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Abstract  
This paper describes the modeling of a fully potent attacker against cryptoprotocols, including 
its inference system, in the process algebra CSP. Techniques for keeping the state space 
within practical bounds for the model checker FDR2 are explained.  

Introduction  
Over the past four years, we have been engaged in research and development into 
specification and model-checking techniques for cryptoprotocols. These techniques have 
discovered flaws in a number of published key-exchange and authentication protocols, as well 
as more academic studies establishing the necessity of certain message components in more 
robust ones. Protocol descriptions are interpreted in Hoare's language of Communicating 
Sequential Processes (CSP), as are specifications such as confidentiality. The model checking 
exploits (and has in turn inspired) new features of Formal Systems' second generation tool, 
FDR2.  

Not only does this methodology give a elegant and convenient approach, as it generally 
requires no prior knowledge of potential flaws in the protocol; but it is also able to reason 
about issues such as liveness (non-denial of service) which are not even expressible in other 
formalisms. The range of protocol mechanisms which have been addressed shows that there 
are few, if any, fundamental limitations to the applicability of these techniques; and progress 
is continually being made in solving the problems of scale involved in extending the work to 
more complex examples.  

 

 



Modeling Issues 
One of the perennial problems with model-checking approaches, especially those using 
primarily explicit state-exploration algorithms, is state-space growth. Earlier work sought to 
keep this within bounds by limiting the attacker's ``memory'' to only a few data items, but 
even very tight limits typically left this as a limiting factor on the complexity of problem 
which could practically be addressed. Simple experiments verified the intuition that 
significant performance benefits could be gained by exploring only those possible behaviors 
of an intruder which are reachable given the specific history of values observed in a sequence 
of protocol runs, rather than compiling the whole of the intruder's possible behavior. Indeed, 
exploiting such a ``lazy spy'' implemented as an extension to the FDR2 system allowed (and 
positively benefited from) relaxing the limitations on the spy's memory.  
 
The spy comprises two major functions: information gathering, by overhearing or 
destructively capturing messages; and disinformation, faking messages from data in its 
possession, subject only to not being able to manipulate encrypted or otherwise protected 
message components without access to the appropriate keys. These are connected by an 
information repository, storing data items which have been learnt directly, or are deducible by 
analysis or synthesis. It is this component which makes the demand on state-space.  
 
An intellectually attractive decomposition would provide a two-state process for each possible 
``fact'', essentially representing the boolean value whether it is available to the spy or not, 
with some mechanism superposed to implement the inferences. Our initial intuition was that 
this was perhaps beyond the point of sensible decomposition, but it has turned out to be the 
case that in most of the classes of example we are considering, it is not only practical but 
highly desirable to decompose the system in this manner.  
 
First, we can observe that there is no advantage to keeping track of all possible data items. 
Messages and their larger subcomponents which are constructed from simpler pieces of 
information essentially by catenation are known if and only if all the subcomponents are. This 
purely structural deduction can be encoded by making the communication of the compound 
message equivalent to the communication of all its atomic components (that is, plain text 
atoms and all encrypted subcomponents). This generally reduces the number of facts which 
must be tracked to be the sum, rather than the product, of the size of the atomic types 
involved. This makes practical the construction in the rest of this section. 
  
Given a set "MESSAGES" of possibly interesting messages (essentially, those with the form 
of messages that are sent in the protocol, but not necessarily respecting any internal or 
external invariants) and a function "components" mapping the elements of this set to their 
immediately accessible subcomponents, we can form the converse function, yielding all 
messages involving a fact "f": 
  
    messages(f) = { m | m <- MESSAGES, member(f,components(m)) } 
 
 
 
 
 
 
 
 



Similarly, given a set "DEDUCTIONS" of (antecedents,conclusion) pairs that axiomatize the 
inference system, we can identify those yielding or requiring a given fact:  
 
    inferences(f)   = { (a,c) | (a,c) <- DEDUCTIONS, f == c } 
    implications(f) = { (a,c) | (a,c) <- DEDUCTIONS, member(f,a) } 
 
Essentially, the intruder's knowledge within a given domain (of, say, "N" facts) is represented 
by "N" two-state processes each of which represents a given fact which is known or unknown. 
Transitions from unknown to known are possible by one of two events for each fact "f". One 
possibility is that the fact is a component in ``clear'' of a message which can be overheard; the 
other that it is the consequent of an inference from other facts known to the spy:  
 
    IGNORANT(f) = 
      hear?_:messages(f) -> KNOWS(f) 
      [] 
      infer?_:inferences(f) -> KNOWS(f)  
 
Once a fact "f" is known, the process will permit further events representing any inferences 
which use "f" as an antecedent, as well as being able to allow messages containing "f" to be 
synthesized. In addition, if "f" has been said to be a secret, its disclosure can be signaled: 
  
    KNOWS(f) = 
      hear?_:messages(f) -> KNOWS(f) 
      [] 
      infer?_:implications(f) -> KNOWS(f) 
      [] 
      say?_:messages(f) -> KNOWS(f) 
      [] 
      member(f,SECRETS) & leak.f -> KNOWS(f) 
 
 
 
The activity of an intruder performing deductions is thus represented by the occurrence of 
these "infer" actions, and no additional process is required. The deductions thus make no 
additional contribution to the state space of the attacker. Synchronizing parallel composition 
is used to combine these two-state processes in such a way that an inference event can only 
occur when all of its antecedents are known and its conclusion is not already known [The 
inference events are naturally concealed from the rest of the system; if they could be repeated, 
this would lead to the possibility of infinite chatter -- in contrast, the "hear" events must not 
be inhibited, as further messages involving "f" can quite legitimately form part of the 
protocol. The requirement for non-repetition of "infer" events can be met by blocking those 
deductions which involve the conclusion among the antecedents of the axiom.], and that 
hearing and saying compound messages involves the participation of all their components:  
   
 
 
 
  
 
 
 
 
 
 
 
 



 
 SPY = 
      ( || f : ATOMIC_FACTS @ 
          [ Union { 
              { hear.m, say.m | m <- messages(f) }, 
              { infer.d | d <- diff(inferences(f),implications(f)) }, 
              { infer.d | d <- diff(implications(f),inferences(f)) }, 
              { leak.f | member(f,SECRETS) } 
            } 
          ] 
            if member(f,SPY_INITIAL_KNOWLEDGE) 
              then KNOWS(f) 
              else IGNORANT(f) 
      ) \ {|infer|} 
 

Managing the deduction system  
Although this structure of intruder model does have significant advantages, it does have a 
crucial practical drawback if implemented directly as described. Because of the way the CSP 
semantic models treat internal actions, in order to establish the normal refinement properties 
of a protocol composed with an intruder it is necessary to consider all possible combinations 
of reachable states. For example if two deductions may occur which do not depend on one 
another, there are four configurations of the intruder's memory which need to be tested, even 
though in our application the exact order of deductions will make no difference to the final 
outcome. This combinatorial explosion is clearly undesirable, and is made worse if the 
genuine protocol entities can engage in some events without the co-operation of the intruder: 
each such event further increases the number of interleaved paths by which the intruder can 
complete the deductive process.  
 
In the analysis of cryptoprotocols, however, we may make use of the specific properties of 
intruders of the type described above. Since the deduction system is, in semantic fact, 
deterministic despite the internal actions, we can use partial-order techniques to optimize the 
exploration. Each state of the intruder has a unique final tau successor; our approach to 
simplifying the exploration of systems containing an intruder is thus to consider not the 
parallel process described in the previous section, but the state machine which results from 
replacing any intruder state by its ultimate tau successor, and to eliminate the internal actions 
of the intruder from our representation of the process altogether. In effect we evaluate the 
effect of internal actions of the intruder before considering the intruder's interaction with the 
environment. This eager evaluation of transitions out of a single state does not, of course, 
prevent our exploring the actual state space itself in a lazy fashion.  
 
The FDR2 system provides a highly flexible interface for adding transformations on state 
machines, and the tau-removal scheme described above has been implemented using this 
facility. The resulting transformation is available as an external function "chase" in the FDR2 
input language.  

 

 



Interfacing with the legitimate agents  
The legitimate agents of the system are coded so that all of their interactions with one another 
are to be carried over a channel "comm":  
 
    channel comm : Agent.Agent.MESSAGES 
 
The first index represents the purported sender of the message, and the second the intended 
receiver.  

Rather than simply wire the "comm" channel point-to-point between the agents, the parallel 
composition of the system needs to allow for the potential actions of the spy. This is mediated 
by two additional channels of the same type, "take" and "fake". Renaming is used to present a 
choice of external action when an agent engages in a "comm". At the attacker's end, "hear" 
events are renamed to give a choice between the "comm" between two agents (modeling 
simple overhearing) and the corresponding "take" event (modeling complete capture). [In 
both cases, we must take care that a legitimate agent is involved as the sender; otherwise the 
spy could learn facts from overhearing itself!] The "say" events could be renamed to "fake" 
between any two agents, but in practice, there can be nothing to be gained in faking messages 
to himself:  

    SYSTEM = 
      chase(SPY) [[ hear<-comm.l.a, hear<-take.l.a, say<-fake.a.l | 
                    l<-Legitimate, a<-Agent ]] 
      [| {| comm, take, fake |} |] 
      || id : Legitimate 
        [ {| comm.id, take.id, comm.a.id, fake.a.id | a <- agent |} ] 
          AGENT(id) [[ comm.id<-comm.id, comm.id<-take.id, 
                       comm.a.id<-comm.a.id, comm.a.id<-fake.a.id | 
                       a <- agent ]] 
 
The renaming of one event to several means that which happens is at the choice of the 
environment, while the process within the renaming has no way of telling which way this has 
been resolved. If we now hide the "comm", "take" and "fake" channels, the choice becomes 
nondeterministic. All the dastardly cunning possible to the spy is captured by the simple 
expedient of exploring the effect of every random sequence of communications available to 
him by which he might try to inject a spanner into the works!  

Optimizations 
The presentation above has aimed at presenting the ideas with as little clutter as possible. 
There are a number of simple optimizations which significantly improve the performance, 
particularly of compiling the low-level machines. For example, the sets of messages and 
deductions associated with each fact can be pre-computed.  
The initial knowledge of the spy can also be treated more efficiently: it is logically closed 
under deduction (and this can be calculated, if the natural presentation is not), and its effect on 
the inference system can also be taken into account before we start. We can strike out initially 
known facts from the antecedents of any axiom, and completely discard any whose 
conclusion is among them. In this way, rather than initially start some ``fact'' processes in the 
"KNOWS" state, we can separate off the initially known space entirely and represent it by a 
(one-state) process which takes no part in the inferences.  



Example: Deduction System  
 
The datatype of which "MESSAGES" is a finite subset is generally recursive. It contains as 
branches agent names, nonces, keys of all sorts, and structured messages -- both simple 
catenation, and encryption:  
 
    datatype DATA = 
      Alice | Bob | Sam | Xavier | ... | 
      Na1 | Na2 | Nb1 | Nb2 | Nx1 | Nx2 | ... | 
      Kas | Kbs | Kxs | ... | 
      SKa | SKb | SKx | ... | 
      PKa | PKb | PKx | ... | 
      Sq.Seq(DATA) | 
      Symmetric.DATA.Seq(DATA) | 
      PublicKey.DATA.Seq(DATA) | 
      ... 
The particular extent of the type will depend on the protocol in question; Lowe's CAPSER 
synthesizes the datatype from the types specified in the input script.  
 
"MESSAGES" is the subset of this type which includes all the bodies of messages of the 
forms used in the protocol which are type-correct (have nonces in the right place, use keys as 
the key in encryptions, and so on). We can decompose these using the "components" function 
discussed above, to give the set "FACTS" (of which the set "ATOMIC_FACTS" over which 
we replicated the spy's knowledge cells is a subset).  
 
There are standard axioms concerning encryption which will apply whenever the relevant 
type of encryption is part of the protocol. For symmetric encrytion:  
 
    SymmetricDeductions = 
       Union ( 
         { 
           { ({Symmetric.k.xs, k}, x) | x <- set(xs) }, 
           { ({k, x | x <- set(xs)}, Symmetric.k.xs) } 
         | Symmetric.k.xs <- FACTS 
         } ) 
 
For public-key encryption, we require the function "dual" which maps each key to its inverse 
(public to secret, and vice versa); then we have  
 
    PublicKeyDeductions = 
       Union ( 
         { 
           { ({PublicKey.k.xs, dual(k)}, x) | x <- set(xs) }, 
           { ({k, x | x <- set(xs)}, PublicKey.k.xs) } 
         | PublicKey.k.xs <- FACTS 
         } ) 
 
For many systems these will be all the deductions which are necessary to model.  
 
 
CSP is not an appropriate vehicle either for describing encryption algorithms or for devising 
methods of deciphering coded messages. That involves a lot of sophisticated mathematics in 
number theory, algebra, etc. It is often the case that a use of encryption fails not because of 
vulnerability of the cipher in use, but because of the way it is used, which is the scenario we 
have been addressing so far. All too frequently it is possible to defeat protocols using and 



supporting encryption even under the assumption that the encryption method used is 
unbreakable. In other cases, however, the combination of weaknesses in the precise 
encryption method and the shape of messages in the protocol allow additional attacks; if these 
weaknesses are made known as axioms in the inference system, then FDR2 can search out the 
attacks 
  
Examples of the kind of weakness which it is straightforward to model include schemes such 
as block ciphers where (subject to alignment of the data items) knowing the encryption of a 
sequence of data items is tantamount to knowing their encryptions under the same key 
individually, without needing to know the key! Cipher block chaining exhibits a similar if less 
fatal property, in that the encryption of prefixes of a sequence can be inferred from the 
encryption of the whole.  
Algebraic attacks on low-exponent RSA have been exhibited by Franklin, Reiter and others 
[e.g., CRYPTO '95 Rump Session, August 1995]. If this is the form of public-key encryption 
used, then we can add deductions to reflect the additional fragility:  
 
    LowRSAdeductions = 
      Union ( 
        { 
          { ({PublicKey.k.,PublicKey.k.,a},x) 
          | PublicKey.k. <- FACTS, 
            member(PublicKey.k.,FACTS) }, 
          { ({PublicKey.k.,PublicKey.k.,a},x) 
          | PublicKey.k. <- FACTS, 
            member(PublicKey.k.,FACTS) }, 
          { ({PublicKey.k.,PublicKey.k.,a,b},x) 
          | PublicKey.k. <- FACTS, b <- FACTS, b != a 
            member(PublicKey.k.,FACTS) }, 
          { ({PublicKey.k.,PublicKey.k.,a,b},x) 
          | PublicKey.k. <- FACTS, b <- FACTS, 
            member(PublicKey.k.,FACTS) }, 
          { ({PublicKey.k.,PublicKey.k.,a,b},x) 
          | PublicKey.k. <- FACTS, b <- FACTS, 
            member(PublicKey.k.,FACTS) }, 
          { ({PublicKey.k.,PublicKey.k.,a,b},x) 
          | PublicKey.k. <- FACTS, b <- FACTS, b != a  
            member(PublicKey.k.,FACTS) } 
        } ) 
 
These deductions capture the simplest linear cases of the identified weaknesses; further 
axioms could be added to deal with multivariate polynomial relationships between the bodies 
of messages encrypted with the same key, where this gives rise to feasible attacks.  

Algebraic equivalences  
As well as the construction/destruction style of inference we have considered so far, there are 
sometimes equivalences between terms so that the semantic value that they represent is in fact 
identical. Examples include the commutativity and cancellation properties of exclusive-or, 
and the commutativity of many forms of public-key encryption.  
Not only may these give rise to attacks (signing-after-encryption problems, for example), but 
they may be required for the correct operation of the protocol: Diffie-Helman style key 
exchange, for example, relies on commutativity between exponentiations and of the function 
used to combine the two half-keys.  



One way to achieve this would be to code the equivalence as deductions which can take place 
even within opaque encrypted terms, and then rely upon the spy to "take" one agent's view of 
the value and "fake" the other's. This is somewhat bizarre, and certainly would not extend to 
establishing any liveness properties.  
A superior approach is to identify which "MESSAGES" are equivalent (by computing the 
transitive closure of that kind of deduction system), and then use renaming to identify the 
``external'' view of any member of a given equivalence class with a canonical representative. 
Where the spy can gain access to additional values by moving outside the normal space of 
terms used in the protocol -- as for instance, exploiting  
 
    Xor.Xor.a.b.Xor.b.c = Xor.a.c 
 
when the protocol never xor's Xor's together -- then there are two equally possible solutions. 
Either such additional equivalences can be coded in as deductions; or the spy can be given 
license to use a suitable larger language, and the renaming will then take care of it once more. 
 
This technique of modeling algebraic equivalences can also be used to weaken the type 
system, so that an agent may be fooled into thinking a key is a nonce, for example, and 
perhaps be persuaded to decrypt it.  

Conclusion  
 
Overall, this approach has a number of significant advantages over previous attempts at such 
modeling in FDR:  

• Because all possible knowledge (within the admittedly fixed domain) is known, we 
place no arbitrary restrictions on the size of a spy's knowledge, strengthening the value 
of our positive results (i.e. those where no attack is found).  

 

• Because the intruder no longer discards information, the intruder's state after all 
pending deductions have been completed is a direct function of values previously 
communicated in the protocol, and so the intruder does not introduce as much 
additional state.  

 

• Because the overall behavior of the intruder in now explored in parallel with the 
evolution of the protocol rather than in advance, we effectively implement a lazy 
exploration strategy, and examine only those intruder states which are reachable by 
actual protocol behavior.  

 

• The individual sequential processes are small, and thus well-suited to the FDR 
compilers. The parallel composition and synchronization is complex, but it is 
efficiently handled by FDR2's supercompilation approach.  



These techniques are now incorporated into Gavin Lowe's CASPER system which compiles 
high level protocol descriptions into CSP scripts for checking on FDR2. It is possible to 
combine the lazy spy techniques naturally with methods for allowing the spy to exploit any 
algebraic relationships which may exist between encrypted and similar objects.  
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