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Abstract

(Labelled) transition systems are relatively common in theoretical computer science,
chiefly as vehicles for operational semantics. The first part of this paper constructs a hi-
erarchy of canonical transition systems and associated maps, aiming to give a strongly ex-
tensional theory of transition systems, where any two points with equivalent behaviours are
identified. The cornerstone of the development is a notion of convergence in arbitrary tran-
sition systems, generalising the idea of finite (n-step) approximations to a given point. In
particular, our canonical transition systems are also uniform spaces.

The resulting hierarchy has very rich combinatorial (and topological) structure, and a
lot of the first part of the paper is devoted to its study. We also discuss fixed points in this
framework.

This kind of study of transition systems is very closely connected to non-well-founded
set theory. In the second part of the paper, we show how to obtain a model of set theory
with Aczel’s Anti-Foundation Axiom (AFA) from canonical transition systems constructed
earlier. We study further the structure of the model thus obtained, and also give a few more
abstract results, concerning consistency and independence in the presence of AFA.
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1 Introduction

(Labelled) transition systems are relatively common in theoretical computer science, chiefly as
vehicles for operational semantics. The first part of this paper, which grew out of some work done
by the second author in [Rosc 82, 215-230] and more recently in [Rosc 88a, Rosc 88b], constructs
a hierarchy of canonical transition systems and associated maps, aiming to give a strongly
extensional theory of transition systems, where any two points with equivalent behaviours are
identified. The cornerstone of the development is a notion of convergence in arbitrary transition
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systems, generalising the idea of finite (n-step) approximations to a given point. In particular,
our canonical transition systems are also uniform spaces.

The resulting hierarchy has very rich combinatorial (and topological) structure, and a lot of
the first part of the paper is devoted to its study. We also discuss fixed points in this framework.

Aczel (among others) observed that this kind of study of transition systems is very closely
connected to non-well-founded set theory. Based on Milner’s work on operational semantics of
Synchronous CCS, in [Acz 88] he gave a quotient construction of a model of set theory with the
Axiom of Foundation replaced by an Anti-Foundation Axiom (AFA).

In the second part of this paper, we show how to obtain a model of set theory with AFA
from canonical transition systems constructed earlier. This gives the model a rich structure,
which we then study further, building on the work in the first part. We also give a few more
abstract results, concerning consistency and independence in the presence of AFA.

Non-well-founded set theory has been worked on long before [Acz 88]. In particular, AFA was
probably first introduced as X; by Forti and Honsell in [FH 83], which investigates a number
of axioms derived from a Free Construction Principle. In the subsequent papers (especially
in [FH 89] and [FH 92]), they study structures which correspond to our canonical transition
systems at regular cardinal heights (and for a singleton alphabet). They regard them primarily
as quotients of a universe satisfying AFA.

Working in set theory with AFA, Aczel and Mendler obtain a Terminal Coalgebra Theorem
(see Chapter 7 of [Acz 88], and [AczM 89]), which can be used to obtain spaces for semantics of

process algebras based on the idea that [P] = {(4,[P']) | P N P’} (see Chapter 8 of [Acz 88],
and e.g. [RT 93]). By generalising the structures from [FH 89] and [FH 92], Forti, Honsell and
Lenisa arrive at hyperuniverses, which are models of a strong Comprehension Scheme with
topological structure, and can be similarly used for denotational semantics — see [FHL 94].

2 Transition systems, morphisms and bisimulations

We work within ZFC™, i.e. Zermelo—Fraenkel set theory with the Axiom of Choice, but without
the Axiom of Foundation. We drop the Axiom of Foundation, because we will sometimes want
to adopt an axiom which contradicts it as one of our basic axioms. We follow the usual use of
proper classes, i.e. classes which are not sets.?

We fix a set T = £ U {7} of events, where 7 ¢ .3 This will be an implicit parameter of
almost everything we do from now on.

Definition 1 A transition system is a class S together with a family of binary relations O on

S indexed by £F, such that ass={be S | a N b} isaset foralla €S, § € . A transition
system is small iff its underlying class is a set.

If S is a transition system and S’ C S, then S’ is a subsystem of Siff a € S'Abe SAa LN
b=be S ie iffags=assforallaec S, §eBt.

An accessible pointed system (aps) is a transition system S with a designated point a € S

. . . . On— .
such that, given any b € S, there is a finite sequence of transitions a Doy = b, Given a

transition system S and any a € S, let Sa be the aps whose point is ¢ and which consists of all
b € S reachable from a in a finite number of transitions. O

>The reader is referred to Chapter 1 of [Kun 80]. ([End 77] is a good introduction to set theory.)
3In the usual terminology of process algebras, 7 is an internal (invisible) event. However, its purpose in this
paper is merely to ensure that 7 is non-empty.



It is easily seen that any aps must be a small transition system.

Definition 2 Given any transition systems S, §’, a map F : S — S’ is a morphism iff:
oa-b= F(a) N F(b), and
o Fla) 58 = Fba - bAF(D) =V. O

Alternatively, that is equivalent to saying that F(ass) = (F(a))s's for alla € S, 6 € BT.
The idea is that a point and its image under a morphism cannot be told apart by an experimentor
who can only observe the passing of events (both internal and external). A closely linked notion
is that of a binary relation which relates pairs of points with the same behaviours (in the same
sense).

Definition 3 A binary relation R on a transition system S is a bisimulation iff:
o aRbAa - a' = Wb -2 b Ad'RY, and
o aRbAD -5 b = Jd'.a -2 o/ Ad’'RY. O

A maximum bisimulation exists on any transition system S. It is given by the union of
all small bisimulations® on S, and it is an equivalence relation. If S is small, the maximum
bisimulation on S is also given by the set of all pairs (a, b) such that there is a morphism F with
domain S with F(a) = F(b).

Definition 4 A transition system S is strongly extensional iff the maximum bisimulation on S
is the identity relation (i.e. the diagonal) on S. 0O°

Lemma 1 (a) Given a transition system S, there exists a strongly extensional transition sys-
tem S (its quotient) and a unique surjective morphism F : S — S.

(b) If G : S — S' is any surjective morphism, then there is a unique surjective morphism

H:S" — 8 such that HoG = F. O

In (a), if S is a proper class, the formalization becomes non-trivial if we want to avoid using a
stronger choice principle, since we do not assume the Axiom of Foundation. For any equivalence
class C, we need to consider the class of all aps’s on well-founded sets which are isomorphic to Sa
for a point a¢ € C, and then take its subset consisting of all of its elements which have minimal
rank as the representation for C — see the proof of Lemma 2.17 in [Acz 88].

Lemma 2 For a transition system S, the following are equivalent:
(a) S is strongly extensional.
(b) For any small transition system S', there is at most one morphism from S’ into S.

(c) For any transition system S', there is at most one morphism from S’ into S.

“These have sometimes been called ‘strong bisimulations’, because they treat internal and external events in
the same way.

A bisimulation is small iff it is a set.

A transition system S is sometimes said to be ‘weakly extensional’ iff a = b whenever as,s = bs s for all
sext.



(d) Any morphism with domain S is injective. O

For more results and examples about morphisms, the reader can look at pages 215-230 of
[Rosc 82]. It uses ‘.” instead of ‘7', and deals only with small transition systems, which it calls
‘P,Q-spaces’. Lemma 1 for small transition systems is proved there. [Miln 89], as well as [Acz 88]
(which proves Lemma 2 for ¥ = () — see Theorem 2.19 there), have more about bisimulations.

3 The spaces of canonical approximations

From now on, «, (3, v, ¢, 1, 0, v and £ (and their variations) will always denote ordinals. ~ will
always be a limit ordinal. k¥ and A will always be cardinals.

We also abbreviate ‘transition system’ to simply ‘system’ in the future. In this section and
the next, we assume that all systems are small (i.e. ‘system’ will mean ‘small system’).

Given a point ¢ in a system S, we can think of all the sequences of transitions of length at
most n that a can perform as determining an n-step approximation to a. We generalise this
idea as follows.

Definition 5 Given a system S, we define the following maps on § by transfinite recursion
starting from 1:

)
1)
o H3i1(a) = {(6,HZ (D) | a — b}
o Hj(a) = (H3(a) | 0<a<y). O
Lemma 3 If F: S — S’ is a morphism, then ’Hg’ oF = ’Hg for all a > 0.

Proof The proof is by transfinite induction on «. The base case and the limit case are trivial.
For the successor case, suppose ’Hgl o F = HS for some o > 0. Then, for any a € S, we have:

HEL(Fa) = U (6HS @) | Fla) 50}
fext
= U {OHS (F®)) | a2}
fext
= JHSD) | a2 0)
fext
= ’Hg_H(a).D

Since a subset S’ of a system S is a subsystem of S iff the identity map from S’ into S
is a morphism, an immediate corollary of Lemma 3 is that, if S’ is a subsystem of S, then
HSNS" = HS' for all o > 0.

We can now define the spaces of canonical approximations as the ranges of the ’Hg maps.

Definition 6 For any a > 0, let

To = {HS(a) | a is a point in a system S}.7

"Since 71 = {0}, Tat1 C P(ET x 7o) and T, C (U0<a<7 To)"™MO it is easy to see (by transfinite induction
on «) that 7, is a set for all a > 0.



We make each 7, into a system as follows:

e () € 71 has no transitions.
e a bE7;+1:>(a—>b<:>3b' (6,0 EaAb—Ha+1(b’)).
. Q,QE%#(QLQ@VO<a<7.(6,ba> € aqy1).t O

Example 1 Let S = {a, | n < w}U{a*} be a system whose transitions are given by a,, 1 — a,
and a* - ay, for all n < w. Then, for any non-zero m < w, we have:

nN(m—1)

———
(1, ..{(r,)}...} (n<w)

X
—0
—~
IS

*
~—
I

{
0

Hmia(a®) = {7, Hp(an)) | n<w}
{7, Hm(an)) | n<m— 1},

Hence, for any n < w, we have

Hi(ant1) = (ON(H m+1(an+1) | 0<m <w)
= (O{(nHn(a)} | 0<m <w),

so that (HS(an41)7.r = (HS(an)} (and (5 (a0)) 7. = 0).
Also, we have

A
A

Hi(a") = OV (Hpa(a®) | 0<m<w)
= O\ ({(r. Hm(an) | n<m—1} | 0<m <w).
Now, if 0 <m < w, n <m —1 and n' < m, then HS (a,) = Tm+1(7—lm+1(an )) iff either n = n/
or n =m—1 and n' = m. Hence it follows that (%S (a*))7, . = {HS(an) | n < w}U{b}, where
b= (HS, (am 1) | 0 <m < w) is such that by . = {b}.
Since HS is a morphism on the subsystem {a,, | n < w} of S, it is not difficult to see using
Lemma 3 that %S, is a morphism (on S). O

Lemma 4 (a) For any a > 0, we have HI*(a) = a for all a € T.
(b) If 0 < B < a, then HEJ‘ oHS = Hg for any system S.

Proof We prove (a) and (b) simultaneously by transfinite induction on a.

Base case. Trivial.

Successor case. Suppose (a) and (b) hold for some o > 0. For (b), we argue by transfinite
induction on non-zero 8 < a + 1. The base case and the limit case are trivial, so suppose
”HZ;D‘“ o ”Haﬂ Hg for some 0 < B < a+ 1 and all systems S. Then, for any a in a system S,
we have:

{OH]H (1) | HE1(a) = b}

= {OHFH HILHS))) | o =0}
= {OHFHEW)) | a0}

= H§+1(a)-

¥We use a (etc.) as an abbreviation for the sequence (ao | 0 < a < 7).

M (HS 1 (a))

a)
)




For (a), if a € Ta41, we have:

Mt @) = (6 HI+H (1) | a0}
= {(§HIH AL W) | (0,0) € a}
= {(GHI ) | (5,6) € a}

Limit case. Suppose (a) and (b) hold for all non-zero o < y. We prove that Hy (a) = a, for all
a €Ty, 0 < a < by transfinite induction on «.

(i) The base case is trivial.

(ii) Suppose the claim holds for some non-zero o < -y, and consider some a € 7. Then:

HI (@) = {(0HD®) | a2 b)
= {(5,ba) | a2 b}

Now (0,bs) € aqt+1 whenever g LI b, so it suffices to show that, if (0,b*) € aq41, then

b* = b, for some b € ar 5. But we know that a = HS(a’) for some point @’ in a system S,
Yo ’Y

80 if (6,b%) € agq1 = HS,1(a’), then b* = HE (V') for some V' € ag 5, which gives us what we

want since g = Hf(a’) LI Hf(b’) (just observe that V0 < 8 < v.(d, Hg(b')) € ”Hg_H(a')).

(iii) Suppose the claim holds for all non-zero a < v/, where 7 <. If @ € T, then:

(@) = (HI(@) | 0<a<y)
= (aa | 0 <<

= ay.
Now that the claim is established, (a) and (b) for « in place of « follow at once. O

If A is any subset of X% x T, consider a system S = {a} U 7, (where a ¢ T,) which
inherits the transitions on T, from 7, and such that ass = {b | (6,b) € A}. Then HS,,(a) =
{(6, HS (b)) | (6,b) € A} = A by the remark after Lemma 3 and by (a) of Lemma 4. Therefore,
for any a > 0, we have

7;+1 = P(E+ X 7;)
Whenever a € 75, (b) of Lemma 4 gives us

0<ﬁ§a<7:>a5:7-[ga(aa),

so that any 7, is a subset of the inverse limit 7‘70 of the sets T, (0 < a < 7y) with respect to the
maps ’H;—D‘ : To = T3 (0 < B < o < ). Transitions on 7 (and any S C T7) are defined as in
Definition 6.

If 7 : 7, — S is any morphism, then HS o F = H= is the identity map on 7Tg, and so F is
injective. The following theorem now follows from Lemma 2.

Theorem 5 For any o > 0, Ty is strongly extensional. O



Suppose S C 7‘70 is such that HS (a) = a, for all 0 < a < 7y, @ € S. Then trivially Hf(g) =a
for all a € S, and so S C T, by Definition 6. We conclude that 7, is the largest subset of 7:70 on

which the maps ”HZ” for 0 < a0 < v agree with the canonical inverse limit maps on 7;0.
Given any S C 7'70, let

P(S)={a€S | 0<a<yA(),b") €anr1 = TbEags.b" =Dba}.

Then @ is a monotonic map on the complete lattice (P(72

+),C), and we have the following
result.”

Theorem 6 7, is the greatest fized point of ®.

Proof We have already seen in (ii) in the proof of Lemma 4 that 7, is a fixed point of ®.
Suppose S C 7;0 is a fixed point of ®. Then it follows as in the limit case of the same proof
that Hf(g) =aforalla €S, and hence SC 7,. O

We now know by Knaster—Tarski Theorem that
T,=H{SCT) | SCa(S)}.

Alternatively, any complete lattice with its order reversed is a complete partial order. Hence,
if we define by transfinite recursion:

. ToH = o(T),
* 77 = Nacy T3

then the 7% form a decreasing chain of subsets of 7:70 which becomes constant at some a* <
[ 72[*,'° and we have that 7, = T

The definition of 7, we gave can in principle be replaced by either of these, which are in a
sense “more direct”.

We will continue this kind of study of 7:70 after we establish a few results of a different kind.

From now on, we will usually omit the superscript in ’Hg, provided that does not introduce
ambiguity which is not covered by Lemma 3.

Given a system S, the decreasing chain of sets
Ua ={(a,b) € § xS | Hala) = Ha(b)}

for 0 < a < v forms a fundamental system of entourages of a uniformity Z/l;S on S.!1' In this
way, for any -y, the maps H, (0 < o < 7y) give rise to a notion of convergence of points in an
arbitrary system S.

Let V, be the uniformity on 7;0 which is the inverse limit of the discrete uniformities on 7,

(0 < @ <y). Then L{;r7 is the subspace uniformity on 7, induced by V,.

°For partial orders, we refer the reader to [DPr 90]. Chapter 4 there concentrates on fixed points.

%Since |7)| > w (see e.g. Corollary 8), |T|" is an infinite regular cardinal. (Suppose r is infinite and
regular, and that X, for a < k form a decreasing sequence of sets such that Ya < k.|X.| < k. For any
z € Xg=Xo\[),c, Xa, let a” < & be minimal such that z ¢ Xo=. Then, letting a” = UmeX[’) a”, we have that

the X, for a® < a < k are all identical.)
"For both uniform spaces and inverse limits, we refer the reader to [Bourb 66].



Whenever F : § — &' is a morphism, Uf is by Lemma 3 the inverse image under F of Llf &)

(which is the subspace uniformity on F(S) induced by L[fl, since F(S) is a subsystem of §').
In particular, given any system S, the uniformity L{;g on it is an inverse image of the uniformity

L{;g on its strongly extensional quotient.

Suppose now that S is an arbitrary system, and let
U(R) = {(ab)eSxS | (a-2sa = Wb-50 AdRY)A
(b -8 = 3d.a -2 d Ad'RY)}

for any binary relation R on S. Then R is a bisimulation iff R C ¥(R), and the maximum
bisimulation ~ on & is the greatest fixed point of U. Hence ~ is given by the eventual constant
value of the following decreasing chain:

e R =8xS.
o R+ = g (R(@),
e RO = No<a<ny R(@)

But it is easily seen that R(®) = {(a,b) | Ha(a) = Ha(b)} for all & > 0. Hence, if S is strongly
extensional, we conclude that L{;g is Hausdorff for large enough +.

We now turn to the question of when are the maps HS : S — T, morphisms.
Theorem 7 If H, is a morphism on a system S and B > «, then Hg is also a morphism on S.

Proof The proof is by transfinite induction on 8 > «.

Base case. Trivial.

Successor case. Suppose Hg is a morphism on S for some > «. Then, for any ¢ € S, § € &7,
we have:

5
Hp+1(a) 15,06 = {Hp+1(Hp(b) | a — b}
= (Mo (0) | @ 0}
= Hpyi(asy).
Limit case. Suppose Hg for all & < 8 < «y are morphisms on S. Whenever a % bin S, we
trivially have H(a) = H-(b).

Hence suppose ., (a) %4 ¢. Then (0,ca) € Ha+r1(a), s0 cq = Hqo(b) for some b € as 5. Now,
given any a < < vy, we have cg = Hg(V') for some V' € as s, and so

Hp (D) = Hp(Ha(b) = Hp(ca) = Hp(Ha(cp)) = Hp(Ha(Hp()) = Hp(Ha(b) = Hp(b') = cp.
Therefore, c = H,(b). O

Corollary 8 If 0 < o < 3, then Hg is a morphism on T.

Proof #, is a morphism on 7, by Lemma 4 (a). O

Definition 7 Given a system S, let i(S), the index of non-determinism of S, be the smallest
infinite regular cardinal which is strictly greater than |ags| for alla € S, 6 € ©+. O



Theorem 9 Suppose S is any system.

(a) His) is a morphism on S.

(b) If S is countable, then H, is a morphism on S for some countable .

Proof

()

Since i(S) is a limit ordinal, a BLIGAEN Hics)(a) LI Hics) (b)-
So suppose H;(s)(a) %4 ¢. For any 0 < a < i(S), let
Xo = {b €ass | Ha(b) = ca}.

Now 0 < a < i(S) = (0,¢q) € Har1(a), so each X, is non-empty. Also, if « <
and b € Xg, then Ho(b) = Ho(Hp(b)) = Halcg) = ca, so that b € X,. Hence the
X, form a decreasing chain and so, since |X,| < |ass| < i(S) for all o, we can pick a
b € No<a<i(s) Xa for which we will have ¢ = H;(s)(b).

For any a € S, 0 < a < wy, let
Yo ={beS | Halb) = Hala)}.
Then each Y? is countable (and trivially non-empty), and o < = Y D Yﬁ“. Hence,

given any a € S, there exists a non-zero o® < w; such that a* <a<w; =Y =Y.

Let a* = J,cs @”, and pick a limit ordinal v > o* such that v < w;. We claim that H, is
a morphism on §.

(0,cax) € Har41(a), 50 cox = Hqx(b) for some b € as 5. But then, for any o* <

there is some b' € ass with ¢ = Hqo (V') for which we have Ho+ (V') = Ho (Ho(V')) =
Hax(Ca) = car = Hax(b) and so b’ € Y. =YL, which gives us that co, = Ho (V) = Ha
Hence ¢ = H(b), which establishes the claim. O

Whenever #,, is a morphism on S, it is easy to see that {(a,b) € S X S | Hqal(a) = Hqa(b)}
is a bisimulation.'? Hence it is the maximum bisimulation on S, being a fixed point of ¥ and
so the eventual constant value of the R(® chain.

If H, is a morphism on a strongly extensional system S, we know by Lemma 2 that #. is
injective on S, and so S is isomorphic to ., (S) which is a subsystem of 7,. Also, the uniformity

L{:YS is isomorphic to the subspace uniformity on 7£,(S) induced by L{;r7 . In this sense, the T,

. T, . . s
are canonical systems, and the /" are canonical uniformities.
Given an infinite regular cardinal &, let

To={HZ(a) | i(S) <KAa€ES}

Then 7, is a subsystem of 7, i(7,.) = x and, given any system S with i(S) < &, there is a
unique morphism from S into 7,*. (The systems 7, are important to the study of operational
semantics because they are closed under naturally defined CSP operators.)

12The converse is not true in general — consider H; on S = {a, b} with transitions given by a — b and b —— a.



One important case is that where |27 < w and k = w; (so that we allow only countable
branching). Then, given a point a in a system S with i(S) < w;, we have that Sa is countable,
and so H, is a morphism on Sa for some countable a. Hence HS (a) = H5%(a) = H]x(H5(a)),
and we conclude that 7 C 77, where we define

TC={HI"(a) | 0<a<yAa€T}
Each T is a subsystem of 7. (The systems 7 are closed under some useful forms of sums.)

From now on, unless stated otherwise, we will assume that, for any v, the uniformity on 7,
is U;r” , and the uniformity on 7;0 is V,.
If g € 7;0 and § € T, then aros consists of all sequences in the inverse limit of the sets

{b ] (§,b) € ag+1} (with respect to the maps ’HZ;B, for 0 <a<p <) lfa€T,, thenay ;is
the set of all sequences from the same inverse limit which are also in 7.
Lemma 10 Suppose a is a point in a system S and § € XT.

(a) (Hy(@)7o,5 = Ty (agg) *

(b) (H(a))7, 5 = Holasys) -

Proof By the remarks above, it suffices to observe that

{ba | b€ MHylass)}t = Halass) ={V | (5V) € ani1}
forall 0 < o < .13 O

Theorem 11 (a) If X5 C T for each § € $7F, then there exists an a € T, such that V6 €
E+.Q7jyo’5 = Xy iff each X; is closed.

(b) If X5 C Ty for each & € 7, then there exists an a € Ty such that Vd € E+.Q7-7,5 = X5 iff
each X; is closed in T.

Proof For (a), suppose we have such an a € 7;0. Then, for any § € ¥, X5 = a7o s is the
inverse limit of the sets {b, b € X5}, and is hence closed.
Conversely, if each Xj is closed, let

Qo+1 = U {<5aba> | QEXé}
fext

for any 0 < a < . This gives us a unique a € 7‘70 For any § € ¥, we have that aro s is the
inverse limit of the sets {b/ | (4,0') € ag+1} = {ba | b € X5}, which equals X; since Xj is closed.
For (b), we can use Lemma 10 (b). If we have such an a € 75, then

T,

T 7T
Xs=ars=H] (@) =Hy'ar, ) =8, =X

forall 6 € .

3See Corollary to Proposition 9 of Chapter I, Section 4.4 in [Bourb 66].
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Finally, if each X; is closed in 75, then

(% ( DS m)) “HT (X)) =X =X,
75

0ex (S EY ,6

The strong extensionality of 7, gives us that the correspondence between points in 7, and
Y *-tuples of closed subsets of 7 in (b) of Theorem 11 is 1-1.

In their setting, Forti and Honsell take these ideas further, resulting in their theory of
comprehension properties of hyperuniverses — see [FH 89].

Suppose k£ < cf(y) and Y for £ < & are closed subsets of 7'70. If @ & Ugcy Ye, then, for
each £ < k, there exists a non-zero ag < 7 such that {b € 7.0 | ba, = .} NYe = 0. Letting
o = Ug<y, e, we have that {b € 77 | bar = aas} N Ugc, Ye = 0. Hence U, Ye is closed. We
conclude that, in 7’70 (and hence in 75), unions of strictly less than cf(v) many closed sets are
closed.

In particular, the X; in Theorem 11 are closed whenever |Xs| < cf(y) for all § € XT.

Definition 8 For any 0 < a, let T3 = To \ Up<cpca Ha(T3)- O
It seems very plausible to conjecture that
0<a<fBAha€Ts;= Hala) €T,.
However, that is false, essentially because the statement
a€To & 3IeTTIET(5,b) €Ea

fails whenever « is a limit ordinal, which is easily seen by Theorem 11, once we observe that
Ta = Ta \ Ty for such a. In particular, if we fix v and pick a € 77, (recall that |7,41] =
P(2F x T,)| > 27 > |T,]), it is not difficult to see that, for any n < w, we have

n n
—— ——

0<m<n=Hym(T..7.a) = Hypm(T . T Hya) & T s
n
in spite of the fact that H, 1 1(7 .. .7.a) € Ty ins1-

To construct a counter-example to the statement ‘if o’ € 7'7’,, then there is a non-zero a <~/
such that a < 8 < = aj; € T, first let by = a and b1 = a + 7.7.b,, for each n < w. Then
we have

0<m<w= Hyrmlbn) € Ty & 2)mAm < 2n41)).

Hence, it follows that

n<w

14 7 . . .. . / 5 .
Here Y vt dexél §'.b is a “new” point whose transitions are given by ) ., .., dexél §'.b — b (with
subsequent behavious being that of b € T;) for § € &1, b € X;.
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A counter-example to ‘if @’ € 7'7"}, then ¢’ is an isolated point of 7.’ can be constructed as
follows. For any n < w, let

n+1 m+1
cn=(T.....T.a) + ( Z T T .Hv(a)) ,
mew\{n}
and let
m+1
d= Z T.....T . Hy(a)
m<w

Then Hyini1(cn) = Hyrny1(d), but Hypni2(cn) € Tyippa, 50 that Hyynio(cn) # Hyrni2(d)
(since Hyqnyo(d) = Hygny2(Hy+1(d))). Hence Hy,(d) is not an isolated point of 754 (al-
though H 4y (d) € T,,)-

Theorem 12 Given a € 7;0*, let o be the smallest ordinal such that 0 < o < v* and o <
a<y* =a, T,

(a) o* = + 1 for some o' >0, and we have o < a < y* = aq = Haolaw ).
(b)) 0<n<wAn<ao*=a,€T,.
(c) y<a* =ay, €T
d) If y + w < o*, then ayp € T or infinitely many n < w.
Y v+ Y+n
Proof We claim:
(i) f0<n<m<wand ay € T, then a,, € T,.

)
(i) If B < B’ <~ are such that 8 <& < ' = ag ¢ T/, then ag = Hp (ag).
(iii) If v <v*, then a, € T} iff {# | 0 < B <y Aag € T3} is cofinal in 7.
(iv) Ifn <w, vy <" and @y € T4y, then a, € 7.

It is easy to see that (a)—(d) follow from (i)—(iv), so it remains to prove (i)—(iv).
For (i), observe that, if 0 < k¥ < w and b € Ty, then b € 7, iff b can perform k — 1 consecutive
transitions.
For (ii), we prove
B<ESP = ag = Helap)

by transfinite induction on &.

Base case. Trivial.

Successor case. Suppose 3 < & < 3 and ag = He¢(ag). Then, since agyq & T§,+1’ we have that
agr1 = Heq1(D) for some b € T¢. But then

ag = Helagr1) = He(Heqr (b)) = He(b) =0,

and hence
a1 = Hepr(ag) = Hepr1(Helag)) = Herr(ap).
Limit case. If § <y < (8’ is such that 3 <& <y = a¢ = He(ag), then

ay =(ag | 0<E<y) = (Helaa) | 0 <& <) =Hy(aa)

12



The ‘if” part of (iii) is trivial, and the ‘only if’ part follows at once from (ii). (Recall that
T, =TT
6n—1 (51

To prove (iv), consider first a,1n € 77, with n > 2. Then ayy, — ... = Hy1n(b) for
some b € 77, (since a’ € T,y & 30 € 1.3 € T,,,.(6,V') € o/ whenever m > 1), and so
6n71

g = Ho(@yin) “ s 25 M (Hoyin (b)) = Ho (D).

Now 77 is a subsystem of 7., and hence it suffices to show that a,41 € 77, = a, € 77,
This will in turn follow once we establish that 7, is a morphism on X = (’sz—7 )7HTE) (which
is a subsystem of 7,.1), because H, must then be injective on X, so that X' = H,1(7;), and
hence a, ¢ 7;’ = ay1 € X CH 11 (TH).

We claim that, for any 0 < 3 < v, H~(T3) is a closed subset of T,. Suppose b € T, \ H(73).
Then bg: # Hg (bg) for some B < ' < v, which gives us that {b' € T, | by, = bz }NH,(T3) =0,
and the claim is established. Now, if ¢ € X, then H,(c) € H.(73) for some non-zero § <y, and
hence

T, H~ (T,
(o ()7, 5 = Hr(eag) " = Hylexa) "7 = H,y(cx )

for each § € ¥ by Lemma 10 (b) (observe that H,(73) is a discrete subspace of 75). O

If @ is an isolated point in 7, then {a' € T, | al, = an} = {a} for some non-zero a < 7, so
that a = H,(an) € T7. In the other direction, if a € T} and v is not of the form 7' + w, then it
is an easy consequence of Theorem 12 that g is isolated.

Let ¢, for ordinals o be points such that the transitions of any t, are given by t, — tg for
all B < a. Then O, = {tg | B < a} is a system for any «a.

Theorem 13 For any a > 0, He is an injective morphism on O, but not a morphism on
15

Oat1-
Proof It easily follows by transfinite inductions that every O, is strongly extensional, and that,
for any a > 0, H, is a morphism on O,. We claim that:

() (Hasi(tar)Tosnsr = Hast ({ts | B < a} U {Ha(ta)}) for any a > 0.
(i) (M (8))7, 0 = {H(t) | B <y} U{H, (1)} for any 7.

We will then have that H,(t,) can perform an infinite sequence of — transitions whenever
a > w. Also, for any non-zero n < w, t, can perform n consecutive transitions, whereas any
a € T, can perform at most n — 1. Hence we will have that no #, for « > 0 is a morphism
on Oy41 (observe that no ¢, can perform infinitely many consecutive transitions). Therefore, it
suffices to prove (i) and (ii).

Now (i) is trivial, since we know that H, is a morphism on O,.

For (ii), we first prove

0<a<pf=Hautg) =Halta)

by transfinite induction on «.
Base case. Trivial.

5 A version of this result was known to Forti and Honsell — see Remark 1.5 in [FH 89].
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Successor case. Suppose > o = Ho(tg) = Ha(ta) for some o > 0. Then, for any 8 > o + 1,
we have:

Ha+1(ts) {{r, Hal(tg)) | B < B}
= {(n,Haltg)) | B <atU{{r,Ha(ta))}
= {{(nHalty)) | B <o}
= Ha+1( a+1)

Limit case. Suppose 8 > a = Ho(tg) = Ha(ta) for all non-zero a < 7. Then, for any 3 > v,
we have:

Hoy(ts) = (Haltg) | 0<a<ry)
= <Ha(ta) | 0<0‘<7>
= Hv(tv)-

Now, Lemma 10 (b) gives us that (H,(ty))7,» = {H,(tg) | B< fy}TW. For any (8 < 7,
we have #H,(tg) = (Hg'(tg) | 0 < B’ < ), and we know that Hg (t3) = Hg (tp) whenever
0 < B < (. Also Hp(tg) # Hp(tp) whenever B +1 < ' < #, since if f/ < w, then
Hp(tg) € ’TB,’ and Hg (tg) = He(Hp+1(tg)) € 776‘,’? and if 8/ > w, then Hp (ts) can perform
infinitely many consecutive transitions. Hence, recalling that H,(ty) = (Hg(tg) | 0 < B8 <),
it is easy to see that {#,(tg) | 5 < 7}7—7 ={H,(tg) | B<~y}U{H,(t,)}. O

We observed that H,(,) € T, whenever 0 < n < w. Consider any . Then H,(t,) € 77, but
Hoyy1(tyr1) = Hyr1 (Mo (ty)) € T741- Whenever 2 < n < w, we again have H, 1, (ty1n) € T4y,

(SiHCG <7', H7+n71(t7+n72)> S H7+n (t’y+n) and H7+n71(t7+n72) S 7;,_'_”_1).
For any 7y, we know that

c TC
1T, < |7-70| < |7:f|\7\ < 2T X — olT7
(I75] = |y by Theorem 13). If X, X" C T are distinct, it is not difficult to see that
H, > <ta,a = | #Hy > <ta,a = |,
0<a<yAaeXNT] 0<a<yAd €X'NT]
where < d, e > is an abbreviation for (7.7.d) + 7.(1.d + 7.€)'¢. Hence in fact |T,| = 2771,

Definition 9 We say that a tree (W, <)!7 is a y-special tree iff:

'6Note how this expression corresponds to {{d}, {d,e}}, which is the standard Kuratowski’s set-theoretic defi-
nition of an ordered pair (d, e).

Y7A tree is a partial order (W, <) such that {y € W | y < «} is well-ordered by < for each € W. For any
z € W, we write ht(xz, W) for type(({y € W | y < z},<)). For any o, Leva (W) = {x € W | ht(z,W) = a},
and we take ht(W) to be the smallest o with Lev, (W) = 0. A subtree of (W, <) is a downwards-closed W' C W
with the order induced by <.

For any maximal chain C' C W, let h(C) < ht(W') be such that C contains exactly one element of Lev, (W) for
a < h(C), and no elements of Lev, (W) for h(C) < a < ht(W). A path through W is a maximal chain C C W
with h(C) = ht(W).

It will sometimes be convenient to “relabel” the indices so that W =
Levy (W).ht(x, W) = o whenever 0 < a < ht(W).

If k is regular, a k-Aronszajn tree is a tree (W, <) such that ht(W) = k, Va < k.|Leve (W)| < k, and there are
no paths through W.

For an introductory account of trees, see e.g. Chapter 2 of [Kun 80].

U0<a<ht(W) Lev, (W) and Vz €

14



(a) ht(W) =1,
(b) (x e W AQt(z, W) < a <) = Ty € Lev,(W).z < y,

(c) There exists a strictly increasing sequence o +— 14 : v — 7 \ {0} such that Vo <
v.|Leve (W)| < |Tp, |, and
(d) There are no paths through W. O
We say that - is w-like iff either c¢f(y) = w or v is a weakly compact cardinal'®.

In Section 2 of [FH 89], Forti and Honsell essentially establish the following. (It is obvious
that if 4/ > v, ¢f (') = ¢f () and a y-special tree exists, then a '-special tree exists.)

Theorem 14 There are no y-special trees iff v is w-like. O

Given any v,
a6 K ={XCTy | Jad<a<yA{beT, | by =a} C X}

gives a 1-1 correspondence between points of 7;0 and minimal Cauchy filters on 7, such that
KCq converges iff a € 75, and in that case the limit point of K, is a. Hence 7;0 with the identity
mapping from 7, into 7:70 is a completion of 7,. In particular, 7, is complete iff 7, = TYU.

Theorem 15 T, is complete iff there are no ~y-special trees.'?

Proof For the ‘if’ part, suppose 7, is not complete, and pick a® € 7;0 \ 7y. By Theorem 6,
a’ e 7:?0 \7:;30Jrl for some fy < |T?|*. Therefore, for some 0 < a* < 7 and (do,b*) € ad-,,

there isno c € a—o’rf‘),éo such that b* = cy+. If for some a! € a_ono750 we have b* = a}l*, then there

exists 3; < f3y such that a! € 7;31 \ Tfl‘H, and we proceed as with a®.

After finitely many steps, we will arrive at some a” € 7:;3" \7:;6"“ such that, for some
non-zero «* < v and (d,,b*) € aj. |, there isno ¢ € a"70 5, such that b* = co-. Then the tree
W = Upcacy Leva(W) given by

Leva,(W) = {{a,Ha(b"))} (0<a<a¥)
Levo (W) = {{a,b) | (0n,b) €ag i ANO" =Ha (D)} (o <a<7),

and with the order induced by the maps ’HZ;*’ (0 < a < o <) is a y-special tree.?

For the ‘only if’ part, suppose that (W, <) is a 7y-special tree. Suppose also that u € 72? and
n* < w are such that v <yAn>n* = uyin € T, ,. (We can take u = H,(t,) and n* = 2.)
We fix a mapping « — 1, : v = 7 \ {0} associated to W such that Va < v.=(3y < 7.3n.0 <
n < n*An, =17 +n),2! and then we fix an injective mapping F with domain W such that
F(Levo(W)) C T, 1 for all a <.

184 is weakly inaccessible iff & is a regular limit cardinal.

K is strongly inaccessible iff & > w, & is a regular cardinal, and 2* < k whenever A\ < k. (In particular, & is
then weakly inaccessible.)

k is weakly compact iff k is strongly inaccessible and there are no k-Aronszajn trees.

!9This result is essentially established in [FH 89]. We give an alternative proof which provides us with some
additional information to be used later in the paper.

20The pairing with a ensures explicitly that a # o/ = Levs (W) N Levg: (W) = 0.

21t is trivial to obtain such a mapping from any mapping associated with .
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For any z € W and ¢ € X = Uy q<r T, +1, We define an ordinal ;. as follows. If ¢ = F/(z')
for some z’ < z, then let (; . = Mhi(e',w)- Otherwise, let Cz c = Mpy(z,w) +1. Now, for any z € W,
let

Gu(®) = Hapyo )44 (Z T. < ¢ U, >> )
ceX

It is not difficult to see the following:
(i) (ht(z, W) = ht(y, W) Az #y) = Gyu(z) # Gu(y).
(i) & <y = Hppyowy +4(Gu(y)) = Gul2).

Let W' be the tree of height v given by
Leva(W') = {{a,Gy(z)) | = € Levg (W)}
Ty
for all & < 7, with the order induced by the maps HnZ‘if (a < o < 7). (i) and (ii) give
us that hi(z, W) < ht(y, W) A Hy,,, w)+4(Guly)) = Gu(z) = = < y, and so we have that

z — (ht(z,W),Gy(z)) is an isomorphism between W and W'.
Now, for any a < v, let

o5 = {7, Gu(2)) | 2 € Leva (W)}

Then o < o = Hy,45(ay,,+5) = ape+5 (by (i) and Definition 9 (b)), and hence the ay, 15
can be uniquely extended to an a € 7'70 To see that a ¢ T,, pick an & € Levy(W). Then
(1,Gu(x)) € anyts, but any b € ayo . would clearly yield a path {(a, by, +4) | a <~} through

W', which is a contradiction. Hence a € T.! 2 7;. O

In particular, as long as ¢f(y) = w, all the 7, are complete. In fact, in [Rosc 82], 7, = 7;0
served as the definition of 7, for such +.
For any 7, let:

Q, = {a_OGTVO|n<w/\a_0ﬂ>...6"—7§ﬂ/\(5n,b*)Eag+1:>
E"_) € iﬁo’an,b* = ba},

' 77

Q, = {a€eT, | Hy (a) =a},

Q) = Hy (T)).
Theorem 16 (a) Q. is the largest subset of T, which is a subsystem of 7'70
0
b) Q. is the largest subset of T containing T on which V., and Z/{T7 induce the same topology.
v v v v v
(c) If vy is w-like, then TA C Q= Q) = Q) =T, = 7;0
(d) If v is not w-like, then T¢ C Q, C @, C Q¥ C T, C 7.

Proof For (a), observe first that a® € Q, A a® LN ot =al € Q,, so that Q, is a subsystem of
7;0. Then Q, is a fixed point of ®, and hence Q, C T, by Theorem 6. If S C 7 is a subsystem
of 7‘70, then § is a fixed point of ® since 7, is, and so S C Q,, by the definition of Q,.
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Now, we claim that 77 C Q, C Q’7 C Qg CT,C 7‘70 for any 7. Since 7 is a subsystem of
0
7;0, we have 7;0 C Q,, and e.g. H,(t,) € Q, \ 7;0. Also, ’H;r” hQV = ’H;r”hQV, and so Q, C le'
The remaining inclusions are trivial.

0
Since aq = ’HZ” (a) for alla € Q', 0 < @ < 7, the uniformities (and hence the topologies) on
0

Q’7 induced by V, and Ll;r” are the same. So suppose that 7;0 CcCScC 7'70 and that V, and u;/;‘)
induce the same topology on . Consider any a € S, and let X = {’7'-[Ay(’7'-lz;70 (@) | 0 <a<n~}
Then any O C § which is open with respect to L{AZ—VO and such that a € O intersects X. Hence
any O C & open with respect to V, such that ¢ € O intersects X', and so a = H;r”o (a). Therefore,

S C @', which establishes (b).

If 7y is w-like, we know that T, = T, and so (c) follows at once from (a).

For (d), suppose 7 is not w-like. Then we can pick a € 77 \ 7 such that ’HF (a) = H~(0)
(such an a is given by the proof of Theorem 15), and let b = H, (> p<q<y T-0a). By Lemma 10
(a), we have

TO
bror = {Hy(aa) | 0 <a <A} ={H,(aa) | 0 <a<v}U{a},

and so b ¢ Q,. Also, since H;r”o (a) = Hy(0) = HF (H(a1)), it follows that HZ”O (b) = b, and
hence b € Q’7 \ Q,.

It remains to prove that Q7 \ Q' # ). Let (W, <) be a y-special tree. We take n* = 4, and
fix (no | @ < =) as in the proof of Theorem 15. Recalling Definition 9, there exist maximal
chains C¢ C W for £ < cf(y) such that (h(C¢) | & < cf(7)) is a strictly increasing sequence of
limit ordinals cofinal in .

For any ¢ < c¢f(7), we add a new point z¢ to Levh(cg)(W) such that Vy € C¢.y < x¢. This
gives us a tree (W', <), which clearly still satisfies Voo < 7.|Leve (W')| < |Ty, |- In the same way
that G, was defined in the proof of Theorem 15, we can find a; € 777,1(05)+4 for £ < cf(y) such

that the tree Z given by

Leva(Z) = {(Hy,alag) | € < cf(1) AR(C) = o}

(for all @ < ry) with the order induced by the maps 7—[:,2‘1;4 (for @ < o < 7y) is isomorphic to the
subtree Ug.p(,) Ce U {z¢} of W' (the isomorphism being given by mapping any y € C¢ U {z¢}
to ’tht(y,W,)H(aé))-

We now fix a mapping F' with domain W as in the proof of Theorem 15. For any & < cf(7),
let b€ € 7:70 \ 75 be constructed as in that proof, with u replaced by u® = H.,(< t,,a¢ ). Then,

3

given any £, we have (7,G¢(z)) € bnh(%)%%

for some z € Levyc,)15(W) such that
(T, th(C£)+5+3(-< G, Hﬁh(05)+5+1('< ty,ag =) =) € Gﬁ(x)

for some c. Observing that Nh(Ce)+5 T 1 2 Nn(ce) +6, it follows that b7§7h(C§)+5+5 # bgh(06)+5+5 for
all &' # ¢, Also, {b¢ | € < cf(y)} is closed in 7;0
Let ¢ € T} \ T, be constructed with u replaced by u* = H, (< 0,¢, =) (F is still fixed). For
any & < cf(y), let né = Nh(ce)+5 + 5 and let dt € 7’70 be given by
d,%+1 = b,%+1 U Hﬂﬂ(cng)
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for all non-zero 3 < . The way we chose ué and u* ensures that bga 15 and cp, 45 are disjoint
whenever 7, + 1 > 4 (for all £ < cf( )). It is then not difficult to see that {d | & < cf(y)} is

closed in 7). Also, we have that 7—[7 (dg) Hv(cng) for all £.

By Theorem 11 (a), let e € T be such that et = {d¢ | € <cf(y)} and eros = 0 for all
d € ¥. Then Lemma 10 (a) gives us that

7;0

M) @)ro, = {H) (&) | € <cf())

= (e [E<ad)
= {(Hyley) | € <efMIU{e).

Hence we have () (K] ()70, 3 H' (¢) = Hy(8) & (H' (€)7o, and so H' (H]' () #
MY (e), so that M1 (e) € @7\ Q. O

If 7 is not w-like, Theorem 16 leaves open the question of whether and when is the inclusion Q'] C 7, proper.
By definition, 7, consists of all the images under H of points in arbitrary transition systems. It is quite plausible
to expect that we do not need to look for these points further from 7;0, in other words that 7;0 is rich enough so
that the image under H. of an arbitrary point is the image under A, of a point in 7;0, which is just saying that
Q! = T;. On the other hand, after a closer examination, this perhaps seef)ns unlikely, since any a € 7—70 \ 75 gives
. T T T . . . .
rise to some b = H, (> T.aa) € Ty such that b — a, but b /> H," (a), and points in 7, of this kind look

. . . . 70 S

as if they are not particularly likely to be images under #,” of points in 7;0.

Fortunately, the method used in the proof of Q/, C Q) above gives us a lot of hope. Namely, suppose that
we have a point ¢ € T; \ Qf;. To obtain a contradiction, it would suffice to construct a point ¢’ € 7;0 which is
bisimilar to ¢, where we consider ¢ as an element of 7, (i.e. ignore all transitions to points in 7.\ 75), for then

acy\a*

TO
we would have that H,” (c) = ’H;r"’ (¢) = c. Such a ¢’ would be constructed by modifying ¢ by replacing some of
the points reachable from ¢ by their “unions” with carefully chosen points in 7;0 \ 77 which have no transitions,

so that we eliminate in ¢’ all the transitions corresponding to transitions of ¢ leading to points d € 7;0 \ 75 for
. - 70 . . . .
which a transition to H," (d) is not present at the appropriate level (if n < w, let “the nt* level of ¢” consist of

all the points in 7, which are reachable from ¢ in n transitions, but no less). However, this task presents us with
several difficulties:

- The “disjointness” requirement in the method above may be very hard to meet, especially when a point in
T, reachable from c¢ has a large (e.g. of cardinality |y|) number of transitions labelled by the same action.

- When forming the “unions”, we have to avoid introducing new unwanted transitions (which could be either
to a point in 75 or to a point in 7\ 75).

- We have to take care of all of the w-many levels of ¢, and find a way to put together all the results to
obtain ¢’.

4 Fixed points

In a variety of mathematical treatments of process algebras, the notions of non-destructiveness
and constructiveness have been important in the study of fixed points (which are used to model
recursion). If we have a family of restriction maps | n for n < w on a set X so that:

ez |l0=yl0,
e (zln)lm=xz](nnNm), and

e (Vn<waxzln=yln)=>z=uy,
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then a function is said to be non-destructive iff (f(z)) | n = (f(z | n)) { n, and constructive
iff (f(z))dn+1=(f(zln)ln+1(forallz e X, n <w). If we define a metric d on X by
d(z,y) =inf{2™" | x| n =yl n} (which is usually complete), then the non-destructive maps
are precisely the non-expanding maps, and the constructive maps are just the contraction maps
(to which the Banach Fixed Point Theorem applies when the space is complete).

We can generalise these ideas as follows.

Definition 10 e Foranya e 7, 0<a<y,letala="MHy(aq).

e A function f : T, — T, is non-destructive iff (f(a)) | o = (f(a ! o)) L aforalla € T,,
O0<a<y.

e A function f : T, = T, is constructive iff (f(a)) | a+1=(f(al a)) la+1forallaeT,,
0<a<y O

Theorem 17 Suppose f: T, — T, is constructive.
(a) f has at most one fized point in T .

(b) If v is countable, then f has a unique fized point in T.

Proof We construct a | a by transfinite recursion on non-zero o < y, where a is a hypothetical
fixed point.

Base case. There is only one possible value for g | 1.

Successor case. a la+1=(f(al a)) | a+1.

Limit case. a | ¥ = H,(b), where b= (Ho(a L a) | 0 <a <), ifbe Ty. (If ¥ is countable,
we always have b € T,.)

It is easy to see, by transfinite induction, that if @’ is a fixed point of f, thend | a=0a | «
for all non-zero o < v (and in that case all the a | « are well-defined), so that f always has at
most one fixed point.

If 7y is countable, then all the a | a are well-defined. Letting a = (Ha(al @) | 0 < a<7y) €
T, it follows by another straightforward transfinite induction (showing that (f(a)) la=al o
for all ) that a is a fixed point of f. O

If v is uncountable, one is naturally interested in identifying types of functions on 7, which
always have a fixed point. (The fixed points needed in the work on CSP can be shown to exist
by different means, by working with the spaces 7,.)

Definition 11 Say a predicate R on 7 is continuous iff, whenever —R(a), there is a maximal
non-zero o < y such that 3be 7y.b L a=a L a A R(b). O

If R is a predicate on 7, it is easy to see that R is continuous iff ¥ = {a € 7, | R(a)} is
non-empty and H.(X) is closed in 7, for all 7' < . Non-empty finite disjunctions preserve
continuity, but arbitrary conjunctions (even consistent pairwise conjunctions) do not seem to.
This is an interesting topic for future research.

Theorem 18 If f : T, — T, is constructive with fized point a and R is a continuous predicate
such that Vb € Ty.R(b) = R(f(b)), then R(a) holds.
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Proof If R(a) fails, then there is a maximal non-zero o < y such that there exists b € 7, with
bl a=al aand R(b). But then R(f(b)) holds and

(F®) bat+l=(fbla)la+l=(flala) latl=(f@)latl=ala+l,

which is a contradiction. O

Forti, Honsell and Lenisa have studied fixed points in the context of hyperuniverses — see
Section 4 of [FHL 94].

5 Transition to non-well-founded sets

From now on, we assume that ¥ = () (so that ¥+ = {7}), and we drop the assumption that all
systems are small. We simplify some of the notation as follows:

e A system is now a class S with a binary relation — on S such that as ={b€ S | a — b}
isaset foralla € S.

e For any @ > 0, we now have M3, (a) = {H5(b) | a — b} for all @ € S, and so
Ta+1 = P(Ta). (This gives rise to the obvious changes in the definitions of transitions on

the Ty, and elsewhere — essentially, any (§,b) with § € X* is replaced by just b.)

For any system S, we can regard (S, «)?? as a model for the language of set theory (the
first-order language with equality having only the binary predicate symbol €). This observation
provides the link between the study of transition systems and set theory.

Definition 12 A system S is universal iff, for any small system &', there exists a unique mor-
phism &' — S. O

In particular, any universal system is strongly extensional. Also, a system & is universal iff
a unique morphism &' — § exists for any system S’.

Anti-Foundation Axiom (AFA) (V,3)?? is a universal system. O

Definition 13 Let 7 = U,-( 7, and, for any a € T, let 6, be the unique # > 0 such that
a€Ty. Ifa,beT,let a— biff Hg,ug,(a) = Ho,ue, (b). O

Theorem 19 7T is universal.

Proof Suppose § is a small system. By Theorem 9, H;(s) is a morphism on §. For any a € Tjs),
let ap > 0 be minimal such that a € H;s)(Ta,). Then Ya € T;s).Ha,(a) € T, , so it follows
that F : a — Ha, (a) is an isomorphism Tys)y = Up<a<i(s) Ta © 7~ Hence FoH;s): S — T is
a morphism.

By Lemma 2, it remains to prove that any morphism G of 7 is injective. Suppose not, and
let a,b € T be such that a # b and G(a) = G(b). Let 8 = 0, UB,. Then GA\X (= Upcqep T) is a
morphism (observe that X is certainly a subsystem of 7)) of X which is not injective. But, as
above, X is isomorphic to 7y, contradicting Theorem 5. O

Hence any system “can be found” inside 7 uniquely. If we consider the systems 7, as having been defined
recursively, this means that the construction (which built the 75’s from scratch) “reaches” every system without

introducing any unwanted garbage on the way.

22When S is a proper class, this is a metatheoretic abuse of notation.
ZHere V = {z | © = 2} is the universal class.
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Definition 14 A system S is full iff, for any set X C S, there exists a unique a € S such that
as=X. O

Lemma 20 Any universal system is full. O

The following is Rieger’s Theorem — for a proof see either [Rieg 57] or Appendix B of
[Acz 88].

Theorem 21 Suppose (S, —) is a full system. Then (S,+) is a model of ZFC—. O

Suppose we have a point in a universal system S which is a small system “encoded” within
S (e.g. in the way corresponding to how small systems are usually encoded as sets, that is as
ordered pairs consisting of a set and a binary relation on it). That point then gives us a small
system (encoded within our universe), whose underlying set is a subset of S, and then we have
a unique morphism from this small system into S (since S is universal). Finally, we can encode
that morphism back into &, so that it is represented by a point in S. It follows that any universal
system is a model of AF'A. (See the proof of Theorem 3.8 in [Acz 88].)

Theorem 22 (T, ) is a model of ZFC~ + AFA. 0%

6 Structural results

It will often be both more convenient and more intuitive to use AF A as if it is a basic axiom
of the theory within which we are working (so far, this has been pure ZF(C™), in the sense to
become apparent in the following definition. (It will be clear when exactly are we resorting to
this technique.)

Definition 15 (ZFC~ + AF A) For any aps Sa, let Sa be the image of a under the unique
morphism (Sa, —) — (V,3). For any system S, let & = {Sa | a € S}.

In particular, let Ty = () and T\, = Ta, for each o > 0. O
The following are easy to prove:
(a) For any aps Sa, Sa = {Sb | a — b}.
(b) Th+1 = P(Ty) for all a.
(¢) Uacy Ta € Ty for all .
(d) T, is transitive for all «.
)

(€) a<fB= Ty C Ty

(f) ? = UaZO T

24Observe that, by Godel’s 2"¢ Incompleteness Theorem, this result is not formalizable as a theorem of ZFC ™.
Instead, in the same way as Rieger’s Theorem, it is a collection of assertions in the metatheory that, for any
axiom of ZFC™ + AF A, we can prove that it holds in (7, <), i.e. that its relativization to (7, <) is a theorem
of ZFC~. For further discussion of these and related points, see Chapter 4 of [Kun 80].
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Given a cardinal &, let expy(k) = K, expor1(k) = 26™=F) and exp, (k) = Ua<y €2Pa(k).
Then it follows that |T3,| = exp,(0) for all n < w, and that |T,| = expa+1(0) for all & > w (recall
the remarks after Theorem 13).

If the R, form the von Neumann hierarchy (so that Ry = 0, Ro+1 = P(R,), and R, =
Ua<y R,), then it is immediate that R, C T, for all a. But also |R,| = expy(0) for all «, so
that in fact R, =T, if n <w, and R, C T, if a > w.

Letting

Vg = U (rank(z) + 1),
TcET,NWF
we know that v, > « for all a. Theorem 13 gives us that Va.a € Tpy1 \ Ta, and so it seems
plausible to conjecture that Va.v, = «. In fact, Forti and Honsell show that this is the case
whenever either & = w or « is weakly compact — see [FH 92]. Otherwise, we have the following.

Theorem 23 (ZFC~ + AFA)
(a) vy = 0.

(b) Var1 = Va + 1 for all .

(¢c) If v # w and v is not weakly compact, then exp,(0)" < v,y < exp,41(0)*.
Proof (a) and (b) are obvious (observe that Toy1 N WF = P(T, N WF)). If we had v, >
expy41(0)" = |T,|*, we would have an = € T, such that rank(z) = |T;|", so that |z| = |T,|,
which would contradict the transitivity of 7’,. Hence it remains to prove the first inequality in
(c).

First, we claim that:
(i) If v # w and v is not strongly inaccessible, then exp,(0) is singular.
(ii) If ¥ = w or v is strongly inaccessible, then ezp,(0) = ~.

For (i), suppose exp,(0) is regular. Then vy < exp,(0) = cf (exp,(0)) = cf(y) <7, so y is regular
and 2* < expy41(0) < v whenever A < v, so that either ¥ = w or « is strongly inaccessible. (ii)
is easy to see.

Now, we construct an z, € Ty N WF such that rank(z,) = « by transfinite recursion on
a < erpy(0)T. The base case and the successor case are obvious (for the latter, recall the
remarks after Theorem 11). For the limit case, suppose we have constructed such z, for all
a </, where 7 < exp,(0)*, and let (g | &€ < cf(7')) be cofinal in .

If v # w and 7 is not strongly inaccessible, then cf (') < exp,(0) by (i), and so |Rg| > cf(?")
for some 8 < 7. Pick an injective mapping { — b : ¢f(7') = Rg. Then Lemma 10 (b) gives us
that

2y = {(be, ) | € <cf(Y)} €T, NWF
(recall that Rz C T3, and see the last paragraph in the proof of Theorem 12), and clearly

rank(z,) =
For the remaining case, suppose 7y is strongly inaccessible, but not weakly compact. Then

expy(0) = v by (ii). If {H,(za,) | € < cf (v')}?5 is closed in T, (which is always the case if

*Here WF = U
r C R,.

21f g is a set and o > 0, we write Ho (z) for HEW™D (2), where te({z}) is the transitive closure of {z}, so that
z is a point in the system (tc({z}), 3).

as0 o = {z | z is a well-founded set}. For any x € WF, rank(z) is the smallest a such that
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cf(7') <7, by the remarks after Theorem 11), then we can take ., = {zqa, | € < cf(¥')} by
Lemma 10 (b).

Otherwise, cf(y') = 7, and we have a b € {Hy(zq,) | £ < 'y}ﬂ \ {H,(za,) | £ <~} For
any non-zero 3 < 1, let {5 < v be such that bg = ’Hg(magﬂ), and let zj; = Tag,- Then 8 — &g is

cofinal in v, so that 8 — ag, = rank(z}) is cofinal in v".

Let (W, <) be a ~-Aronszajn tree. Since <y is strongly inaccessible, we can construct an
injective mapping y — B, : W — v\ {0} such that ht(y, W) < ht(y', W) = B, < B,. For any
C <7, let BZ = ﬂyELevC(W) /By

Also, there exist maximal chains C¢ C W for & <  such that (h(C¢) | € < 7) is strictly
increasing and cofinal in . Given any & < 7, let

Xe={(Baly )| BELB, | yeCeU{Bic))-

!
5h(0§)

Then it is not difficult to see that the tree Z given by

Levg(Z) = {Mp, +3 ( > T-x") | € <y ARCe) > (Y

CE” €X§

— {H52+1+3 Z T. < HgE_H (ifg),bﬁgz+1 - | E<yAN h(Cg) > C}
BELBy |yEC 1B} o}

723*, +3
for ¢ < ) with the order induced by the maps H,.* "', (for ¢ < ¢’ <) is isomorphic to the
B3
+1

subtree Jg ., C¢ of W. Hence it follows that {H, (3> ncx, T.2") | £ <~} is closed in 7, so that
Ty = {X¢ | £ <} € TyNWF. Finally, since both (h(C¢) | § <) and (Bf | ¢ <) are
cofinal in 7, so is (ﬂ,’;(cg) | £ <), and hence rank(z,) =+'. O

7 Abstract results

If ¢(z1,...,zy) is a formula of the language of set theory and E is a binary relation on a class
M, we write (1, ...,z,) ¥ for the relativization of ¢(z1,...,z,) to (M, E).
If N C M, then ¢(x1,...,2,) is absolute for N, M, E iff

V1, oo T € Nop(@1, ey ) VNN o (1, oy )M

is provable in ZFC~. Also, ¢(z1,...,zy) is absolute for N iff it is absolute for N, V, €. A
function F'(z1,...,x,) defined by a formula F(x1,...,2,) = Zp41 is absolute for N, M, E (N,
respectively) iff the formula F(zy, ..., ;) = Ty 1 is.27

Lemma 24 If ¢(z1,...,z5), F(x1,...,25) and Gi(y1,...,Ym) for each 1 < i < n are a formula
and functions (respectively) absolute for N, M, E, then ¢(G1(Y1, -y Ym)s s Gru(Y1, - Ym)) and
F(G1(Y1y -y Ym)s s Gn(Y1y ooy Ym)) are a formula and a function (respectively) absolute for N,
M, E. O

*"Here we assume that Vz1, ..., 2,325 41.F (21, ..., Tn) = Tnt1 holds in both (N, EN (N x N)) and (M, E) (i.e.
that the appropriate relativizations are provable).
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For an account of relativization and absoluteness, see Chapter 4 of [Kun 80]. (The proof
Lemma 24 can be found there.)
In [Acz 88], Aczel shows that any two full?® models of ZFC~ + AF A are isomorphic.

Theorem 25 (a) (ZFC) (V,3) and (WFT>~ =) are isomorphic.

(b) (ZFC— + AFA) WF is a model of ZFC, the formulae o € T and a,b € T Aa — b are
absolute for WF, and (V,3) and (T,—) are isomorphic.

Proof For (a), we work within ZF'C, and first show that (V| 3) is strongly extensional. Suppose
G is a morphism from (V,3) into a system (S, —), and suppose z,y € V are such that G(z) =
G(y). Then < is well-founded and set-like on SG(x), so we can recursively define a function
G : S8G(x) = V by Va € 8G(x).G'(a) = {G'(b) | b + a}. Now G' o (GMtc({z}))) and
G' o (G\(tc({y}))) are morphisms, so it follows by e-induction on te({z}) that z = G'(G(z)), and
by €-induction on te({y}) that y = G'(G(y)), so that z = y. Hence G is injective.

For any = € V, let F(z) € T be the image of z under the unique morphism from (tc({z}), d)
into (T, —). Then, for any z, F)(tc({z})) is the unique morphism from (tc({z}),3) into (T, —),
so that F is a morphism on (V,3), which must be injective by the strong extensionality of
(V,3). Suppose a € T is such that < is well-founded on Ta. Since + is set-like on Ta, we
can recursively define a morphism G : (Ta,—) — (V,2) as above. By Mostowski’s Collapsing
Theorem (observe that < is extensional on Ta), G : (Ta,—) = (VG(a),3) is an isomorphism.
Hence F(G(a)) = a, so that F is a required isomorphism.

The first two assertions in (b) are easy to see, and (V,3) and (7, —) are isomorphic since
they are both full models of ZFC~ + AF A. (An isomorphism is given by mapping any z to the
image of z under the unique morphism from (tc({z}),3) into (7,—).) O

Also, using Theorem 25 (b), it is not difficult to see (in ZFC™) that if (S, <) and (S, +)
are models of ZFC~ + AFA such that (WFS*, =) and (WFS >, =) are isomorphic, then
(§,—) and (S',—) are isomorphic — this is essentially the content of Theorem 3 in [FH 87,
Part I].

It follows from Theorem 25 (a) that if ¢ is a sentence which is absolute for W F' and consistent
with (respectively, independent of) ZFC~, then ¢ is consistent with (independent of) ZFC~ +
AFA. (In particular, observe that M A, &, CH and GCH are absolute for WF, and V = L is
not.)

It is well-known that ZF~ +-AC?? is consistent provided ZF~ is.3° It is not difficult to see
that, working as above within a model of ZF~ + -AC, we can obtain a version of Theorem 22
which states that (7, +) is a model of ZF~ + AF A. (Rieger’s Theorem uses AC only in order to
establish that AC holds in a given full system.) Since AC is not used in the proof of Theorem 25
(a), it follows that (7,<) so constructed is in fact a model of ZF~ + -AC + AF A. Hence AC
is independent of the rest of ZFC~ + AF A (provided ZF~ is consistent).?!

Definition 16 For any infinite &, let:
o H,={z | |tc({z})| < x},3% and

?8See Definition 14.

**Here ZF~ = ZFC~ — AC.

#0See the exercises for Chapters 4 and 7 in [Kun 80].

31[FH 87] is a study of the relationships between various axioms (including AF A) contradicting the Axiom of
Foundation and various choice principles.

32No confusion with H, should occur.
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e B,={z | Yy €tc({z}).ly| <k}. O
Lemma 26 (ZFC~ + AFA) Suppose k is infinite. Then:
(a) H, C B,
(b) H,, = By, iff & > w and k is regular.
(¢) B, CTy iff k is regular.
(d) Hy C Ty
(e) Hi = Up<r T whenever k is strongly inaccessible.

Proof (a) is trivial.

For (b), suppose k > w, k is regular, and = € By. Letting yo = {z} and y,+1 = Uy, for
each n < w, it follows inductively that Vn < w.ly,| < &, and so |te({z})| = |Upcw Yn| < K. If
k = w, then {0,{1,...}} € B, \ H, and if x is singular, then {o¢ | £ < cf(k)} € B\ Hy, where
(ag | € <cf(k)) is a cofinal sequence in k.

The ‘if” part of (c) is immediate by Theorem 9. If  is singular and (¢ | & < cf(k)) is
cofinal in £, then {a¢ | £ < cf(k)} € By \ T (recall the proof of Theorem 13).

(d) follows from (a) and (c). (If  is singular, then it is a limit cardinal.)

For (e), suppose  is strongly inaccessible. Then & is a limit cardinal, so that H, C Uy, Ta
by (d). Hence it suffices to show that |T,| < & for all @ < k (recall that each T, is transitive),
which follows by a straightforward transfinite induction. O

Theorem 27 (ZFC +AFA) If k is strongly inaccessible, then |
AFA.

T, is a model of ZFC™ +

a<k

Proof Since & is strongly inaccessible, Lemma 26 (e) gives us that J,.,Ta = Hy, and so it
follows as when working in ZFC that J,<,, T is a model of ZFC~ — P.33

If z € T, for some o < K, then P(z) € Ty42, and hence P holds in {J, ., Ta-

Suppose (S, —) € Hy, is a small system, and let F be the unique morphism (S, —) — (V, 3).
Then F is in fact a morphism (S,—) — (Hy,3) and F = {{(a,F(a)) | a € S} € H,. Hence
AF A holds in U, «p, T-

For an alternative proof, observe first that J,., Ro = HY is a model of ZFC, and so

(T, <—>Ua<'€ Ro s a model of ZFC~ + AFA. Tt is not difficult to see that (7, —>>Ua<'€ Rois in
fact isomorphic to (Uycy T, ). O

When « is the smallest strong inaccessible, Theorem 27 gives us that (=3x'.x’ is strongly
inaccessible) is consistent with ZFC~ 4+ AF A, which is also immediate from the remarks after
Theorem 25.

Lemma 28 (ZFC +AFA) {% | @ is a point in a small system (S, =) € Up<y Ta} = Hep. (0)-
Proof The inclusion ‘C’ is straightforward.

Suppose z € Heyy, (o). Then [To| > [te({z})| for some a < 7. Pick § C T, with [S] =
lte({z})|, and let — be such that (Sa,—) is isomorphic to (tc({z}),3) for some a € S. It
remains to observe that (S,—) € Tpy5 and that Sa = z. O

33 P stands for the Power Set Axiom.
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Theorem 29 Each of Inf, P and Repl®* are independent of the rest of ZFC~+AF A (provided
ZF~ is consistent).

Proof We work in ZFC~ + AFA?> Letting Thy = ZFC~ — Inf + —Inf + AFA, Thy =
ZFC~™—P+-P+ AFA, and Thy = ZFC~ — Repl + -Repl + AF A, it will suffice to establish
the following (which show a bit more):

(i) If & is infinite, then H,; is a model of T'hy iff K = w.
(ii) If x is infinite and regular, then H,; is a model of T'hy iff Ja. exp,(w) < kK < exp,,(w).

(iii) Suppose (ag | B <) is strictly increasing, and let o = Jz., ag. Suppose further that
v < exp,~ (w) and that (ag | B < ) is absolute for I—Iexpa*(w).?’6 Then Heyp . (w) is a model
ofJVm.

(iv) Suppose (ag | B < 7) is strictly increasing, v < a* = expo+(0), and (ag | B < v) is
absolute for Ug, T, (where o* is as in (iii)). Then Ug., Ta, is a model of Ths.

(To obtain a sequence as in (iv), we can start from some (ags | < ) with v < off =
U<y 20,5 which is absolute for Uz, Tp for all o' > af. If we let i y1,5 = expa, 4(0) for all
B < v, n < w, then the same properties are satisfied by all the sequences (o, g | 5 <) forn < w
(recall Lemma 24). Now, if o, = Ug<y an g for all n < w, then Vn < w.a, < expax (0) = a4y

: * *
Hence, letting o = {J,,, a,, we have

expas (0) = U expqs (0) = U . =a,

n<w n<w

so that (U,<, onp | B <) will have the required properties. Observe also that we can take
(w+n | n<w) for (g | B<7).)

For (i), observe first that H, is a model of ZFC™ — Inf + AF A (which follows as in the
proof of Theorem 27), and clearly Inf fails in H,. If kK > w, then Inf holds in H,, and so H,
is not a model of Th;.

If k is infinite and regular, we have that Hy is a model of ZFC~ —Inf— P+ AF A (as before).
Hence H, is a model of Thy iff Inf holds and P fails in H, i.e. iff K > w and 22 >  for some
A < K, i.e. iff neither K = w nor k = exp, (w) for some 7, i.e. iff Ja. exp, (w) < Kk < exp,y g (w).

Suppose (az | B < ) and o* are as in (iii). Then k = expy-(w) > w and A < k = 2* < K, s0
it follows as before that H, is a model of ZFC™ — Repl+ AF A. Now v € H,; and exp,, (w) € Hy
for all # < 7. Also, (expaﬂ (w) | B <) is absolute for H,, by Lemma 24, and {expaB (w) | B<
v} & Hy. Hence Repl fails in H,, so that H, is a model of Ths.

Suppose (g | B < 7) and o* are as in (iv). Then Uzc, Tay = Ug<q- Tp is transitive and
a® > w is a limit ordinal, so it follows that Uz, T, is a model of ZFC™ — Repl. To show that
AF A holds in Ugcy Tay, it suffices by Lemma 28 to show that Ho+ = Hegp . (0) € Ugcy Tags
so suppose ¢ € H,«. Then, since o is a limit cardinal, we in fact have that x € H, for some
infinite k¥ < o*, and hence z € T\, € Ug< Ta, by Lemma 26 (d). It now remains, by considering
the sequence (ag | B <), to observe as in the proof of (iii) that Repl fails in Uz Tay. O

34Inf stands for the Axiom of Infinity, and Repl for the Replacement Scheme.

851f ZF~ is consistent, then so is ZFC ™, and hence also ZFC~ + AF A.

36What we mean is that the function 8 — ag is given by a formula ¢(z,y)(& (r < YAy = az)) which is
absolute for Heyp, . (w)-
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A lot of the results above suggest that, in ZFC~ 4+ AF A, the smallest a such that  C Ty, should be regarded
as the rank of a set x (which is possibly non-well-founded). However, as Theorem 23 shows, this does not always
coincide with rank(z) for + € WF.%7

Appendix

The following are some thoughts about forcing in the presence of AF'A. Suppose that, working
within ZFC~ 4+ AF A, we have a countable transitive model M of ZF(C.3® Also, suppose
(P,<,T) € M is a partial order, where < is reflexive and transitive, but not necessarily anti-
symmetric, and T is a top element. We call a filter G C P generic iff G intersects every D € M
which is a dense subset of P (typically, we have that G ¢ M). Let a set 7 be a P-name iff 7
represents an aps with arcs labelled by elements of P, in the sense that 7 is a set of ordered
pairs such that V(o,p) € 7.0 is a P-name Ap € P.

For any generic G, we define M[G] to be the set of all sets which are obtained by restricting
a P-name 7 € M to G and then removing the labels, i.e. we have that M[G] ={7¢ | T € M is
a P-name}, where 7¢ = {og | Ip € G.(0,p) € 7} for any P-name 7 € M. (Since M satisfies
ZFC, observe that any P-name 7 € M represents a well-founded labelled aps.) Given a p € P,
a formula ¢(x1, ..., 2,) and P-names 7, ..., 7, € M, we write pl-¢(ry, ..., 7,) iff, for every generic
G with p € G, we have that ¢(r, ..., Tn) holds in M[G]. It turns out that, for any generic
G, M|G] is a model of ZFC. The crucial step in establishing this fact consists of defining a
relation | and proving that, given a formula ¢(z1, ..., z,) and P-names 7, ..., 7, € M as above,
we have:

o Vp € Pplbg(ri,....m) & (pIF ¢(r1, ..., 7)), and
o $(11,, ...,TnG)M[G} &S dp e G.p”‘gﬁ(ﬁ, ey Tn)

for every generic G.

Abusing the notation, let 7™ be the model of ZFC~ 4+ AF A such that M = WFTM, S0
that we can think of 7™ as being obtained by constructing (7, —) starting from M. Then
TM is countable and transitive. Hence, for any generic G,3° we can define TM[G] by restricting
every P-name in TM (which now doesn’t necessarily represent a well-founded labelled aps) to
G, removing the labels, and then taking the image of the point of the resulting unlabelled aps
under the unique morphism into (V,3). (Since any countable transitive model of ZFC~ + AF A
is of the form T™ for some countable transitive model M of ZFC, this effectively defines the
forcing construction starting from an arbitrary countable transitive model of ZFC~ + AFA.)
We would expect that any such TM[G] satisfies ZFC~ + AF A. Furthermore, we would hope
to establish the commutativity of the rectangular diagram which leads to the conclusion that
TM[G] = TV for any generic G.

In order to achieve these aims, we seem to require a definition of a relation p”—*qb(ﬁ, ey Tn)s
where p € P, ¢(z1,...,x,) is a formula and 74, ...,7, € T™ are P-names, which satisfies the
appropriate analogues of the properties above. In the well-founded case (i.e. when we restrict
our attention to P-names 71, ...,7, € M), the key part of this definition, when ¢(z1,...,z,) is

37In Section 2 of [FH 87, Part I], Forti and Honsell define V, to be the union of all (in our notation) S, where S
is a small system such that S C R, and as = a whenever Sa is well-founded, and then use the resulting hierarchy
(Va | @ > 0) to define, in the obvious way, a rank function which extends the von Neumann one.

%For an account of the metamathematical difficulties involved here (which are again related to Godel’s
Incompleteness Theorem), and of the ways of overcoming them, see Chapter 7 of [Kun 80].

39 0bserve that a filter G C P is generic with respect to T™ iff it is generic with respect to M.

an
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T1 = I, proceeds by defining recursively, for any P-names 71,79 € M (which then represent
well-founded labelled aps’s), the set of all p € P such that pH—*Tl = 79. Given arbitrary P-names
11,72 € TM, we might attempt to take the maximum assignment (under the pointwise inclusion
order) of a subset of P to every pair of P-names 71, m € TM such that m; represents a labelled
sub-aps of 7; for ¢ = 1,2, which satisfies the ‘only if” part of the recursive definition mentioned
above. Alternatively, it would be very pleasing if we could, instead of recursion on the structure
of P-names 7,79 € M, use recursion on the rank of P-names 71,79 € ™ suggested above.
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