) ∈ S ∧ t1 < α ∧ t2 ≥ 0 ⇒
∃ℵ′, β. ℵ ⊆ ℵ′ ∧ (s, β, ℵ′) ∈ S ∧ β ≥ t1 ∧
(t′ ≤ t2 ∧ (t′, a) �∈ ℵ) ⇒ (s\t′.〈(t′, a)〉, ℵ′\t′) ∈ Fail(S) ∧
((0 < t′ ≤ t2 ∧ ¬∃ε > 0. ((t′ − ε, t′) × {a}) ⊆ ℵ′) ⇒

(s \t′.〈t′, a〉), ℵ′\t′) ∈ Fail(S))

11. (s, α, ℵ) ∈ S ∧ I ∈ TINT such that I ⊂ [α, ∞)
⇒ (s, α, ℵ ∪ (I × Σ(ℵ ∩ ([α, ∞) × Σ)))) ∈ S)

Although some of these axioms appear complex, each reflects one or more
simple healthiness properties. We will now give an intuitive explanation of
each.

1. Every process has initially done nothing at all.

2. If a process has been observed to communicate s.w while refusing
ℵ then, at the time when the first event of w occurred, the pair
(s, ℵ\begin(w)) had been observed.

19

3. Traces which are equivalent (i.e., are the same except for the per-
mutation of events happening at the same times) are interchange-
able. Essentially, this postulates that there can be no causal depen-
dance between simultaneous events: notice that if a process has trace
〈(t, a), (t, b)〉 then this axiom and axiom 2 show it has trace 〈(t, b)〉.

4. The process cannot perform an infinite number of visible events in a
finite time.

5. There is only one stability value for each trace/refusal pair: the least
time by which we can guarantee stability after the given observation.

6. The time of stability is not before the end of the trace.

7. A stable process cannot communicate an event which it has been seen
to refuse since stability.

8. After stability the same set of events is available at all times. Further-
more the behaviour of a process after such an event does not depend
on the exact time at which it was executed. Thus the trace w and the
corresponding part of the refusal may be translated so as to make the
first event of w now occur at time t′.

The stability value γ corresponding to the translated behaviour may,
in general, be greater than the obvious value because the translated
behaviour may in some circumstances be possible for other reasons.
Note, however, that if stability is still inferable in the new behaviour
before time t′, then the axiom may be used in reverse to translate the
tail of the behaviour so that the beginning of w occurs back at t. This,
in combination with axiom 9, can often be used to prove that the γ
appearing on the right hand side of axiom 8 does equal α + t′ − t.

There is a phenomenon related to this last discussion which it is worth
pointing out. One can think of the way we record stability values as
giving a record of by when, given the timed trace and refusal observed
so far, can we guarantee that the process attains stability. Subcon-
sciously one might think that things observed after stability give no
information in this regard, but this would be wrong. It is in fact pos-
sible, by making some observation, to realise that the process must
already have been stable for some time. A good example of this is
provided by the process

(WAIT 1; (a → STOP) � STOP

20

Depending on which nondeterministic choice is made, this process ei-
ther will or will not stabilise immediately. But we can only tell from
refusals that it was stable at time 0 when a is refused at time 1 or
later.

9. If a process has been observed to communicate s while refusing ℵ then
it can communicate the same trace while refusing any subset of ℵ.
This simply reflects the fact that the environment might offer it less
and so have less refused. However, because less has been observed, the
stability value can, in general, be greater.

10. Given a triple (s, α, ℵ) and times t1 < α and t2 ≥ 0, there exists a
single refusal ℵ′ in RSET containing ℵ and stability value β > t1 such
that (s, β, ℵ′) ∈ Fail(P) and it is consistent to believe that the (finitely
many) changes in the refusals of ℵ′ give complete information about
what the process could have refused – because it can accept anything
not in the refusal set. The events in s and the changes in ℵ can be
thought of as the process’ state changes. Notice that axiom 9 ensures
that β ≤ α.

The construction involving t1 and β ensures that the stability value α
of (s, α, ℵ) is the supremum of stability values corresponding to such
‘complete’ behaviours – or in other words the time of stability is not
increased simply though the environment failing to observe what would
have been refused anyway.

The last clause of the axiom states that, if an event was not refusable
up to a given time t′, then it was still possible at time t′. This means
that we are assuming that any event which was on offer up to a change
of state is also available at the instant of the state-change. Note that
in the previous clause we state that (s\t′, ℵ′\t′) ∈ Fail(S) whereas in

this last one we vary this to (s \t′, ℵ′\t′) ∈ Fail(S). Of course these
two say the same in the case where s has no event happening at time
t. But if there are one or more, the refusals at time t′ refer to what the
process can do after the event(s) at the given time, while the refusals
just before t′ allow us to reason about what it might have done instead
of them.

This last assumption could be dropped if we wanted to consider opera-
tors which could cause a ‘clean’ withdrawal of an offer to communicate.
It is included in our presentation because none of the CSP operators

21

can cause such a withdrawal and because we consider it to be a prop-
erty which is operationally reasonable. We will also discuss in Section
2.6 below another small modification to this axiom.

The concept of a complete behaviour, introduced here, will be very
important later.

11. Something that is refused at one time on or after stability is refused at
all such times. This axiom says the same about the end of traces that
part of axiom 8 says about other points in them. Notice that these
extra refusals tell us nothing more about stability time.

Note 1. In both axioms 7 and 8, we carefully distinguish (via t′ and
t) between events at stability and events after stability. This is a necessary
distinction. For example, the process P = (a → STOP�WAIT 1); b →
STOP will, in the standard semantics, become stable on the pair (〈〉, [0, 1)×
(Σ − {a})) at time 1; however 〈(1, a)〉 ∈ Traces(P) but ∀t > 1, 〈(t, a)〉 /∈
Traces(P). Events which are possible at the very moment of stability might,
as in this example, result from alternatives to the stable behaviour rather
than from the behaviour itself. This possibility of nondeterminism at the
point of stability will cause us various difficulties later.

Note 2. The axioms above are (when taken together) strictly stronger
than those we have presented in earlier papers, in the sense that they restrict
further the class of processes. The difference between this set and the axioms
of [...] is that axiom 10 above has replaced both axioms 4 (which it obviously
strengthens) and 11 of the earlier paper. A discussion of this point and of our
reasons for strengthening of the axioms will be found in section 2.6 below.
The numbering of the axioms has also changed from earlier papers.

The complete metric on TMFS

As described earlier, the metric on our model will be based on the length of
time for which it is impossible to tell a pair of processes apart. To define
it we need a function which gives a standard representation of a process’
behaviour up to time t. If S ⊆ (TΣ)∗≤ × TSTAB × RSET and t ∈ [0, ∞),
we define

S(t) = {(s, α, ℵ) ∈ S | α < t ∧ end(ℵ) < t}
∪{(s, ∞, ℵ) | end(s) < t ∧ end(ℵ) < t ∧ ∃α ≥ t. (s, α, ℵ) ∈ S}.

22

S(t) has a representative of each timed failure (s, ℵ) which ends before t.
Where the stability value is also less than t, it is included, and otherwise it
is replaced by the standard value ∞. It is worth noting that any pair S1
and S2 of distinct sets of triples satisfyingaxiom 5 have a time t such that
S1(t) �= S2(t): if Fail(S1) and Fail(S2) were unequal then we need only pick
t after the end of some element of the symmetric difference. If (s, α, ℵ) ∈ S1
and (s, β, ℵ) ∈ S2 where α �= β, then t can be any time greater than both
end(ℵ) and the lesser of α and β (which must be finite).

The complete metric on TMFS is now defined:

d(S1, S2) = inf {2−t | S1(t) = S2(t)}

Given the observation we made above about being able to distinguish S1
and S2, it is easy to show that this function defines an ultrametric, namely
a metric satisfying the strong triangle inequality

d(P, R) ≤ max{d(P, Q), d(Q, R)}.

The completeness of this metric can be demonstrated as follows. First, the
set of all S ⊆ (TΣ)∗≤ × TSTAB × RSET satisfying axiom 5 alone is a
complete metric space under this metric: if Sn is a Cauchy sequence we
know that, for each t, there is n = n(t) with m ≥ n implying Sn(t) = Sm(t),
it is easy to see that the limit of the sequence Sn is the set of all triples
(s, α, ℵ) with α < ∞ contained in any such Sn(t)(t) plus all those of the
form (s, ∞, ℵ) contained in all Sn(t)(t) for sufficiently large t. Second, the
set of all S is this space satisfying axiom 9 is closed within this space, since
any failure of this axiom becomes apparent in a finite time (i.e., if S fails
it, then there is a time t such that S′(t) = S(t) implies S′ fails it), which
means that the set of all S not satisfying it is closed. Finally, within the set
of all sets satisfying 5 and 9, the set of all S satisfying any one of the other
axioms is closed. Since the intersection of closed sets is closed, the model
TMFS is thus a closed (and hence complete) subset of a complete metric
space.

2.6 More properties of the model

The most subtle – and most powerful – of our axioms is axiom 10. This
says that each observed behaviour of a process can be interpreted in terms

23

of some ‘complete’ description of how it might behave. If we define a t2-
complete behaviour5 to be one satisfying the conditions on the right hand
side of the implication, then this axiom together with axiom 9 says that the
stability value associated with any timed failure (s, ℵ) is the supremum of all
those associated with its t−complete extensions (i.e., t−complete behaviours
with the same timed trace, and larger timed refusal). Recall axiom 11 of []:

(s.w, α,ℵ) ∈ S ∧ ℵ′ ∈ RSET is such that end(s) ≤ begin(ℵ′) ∧
end(ℵ′) ≤ begin(w) ∧ (∀(t, a) ∈ ℵ′, (s.〈(t, a)〉, ℵ\t) /∈ Fail(S))

⇒ (s.w, α,ℵ ∪ ℵ′) ∈ S

This says that that, if the timed failure (s.w, ℵ) is observable, and if ℵ′

contains events between the end of s and the beginning of w which were im-
possible, then the process would also have refused ℵ′ if the environment had
offered it. Since this must be true in every run of the process which exhibits
(s.w, ℵ), no further information about stability is gained from observing the
refusal of ℵ′, so the observed stability time is the same. (Note axiom 9.)

It is a consequence of our new axioms. Assuming the conditions on
the left-hand-side then, if t > end(s.w, ℵ ∪ ℵ′), obviously any t−complete
extension (s.w, ℵ∗) of (s.w, ℵ) must have ℵ∗ ⊇ ℵ ∪ ℵ′, which means (by
axiom 9) that (s.w, ℵ ∪ ℵ′) ∈ Fail(S). It is then easy to see that any
complete extension of (s.w, ℵ) is one of (s.w, ℵ∪ℵ′), and vice-versa. The sup
property of stability values discussed above then ensures that the stability
values associated with (s.w, ℵ) and (s.w, ℵ) are the same.

For reasons discussed earlier we have not based our fixed point theory
on a partial order. Nevertheless there are other reasons for wanting to
have an order over TMFS based (as with many of the orders over untimed
CSP) on the notion of nondeterminism: P � Q should mean that Q is more
predictable than P – any observation of Q could be taken for one of P . Such
an order will turn out to be useful for understanding the structure of our
model, understanding the way it treats nondeterminism, and for developing
a notion of refinement. Recalling that the triple (s, α, ℵ) means that the
timed failure (s, ℵ) can be observed and that α is the supremum of the
resulting stability values (i.e., any stability value less-than-or equal to α
might occur), the order is best defined as follows. P � Q if and only if

∀(s, α, ℵ) ∈ Q. ∃α′ ≥ α.(s, α′, ℵ) ∈ P

5Depending on the circumstances, we will refer both to timed failures (s,ℵ) of P and
triples (s, α, ℵ) ∈ P as t−complete behaviours if they satisfy this condition.

24

or, in other words, if every member of Fail(Q) is in Fail(P) but with a
possibly greater associated stability value.

We have already observed that the partial order cannot have a least
element because of axiom 4 – the least one could have no bound on the
number of events which can occur up to time t. It also fails to be closed
under the limits of increasing sequences. In the case of Σ infinite this is easy
to demonstrate, using the same examples which work for untimed CSP with
unbounded nondeterminism, for example

Pn = {m → STOP | m ≥ m}
is a sequence of processes, ordered under �, with no upper bound – any
upper bound could neither communicate nor refuse the whole of Σ in con-
tradiction to the axioms.

It also fails to be closed under limits when Σ is finite, though here the
examples are a little more subtle and rely upon time-specific arguments. It
turns out that no upper bound of certain sequences of well-formed processes
can satisfy axiom 10, either because they must have an infinite number of
state-changes or because they fail to leave events available at the instant
when they are withdrawn. As an example of the first, suppose Qn is the
process that makes the event a available during the intervals [0, 1 − 2−1],
[1−2−2, 1−2−3], . . . , [1−2−2n, 1−22n+1] and refuses it in the appropriate half-
open intervals interleaving and following these. Let Pn = {Qm | m ≥ n}.
A little thought will reveal that any upper bound of the ordered sequence
Pn would be obliged to change state infinitely often in the time interval [0, 1]
(when no communication has taken place) and that there is no 1-complete
extension of the timed failure (〈〉, ∅).

One could plausibly argue for a strengthening of axiom 10 that would
ban this counterexample. One of the things this axiom does is to assert
that, at least as far as one can detect in some sense, processes only change
state finitely often in a finite time. When we asserted in axiom 4 that
processes could only communicate finitely often in a finite time it was done
by postulating the existence, for each process, of a uniform bound function
n(t) on the number of events the process could perform up to time t. We
could have taken this approach with axiom 10 and also postulated that each
of the t-complete behaviours for a process has its number of state-changes
bounded by n(t) (using the process’ bound function from axiom 4). The
reader should be able to see that this would ban the processes Pn of the
previous paragraph, since the number of state-changes they make up to

25

time 1 is not bounded (though, for any nondeterministic choice they might
make, it is finite).

The strengthening of axiom 10 would, however, neither solve the in-
completeness problem with infinite alphabets, and nor would it remove the
following example. Let tn be any strictly increasing sequence converging
to 1 from below, and let Qn = ((a → STOP)�WAIT tn); STOP . Under
the standard semantics, the process Qn offers a until time tn, whereupon
the WAIT tn process terminates and removes the possibility of the a. If a
is offered at exactly tn, it may occur or may not – the � operator has to
arbitrate between two events which become ready simultaneously. This is
precisely the situation covered by our discussion of part of axiom 10 – events
which are offered are still possible at the instant from which they are refus-
able when withdrawn. Now consider the processes Pn = {Qm | m ≥ n}.
Pn may withdraw the offer of an a at any sufficiently large tm, but note that
it cannot communicate a at time 1. It is however obliged to offer a up to
tn, and as n increases this value increases to 1. Any upper bound would be
obliged to offer a up to time 1 without the possibility of performing it at
time 1, in violation of the same aspect of axiom 10.

Infinite complete behaviours

Axiom 10 gave us the notion of a t−complete behaviour. This gives us a
‘convincing explanation’ of how a process might have behaved up to time
t, and the axiom tells us that we can find one of these extending any given
timed failure (s, ℵ) with a stability value as close as we please to that asso-
ciated with (s, ℵ). In technical manipulations we will be doing later it will
be useful to be able to extend this to an infinite complete behaviour, which
gives us a convincing explanation of how the process might behave over all
time. This will be a triple (s, α, ℵ∗), where s is still a finite timed trace,
α ∈ R+ ∪{∞}, but now ℵ is allowed to extend to infinity: it is a set of pairs

(t, a) such that each of its restrictions ℵ∗\t is in RSET (i.e., it only changes
finitely often in a finite time). Informally this triple means that the process
might be observed to perform the trace s and be observed though all time
to refuse ℵ∗, and that given this we know that it became stable at time α
at the latest. Such a triple (or, where appropriate, the pair (s, ℵ∗)) can be

said to be a complete infinite behaviour of a process P if (s, ℵ\t) ∈ Fail(P)

for all t, α = inf {α′ | (s, α′, ℵ∗\t) ∈ P} and the same conditions applied as

26

for a t-complete behaviour, namely

(t, a) �∈ ℵ∗ ⇒ (s\t.〈(t, a)〉, ℵ∗\t) ∈ Fail(P)

for each t ∈ [0, ∞) and a ∈ Σ, and

(¬∃ε > 0.(t − ε, t) × {a} ⊆ ℵ∗) ⇒ (s \t.〈(t, a)〉, ℵ∗\t) ∈ Fail(P)

when t ∈ (0, ∞) and a ∈ Σ.
This gives an obvious extension to all time of what axiom 10 provides

us with up to any finite time – a plausible explanation of the state-changes
the process went through in getting to the trace s and those which might
happen after the end of s on the assumption that no event subsequently
occurs. The following lemma shows that these always exist, and that it is
(as we might have hoped) consistent to believe that a stable process does
not change state.
Lemma 1 If P ∈ TMFS , (s, α, ℵ) ∈ P , and t < α then there is an
infinite complete behaviour (s, β, ℵ∗) of P such that ℵ ⊆ ℵ∗ and t < β ≤ α.
Furthermore, if β < ∞, we can assume

ℵ∗↑[β, ∞) = [β, ∞) × Σ(ℵ∗↑[β, ∞))

Proof We will first give one construction that works for the main state-
ment above in all cases, and then give a different one which works for the
second statement in its restricted case. Pick a value t′ such that t < t′ < α.
Starting with (β0, ℵ0) = (α, ℵ), we use axiom 10 iteratively, on the nth it-
eration starting from (s, βn−1, ℵn−1) with t2 = t′ and t1 = T + n where
T = end(s, ℵ), thereby obtaining (s, βn, ℵn). Necessarily, the βn form a (not
necessarily strictly) decreasing sequence of values between t′ and α, and
ℵn ⊆ ℵn+1 for all n. And (s, βn, ℵn) is a (T + n)−complete behaviour for
n > 0. Now, set

ℵ∗ = ℵ1↑[0, T + 1) ∪
∞⋃

n=2
ℵn↑[T + n − 1, T + n)

Notice that, by construction, each ℵ∗\t for t ∈ [0, ∞) belongs to RSET .

Since ℵ ⊆ ℵ∗\T + n ⊆ ℵn, it follows (using axiom 9) that there is some γn

with βn ≤ γn ≤ α such that (s, γn, ℵ∗\T + n) ∈ P . Clearly the γn form

27

a decreasing sequence with a limit β∗ satisfying t < t′ ≤ β∗ ≤ α. Claim
(s, β∗, ℵ∗) is a complete infinite behaviour of P .

If (t, a) �∈ ℵ∗, then choose n = 1 if t < T+1 or otherwise let n be such that
T +n−1 ≤ t < T +n. By definition of ℵ∗, we then know that (t, a) �∈ ℵn and

hence (s\t.〈(t, a)〉, ℵn
\t) ∈ Fail(P). Since ℵ∗\t ⊆ ℵn

\t it follows by axiom

9 that (s\t.〈(t, a)〉, ℵ∗\t) ∈ Fail(P). If t > 0 and ¬∃ε > 0.(t−ε, t)×{a} ⊆ ℵ∗

we choose n = 1 if t ≤ T +1 and otherwise n is such that T +n−1 < t ≤ Tn.
A similar argument to the above then shows that (s \t.〈(t, a)〉, ℵn

\t) and

hence (s \t.〈(t, a)〉, ℵ∗\t) belong to Fail(P). This completes the proof of the
first statement.

Suppose (s, ℵ′) is a t−complete behaviour of P and that (s, β, ℵ′\t) ∈ P
for some β < t. Let A = Σ(ℵ′↑[β, t)). If a �∈ A we know by completeness of

(s, ℵ′) that (s.〈(t, a)〉, ℵ′\t) ∈ Fail(P). Axiom 8 (with w = 〈(t, a)〉) then tells

us that, for all t′ ∈ [β, ∞), (s.〈(t′, a)〉, ℵ′\β∪ [β, t′)×A) ∈ Fail(P). It follows

easily that, for all t′′ < t′, the failure (s, ℵ′\β ∪ [β, t′) × A) is t′′−complete.
Axiom 11 tells us, that for t′ ≥ t, the stability value associated with this
failure is β. It follows that (s, β, ℵ′\β ∪ [β, ∞) × A) is a complete infinite
behaviour of P .

Suppose that the stability value β∗ produced by the first part of this
result was finite. This must have been because one of the sequence γn

which converged down to it was finite. Clearly there then exists n such that
γn < T + n. Thus the preconditions of the previous paragraph are satisfied
by the failure (s, ℵ∗\T + n + 1), t = T + n and β = γn. The conclusions of
that paragraph then give exactly what is required for the second part of the
lemma. �

One immediate corollary of this result is that, for any (s, α, ℵ) ∈ P , α
is the supremum of all the stability values α∗ associated with the complete
infinite extensions of (s, α, ℵ).

2.7 A study of nondeterminism in TMFS

Nondeterminism is a well-known consequence of concurrency. In this section
we will use the tightly-defined model we have created to study just how, and
in what forms, nondeterminism appears in real-time concurrent systems.
We will find that the subtleties of real-time behaviour – in particular issues
relating to instants when a process can arbitrate between some internal

28

action and an external communication – make it a rather harder subject
than for untimed CSP.

One of the features of all the widely used models of untimed CSP is the
way in which any process P can be identified with the set of all deterministic,
or sometimes pre-deterministic processes processes Q which ‘implement’ it,
namely P � Q. (Where the general nondeterministic choice operator � was
defined, this ‘identification’ simply amounted to saying that the set imp(P)
of implementations was nonempty and imp(P) = P .)

A deterministic process was there one which never had the choice of ac-
cepting or refusing any action, which was equivalent to being maximal in the
partial order. In the models with divergence this notion had to be weakened
to say that a pre-deterministic process was one which was deterministic until
it diverged. Blamey [] has written on this phenomenon and has argued that,
since the correct structure of deterministic or pre-deterministic processes is
generally easier to establish and justify than that of general ones, we can
say that the axioms of a CSP model are complete if we have such a prop-
erty. The rationale behind this term is that, given we know what the set of
‘deterministic’ ones is, and what the definition of general nondeterministic
composition is, we can tell exactly which objects are the nondeterministic
compositions of sets of ‘deterministic’ ones. Thus Blamey calls a set of ax-
ioms sound if they allow all such objects, and complete if they allow no
others.

Certainly this form of completeness gives powerful evidence that the way
the axioms extend the notion of (pre)-deterministic processes to nondeter-
ministic ones is correct. It also gives us a much greater level of understanding
of how the model fits together and how it treats nondeterminism.

A taxonomy of nondeterminism

We will find in this section that it is not altogether straightforward to con-
struct an appropriate notion corresponding to deterministic processes and
which is sufficient to give us a completeness result. The resulting investiga-
tions will, however, give us a much deeper understanding of the model and
of the varieties of nondeterminism it encompasses.

Fully predictable deterministic processes are sufficient for completeness
in models of untimed CSP. Essentially this is because it turns out that,
given any behaviour of such a process (even though that process might be
genuinely nondeterministic) it is always possible to find a complete deter-

29

ministic process which ‘sits inside’ the given one and which exhibits the given
behaviour. Things turn out not to be quite as simple in the case of real-time
CSP. The following list enumerates various types of ‘unpredictability’ which
cannot, for one reason or another, be factored out in this way.

1. The first is connected with axiom 10, which specifies that a withdrawn
event is still possible at the instant of withdrawal. This is a form
of nondeterminism which we are specifying must be present in any
process which can retract an offer of communication – and we could
not hope to get a completeness result of the type above unless the class
of ‘deterministic’ processes contained retracting ones.

2. The second concerns processes which have an event possible at an
isolated time, for example

(a → STOP�b → STOP) \ b

which, in the standard semantics, can do a at time 0 but at no other.
Since all refusals are over intervals, there is no process which can offer
such a point event without also being able to refuse it if offered. We
might term such an isolated event a transient event. No fully pre-
dictable implementation of the above process would be able to com-
municate an a.

3. Transient events can manifest themselves in another, yet more subtle,
form at the very moment when a process is becoming stable. Up to
the time when a process stabilises, our axioms allow it, for example,
to make a single event available continuously but have its subsequent
behaviour vary quite arbitrarily depending on when the event happens.
Provided that each of these different behaviours is deterministic then
the whole process is. However, once it has stabilised, axiom 8 tells
us that the process’ subsequent behaviour does not depend on when
the event did. The problem with an event happening at the instant
of stability is that it might be an alternative to stability rather than a
manifestation of the stable configuration.

This situation is actually rather similar to the one which led us to
postulate that events are still possible at the moment when they are
withdrawn, in that at the moment when a process would otherwise
become stable it may be possible for it to do something else. The

30

following example illustrates this. Consider the process

((a → STOP)�SKIP); (a → a → STOP)

In the standard semantics, the first a is possible ‘transiently’ at time
0; otherwise the SKIP terminates immediately and the second a is
also available at time 0, with the process being stable at once. The
result of all this is that if an a is accepted at time 0 we cannot be
sure whether or not the second will occur, while if we wait beyond
this time we can be sure it will. Any predictable (even modulo the
questions above) implementation of this process is forced, by axiom 8,
to make the second a available following one at time 0. It follows that
it cannot refuse a after the time taken to complete the first. Therefore
the behaviour subsequent to the ‘transient’ a is never reflected by any
such implementation. It should be clear that we could have varied
the above example so that the different behaviour introduced by the
transient was delayed an arbitrary number of communications beyond
it, or could have been of a different sort such as a larger stability time.

In summary, when an event happens at a time after stability the same
subsequent behaviours are possible at whatever times the event hap-
pens at or after stability. But subsequent behaviours which are enabled
when an event happens at stability need not manifest themselves when
the same event happens after it. This type of transient is more subtle
than the last because they are not apparent when they happen, only
in the effects they leave behind.

4. A final source of difficulties can be found in axiom 3. Recall that this
states that events which happen at the same time can be re-ordered
in a trace without changing behaviour. While one order in which a set
of simultaneous events occurs may be totally consistent with what is
refusable on the traces where they happen, this need not be the case
with another ordering. This can either be because the occurrence of
one event in the set coincides with the disabling of another, or (and
this causes more problems) with the enabling of another. We will see
examples of these phenomena later.

There is a sense in which difficulties 1 and 4 are more pervasive than
2 and 3. If we had a notion of ‘implementation’ which did not allow the
forms of nondeterminism which arise under these headings, there would be
processes with no implementations at all. This is not the case with the

31

transient events of 2 and 3, which arise as alternatives ‘grafted on’ to other-
wise well-behaved processes. One consequence of this is that forms 1 and 4
must be allowed throughout an implementation, while, if we are seeking an
implementation of a process P which manifests one of P ’s behaviours (s, ℵ),
it is reasonable to restrict its transient events to ones in s.

Quasi-deterministic processes

To approach the definition we need for a completeness result, we will start
out with one that is too strong for all the reasons set out above. We define
a fully deterministic process to be one for which we can always tell whether
a given (instantaneous) offer of an event will be accepted. Namely, for all
timed traces s, t ≥ end(s) and a ∈ Σ, we never both have s.〈(t, a)〉 ∈
Traces(P) and (t, a) ∈ ℵ for which (s, ℵ) ∈ Fail(P). This definition ignores
stability values, though for some purposes one might wish to strengthen it
accordingly.

To deal with the first, and part of the fourth, problem mentioned above
we must allow an event to occur if the process was unable to refuse it in
some half-open interval ending at the given time. We can define a process
to be quasi-deterministic if, and only if, under the same circumstances as
above, we never both have s.〈(t, a)〉 ∈ Traces(P) and that there exists ε > 0
with

(s′, [max{0, t − ε}, t + ε) × {a}) ∈ Fail(P)

If P has just started (i.e., t = 0), then it cannot both accept and reject a
at time t. Otherwise, it must not accept a if it is able to reject it in some
interval up to and including the the current time t.

If we had just wished to deal with problem 1 then we would have altered
the above definition to

(s, [max{end(s), t − ε}, t + ε) × {a}) ∈ Fail(P)

The difference between these appears in a process which has just been offer-
ing an event a, but has started to refuse it at the same moment when it has
accepted an event b (there being no reason why a and b must be different).
Axiom 10 does not force the process to be able to accept a at the same time
as b – after all they may have been offered as alternatives. However there are
circumstances where we would expect an a to be possible, and can deduce
this from axiom 3. Consider, for example, the process

(((a → STOP)�WAIT 1); STOP) (b → STOP)

32

which is forced, by axiom 10, to have the trace 〈(1, a), (1, b)〉 and hence, by
axiom 3, has the trace 〈(1, b), (1, a)〉. The second and stronger definition
above would have disallowed the a after the b, whereas the first allows it. A
subtle variation on this example appears if a and b are replaced by the same
event.

This still does not deal with the second and third problems discussed
above of transient events. In dealing with these there are two things to
notice. Firstly, a given recorded trace might have a number of transients in
it. Thus we need to allow for at least any finite number of transients being
possible for a given process. Second, it is quite possible for a transient of
either sort to appear after the process has previously been stable (i.e., on a
proper prefix of the current trace), as occurs in the process

a → (a → STOP�b → STOP) \ a

Since we know that the behaviour of a stable process does not depend on the
time at which the next event happens (axiom 8), it follows that if a transient
is possible at some later time if the next event happens at one time then
it must also be possible at suitably shifted later times when the next event
occurs at some other time. Of course this means that sometimes, though in
rather special circumstances, a process must have an uncountable infinity
of transients if it has one. Given this discussion and the existence of the ‘at
stability’ type of transient it is obviously important for us to understand the
nature of stability in the class of quasi-deterministic processes. It will also
allow us to find an appropriate strengthening of the definition to deal with
stability.

The following result shows that quasi-deterministic processes actually
have much in common with the deterministic and pre-deterministic processes
of untimed CSP.
Lemma 2 Suppose P ∈ TMFS is quasi-deterministic. Then

1. If (s, α∗, ℵ∗) is a complete infinite extension of (s, ∅), for s ∈ Traces(P),
then (s, ℵ) ∈ Fail(P) if and only if ℵ ⊆ ℵ∗ (for all ℵ ∈ RSET).

2. The complete infinite extension (s, α∗, ℵ∗) of any (s, α, ℵ) ∈ P is
unique.

3. If (s, α, ℵ) and (s, α′, ℵ′) are both in P then α = α′.

4. P is the only quasi-deterministic process with its trace/stability set
Stab(P).

33

5. If Q � P then Q is quasi-deterministic.

6. Over quasi-deterministic processes, the inequality in axiom 8 becomes
an equality (i.e., the stability value of the shifted behaviour is also
shifted by the same amount) provided that the time t′ is strictly greater
than α.

Proof Suppose s is any trace of P , and that (s, α, ℵ∗) is a complete infinite

extension of the timed failure (s, ∅). Now suppose (s\t, ℵ) ∈ Fail(P) is
such that end(ℵ) ≤ t). Claim that ℵ ⊆ ℵ∗. If not, there would be times
t1 < t2 < t such that no event of s occurs in [t1, t2] and an event a such that
[t1, t2) × {a} ⊆ ℵ and [t1, t2) × {a} ∩ ℵ∗ = ∅. For all t1 < t′ < t2 there thus

exists ε with (s\t1, [t′ − ε, t′ + ε) × {a}) ∈ Fail(P) though the completeness

of (s, α, ℵ∗) ensures that s\t1.〈(t′, a)〉 ∈ Traces(P). This contradicts our
assumption of quasi-determinacy, and so the claim is established, proving
part 1.

Part 2 follows easily from part 1, since if (s, α1, ℵ1) and (s, α2, ℵ2) were
different complete extensions of (s, ℵ) (and hence of (s, ∅)) there would be a

time t such that either ℵ1
\t �⊆ ℵ2 or ℵ2

\t �⊆ ℵ1. We know that the stability
value associated with any failure of the form (s, ℵ) is the supremum of those
associated with its complete infinite extensions. It follows that that stability
value is the one belonging to the only complete infinite extension. Since this
complete infinite extension is common to all failures (s, ℵ′) with the given
trace, we have proved part 3.

In order to prove part 4 it is enough, by part 3, to prove that if P
and Q are quasi-deterministic and Traces(P) = Traces(Q) then Fail(P) =
Fail(Q). If not then, without loss of generality we may assume that there
is (s, ℵ) ∈ Fail(P) but not in Fail(Q). Since s ∈ Traces(Q) we can extend
(s, ∅) to a (unique) complete infinite extension (s, ℵ∗). Necessarily, as in the
proof of part 1, there are times t1 < t2 such that no event of s occurs in [t1, t2]
and an event a such that [t1, t2) × {a} ⊆ ℵ and [t1, t2) × {a} ∩ ℵ∗ = ∅. For

all t1 < t′ < t2 there thus exists ε with (s\t1, [t′ − ε, t′ + ε) × {a}) ∈ Fail(P)

though the completeness of (s, ℵ∗) ensures that s\t1.〈(t′, a)〉 ∈ Traces(Q) =
Traces(P). Thus part 4 is proved.

The proof of part 5 is completely elementary. It is worth noting that
quasi-deterministic processes are not maximal under the order. In general
we can ‘improve’ a quasi-deterministic process P either by decreasing its

34

stability values or by exploiting the fact that we took the definition above
which was weaker on what could happen at the same time as another event.

Axiom 8 says that, if (s, α, ℵ) ∈ P and if t > α, t ≥ end(ℵ) (so that
by time t we can be sure the process has been stable since time α, then
any behaviour of P starting from t can be shifted back to any time t′ ≥ t.
If t′ > α and we could, in fact, have deduced that the process had been
stable since α at time t′, then the same axiom can be used to shift the
behaviour back the other way; since the inequality then works both ways
between the shifted stability values, the shift must be exact. Since, by part
3, stability values in quasi-deterministic processes depend only on the trace,
this deduction can always be made for them. �

Part 4 is obviously very like the result which says that, in untimed CSP, a
deterministic process is determined by its set of traces or a predeterministic
process is determined by its sets of traces and divergences. One significant
difference is that, in the timed case, by no means every plausible set of traces
gives rise to a quasi-deterministic process. An example of this is provided
by the traces of the process we used to illustrate the first type of transient
above.

It is interesting what part 6 does not say – it does not say that the
inequality of axiom 8 becomes an equality for t′ = α. This is because the
definition of quasi-deterministic processes allows a limited form of the ‘at
stability’ type of transient discussed earlier. Consider, for example, the
process

(a → ⊥)�SKIP); (a → STOP)

which, under the standard semantics is immediately stable and offers a,
after which it can do nothing. If the a occurs at time t > 0 the subsequent
stability time varies linearly with t. But an initial transient destroys this
relationship for t = 0.

2.7.1 Adding transients to quasi-deterministic processes

We are now going to tackle the question of how one might add a transient
event (and its subsequent consequences) to a quasi-deterministic process
P . Lemma 2 and the above discussion give us a clear indication of how to
deduce, once we have been told to place a transient at one point (a particular
time in the closed interval between the end of a trace s and the stability
time associated with s), where else it must be possible because of earlier

35

stability. (We can ignore refusal information because of what we know from
the lemma.)

Suppose s = v.〈(t, a)〉.w, t > α where α is the stability time associated

with v and t′ ≥ α. Then we will write s
t′−t=⇒1v.〈(t′, a)〉.(w + (t′ − t)) (= s′)

and observe that any transient added after s must be added after s′, shifted
through t′−t. (The time of the shifted transient is guaranteed to be in range

by axiom 8.) If t′ > t, we will write s
t′−t⇐⇒1s

′ and observe that if s1
t⇐⇒1s2

then (i) s2
−t⇐⇒1s1 and (ii) (by Lemma 2 (6)) the stability times of all traces

beyond the shifted event in s1 and s2 are also shifted by precisely the same
amount t. Since, if s1

t=⇒1s2, the first shifted event of s1 occurs strictly later
than any predecessor, if s′

1
∼= s1 then there is s′

2
∼= s2 such that s′

1
t=⇒1s

′
2.

We can form transitive closures of these relations to take account of the
fact that several events in a trace might happen after stability, adding in
the re-ordering congruence, as follows:

• If s ∼= s′ then s
0=⇒s′ and s

0⇐⇒s′.

• If s
t=⇒1s

′ and s′ t′=⇒s′′, then s
t+t′=⇒s′′.

• If s
t⇐⇒1s

′ and s′ t′⇐⇒s′′, then s
t+t′⇐⇒s′′.

• t⇐⇒ and t=⇒ are the smallest relations consistent with the above.

Both these relations are transitive (adding the times) and reflexive (with
time 0). We also have that s

t⇐⇒s′ implies s′ −t⇐⇒s and that, in this case,
the order in which the various shifts are carried out to get from s to s′ is
irrelevant. In relation to ∼=, it is easy to see that if s

t=⇒s′ then the groups of
simultaneous events in s remain together in s′ and keep their relative order
except that some might be amalgamated (in a process which can become
stable instantly after some communication), and that if s

t⇐⇒s′ then the
integrity and order of these groups is preserved completely.

Suppose P is a quasi-deterministic process, that s is one of its traces with
associated stability value α, a ∈ Σ and t ∈ [end(s), α]. Let us consider what
the version of P would look like which had the additional (and nondetermin-
istic) possibility of communicating the initial events of a process Q at time
t, and then continuing to behave like Q. For various reasons it appears to
be sufficient to consider only cases where no events have happened already
in s at time t, namely when s = 〈 〉 or t > end(s). The various varieties of

36

transient which might co-incide with events at the end of s either cannot
arise at all because of the axioms, become duplicated by stability so that
they are not transients at all, or can be dealt with by including the events
of s with which they co-incide as transients as well (essentially by absorbing
part of P into Q). So let Q be any element of TMFS which can communi-
cate at time 0. We can construct the element of TMFS which behaves as
indicated above:

SUP(P ∪{(s′.w + t′ + t, α′′ + t′ + t, (ℵ′\t + t′) ∪ (ℵ′′ + t′ + t)) |
(s′, ℵ′) ∈ Fail(P) ∧ s

t′=⇒s′ ∧ (w, α′′, ℵ′′) ∈ Q ∧ begin(w) = 0})

We can denote this combination by P
s,t−→Q.

Instant enabling

In our definition of quasi-determinism we only claimed to have dealt with
one aspect of the difficulties arising from axiom 3. The concept of one event
instantly enabling another, so that a process becomes unable to refuse one
event because it has performed another at the same time, is another source
of problems relating to the interplay of that axiom with the others. At first
sight it is difficult to see how one might realise such a situation, especially if
we assume that all events take non-zero time to complete. It is interesting
to note that axioms 2 and 3 together state that if two events are possible
at one time then either may appear without the other – meaning that any
absolute causal dependance between two simultaneous events is impossible.
But in fact it turns out that we can get close enough to this instant enabling
to have problems with our definition of quasi-determinism.

Consider the process

P = ((a → STOP b → STOP)�SKIP);STOP

Here, the occurrence of either a or b at time 0 instantly enables the other, in
the sense that the process cannot then refuse the other event – even though
the original process could refuse both events at time 0 (and all later times)
on the empty trace. Though the a or b which appear here are transients
(of the first type discussed earlier) this is not the case if we offer the choice
between this way of offering a and another:

P�(a → c → STOP)�⊥

37

Here, things become rather difficult to disentangle. It gets worse if we replace
P by the process Q which works in essentially the same way except that it
cannot perform an a after time 0:

Q = ((((a → STOP)�SKIP);STOP) b → STOP)�SKIP);STOP

The process
R = Q�(a → c → STOP)�⊥

cannot refuse a on its first step but may, when it performs (0, a), instantly
lose the ability to refuse b6. If, on the other hand, it performs (0, b) then it
can and must instantly begin refusing a. Thus the trace 〈(0, a), (0, b)〉 is very
much allowed by our definition of quasi-determinacy, while the equivalent
trace 〈(0, b), (0, a)〉 is not. We probably would not want to consider R quasi-
deterministic, since it has a definite choice of what to do at time 0. Consider,
however, the process which behaves like R except that when (0, a) occurs it
must pick the Q behaviour rather than the one with the following c. This
is an element of TMFS (though seemingly not one expressible in Timed
CSP under its standard semantics) which would have no quasi-deterministic
implementations under the current definition. The most troublesome trace
any implementation must have is 〈(0, b)〉, since it is both refusable and carries
with it no explanation of why it is there (i.e., the forceable event (0, a)).

Rather than attempt to get around this technical difficulty, we choose to
simply note it and necessarily restrict the set of processes which can expect
to be determined by their implementations. Define a process to be free of
instant enabling if, whenever t′ > t and (s〈(t, a)〉, ℵ) is t′−complete, then
there is ε > 0 and ℵ′ ⊆ ℵ such that (s, ℵ′) is (t + ε)−complete. This simply
means that any events which might become enabled (i.e., unrefusable in a
complete behaviour) instantly after a could have become enabled at that
moment event if a had not occurred. Thus there is no causal relationship
between the occurrence of a and the enabling of other events. Clearly the
various examples in the discussion above fail to have this property.

It is interesting to note that, while ‘instant enabling’ seemingly describes
the behaviour of the examples discussed above on an abstract level – the
communication of a at time 0 instantly enables b – in fact the CSP defined
examples worked by a preventing an internal action that would have stopped

6The purpose of the c in the definition of R is to ensure that we cannot ignore that it
might lose the ability to refuse b – since along with this it also loses the ability to perform
c later.

38

the b from being enabled. Although, on the surface, this might seem a very
fine distinction it is in fact significant when we come to consider stability.
For in the mechanism which we described second there is the implication
that, when the enabling a occurred, the process had not already become
stable. There is no such implication with the simple idea of instant enabling
– as might for example appear in the prefixing operation a → P , were it
definable for actions a that take no time and P which can communicate at
time 0.

In fact, our axioms prohibit instant enabling after stability as is shown by
the following argument. Suppose (s.〈(t, a)〉, ℵ) is t′−complete, where t′ > t,

that (s, α, ℵ\t) ∈ P for α < t but that there is no ℵ′ ⊆ ℵ and ε > 0 with

(s, ℵ′) (t + ε)−complete. If (t, b) �∈ ℵ then (s.〈(t, a), (t, b)〉, ℵ\t) ∈ Fail(P)

and hence, by axioms 2 and 3, (s.〈(t, b)〉, ℵ\t) ∈ Fail(P). Axiom 7 then tells
us that (t′, b) �∈ ℵ for any α ≤ t′ < t. In other words

{b | (t, b) ∈ ℵ} ⊇ Σ(ℵ↑[α, t))

By the structure of RSET we then know that there is ε > 0 such that

ℵ↑[t, t + ε) ⊇ [t, t + ε) × (Σ(ℵ↑[α, t)))

But exactly the same arguments and constructions used in the proof of
Lemma 1 show that, for any t′ ≥ t the triple (s, α, ℵ\t∪ ([t, t′)×Σ(ℵ↑[ℵ, t)))
is a t′−complete behaviour of P . This is exactly what we require to establish
our claim.

Towards a completeness theorem

So far in this section we have presented a taxonomy of nondeterminism in
our model, the class of quasi-deterministic processes which are perhaps those
most analogous to the pre-deterministic ones of untimed CSP, an operator
for introducing transient events into them, and discussed the phenomenon of
instant enabling. In this final subsection we bring all of these things together
by conjecturing a completeness theorem of the type discussed earlier, and
by providing some evidence for this conjecture.

Define the class of almost deterministic processes to be the smallest one
which contains the quasi-determinstic ones and which, whenever P is quasi-
deterministic, Q is almost deterministic with communications at time 0,

39

(s, α) ∈ Stab(P) and t ∈ [end(s), α], P
s,t−→Q is almost deterministic. In

other words an almost deterministic process is quasi-deterministic except
for a finite number of occasions where transients are possible, which are
arranged in a single unbranching sequence. We will take these as the class
of processes which will form the basis of our completeness conjecture.7

We define an implementation of P ∈ TMFS to be any almost determin-
istic Q such that P � Q. Let imp(P) be the set of all its implementations.

We have already said that the general nondeterministic construct S
would be allowed, subject to restrictions, for nonempty sets S of processes.
In order to discuss completeness we need its definition and details of the
restrictions. The nondeterministic composition of a set of processes can
behave like any one of them – therefore the set of its observable behaviours
should be the union of those of the processes over which we are taking the
choice. Since, in TMFS , we associate with each timed failure (s, ℵ) only one
stability value – the supremum of those times at which stability can actually
occur – we form S as follows for a nonempty subset S of TMFS :

S = SUP(
⋃

S)

where the SUP operator is as defined earlier. The restriction we need derives
from axiom 4: if the elements of S have functions n(t) bounding the numbers
of events up to given times which are not bounded by some fixed function,
then S would violate the axiom. Hence we assume that there is a fixed
function n∗(t) such that, for each P ∈ S, the number of events up to t in P
is bounded by n∗(t). The operator can only be used in such cases.

Notice that the functions n(t) which exist for P by axiom 4 also work
for every Q ∈ imp(P), so that providing imp(P) is nonempty, the nonde-
terministic composition (imp(P)) is well-defined. We can thus state our
conjecture:
Conjecture If P ∈ TMFS is free of instant enabling, then imp(P) is
nonempty and (imp(P)) = P . �

If S is a set of processes Q such that P � Q (for fixed P), then it is easy
to show that P � S. In order to prove the conjectured result it would
thus be sufficient to find, for each (s, α, ℵ) ∈ P and t < α, an element Q of
imp(P) which contains (s, β, ℵ) for some β > t.

7If desired, this class could probably be tightened somewhat. For example one could
attempt to restrict the class of transients introduced to the two specific classes identified
earlier.

40

We expect the proof of this conjecture to consist of a construction of
these Q’s. Such a construction will necessarily be detailed and require careful
checking of the axioms. In its essence we expect it to revolve around manip-
ulations of complete infinite behaviours of the types constructed in Lemma
1. Starting with a complete infinite extension of the target behaviour, we
would pad this out to a complete description of what the implementation
Q could do after every timed trace and, where this is necessary detail (after
at-stability transients), timed refusal. The only events of Q which could be
transients would be ones of the target behaviour.

The following result will probably be important in this construction since
it says that, if in the complete infinite behaviour (s.w, ℵ∗) the first events of

w apparently occurred at or before stability (because (s, α, ℵ∗\(begin(w))) ∈
P where begin(w) ≤ α), then we can extend the initial segment of the
behaviour to infinity in such a way that we can still believe this. The
importance of this is that events which happen after stability need to be
treated differently from ones which happen at or before it.
Lemma 3 Suppose that (s, α, ℵ) ∈ P is t−complete where end(s) ≤ t ≤ α.
Then it has a complete infinite extension (s, β, ℵ∗) with t ≤ β ≤ α and

ℵ∗\t = ℵ\t.
Proof First suppose t < α. Then, by Lemma 1, there is a complete infinite
extension (s, α′, ℵ′) of (s, ℵ) such that t < α′. Let ℵ∗ = ℵ↑[0, t) ∪ ℵ′↑[t, ∞).
The same arguments which were applied in the proof of Lemma 1 show that
there is β such that (s, β, ℵ∗) is a complete infinite behaviour of P . Axiom
9 (applied to the finite restrictions of ℵ′ and ℵ∗) shows that α′ ≤ β ≤ α, as
required.

More care is required when t = α. We know that there is a sequence of
complete infinite extensions (s, αn, ℵn) of (s, ℵ) such that αn is an increasing
sequence converging on α from below. If any of them equal α then the same
construction used in the last paragraph applies, so we could assume that all
αn are strictly less than α. We can also assume, thanks to the second part
of Lemma 1, that the ℵn are all constant after the point of stability. If we
set ℵ′

n = ℵ\α ∪ ℵn↑[α, ∞), it is easy to see that there is some βn ∈ [αn, α]
such that (s, βn, ℵ′

n) is a complete infinite behaviour. Now let

ℵ∗ =
⋂

{ℵ′
n | n ∈ N} .

Clearly ℵ∗\α = ℵ\α, ℵ ⊆ ℵ∗ and ℵ∗ is constant after α. (The fact that
all the ℵ′

n, and hence, ℵ∗, are constant after α, is necessary to ensure that

41

ℵ∗ has the finite variability property – ℵ∗\t ∈ RSET – we require of com-
plete infinite behaviours.) If we can show that (s, ℵ∗) isa complete infinite
behaviour then, since ℵ ⊆ ℵ∗ ⊆ ℵn, its associated stability value must be α.

Completeness up to time α is a straightforward consequence of the α-
completeness of (s, ℵ). Beyond α it follows because, if t′ ≥ α and (t′, a) �∈ ℵ∗,
there is some n with (t′, a) �∈ ℵ′

n. We then know that (s.〈(t′, a)〉, ℵ′
n
\t′) be-

longs to Fail(P) by completeness of (s, ℵ′
n), and hence so does (s.〈(t′, a)〉, ℵ∗\t′)

by axiom 9.
We have thus shown that (s, α, ℵ∗) is a complete infinite behaviour of P ,

which completes the proof. �

3 The semantics of Timed CSP

One might argue that Timed CSP should be supplied with a number of dif-
ferent semantics which differ in how the various operators deal with time.
Thus an implementor would not be forced to give all constructs exactly the
same timing characteristics. He could reason about processes in his imple-
mentation by giving a semantics for Timed CSP which accurately reflected
how it worked.

If there is a falacy here it is that CSP and Timed CSP are not usually
thought of as languages which are directly implemented in the usual sense.
They are used to specify intended behaviour, or to reason about implemen-
tations at a level a little more abstract than code. We feel that it is better
to have a standard semantics for Timed CSP in which the great majority of
reasoning is done. This has the obvious advantage of not having to param-
eterise every result about the language with the semantics used to prove it,
and that each term in Timed CSP will have the same meaning to everybody.
We imagine that it will also be rather easier for someone working with an
implementor to follow the principles set out below than to construct his own
semantics for Timed CSP – an activity that would carry an extensive burden
of proof to ensure it was a reasonable one.

In constructing the standard semantics we should aim for a combination
of elegance – maintaining as many of the appealing algebraic properties of
the untimed semantics as possible – with expressive power. For provided
we can express a wide range of behaviours in our language, it should be
possible to capture the essence of the majority of implementations by repre-

42

senting whatever constructs they contain as hybrids of several Timed CSP
constructs.

Without further ado we will now define the standard semantic function
ET : TCSP → TMFS .

ET [[⊥]] = {(〈〉, ∞, ℵ) | ℵ ∈ RSET}
ET [[STOP]] = {(〈〉, 0, ℵ) | ℵ ∈ RSET}
ET [[SKIP]] = {(〈〉, 0, ℵ) | √

/∈ Σ(ℵ)} ∪
{(〈(t, √)〉, t, ℵ1 ∪ ℵ2) | t ≥ 0 ∧ (I(ℵ1) ⊆ [0, t) ∧√

/∈ Σ(ℵ1)) ∧ I(ℵ2) ⊆ [t, ∞)}
ET [[WAIT t]] = {(〈〉, t, ℵ) | ℵ ∩ ([t, ∞) × {√}) = ∅}

∪ {(〈(t′, √)〉, t′, ℵ1 ∪ ℵ2 ∪ ℵ3) | t′ ≥ t ∧ I(ℵ1) ⊆ [0, t)
∧ (I(ℵ2) ⊆ [t, t′) ∧ √

/∈ Σ(ℵ2)) ∧ I(ℵ3) ⊆ [t′, ∞)}
ET [[a → P]] = {(〈〉, 0, ℵ) | a /∈ Σ(ℵ)} ∪

{(〈(t, a)〉.(s+(t+δ)), α+t+δ, ℵ1∪ℵ2∪(ℵ3+(t+δ))) |
t ≥ 0∧ (I(ℵ1) ⊆ [0, t)∧a /∈ Σ(ℵ1))∧I(ℵ2) ⊆ [t, t+δ)
∧ (s, α, ℵ3) ∈ ET [[P]]}

ET [[a : A → P (a)]] = {(〈〉, 0, ℵ) | A ∩ Σ(ℵ) = ∅} ∪
{(〈(t, a)〉.(s+(t+δ)), α+t+δ, ℵ1∪ℵ2∪(ℵ3+(t+δ))) |
a ∈ A ∧ t ≥ 0 ∧ (I(ℵ1) ⊆ [0, t) ∧ A ∩ Σ(ℵ1) = ∅) ∧
I(ℵ2) ⊆ [t, t + δ) ∧ (s, α, ℵ3) ∈ ET [[P (a)]]}

ET [[P�Q]] = SUP({(〈〉,max{αP , αQ}, ℵ) | (〈〉, αP , ℵ) ∈ ET [[P]]
∧ (〈〉, αQ, ℵ) ∈ ET [[Q]]}
∪ {(s, α, ℵ) | s �= 〈〉 ∧ (s, α, ℵ) ∈ ET [[P]] ∪ ET [[Q]]

∧ (〈〉, ℵ\begin(s)) ∈ Fail(ET [[P]]) ∩ Fail(ET [[Q]])})

ET [[P � Q]] = SUP(ET [[P]] ∪ ET [[Q]])

ET [[S]] = SUP(
⋃

S) (S �= ∅)

ET [[P‖Q]] = SUP({(s, max{αP , αQ}, ℵP ∪ ℵQ) |
(s, αP , ℵP) ∈ ET [[P]] ∧ (s, αQ, ℵQ) ∈ ET [[Q]]})

ET [[P X‖Y Q]] = SUP({(s, max{αP , αQ}, ℵP ∪ ℵQ ∪ ℵZ) |
∃(sP , αP , ℵP) ∈ ET [[P]], (sQ, αQ, ℵQ) ∈ ET [[Q]]
with Σ(ℵP) ⊆ X and Σ(ℵQ) ⊆ Y such that
s ∈ (sP X‖Y sQ) ∧ Σ(ℵZ) ⊆ (Σ − (X ∪ Y))})
where v X‖Y w =

{s ∈ (TΣ)∗
≤ |s\(X ∪Y) = s ∧ s\X = v ∧ s\Y = w}

43

ET [[P Q]] = SUP({(s, max{αP , αQ}, ℵ) | ∃(u, αP , ℵ) ∈ ET [[P]]
∧ (v, αQ, ℵ) ∈ ET [[Q]] such that s ∈ Tmerge(u, v)})

ET [[P ; Q]] = CL∼=(SUP({(s, α, ℵ) | √
/∈ Σ(s) ∧ ∀I ∈ TINT

(s, α, ℵ ∪ (I × {√})) ∈ ET [[P]]}
∪ {(s.(w + t), α + t, ℵ1 ∪ (ℵ2 + t)) | √

/∈ Σ(s)
∧ end(ℵ1) ≤ t
∧ (s.〈(t, √)〉, ℵ1 ∪ ([0, t) × {√})) ∈ Fail(ET [[P]])
∧ (w, α, ℵ2) ∈ ET [[Q]]}))

ET [[P \ X]] = SUP({s \ X, β, ℵ) | ∃α ≥ β ≥ end(s).
(s, α, ℵ ∪ ([0,max{β, end(ℵ)}) × X)) ∈ ET [[P]]})

ET [[f−1(P)]] = {(s, α, ℵ) | (f(s), α, f(ℵ)) ∈ ET [[P]]}
ET [[f(P)]] = SUP({(f(s), α, ℵ) | (s, α, f−1(ℵ)) ∈ ET [[P]]})

ET [[µp.F (p)]] = The unique fixed point of the contraction mapping
Ĉ(Q) = C(WAIT δ; Q), where C is the mapping on
TMFS represented by F .

We now discuss the construction of the above semantics and the assump-
tions that are implicit in them. Where we discuss the difficulty or otherwise
of implementing a particular operator, the reader should bear in mind that
CSP is not primarily intended as an implementable language and that it
deliberately (in the untimed version as well) contains a number of features
which are useful in specification and reasoning but are impractical to im-
plement. Part of the idea here is that one should be able to use the full
language at the specification stage, but be forced to be more selective when
we refine our specification to an eventual implementation. Thus, in prac-
tice, while we are likely to be concerned that some subset of the language
(possibly an occam-like one) accurately reflects an implementation, we are
unlikely to have this worry about the whole language.

• Note that ⊥ and STOP have exactly the same traces and refusals,
but that, while STOP becomes stable immediately, ⊥ never becomes
stable. These definitions will almost certainly remain unaltered in all
semantics for Timed CSP.

• SKIP is immediately stable, and is willing to terminate at any time.
In practice a process will probably be ‘switched off’ as soon as it termi-
nates, which corresponds in a sense to the assumption in the semantics
that SKIP is stable as soon as it terminates. In another sense it makes
this decision on stability relatively unimportant.

44

• WAIT t behaves like SKIP except that it only becomes stable and able
to terminate at time t.

• The prefixing constructs a → P and a : A → P are both assumed
to take no time to set up (they are immediately stable and willing
to commit themselves to communicate) and furthermore assume that
each event takes exactly the same deterministic time δ > 0 to complete.
Notice that a typical history of one of these processes has three phases,
reflected in the refusal component written ℵ1 ∪ ℵ2 ∪ ℵ3 + (t + δ), the
first when the initial event(s) are on offer, the second when such an
event has occurred and is being completed, and the final one being a
behaviour of P or a P (a) shifted by an appropriate delay. One will
frequently want to change some of the assumptions made here, and we
will discuss this issue later.

• The external choice operator described here runs its two arguments
together – at their natural speeds – until the environment accepts a
choice from one of them, which commits the choice. Thus the process
can, on the empty trace, only refuse sets offered by both its argu-
ments and becomes stable when both its arguments do. If the first
timed event chosen was possible for both, then the choice may sub-
sequently behave like either – this potential ambiguity explains the
use of the SUP operator. We have assumed that the operator has
taken no time to set up, has the resources to run its arguments in
parallel, and does not delay in transmitting their communications to
the environment. It seems unlikely that, except perhaps in the case of
self-timed circuitry, one would normally expect to implement an unre-
stricted operator with these characteristics. Either one would severely
restrict the class of processes to which � can be applied (note the re-
mark about implementing only subsets above), or change one or more
of these assumptions.

We need to place a restriction on the applicability of the general pre-
fixing operator a : A → P (a) when a is infinite. For it would not in
general be true that if all the ET [[P (a)]] belonged to TMFS then so does
ET [[a : A → P (a)]]. Specifically we have to assume that the functions
n(t) which exist for all the ET [[P (a)]] by axiom ?? are bounded above
by some function m(t). This excludes examples such as

n : N → Pn+1

45

where Pn = (a → STOP) . . . (a → STOP) (n copies).

• The two nondeterministic choice operators � and can behave like
any of their arguments. The reason for the SUP operators is again the
ambiguity this causes. Since these operators are unlikely to play much
of a direct part in an implementation, there are really no operational
assumptions here.

As in the case of general choice, we have to restrict the application of
to sets of processes where the number of events possible up to any

given time is uniformly bounded, once again to protect axiom ??.

• The two synchronised parallel operators ‖ and X‖Y are closely related.
The first expects its arguments to synchronise on all communications,
which means that it can always refuse any communication that either
refuses. The second constrains its arguments only to communicate
in the sets X and Y respectively, and makes them synchronise on all
communications in X∩Y . The resulting process can thus always refuse
anything outside X ∩ Y , can refuse anything in X that its left-hand
argument can, and can refuse anything in Y that its right-hand one
can. Notice that ‖ means the same as Σ‖Σ. One again we are assuming
that the operation takes no time to set up, and we are assuming that
there are enough resources to run each argument at its natural speed –
i.e., this is an operator which runs its arguments genuinely in parallel
rather than timeslicing them on a single processor.

• The interleaving parallel operator ‖ also runs its arguments at their
natural speeds with no setup time. This time, however, there is no
synchronisation between the processes.

• The sequential composition of two processes behaves like the first them
until it terminates (by communicating

√
) and then starts up the sec-

ond. In this semantics we assume that this operation takes no time to
set up and, more controversially, that the hand-over happens instantly.

The first component of the definition takes account of the behaviours
of P in P ; Q which have not terminated, have not been prepared to
terminate so far, and have the abililty to refuse to terminate indefi-
nitely. These are behaviours of P ; Q. The reason why this part of the
definition includes the condition that the process should continue to
be able to terminate is to get the stability value right: if we had a be-
haviour of the form (s, α, ℵ) with (s, ℵ∪[0, end(s, ℵ))×{√}) ∈ Fail(P),

46

then we would know that (s, ℵ) ∈ Fail(P ; Q) but, since it is possible
that

√
might become available before stability, the stability value

α might actually be an over-estimate of that of the failure in P ; Q.
There are two points one should note about this, first that if the fail-
ure (s, ℵ) is excluded from this clause because of this indefinite refusal
requirement, then it will be included in the second component with
(w, ℵ2) = (〈 〉, ∅). Secondly, if a process is stable and refusing

√
, then

it will go on refusing it.

The second component deals with the case where P has terminated
and Q has started. Note that P must have refused to terminate up to
the moment when it did. The SUP operator is once again present to
deal with ambiguity in the ways in which failures can be put together.
We need the CL∼= operator to deal with a slightly uncomfortable side-
effect of our assumption that the hand-over takes no time. For it is
possible in our model that P might terminate at the same moment as
it is performing some communication, a say, and that Q might itself
communicate, say b the same moment when it is started up. The net
effect is that P ; Q might perform two communications, one from each
argument, at the same time. In order to satisfy axiom ? we must
include the trace with them reordered with b before a.

• The definition of the hiding operator is one of the shortest – in con-
trast to the usual situation with untimed CSP – and yet it is actually
extremely subtle. The ideas behind the hiding definition are similar
in some ways to those behind sequential composition, where the first√

is a hidden event. Recall the postulate made earlier that hidden
events happen as soon as they can. This means that any behaviour
of P which could not have been extended though its length by the
refusal of the whole of X cannot be a behaviour P within P \X, since
P would actually have accepted such an event, on offer continuously
from the environment, and so not have reached this point. We have
the same problem as in sequential composition with processes which
are unable to continue refusing X until they are stable. This is the
reason for using end(s) ≤ β ≤ α with

(s, α, ℵ ∪ ([0, max{β, end(ℵ)}) × X) ∈ ET [[P]]

Consider, for example, the process

(⊥�b → STOP) \ {b}

47

which becomes stable at time δ, even though (⊥�b → STOP) never
becomes stable on the empty trace. The (s \ X, β, X) recorded in the
definition are just timed failures of P \X together with a time β which
the process can reach without previously having become stable. (Note
that, in the case where P becomes stable still refusing all of X, β
might be less than end(ℵ).)

We are again assuming that the hiding operator requires no time to
set up and imposes no time overhead on the running of a process.

• The inverse image of a process P under a function f can perform an
event a whenever P could have performed f(a). The important points
to note about this operator are that there may be several different
events mapping to the same image f(a), but that each behaviour of
f−1(P) results from a unique one of P .

• On the other had the direct image operator can perform f(a) whenever
P could have performed a. This is, in some sense, a more obvious
relationship between events but, in the case where f is not injective,
can map many behaviours of P onto a single one of f(P). Note that
f(P) can only refuse an event a when all of the events which map to a
under f are refused. Again the ambiguity requires the use of the SUP
operators.

• All the operators above are nonexpanding in the metric space (for
the reasons discussed earlier). Thus any function we can define by
combining them is also nonexpanding. It follows that, when composed
with the contraction mapping sending Q to WAIT δ; Q, it gives a
contraction and hence has a unique fixed point. We should note that
the recursive construct is itself nonexpanding, since if F (P, Q) is a
contraction in its first argument and nonexpanding in its second then
µ.P.F (P, Q), considered as a function of Q, is also nonexpanding. (The
proof of this may be found, for example, in [R82].) The assumption
implicit in the definition given here is that making a recursive call
takes time δ deterministically. This is another assumption that one
might very will wish to alter, and which will be discussed later.

It is often useful to use several, or even infinite vectors of, processes
defined by mutual recursion. We have not included this possibility
explicitly in our syntax simply because it is hard to give a reasonably
concise, but sufficiently general, description of their syntax. Never-

48

theless it is easy to give semantics to mutual recursions (and actually
rather more important to than in the untimed cases where, without
details of timing, one can simulate arbitrary mutual recursions as sin-
gle ones). Given a mutual recursive definition of the form P ⇐ F (P),
where P is a vector of process variables and F represents the same
type of vector of process terms involving them, the standard seman-
tics would associate P with the unique fixed point of the contraction
mapping on the product space whose λ-component is the semantic
mapping associated with the λ-component of F , except that δ-delay is
put on each recursive call of any Pµ as above. Of course this would be
subject to alteration of assumptions about timing just as in the single
recursion case.

Broadly speaking, the standard semantics assume that the completion of
all events and the unwinding of any recursion take the same non-zero time δ,
and that otherwise each of the operators (i) consumes no time itself and (ii)
treats its operands, at each moment, like the corresponding untimed CSP
operator treat its ‘in the large’. Each of the operators preserves the axioms
of TMFS , and is monotone with respect to the nondeterminism order �. In
relation to the various discussions we had earlier when constructing TMFS ,
we should perhaps now note the way in which the hiding operator essentially
uses the fact that refusals are recorded thoughout a trace. The reader might
wish now to go back and re-examine some of the earlier examples in the
context of the semantics we have now defined.

49

