
Proving security protocols with model checkers by data independence

techniques

A�W� Roscoe

Oxford University Computing Laboratory

Wolfson Building� Parks Road� Oxford OX� �QD� UK�

Abstract

Model checkers such as FDR have been extremely
e�ective in checking for� and �nding� attacks on cryp�
tographic protocols � see� for example ���� ��� ��	 and
many of the papers in �
	� Their use in proving proto�
cols has� on the other hand� generally been limited to
showing that a given small instance� usually restricted
by the �niteness of some set of resources such as keys
and nonces� is free of attacks� While for speci�c pro�
tocols there are frequently good reasons for supposing
that this will �nd any attack� it leaves a substantial
gap in the method� The purpose of this paper is to
show how techniques borrowed from data independence
and related �elds can be used to achieve the illusion
that nodes can call upon an in�nite supply of di�erent
nonces� keys� etc�� even though the actual types used for
these things remain �nite� It is thus possible to create
models of protocols in which nodes do not have to stop
after a small number of runs and to claim that� within
certain limits� a �nite�state run on a model checker has
proved that a given protocol is secure from attack� We
use a single protocol as a case study� but believe our
techniques are much more widely applicable�

� Introduction

Cryptographic protocols frequently depend on the
uniqueness� and often on the unguessability� of some of
the data objects they use such as keys and nonces� If we
are programming an agent running such a protocol� ei�
ther for practical use or as part of a program for feeding
into a model checker� then each time it creates a new
nonce �say� it relies on the fact that it �and usually ev�
eryone else� has not used this particular value before�
Frequently� of course� there will be no mechanism in

�Email� Bill�Roscoe�comlab�ox�ac�uk Copyright ����
IEEE� Published in Proceedings� ���� IEEE Computer Security

Foundations Workshop� Rockport Massachusetts� June� �����

place to guarantee this uniqueness� rather the contrary
being discounted because of its extreme improbability�
On the other hand� the way model checkers work mean
that one cannot rely on probability in this way� so if
using one you have to include some mechanism for en�
forcing no repeats�

The pragmatics of running model checkers mean�
unfortunately� that the sizes of types such as nonces
have to be restricted to far smaller sizes than the types
they represent in implementations� Usually they have
to be kept down to single �gures if the combinatorics of
how they can create messages of the protocol is not to
take other types that have to be considered� such as the
overall alphabet size and the set of facts that a poten�
tial intruder might learn� beyond the level that can be
managed� The models that the author and others cre�
ated therefore allocated a small �nite number of these
values to each node that has to �invent� them during
a run� so that each time a nonce �say� was required a
node took one of those remaining from its initial allo�
cation or� if there were none left� simply stopped� This
use of agents with the capacity for only a �nite number
of runs led to several di�culties�

First and foremost� it has meant that while model
checkers are rightly regarded as extremely e	ective
tools for �nding attacks on protocols� they could only
be used to prove that no attack exists on the assump�
tion that each node only engages in a very �nite amount
of activity� While there are often good intuitive reasons
for believing that the limited check would �nd any at�
tack� these are generally di�cult to formalise into a
component of a complete proof� Therefore it has been
necessary to look to other varieties of tool� such as the�
orem provers �see� for example� Paulson
s work �����
for proofs once one
s model checker has failed to �nd
an attack�

Secondly� it means that questions of no loss of service
�in the presence� for example� of an attacker who makes
a �nite but unbounded number of interventions� are
di�cult to address� even though the formalisms �such

as CSP� used to model the protocols are usually well
adapted to test such issues� For it will only take a small
number of actions for an attacker to disrupt the limited
number of runs that one of these cut down systems
can manage� It would be far better to have a way of
modelling agents that� when one run is disrupted by
enemy action� can reset and start again as often as is
required�

My purpose in this paper is to show how it is fre�
quently possible to achieve the aim of allowing agents
to pick a �fresh� nonce �or other object� for each run
�without limit on how many they can perform�� while
only actually having �nitely many of them in the type
running on the model checker� This is done with�
out curtailing the ability of the intruder to generate
attacks� though it may in some circumstances intro�
duce some arti�cial attacks that are not really possible�
Where no attack is found on such a system� it is much
easier to argue that the protocol under examination is
secure than it was with the earlier class of limited�run
model�

This seemingly impossible goal was attained by us�
ing methods derived from the subject of data indepen�
dence� where a program is parameterised by a data
type in the sense that it passes members of the type
around� but does not constrain what the type is and
may only have its control��ow a	ected by members of
the type in tightly de�ned ways� The ways in which the
CSP models of protocols use types such as keys� nonces
and agent identities fall clearly within the scope of this
theory� Timestamps are more marginal because of the
way in which they are compared� and for that reason
are not considered in this paper� The usual result of
a data independence analysis is a threshold � a �nite
size of the type which is su�cient to demonstrate cor�
rectness for all �nite or in�nite sizes� The particular
nature of the protocol models �especially the nature of
the intruder or spy process� and the fact that all gener�
ated values from the types are assumed to be distinct�
meant that for some of these types no �nite threshold
is derivable using standard results� Nevertheless the
same sorts of techniques used to prove data indepen�
dence theorems can be employed to justify transforma�
tions being applied to a data independent type at run
time� The result of these transformations is that val�
ues from type T are continually shifted around� and
carefully identi�ed with each other� to create room for
another value to be created that the program will treat
exactly as though it were fresh�

The rest of this paper is organised as follows� Firstly
we summarise the techniques used to model crypto pro�
tocols in CSP� Next we describe the basics of the theory
of data independence and discuss the extent to which

the protocol models �t this pattern� In Section � we
introduce the transformation techniques which allow
unbounded runs within �nite types� showing both the
theory and the CSP implementation methods that have
been employed to date� Finally we discuss the implica�
tions of this new method and the extent to which one
can reasonably claim to have proved a protocol because
a speci�c check has succeeded�

Throughout we use� as an illustrative example
Lowe
s revised and corrected version of the Needham�
Schroeder Public�Key protocol �����

� Protocol modelling with CSP�FDR

Protocols are traditionally described in the litera�
ture as a series of messages between the various legit�
imate participants� In the case of the revised NSPK
protocol �in its abbreviated version without a public
key server� these are

�� A� B � fNA�Agpk�B�

�� B � A � fNB �NA�Bgpk�A�

�� A� B � fNBgpk�B�

The revision is the inclusion of B
s name in message
�� Without this there is the now well�known attack
discovered by Lowe�

Such a description implicitly describes the role of
each participant in the protocol and carries the impli�
cation that whenever an agent has� from its point of
view executed all the communications implied by the
protocol� then it can take whatever action is enabled
by the protocol� The above protocol is intended to au�
thenticate A and B to each other and� we will assume�
to allow them to enter into a session with each other�
It is relatively easy to derive CSP versions of agents
running this protocol from such a description� indeed
Lowe
s tool Casper ���� performs this task essentially
automatically� For the protocol above the code for an
agent with identity id might be�

User�id� � Send�id� �� Resp�id�

Send�id� �

��� b�diff�agents�	id
� �

let na����� within

commidbpke�pk�b��Sq�na�id�� ��

�User�id� ��

��� nb�nonces �

commbidpke�pk�id��Sq�nb�na�b�� ��

�User�id� ��

commidbpke�pk�b��nb� ��

Session�id�b�nb�na����

Resp�id� �

�� a�diff�agents�	id
� �

�� na�nonces �

commaidpke�pk�id��Sq�na�a�� ��

�User�id� ��

�let nb � ���� within

commidapke�pk�a��Sq�nb�na�id�� ��

commaidpke�pk�id��nb� ��

Session�id�a�nb�na���

Note the following�

� The messages passed around in this implementa�
tion of the protocol are drawn from an abstract�
constructed data type that allows us to treat op�
erations such as encryption as symbolic� �More
details of this type can be found below��

� The abilities of nodes to encrypt and decrypt mes�
sages are implicit in the way they create messages
and understand the messages they receive� The
fact that various states will only accept messages
of a given form� sometimes only when containing a
speci�c nonce� e	ectively gives a way of coding in
the conditions for progress in the protocol� To all
intents and purposes such entries in the protocol
represent an equality test �between the nonce ex�
pected and that actually received� with progress
only being possible when the test succeeds�

� Nodes do not check anything about the nonces
they receive but were not originally generated by
them �for example� for uniqueness��

� The mechanism for choosing a new nonce has here
been left undecided� since that is the essence of
this paper� In previous treatments each node was
given a �small� �nite supply and had to halt when
this was exhausted�

� A node is allowed to �back out� of the protocol
run via the choices of reverting to the base state
that appear at various points� This is necessary as
part of our model since nodes will only continue
with the protocol if they get appropriate responses
within some de�ned time� Unless we assume that
a node� once it has aborted one run of the protocol�
will never try to perform it again� it is necessary to
look at what consequences the messages that our
node has communicated on an aborted run might
have on the system
s subsequent behaviour�

� We have left the actions of a node once it thinks it
is in a session as yet unspeci�ed� We must expect�

however� that there is the possibility that the ses�
sion might close and that it might then run the
protocol again�

Having done this it is usual� to place as many agents
as are necessary for a complete run of the protocol �in
this case two� the most frequent di	erence to this being
when some sort of server is required in addition� in
parallel in the context of a network�intruder process
that can do the following�

� It can act as other agents� which may or may not
act in a trustworthy way�

� It can overhear all messages that pass between the
trustworthy agents�

� It can prevent a message sent by one agent from
reaching the intended recipient�

� It can fake a message to any agent� purporting to
be from any other� only subject to what the rules
built into the cryptosystem in use allow it to cre�
ate based on its initial knowledge and subsequent
listening�

What one usually then seeks to show is that any
session that may occur between the trustworthy nodes
is secure� no matter what the actions of the network
from the range above� This includes showing that if
either of the nodes thinks it has completed a run of the
protocol with the other� then it really has�

The resulting network in our case is one of only three
processes� though the interconnections are quite com�
plex as shown in Figure � because of the multiple roles
the spy process can play and because of the di	erent
fates and sources of communications on the channels
apparently between the two trustworthy nodes�

The spy process is conceptually simple� it can over�
hear or take out any message at all� and can fake any
message that it knows enough to generate �which may
well be through having heard the same message� even
though it cannot understand the message� in other
words a replay�� In a CSP model one calculates the
set of messages that can ever pass around the system�
and from that the set of relevant facts and deductions�
Deductions are pairs �X � f � where� if the spy knows
every fact in the set X � it can also generate f � Let us
consider� for example� the following data type� which
is the one used for the example in this paper�

�The exception to this rule would be when you wish to rely on
some other number � either more or less � acting properly� For
example� you might wish to prove something about the result of
a run even when one of the participants is possibly corrupt�

A B

Spy

Connections with "imaginary" nodes

Spy overhearing normal communications

comm

take fake
Channel where communications can be
intercepted or faked by the spy

Figure 1. The network to test a simple crypto-
protocol

datatype fact � Sq Seq�fact� �

PK �fact � fact� �

Encrypt �fact� fact� �

Agent AGENT �

Nonce NONCE �

pk AGENT � sk AGENT �

AtoB � BtoA � Cmessage

Here� AGENT and NONCE are whatever types of agent
identities and nonces we are using�� PK and Encrypt are
respectively constructors representing public�key and
symmetric�key encryption of the second thing by the
�rst and pk and sk are constructors creating the public
and secret key of each agent� You would then expect at
least to have the following inferences in the spy relevant
to any set Z of facts�

deductions��Z� � 	�	Sq m
� nth�j�m�� �

�	nth�i�m� � i ��	��m��

� Sq m� �

Sqm �� Z� j��	��m��

deductions��Z� � 	�	m� k
� encrypt�k�m� � �

�	encrypt�k�m�� k
� m� �

Encrypt�k�m� �� Z

deductions��Z� � 	�	m� k
� pke�k�m� � �

�	pke�k�m�� dual�k�
� m� �

PK�k�m� �� Z

�This type is somewhat more structured than that given in
�	�
� being parameterised by these two sets� to make the data
independence analysis we will see later more transparent�

In other words� it can construct and destruct sequences�
and can make up and decrypt both public�key and
symmetric�key encryptions subject to possessing the
right information �note the di	erence between these
last two cases�� There could be more� depending on the
properties of the particular encryptions in use� These
could be� for example

deductions��Z� � 	�	encrypt�k�m�� m
� k� �

Encrypt�k�m� �� Z

�from a message and its encryption� deduce the key��
or the following� which is a consequence of a class
of known attacks on low exponent RSA under which
knowing a pair or encryptions that are in a known lin�
ear �as in this case� or more general polynomial rela�
tionship with each other can lead to a spy being able
to decrypt �see ���� and ���� for a more complete CSP
encoding of the resulting deductions�

deductions��Z� �

	�	a�b�pke�k�Sq�a�f���pke�k�Sq�b�f��
�f� �

PK�k�Sq�a�f�� �� Z� PK�k��Sq�b�f��� �� Z�

f��f�� k��k�� a��b

This last one says that if we know two di�erent val�
ues that the fact f is paired with under encryptions
using the same public key� then we can deduce f� The
second of these is� for reasons we will see later� partic�
ularly interesting in the context of the theory we are
developing�

We will� however� in our example� use only the ba�
sic set ����� above� in other words� we will assume
that both the public� and symmetric�key algorithms
are� free of all but the most basic of deductions�

The spy process one wants is then created by apply�
ing a suitable renaming to one equivalent to the follow�
ing� initialised so that it has whatever information set
we deem appropriate �presumably including all �pub�
lic� information and whatever information is necessary
to allow it to function as the other nodes it can play
the role of� and some nonces distinct from those that
the trustworthy nodes may invent for themselves��

Spy��X� � learn�x �� Spy��Close�union�X�	x
���

�� say�x�X �� Spy��X�

where Close�X� is a function that produces all facts
derivable from the set X under the chosen deductive
system�

In order that this spy process can even potentially
be run on FDR� it is necessary that the sets of facts
over which it ranges and deductions that it uses are ��
nite� Thus the various data types making up the mes�
sages such as agent identities� keys and nonces need
to range over �nite sets� In practice these have to be

kept very small� no more than a few values each� if the
sizes of the sets of facts and deductions are not going
to grow beyond the range up to �say� ������� that can
be handled on FDR reasonably� In fact� this de�nition
of the spy cannot be run on present versions of FDR
because the compilation regime it uses would insist on
computing all its approximately �N states� where N is
the number of facts that the parameter�sets are builts
from� As discussed in ���� ���� the above de�nition is
replaced in actual runs by a more e�cient represen�
tation� namely a parallel composition of one two�state
process for each learnable fact with deductions being
carried out by communication over a special channel�
What is important to us� however� is that the resulting
process is equivalent to the simple process above�

Having set up a model of the protocol like this we
have to decide what constitutes an attack� or� equiva�
lently� what speci�cation the system is hoped to satisfy�
A tremendous amount of literature has been devoted
to this point� for example ��� ��� ���� For various rea�
sons� in this paper� I will concentrate on the extensional
speci�cations used in ���� �so called in ���� because it
examines the results that can occur from running the
protocol� rather than at the protocol messages them�
selves�� In this� nodes enter a session after running a
protocol and use one of the nonces generated during
the protocol run as a symmetric key� and we test �i�
that any message Alice or Bob thinks is from the other
�within a session� really is and �ii� that messages be�
tween Alice and Bob stay secret from the spy� This
is done by using special symbols AtoB and BtoA for
the messages Alice and Bob send each other when they
think they are connected in a session� We can tell some�
thing has gone wrong with authentication �i� if either
receives anything else than what it ought when in a
session with the other� and something has gone wrong
with secrecy �ii� if the spy ever learns one of these sym�
bols� Both of these errors are raised via the occurrence
of special error events within the system� and so we
can test for these conditions by hiding all events other
than the relevant error signal�

assert STOP �T� System�diff�Sigma�	�error�
�

assert STOP �T� System�diff�Sigma�	�spyknows�
�

The very simple form of these two checks will be a
considerable help later on� In particular� because these
are trace checks� and because our theory is rather easier
to develop for that type of check� we will concentrate
on that sort of check from here on�

Our ultimate goal is to prove that our system meets
these speci�cations however many other nodes there
are and however large �including in�nite� the type of
nonces is� Let us denote the system in which the set

of agents �including the special names Alice and Bob�
is A� the set of all nonces is N � and the set of nonces
initially known to the spy �i�e�� that the spy might �in�
vent�� is NS by

System�A�N �NS �

� Data independence methods

A program P can be said to be data independent in
the type T if it places no constraints on what T is� the
latter can be regarded as a parameter of P � Broadly
speaking� it can input and output members of T � hold
them as parameters� compare them for equality� and
apply polymorphic operations to them such as tupling�
list forming and their inverses� It may not apply other
operations either to or creating members of T � includ�
ing comparison operators such as � or do things like
compute the size of T � Data independence has been
applied to a variety of notations� originating in ����� A
brief introduction to data independence in CSP can be
found in ����� For further discussion and precise de�ni�
tions� see ��� �� ��� An application to another topic in
computer security can be found in �����

The main objective of data independence analysis
is usually to discover a �nite threshold for a veri�ca�
tion problem parameterised by the type T � a size of T
beyond which the answer �positive or negative� to the
problem will not vary� This can be done successfully
for a wide range of problems� as is shown for example
in ���� ����

Several of the types used by crypto protocol models
have many of the characteristics of data independence�
This is typically true of the types of nonces� keys that
are not bound to a speci�c user� and may also be true
of agent identities� The main reason for this is that the
abstract data type constructions used in the programs
are polymorphic� there is no real di	erence in building
a construction such as

PK �pk B� Sq �Nonce N� Agent A��

�the representation in our data type of a typical mes�
sage �� over the objects A� B and N from building a list
or tuple�

There are� however� several features of the proto�
col descriptions that mean the general purpose results
for computing thresholds do not give useful results�
Firstly� the assumption that each nonce or key gen�
erated is distinct means that there can be no hope of
�nite thresholds from standard results as our program
must at least implicitly carry an unbounded number
of values in its state so it knows what to avoid next �
and the starting point for threshold calculations in the

context of equality tests is the maximum number of
values a process ever has to remember� Secondly� the
nature of the spy process causes di�culties because it
also clearly has the ability to remember an unbounded
number of values if they are available�

Since the general�purpose data independence results
of the earlier papers had proved to be inapplicable� my
approach was to apply some of the methods underly�
ing the proofs of these results directly to the sort of
CSP model that a protocol analysis generates� The
aim was to take a �full�sized� model of a protocol �one
with an unbounded number of other agents� and in�
�nite sets of nonces� etc� and to use these methods
to reduce the problem of proving the correctness of
System�A�N �NS � for all parameter values to a �nite
check�

One of the most important methods for proving
data independence theorems is setting up relations
or mappings between the behaviours that two di	er�
ent versions of a parameterised system can display�
This is an application of the theory of logical relations
���� ��� ��� ���� Speci�cally� we can ask the question
of when� if T and T � are two values for a type param�
eter� and � � T � T � is a function� does the function
� �lift� to map each behaviour of the parameterised
process P�T � to one of P�T ���

Given that we are concentrating on traces� this can
be done with scarcely any restriction if � is an injective
function �i�e�� does not map two distinct values to the
same place�� we always have

traces�P���T ��� � f��t� j t � traces�P�T ��g

for a data independent program P and function �

�where� on the left�hand side� � has also been applied to
the values of any constants of appropriate type within
P � and on the right�hand side� the application of �
to a trace means its application to each member of T
that occurs within t ��� As soon� however� as we have a
non�injective function the situation becomes more di��
cult� since it can change the results of whatever equal�
ity tests occur within the program� In other words
it might map an execution in which two distinct val�
ues are input and then compared for equality into one
where two equal values are input and compared for
equality� There may be no relationship at all between
the subsequent behaviours in these two cases� and the
above equivalence becomes the possibly strict inequal�
ity

traces�P���T ��� � f��t� j t � traces�P�T ��g

�We will later feel free to �lift� these functions over objects
like traces and sets without comment�

and even this may not hold if P contains distinct con�
stants of type T � for this reason we will exclude the
possibility of constants occurring in P until we develop
a condition below that handles them properly� What
this says� in essence� is that with a bigger type T we
may be able to exercise more of P
s behaviour�

There is� however� an important exception to this
rule� namely the case where the result of the condi�
tional when the equality test fails is the process STOP�
in other words� when we can guarantee that the result
of an equality test proving false will never result in the
process performing a trace that it could not have per�
formed �subject to appropriate replacements of values
of type T � were the test to prove true� This is a form
of the the condition PosConjEqT �Positive Conjunc�
tions of data independence� �It is one of a number of
technical conditions derived from Lazi�c
s work� see ����
for example� The form we quote here is slightly sim�
pli�ed but is valid in the contexts in which we use it�
speci�cally on the right�hand sides of trace re�nement
checks�� In such programs the equivalence above is
regained� and we can regard it as a �collapsing� mech�
anism since it allows us to compute a great deal about
how a program P�T � treats a large T in terms of how
it treats a small one�

We noted in the last section that some aspects of the
protocol examples� such as the ways in which agent
processes handle keys� nonces and identities� �t into
this PosConjEqT framework� this is something that
will be useful to us later� One exception to this is
that we noticed that agent processes may well per�
form inequality checks with a few constants� such as
their own names� Additionally� the presence of a par�
allel process whose alphabet and communications in�
volve a given constant like this will generally introduce
such inequality checks implicitly� as will the special�
casing of constants belonging to particular nodes in the
spy
s initial knowledge� And �nally� a process involving
constants can legitimately depend on their mutual in�
equality even when it does satisfy PosConjEqT� and
it would then be equally inappropriate to apply a func�
tion � that identi�es these values�

We thus de�ne a condition PosConjEqT�

C for C a
set of constants� the program satis�es PosConjEqT
except that it may have non�STOP results for equality
tests involving at least one member of the set C of
constants� What we �nd here is that the collapsing
result above holds provided � is faithful to the values of
the constants in C � for x � T and c � C � ��x � � ��c�
if and only if x � c�

3.1 Positive deductive systems

The agent processes in a protocol model are fairly
standard�style processes and easy to check for proper�
ties like PosConjEqT�

C � The spy process is� however�
of unusual construction� depending as it does on sets
and a deductive system� As discussed brie�y above�
the role of constants in the initial knowledge of the spy
�such as knowing all secret keys except those of Alice
and Bob� has an e	ect that is easy to see� but more
interesting is the role of the deductive system� What
turns out to be crucial here is the nature of the pre�
conditions of deductions�

It is frequently the case that a deduction �X � f � will
only be able to occur when two objects of a type T
�possibly proper subcomponents of members of X � are
equal� for example the deduction

�	Encrypt �k� m�� k
� m�

carries an implicit equality check between the key in
the encryption and the free�standing key� This is en�
tirely within the spirit of PosConjEqT and has the
crucial property that the identi�cation of two keys by
a function will never disable a deduction� It is easy to
imagine deductive systems that do not have this prop�
erty� for example if knowing � distinct encryptions of
agents
 names under key k allowed us to deduce k � and
the low exponent deduction on RSA described earlier
falls into this category since it relies on the distinctness
of the objects that are in a linear relationship�

Formally� we will de�ne a deductive system to be
positive relative to some type parameter T if� for any
function between types � � T� � T�� whenever �X � f �
is an inference the system generates for type T�� then
���X �� ��f �� is one generated for T�� What this essen�
tially requires is that the generation of the deductions
is symmetric in T �i�e�� treats all members of T equiv�
alently� and never has an inequality requirement over
members of T between places they appear on the left�
hand side of a deduction�

The standard deductive system described earlier has
this property� as do many variants� However� as the
above counter�examples show� it is something that one
has to be careful of�

The important property we can now state is this�
if we build a spy over a positive deductive system�
and its initial knowledge set contains no inequality
tests �explicit or implicit� with members of our type
T other than the constants C � then the resulting pro�
cess �and hence� subject to obvious conditions on the
other parts of the network� the entire protocol model�
satis�es PosConjEqT�

C �

3.2 A simple application: agent names

Almost all protocol models for model checkers that
one sees make the simpli�cation of allowing the spy
only a single identity� In other words� the spy
s role in
acting as all the other agents in the system than our
trusted Alice and Bob is reduced to giving it a single
name to play with in this regard� This is usually justi�
�ed by the claim that any attack in which the intruder
used multiple identities would work equally well if all
the other identities were reduced to a single one� What
we can now do is prove this assertion as a consequence
of the theory we have been developing� To make this
claim true we need the following�

� All processes are data independent in the type of
agent names�

� The two agent processes representing Alice and
Bob each satis�es PosConjEqT�

C � where C �
fAlice� Bobg�

� The spy process satis�es PosConjEqT�

C in the
sense discussed in the last section �through having
a positive deductive system��

� The speci�cation we are trying to prove re�
lates only to nodes
 communications involving the
names in C � In other words it can � as in our ex�
ample � be decided by looking at the traces of
System�A�N �NS � n X where X includes every
event� mentioning an agent name outside C �

For� under these circumstances� we know that for
any A with at least three members� we can de�ne a
collapsing function � that maps every name other than
those in C to a �xed name �say Cameron� and that this
would simply produce the system

System�fAlice� Bob� Camerong�N �NS �

and� since the application of � to any trace t produced
by hiding the above X is just t �for � leaves the only
remaining names in t � if any� alone� we get

traces�System�A�N �NS � n X � �
traces�System�fAlice� Bob� Camerong�N �NS � n ��X ��

�In real life it is likely that agent processes only treat their
own name in a special way� but the ones used in the context
of our extensional specication use each others� names in a
specication�related way�

�This condition can be relaxed a little in the more general
context of data independence arguments� but the extra compli�
cations seem unnecessary here�

so plainly the big system satis�es our speci�cation if
and only if the small one does��

What we have done here is to derive criteria under
which a standard informal argument can be made rig�
orous�

Note that the particular speci�cations we are using
in our example do not mention any members of A or
any other data independent types� error conditions are
caught within the process itself and �agged via �xed
events� This simpli�es proofs using collapsing func�
tions enormously� for if P�T � is any process in which
all events involving members of T are hidden� then� if
the collapsing identity holds for ��

traces�P�T �� � traces�P���T ���

which means that they obviously satisfy the same spec�
i�cations� As soon as one starts to include behaviour
involving T explicitly in the speci�cation� life becomes
slightly more complex� In particular one requires a
fairly careful classi�cation of� and restrictions on� the
speci�cation that are not necessary when the speci�ca�
tion does not constrain T � see ���� for basic details and
��� for detailed analysis� This is the main reason why�
in this paper� we are concentrating on the speci�cations
we are� it would doubtless be possible to include more
general styles of speci�cation� but at the cost of extra
complexity we do not need in this initial examination
of the subject�

� Towards a general proof

In our example we have shown it is su�cient to deal
with the case of two�plus�one agent names� but there
is still the problem of the in�nite type of nonces that
is required� All parts of our program apart from the
mechanism that generates nonces for Alice and Bob
�whom we are assuming always use entirely fresh ones�
satisfy PosConjEqT in the type of nonces� but that
mechanism assuredly does not� It is not hard to argue�
however� using similar methods to the last section� that
we can assume that the spy has initially only one nonce
in its knowledge� and that nonce is never generated
for the two trustworthy users by our nonce�creation
function�

Noticing that� each time a node generates a nonce� it
immediately communicates it to another user� it is pos�
sible to re�cast the original descriptions of reliable users

�What we have actually done here is to show that a data�
independent process satisfying PosConjEqT�

C
� with at least

j C j �� things in T and all members of C distinct meets a trace
specication that is independent of all members of T other than
C if and only if the specication is satised for T having exactly
j C j �� members� This is thus a threshold calculation�

so that the choice of which nonce they create is dele�
gated to an external nonce manager process NM � you
can think of this as an artifact of our modelling tech�
nique� in much the same way that the spy is� Every
time a process wants to create a nonce with an out�
put communication� we turn the communication into
an input of the nonce and force the communication to
synchronise with NM �in addition to all the other pro�
cesses it is synchronising with��

If we then program NM so that it remembers all the
nonces it has given out and never issues the same one
twice or the one belonging to the spy at all� we have
implemented our assumptions about how nonces are
selected� Aside from this process� our example system
satis�es PosConjEqT on the type N of nonces� but
plainly the complete system does not�

As our system runs� the trustworthy nodes hold a
small �nite number of nonces at any one time �in our
case�� at most ��� but the other two processes both
hold an unbounded number� NM remembers all the
ones seen so far so that it doesn
t repeat itself� and
the spy remembers everything it has seen �including
objects containing an arbitrary number of nonces� so
that this can potentially be exploited in future attacks�
Notice that what really matters about NM is that it
always hands out a nonce unknown to any of the other
processes�

It may seem like a strange thing to do� but there
is no reason why we should not apply a transforma�
tion function � to a data independent program in the
middle of a run� Suppose P is such a program� sat�
isfying PosConjEqT� Any state P � that P may have
reached during its execution �i�e�� P � is a state reached
in its operational semantics� namely a program that
represents how P behaves after some sequence of ac�
tions� will still be a data independent program� though
it could well have acquired some values from T that it
holds in its identi�ers which were not present in its ini�
tial state� For a given assignment to these identi�ers
we will always have

traces���P ��� � f��t� j t � traces�P ��g

because of the PosConjEqT property� but the in�
equality may be strict because some values held in iden�
ti�ers in P � that are distinct may get mapped to the
same place by �� resulting in an equality test in ��P ��
giving the answer true where it gave false in P ��

What we are going to do is to apply transformations
that identify some of the old nonces� no longer known
to Alice and Bob� but remembered by the spy� This

�For this bound we are assuming that neither node is active
in more than one protocol run at a time� this issue is discussed
a little more in the Conclusions�

does not directly a	ect the states of the trustworthy
node processes� but can potentially increase the traces
of the spy because of the above inequality and might
therefore lead to the resulting process failing to satisfy
a trace speci�cation though it did before� We will see
an example of this later� What it cannot do� however� is
lead to it satisfying a trace speci�cation not mentioning
T that it did before� Hence if the transformed P � meets
such a speci�cation� then so also did the untransformed
one�

These transformations can be carried out whenever
we wish during the execution of our program� and in
practice have to be programmed into the spy �whose
memory gets transformed each time� and NM � which
can itself now re�use the values that the spy has �for�
gotten� through the transformation� If we make sure
that the number of distinct values remembered by the
spy is bounded� by applying transformations whenever
it gets too large� then we can get away with having
only a �nite set of nonces� We have found a way of
using the same ones as �fresh� over and over again�

On the assumptions �i� that the deductive system
in use is positive� �ii� the trustworthy processes sat�
isfy PosConjEqT in N and �iii� the speci�cation we
are using does not explicitly constrain N �for other�
wise we would have to be careful that it was not itself
perturbed by the transformations� we now have a �fail�
safe� method for attempting to prove trace properties
of our protocols using �nite types� Fail�safe here means
that it will guarantee to �nd an attack if there is one�
but may still fail even when there is none because a
transformation has enabled the spy to perform an in�
ference it could not have performed without� Whether
or not such false attacks are thrown up is heavily af�
fected by the strategy that is used for generating the
transformations applied during execution� that is what
we now discuss�

From an implementation and clarity point of view
I have found it useful to divide the type N into two
parts which we might term foreground F and back�
ground B � The foreground values are the ones supplied
to the trustworthy nodes when they request a fresh
value� and the background values contain all those ini�
tially known to the spy and those to which redundant
foreground values are mapped� The background values
will be accepted by Alice and Bob as valid nonces� just
will never be generated by them as their own�

Provided the manager process is kept accurately up
to date with which foreground values are presently
known to Alice and Bob� the size of F needs to be
exactly the largest number of nonces that �a� were gen�
erated by one of these two nodes and �b� have continu�
ously been known to at least one of them ever since� In

our example protocol this is evidently no more than ��
and is in fact	 �� There is no bene�t from using more
foreground values than are needed�

The more background values there are� the more
�exibility there will be in deciding where to map each
redundant member of F � In designing the strategy for
where to map each one� one should be conscious of the
desirability of enabling as few spurious deductions as
possible� The following principles seem to the author
to be desirable� the �rst of them indispensible�

�a� If the type under consideration ever gets used as
keys� one must never identify one that the spy
presently does know with one that it does not�
For that would give it the immediate �ability� to
decrypt all the messages it may hold under the
unknown key�

�b� It might cause problems if a redundant member of
F is mapped to a member of B that is currently
meaningful to a trustworthy node� for this might
give the spy extra messages it can use in its deal�
ings with that node�

In the case of our example� precaution �b� is not
necessary� no new attacks are created by ignoring it�
though the author expects that there will be proto�
cols where it is necessary� Precaution �a� is not nec�
essary for the authentication speci�cation� which still
succeeds if it is ignored� It is� however� necessary for
the secrecy speci�cation� because of the way we have
used the nonces generated during runs as keys� if Al�
ice runs a session with �Cameron
 �the spy� and then
one with Bob� she will actually use separate nonces for
these runs� But if our mappings send them both to the
same value when they become redundant then the spy
will become �able
 to decrypt the messages that passed
between Alice and Bob on their session because it le�
gitimately knew the nonces that appeared during its
own session with Alice�

There is one potential problem with precaution �a��
namely that the spy might learn� through inferences�
all of the values in B that are set aside as targets for
mapping unknown redundant values� It is wise� there�
fore� to put an error�trap into one
s model to detect
this situation� in the same way that we guarded above
against running out of members of F � In our example�
however� this does not occur and it is possible to get
both speci�cations to run successfully with the three
members of F already mentioned� and two members
of B � one initially known to the spy �and the target

�If you do attempt to use a smaller�than�obvious number like
this it is important that the model you use generates an error
�ag if the supply does not� in the event� prove adequate� This is
done in my implementations�

of all redundant values that are� and also one that
is not �and fortunately never becomes known during
the run�� This proves� therefore� when combined with
the preceding analysis� that System�A�N �NS � satis�es
both these speci�cations however large the three types
become�

The author suspects that� provided the two precau�
tions above are followed in the nonce reduction strat�
egy� it will be very rare to �nd false attacks� but there
is no sense in which they are claimed to be complete�
He conjectures that in any case where the only factor
making the type of facts relevant to the spy in�nite is
the type N we are manipulating� then it is possible�
for large enough �nite B � to create a strategy that is
guaranteed not to introduce false attacks� Such a re�
sult would be interesting theoretically in the sense that
it would imply decidability� but the size of B generated
would probably be so large as to make the resultant
check impractical on FDR�

� Implementation considerations

When implementing the very active nonce manage�
ment regime discussed in the last section it is necessary
to include enough communications from Alice and Bob
to NM so that it knows what nonces are meaningful to
them� Such messages are� of course� an arti�ce of the
model with no analogue in the real world� The process
NM then issues �fresh
 nonces to Alice and Bob as dis�
cussed above� and issues commands to the spy to map
redundant nonces in F to nonces in B � To implement
precaution �a� above it is necessary that NM can en�
quire of the spy whether it already knows a particular
nonce� so that it can map it to an appropriate place�

So the state of the process NM has to contain in�
formation on how many times each nonce is presently
relevant to �each of� Alice and Bob �bearing in mind
that they may be persuaded to give a nonce more than
one role in a protocol�� As necessary it generates map�
pings of nonces in F that are not relevant to Alice or
Bob to whatever member of B its strategy dictates�

The spy process has to be modi�ed so that it can
tell NM whether it knows a particular value in B � and
more signi�cantly has to become able to implement
the mappings on its memory requested by NM � This
is trivial in the case of the absract Spy��X� process
described earlier� but requires a little more ingenuity
in the case of the �lazy
 spy built out of many paral�
lel components� What happens is that� to map nonce
n� � F to n� � B � components of the lazy spy that
know something involving n� are commanded to trans�
fer their knowledge to the corresponding component
involving n�� before forgetting what they knew�

If NM has several values it can hand out when asked
for a fresh nonce� then clearly it does not matter which
it gives� because all are treated completely symmetri�
cally by the rest of the network� Therefore �i� there is
no point in investigating the e	ects of handing out dif�
ferent options and �ii� there may be scope for choosing
which value to hand out with a view to cutting down
the overall range of states visited� The concept of sym�
metry reductions over states spaces is well known to
be related to data independence and is discussed� for
example� in ��� �� ��

Readers interested in discovering the details of the
CSP coding of the processes discussed here can obtain
several alternative implementations via URL�

http���www�comlab�ox�ac�uk�oucl�publications�

books�concurrency�examples�security

The result of all this e	ort is a model which has
roughly the same number of nonces as the protocol
models we were accustomed to running previously�
though the additional complexity of the spy� the extra
process NM � and the fact that the nonces get used in
more permutations than had previously been the case�
mean that it has both somewhat more and larger �and
so slower to run� states than earlier models� FDR ����
takes several hours to get through the approximately
������� states discovered� bear in mind that this is af�
ter the e	ects of the partial order compression method
chase described in ���� ����

� Conclusions and prospects

We have developed a method by which it is possible
to prove far more complete results on model checkers
than hitherto� It seems likely to the author that the
same techniques will apply to the majority of protocols
in which timestamps are not used� and where the rel�
evant deductive system is positive� There is no reason
why it should not be applied to several types at once
�such as keys and nonces��

One should always be careful to state the limits of
what one has proved in a case like this� Evidently the
use of an abstract data type and a speci�ed set of de�
ductive rules over it implies that we are assuming� in
our proof� that there are no other subtle properties of
the encryption system that an intruder can exploit and�
unless it has been built into the deductive system in
some way� no way that the intruder can decrypt mes�
sages without the possession of the appropriate key�
Secondly� we are assuming that a node will impose
whatever discipline on accepting messages is implied
by the protocol� in particular that it will not interpret
a message in one shape as a message in another� Thus

we have not allowed in this treatment for attacks based
on type confusion� under which� for example� some ad�
vantage might be gained if an agent could be persuaded
to accept another agents name as a nonce�

An important limitation on the result one has
proved with a check of the form we have described is
that it does not allow for either of Alice or Bob running
more than one session at a time� If it is realistic that
they might� then you should really include an appro�
priate number of copies of each in the network� which
would in turn increase the number of foreground val�
ues in our types� This would increase the number of
states in our example to a prohibitive level even with
two copies of each agent� and of course we would like
to prove appropriate results for an arbitrary number
of copies of each � in other words� factoring a further
parameter out of the system� This must remain a topic
for future research�

In this paper we concentrated on speci�cations that
did not directly involve the types being manipulated�
since this simpli�ed various arguments� It seems very
probable that most of the trace speci�cations people
have used for protocols could be brought within the
scope of this work� as have trace speci�cations that
constrain communications in T in other areas of data
independence� But this is a topic for further research�

Our analysis has been based on trace speci�cations�
both because the protocol models we are considering do
not attempt to satisfy any stronger variety � to do so
requires many further implementation details and as�
sumptions about the spy � and because it simpli�es the
data independence arguments� It is� nevertheless� pos�
sible to apply data independence arguments to stronger
styles of speci�cations� as shown by ���� ��� for example�
And the fact that we do not now have to restrict how
many runs an agent can perform suggests that our new
modelling techniques are likely to be extremely useful
in liveness and no�loss�of service analyses�

There seems no reason in principle why these tech�
niques should not be applicable over a wider range
of notations and model checkers than CSP and FDR�
modelling protocols has become a popular pastime for
users of a wide range of tools in the last year or two�
The formality of arguments based on other notation
would� however� be limited if they did not have a com�
parable notion of data independence� Also there seems
to be no reason why the coding of the CSP scripts
necessary to run these checks should not become as
systematic and automated �via Casper� as have other
protocols� thus relieving users of the di�culties of de�
vising the new spy and NM processes for themselves�

Acknowledgements

This work would have been impossible without the
pioneering e	orts of Ranko Lazi�c in developing the the�
ory of data independence upon which the arguments
here are based� Equally it would have been impossible
without the continued work of the sta	 of Formal Sys�
tems on the FDR tool� The author is also grateful for
the helpful remarks of the anonymous referees�

The work reported in this paper was supported by
DERA Malvern and the U�S� O�ce of Naval Research�

References

��� D� Coppersmith� M� Franklin� J� Patarin� and M�
Reiter� Low�exponent RSA with related messages�
In Advances in Cryptology � EUROCRYPT
�
�LNCS ������ ����

��� W� Di�e� P�C� van Oorschot and M�J� Weiner�
Authentication and key exchanges� Design� Codes
and Cryptography �� pp������� �������

��� Proceedings of DIMACS workshop on the design
and formal veri�cation of cryptographic protocols�
����� Published on the world�wide web at URL�
http���dimacsrutgersedu�Workshops�

Security�program��programhtml

��� E�A� Emerson and A�P� Sistla� Utilizing symme�
try when model checking under fairness assump�
tions� an automata�theoretic approach� ��������
Proceedings of the �th CAV� Springer LNCS ����
�����

��� E�A� Emerson and A�P� Sistla� Symmetry and
model checking� Formal Methods in System De�
sign� �� �������� ����

�� C�N� Ip and D�L� Dill� Better veri�cation through
symmetry� Formal Methods in System Design� ��
������ ����

��� R�S� Lazi�c� A semantic study of data�independence
with applications to the mechanical veri�cation of
concurrent systems� Oxford University D�Phil the�
sis� to appear in �����

��� R�S� Lazi�c and A�W� Roscoe� Using logical
relations for automated veri�cation of data�
independent CSP� Proceedings of the Workshop
on Automated Formal Methods �Oxford� U�K���
Electronic Notes in Theoretical Computer Science
�� �����

��� R�S� Lazi�c and A�W� Roscoe� A semantic study
of data�independence with applications to model�
checking� Submitted for publication� �����

���� R�S� Lazi�c and A�W� Roscoe� Verifying determin�
ism of data�independent systems with labellings�
arrays and constants� Submitted for publication�
�����

���� G� Lowe� Breaking and �xing the Needham�
Schroeder public�key protocol using FDR� Proceed�
ings of TACAS
��� Springer LNCS ����� ����

���� G� Lowe� Some new attacks upon security proto�
cols� Proceedings of ��� IEEE Computer Security
Foundations Workshop� IEEE Computer Society
Press� ����

���� G� Lowe� Casper� a compiler for the analysis
of security protocols� Proceedings of ���� IEEE
Computer Security Foundations Workshop� IEEE
Computer Society Press� �����

���� G� Lowe and A�W� Roscoe� Using CSP to detect
errors in the TMN protocol� IEEE transactions on
Software Engineering ��� �� ���� �������

���� J�J� Mitchell� Type systems for programming lan�
guages� in �Handbook of theoretical computer sci�
ence
 �van Leeuwen� ed�� Elsevier� �����

��� L�C� Paulson� Mechanized Proofs of Security Pro�
tocols� Needham�Schroeder with Public Keys� Re�
port ���� Cambridge University Computer Lab
�������

���� G�D� Plotkin� Lambda�de�nability in the full type
hierarchy� in �To H�B� Curry� essays on combina�
tory logic� lambda calculus and formalism
 �Seldin
and Hindley� eds�� Academic Press� �����

���� J�C� Reynolds� Types� abstraction and parametric
polymorphism� Information Processing ��� ����
���� North�Holland� �����

���� A�W� Roscoe� Modelling and verifying key�
exchange protocols using CSP and FDR� Proceed�
ings of ���� IEEE Computer Security Foundations
Workshop� IEEE Computer Society Press� �����

���� A�W� Roscoe� Intensional speci�cations of security
protocols� Proceedings of ��� IEEE Computer
Security Foundations Workshop� IEEE Computer
Society Press� ����

���� A�W� Roscoe� The theory and practice of concur�
rency� Prentice Hall� �����

���� A�W� Roscoe and M�H� Goldsmith� The perfect
�spy� for model�checking crypto�protocols� in ���

���� P�L� Wadler� Theorems for free�� �������� Pro�
ceedings of the �th ACM FPLCA� �����

���� P� Wolper� Expressing interesting properties of
programs in propositional temporal logic� ��������
Proceedings of the ��th ACM POPL� ����

