
Proving security protocols with model checkers by data

independence techniques

A�W� Roscoe and P�J� Broadfoot

Oxford University Computing Laboratory

Wolfson Building� Parks Road� Oxford OX� �QD� UK

fBill�Roscoe� Philippa�Broadfootg�comlab�ox�ac�uk

July �� ����

Abstract

Model checkers such as FDR have been extremely e�ective in checking for� and �nding�
attacks on cryptographic protocols � see� for example ���� ��	 and many of the papers in �
	�
Their use in proving protocols has� on the other hand� generally been limited to showing that
a given small instance� usually restricted by the �niteness of some set of resources such as
keys and nonces� is free of attacks� While for speci�c protocols there are frequently good
reasons for supposing that this will �nd any attack� it leaves a substantial gap in the method�
The purpose of this paper is to show how techniques borrowed from data independence and
related �elds can be used to achieve the illusion that nodes can call upon an in�nite supply of
di�erent nonces� keys� etc�� even though the actual types used for these things remain �nite� It
is thus possible to create models of protocols in which nodes do not have to stop after a small
number of runs� and to claim that a �nite�state run on a model checker has proved that a
given protocol is free from attacks which could be constructed in the model used� We develop
our methods via a series of case studies� discovering a number of methods for restricting the
number of states generated in attempted proofs� and using two distinct approaches to protocol
speci�cation�

� Introduction

Cryptographic protocols frequently depend on the uniqueness� and often on the unguessability�
of some of the data objects they use such as keys and nonces� If we are programming an agent
running such a protocol� either for practical use or as part of a program for feeding into a model
checker� then each time it creates a new nonce �say�� it relies on the fact that it �and usually
everyone else� has not used this particular value before� Frequently� of course� there will be no
mechanism in place to guarantee this uniqueness� rather the contrary being discounted because
of its extreme improbability� On the other hand� the way model checkers work means that one
cannot rely on probability in this way� so if using one you have to include some mechanism for
enforcing no repeats�

The pragmatics of running model checkers mean� unfortunately� that the sizes of types� such
as that of nonces� have to be restricted to far smaller sizes than the types they represent in
implementations� Usually they have to be kept down to single �gures if combinatorial e�ects are
not to make other types unmanageably large� �Objects such as messages contain several members
of these simple types� meaning that their numbers grow quickly as the simple types are enlarged��

The models that the �rst author and others created therefore allocated a small �nite number of
these values to each node that has to �invent� them during a run� so that each time a nonce �say�
was required a node took one of those remaining from its initial allocation or� if there were none
left� simply stopped� This use of agents with the capacity for only a �nite number of runs led to
several di�culties�

First and foremost� it has meant that while model checkers are rightly regarded as extremely
e�ective tools for �nding attacks on protocols� they could only be used to prove that no attack
exists on the assumption that each node only engages in a very �nite amount of activity� While
there are often good intuitive reasons for believing that the limited check would �nd any attack�
these are generally di�cult to formalise into a component of a complete proof� Therefore it
has been necessary to look to other varieties of tool� such as theorem provers �see� for example�
Paulson	s work
���� for proofs once one	s model checker has failed to �nd an attack�

Secondly� it means that questions of no loss of service �in the presence� for example� of an
attacker who makes a �nite but unbounded number of interventions� are di�cult to address� even
though the formalisms �such as CSP� used to model the protocols are usually well adapted to test
such issues� For it will only take a small number of actions for an attacker to disrupt the limited
number of runs that one of these cut down systems can manage� It would be far better to have
a way of modelling agents that� when one run is disrupted by enemy action� can reset and start
again as often as is required�

Our purpose in this paper is to show how it is frequently possible to achieve the aim of allowing
agents to pick a �fresh� nonce �or other object� for each run �without limit on how many they
can perform�� while only actually having �nitely many of them in the type running on the model
checker� This is done without curtailing the ability of the intruder to generate attacks� though it
may in some circumstances introduce some arti�cial attacks that are not really possible� Where no
attack is found on such a system� it is much easier to argue that the protocol under examination
is free from attacks which could be constructed within the model� than it was with the earlier
class of limited�run models�

We emphasise that the work in this paper removes some� but not all� of the restrictions of
previous modelling work of this sort� In particular� it cannot handle cryptographic issues other
than those we allow for symbolically� It will only address issues of type confusion and time related
attacks when these are explicitly handled by the protocol models �see the conclusions for further
discussions��

Our seemingly impossible goal was attained by using methods derived from the subject of data
independence �see� for example� Lazi�c	s work
�� and Wolper	s work
���� where a program is
parameterised by a data type in the sense that it passes members of the type around� but does
not constrain what the type is and may only have its control��ow a�ected by members of the
type in tightly de�ned ways� The ways in which the CSP models of protocols use types such as
keys� nonces and agent identities fall clearly within the scope of this theory� Timestamps are more
marginal because of the way in which they are compared� and for that reason are not considered
in this paper� The usual result of a data independence analysis is a threshold � a �nite size of
the type which is su�cient to demonstrate correctness for all larger �nite or in�nite sizes� The
particular nature of the protocol models �especially the nature of the intruder or spy process� and
the fact that all generated values from the types are assumed to be distinct� meant that for some of
these types no �nite threshold is derivable using standard results� Nevertheless the same sorts of
techniques used to prove data independence theorems can be employed to justify transformations
being applied to a data independent type at run time� The result of these transformations is that
values from type T are continually shifted around� and carefully identi�ed with each other� to
create room for another value to be created that the program will treat exactly as though it were

�

fresh�
The rest of this paper is organised as follows� Firstly we summarise the techniques used to

model crypto�protocols in CSP� Next we describe the basics of the theory of data independence
and discuss the extent to which the protocol models �t this pattern� In Section � we introduce
the transformation techniques which allow unbounded runs within �nite types� showing both the
theory and the CSP implementation methods that have been employed to date� We then examine
in turn how our methods apply to a series of well known protocols� Needham�Schroeder Public
Key �NSPK�� TMN �both corrected�� Needham�Schroeder Symmetric Key �NSSK�� Otway�Rees
and Yahalom� In order to deal successfully with the larger amongst these we develop several new
coding strategies for the CSP models� Finally we discuss the implications of this new method and
the extent to which one can reasonably claim to have proved a protocol because a speci�c check
has succeeded�

This paper combines a revision of an earlier paper of the same name by the �rst author

�� with parts of the second author	s MSc dissertation
�� which took the techniques and their
application further�

� Protocol modelling with CSP�FDR

Protocols are traditionally described in the literature as a series of messages between the various
legitimate participants� In the case of the revised NSPK protocol by Lowe
�� �in its abbreviated
version without a public key server� these are

�� A� B � fNA� Agpk�B�

�� B � A � fNB � NA� Bgpk�A�

�� A� B � fNBgpk�B�

The revision is the inclusion of B	s name in message �� Without this� there is the now well�known
attack discovered by Lowe
��� We will concentrate on this example protocol while we introduce
our techniques�

Such a description implicitly describes the role of each participant in the protocol and carries
the implication that whenever an agent has� from its point of view� executed all the communica�
tions implied by the protocol� then it can take whatever action is enabled by the protocol� The
above protocol is intended to authenticate A and B to each other and� we will assume� to allow
them to enter into a session with each other� It is relatively easy to derive CSP versions of agents
running this protocol from such a description� indeed Lowe	s tool Casper
�� performs this task
essentially automatically� For the protocol above� the code for an agent with identity id might
be�

User�id� � Send�id� �� Resp�id�

Send�id� �

��� b�diff�agents�	id
� �

let na����� within

commidb�PK�pk�b��Sq�na�id��� ��

��� nb�nonces �

commbid�PK�pk�id��Sq�nb�na�b��� ��

commidb�PK�pk�b��nb�� ��

�

Session�id�b�nb�na��

Resp�id� �

�� a�diff�agents�	id
� �

�� na�nonces �

commaid�PK�pk�id��Sq�na�a��� ��

�let nb � ���� within

commida�PK�pk�a��Sq�nb�na�id��� ��

commaid�PK�pk�id��nb�� ��

Session�id�a�nb�na��

Readers not familiar with the details of machine readable CSP can �nd a description of the
examples presented here in the appendix at the end of this paper and a more complete description
at the web site quoted in the Conclusions section� As a slight simpli�cation this code omits the
option� present in all the models we actually ran in our work on this paper� of a node that is
waiting for a message from another agent timing out� terminating the run� and returning to its
initial state�

Note the following�

� The messages passed around in this implementation of the protocol are drawn from an
abstract� constructed data type that allows us to treat operations such as encryption as
symbolic� For example� the �rst message of the protocol is represented by the construction�
PK�pk�b��Sq�na�id�� which represents the message 	na�id
 encrypted under the public
key of agent b where na represents the nonce of the sender agent id� �More details of this
type can be found below��

� The abilities of nodes to encrypt and decrypt messages are implicit in the way they create
messages and understand the messages they receive� The fact that various states will only
accept messages of a given form� sometimes only when containing a speci�c nonce� e�ectively
gives a way of coding in the conditions for progress in the protocol� To all intents and
purposes� such entries in the protocol represent an equality test �between the nonce expected
and that actually received� with progress only being possible when the test succeeds�

� Nodes do not check anything about the nonces they receive but were not originally generated
by them �for example� for uniqueness��

� The mechanism for choosing a new nonce has here been left undecided� since that is the
essence of this paper� In previous treatments� each node was given a �small� �nite supply
and had to halt when this was exhausted�

� We have left the actions of a node once it thinks it is in a session as yet unspeci�ed� We
must expect� however� that there is the possibility that the session might close and that it
might then run the protocol again�

Having done this� it is usual to place as many agents as are necessary for a complete run of
the protocol �in this case two� the most frequent di�erence to this being when some sort of server
is required in addition� in parallel in the context of a network�intruder process that can do the
following�

� Act as other agents� which may or may not behave in a trustworthy way�

�

� Overhear all messages that pass between the trustworthy agents�

� Prevent a message sent by one agent from reaching the intended recipient�

� Fake a message to any agent� purporting to be from any other� only subject to what the
rules built into the crypto�system in use allow it to create based on its initial knowledge and
subsequent listening�

What one usually then seeks to show is that any session that may occur between the trust�
worthy nodes is secure� no matter what the actions of the network from the range above� This
includes showing that if either of the nodes thinks it has completed a run of the protocol with the
other� then it really has�

The resulting network in our case is one of only three processes� though the interconnections
are quite complex as shown in Figure � because of the multiple roles the intruder process can
play and because of the di�erent fates and sources of communications on the channels apparently
between the two trustworthy nodes�

Our intruder model is to all intents and purposes the standard Dolev�Yao
� one� However�
as one can see in Figure �� instead of having all communication between trustworthy agents go
through the spy �where the spy acts as an unreliable medium�� communication between trust�
worthy agents takes place over a di�erent channel �namely� the channel comm�� The use of this
comm channel is not essential� since any safety violations found using this model would also be
found without it �the intruder could replace each comm�a�b�m by the pair of communications
take�a�b�m and fake�a�b�m� However� allowing this third communication channel between trust�
worthy agents has the following advantages�

�� Allowing direct communication between trustworthy agents does not increase the complexity
of the model and actually produces simpler attacks� FDR always returns the shortest trace
leading to an error� The fact that a direct communication requires only one event will tend
to produce attacks with fewer intruder interventions and so conceptually simpler� If an
�ordinary� communication between Alice and Bob required two actions� there would be no
incentive to FDR to choose this rather than a pair of real intruder actions�

�� We are currently dealing with safety properties only� However� in the future we would like
to extend this work to include liveness properties� for example� no loss of service� In that
case� the use of the intruder for benign message transmission creates problems and so it is
therefore preferable to have the additional communication channel comm�

The intruder process is conceptually simple� it can overhear or take out any message at all�
and can fake any message that it knows enough to generate �which may well be through having
heard the same message� even though it cannot understand the message� in other words a replay��
In a CSP model one calculates the set of messages that can ever pass around the system� and from
that the set of relevant facts and deductions� Deductions are pairs �X� f� where� if the intruder
knows every fact in the set X� it can also generate f � Let us consider� for example� the following
data type� which is the one used for the model of the NSPK protocol in this paper�

datatype fact � Sq Seq�fact� �

PK �fact� fact� �

Encrypt �fact� fact� �

Agent AGENT �

Nonce NONCE �

�

A B

Spy

Connections with "imaginary" nodes

Spy overhearing normal communications

comm

take fake
Channel where communications can be
intercepted or faked by the spy

Figure �� The network to test a simple crypto�protocol

pk AGENT � sk AGENT �

AtoB � BtoA � Cmessage

Here� AGENT and NONCE are whatever types of agent identities and nonces we are using�� for
example AGENT could be de�ned as the set 	Alice�Bob�Cameron
� PK and Encrypt are respectively
constructors representing public�key and symmetric�key encryption of the second thing by the �rst�
and pk and sk are constructors creating the public and secret key of each agent� The constant
types AtoB� BtoA� Cmessage are used for speci�cation purposes as described towards the end
of this section� You would then expect at least to have the following inferences in the intruder
relevant to any set Z of facts�

deductions��Z� � 	�	Sq m
� nth�j�m�� �

�	nth�i�m� � i ��	��m��

� Sq m� �

Sqm �� Z� j��	��m��

deductions��Z� � 	�	m� k
� Encrypt�k�m�� �

�	Encrypt�k�m�� k
� m� �

Encrypt�k�m� �� Z

deductions��Z� � 	�	m� k
� PK�k�m�� �

�	PK�k�m�� dual�k�
� m� �

PK�k�m� �� Z

In other words� it can construct and destruct sequences� and can make up and decrypt both
public�key and symmetric�key encryptions subject to possessing the right information �note the

�This type is somewhat more structured than that given in ����� being parameterised by these two sets� to make
the data independence analysis we will see later more transparent�

�

di�erence between these last two cases�� There could be more� depending on the properties of the
particular encryptions in use� These could be� for example

deductions��Z� � 	�	Encrypt�k�m�� m
� k� �

Encrypt�k�m� �� Z

�from a message and its encryption� deduce the key�� An alternative is the following� which is
a consequence of a class of known attacks on low exponent RSA under which knowing a pair or
encryptions that are in a known linear �as in this case� or more general polynomial relationship
with each other can lead to a intruder being able to decrypt �see
�� and
�� for a more complete
CSP encoding of the resulting deductions��

deductions��Z� � 	�	a�b�PK�k�Sq�a�f���PK�k�Sq�b�f��
�f� �

PK�k�Sq�a�f�� �� Z� PK�k��Sq�b�f��� �� Z�

f��f�� k��k�� a��b

This last one says that if we know two di�erent values that the fact f is paired with under
encryptions using the same public key� then we can deduce f� deductions� is� for reasons we will
see later� particularly interesting in the context of the theory we are developing�

We will� however� in our examples� generally use only the basic set ����� above� in other
words� we will assume that both the public� and symmetric�key algorithms are free of all but the
most basic of deductions�

The intruder process is then created by applying a suitable renaming to one with the following
behaviour� It is initialised so that it has whatever information X we deem appropriate� This
will presumably include all �public� information� whatever information is necessary to allow the
intruder to function as the other nodes it can play the role of� and some nonces distinct from
those that the trustworthy nodes may invent for themselves�

Spy��X� � learn�x �� Spy��Close�union�X�	x
���

�� say�x�X �� Spy��X�

where Close�X� is a function that produces all facts derivable from the set X under the chosen
deductive system�

In order that this intruder process can even potentially be run on FDR� it is necessary that
the sets of facts over which it ranges and deductions that it uses are �nite� Thus the various data
types making up the messages such as agent identities� keys and nonces need to range over �nite
sets� In practice these have to be kept very small� no more than a few values each� if the sizes
of the sets of facts and deductions are not going to grow beyond the range up to �say� �������
that can be handled on FDR reasonably� In fact� this de�nition of the intruder cannot be run
on present versions of FDR because the compilation regime it uses would insist on computing all
its approximately �N states� where N is the number of facts that the parameter�sets are built
from� As discussed in
��� ��� the above de�nition is replaced in actual runs by a more e�cient
representation� namely a parallel composition of one two�state process for each learnable fact with
deductions being carried out by communication over a special channel� What is important to us�
however� is that the resulting process is equivalent to the simple process above�

Having set up a model of the protocol like this� we have to decide what constitutes an attack�
or� equivalently� what speci�cation the system is hoped to satisfy� A tremendous amount of
literature has been devoted to this point� for example
�� ��� ��� For reasons we will explain
later� for the time being we will concentrate on the extensional speci�cations used in
�� �so
called in
�� because they examine the results that can occur from running the protocol� rather

�

than the protocol messages themselves�� In this� nodes enter a session after running a protocol
and use one of the nonces generated during the protocol run as a symmetric key� We test �i�
that any message Alice or Bob thinks is from the other �within a session� really is and �ii� that
messages between Alice and Bob stay secret from the intruder� This is done by using special
symbols AtoB and BtoA for the messages Alice and Bob send each other when they think they are
connected in a session� We can tell something has gone wrong with authentication � ��i� above�
if either receives anything other than what it ought when in a session with the other� Something
has gone wrong with secrecy ��ii� above� if the intruder ever learns one of these symbols� Both of
these errors are raised via the occurrence of special error events within the system� and so we can
test for these conditions by hiding all events other than the relevant error signal�

assert STOP �T� System�diff�Events�	�error�
�

assert STOP �T� System�diff�Events�	�spyknows�
�

The very simple form of these two checks will be a considerable help later on� Both of these�
and some other forms of correctness condition we will be meeting later on� are all trace checks�
they do not use more complex behaviours like failures� The restriction to the traces model makes
the data independence analysis easier� and certainly more comprehensible� and we will therefore
largely restrict ourselves to this model from now on�

Our ultimate goal is to prove that our system meets these speci�cations however many other
nodes there are and however large �including in�nite� the type of nonces is� Let us denote the
system in which the set of agents �including the special names Alice and Bob� is A� the set of all
nonces is N � and the set of nonces initially known to the intruder �i�e�� that the intruder might
�invent�� is NS by

System�A�N�NS�

� Data independence methods

A program P can be said to be data independent in the type T if it places no constraints on what
T is� the latter can be regarded as a parameter of P � Broadly speaking� it can input and output
members of T � hold them as parameters� compare them for equality� and apply polymorphic

operations to them such as tupling� list forming and their inverses� It may not apply other
operations such as� functions returning members of T and comparison operators such as �� or do
things like compute the size of T � Data independence has been applied to a variety of notations�
originating in
��� A brief introduction to data independence in CSP can be found in
��� For
further discussion and precise de�nitions� see
��� ��� ��� An application to another topic in
computer security can be found in
���

The main objective of data independence analysis is usually to discover a �nite threshold for a
veri�cation problem parameterised by the type T � a size of T beyond which the answer �positive
or negative� to the problem will not vary� This can be done successfully for a wide range of
problems� as is shown for example in
��� ���

Several of the types used by crypto�protocol models have many of the characteristics of data
independence� This is typically true of the type of nonces� types of keys that are not bound to
a speci�c user� and may also be true of the type of agent identities� The main reason for this is
that the abstract data type constructions used in the programs are polymorphic� there is no real
di�erence in building a construction such as

�As we shall see later� this characterisation of authentication is fairly weak� in the sense that it takes a really
disastrous breach to fail it�

�

PK �pk B� Sq �Nonce N� Agent A��

�the representation in our data type of a typical message �� over the objects A� B and N from
building a list or tuple�

There are� however� several features of the protocol descriptions that mean the general purpose
results for computing thresholds do not give useful results� Firstly� the assumption that each nonce
or key generated is distinct means that there can be no hope of �nite thresholds from standard
results� This is because our program must at least implicitly carry an unbounded number of values
in its state so it knows what to avoid next � and the starting point for threshold calculations in
the context of equality tests is the maximum number of values a process ever has to remember�
Secondly� the nature of the intruder process causes di�culties because it also clearly has the ability
to remember an unbounded number of values if they are available�

Since the general�purpose data independence results of the earlier papers had proved to be
inapplicable� our approach was to apply some of the methods underlying the proofs of these
results directly to the sort of CSP model that a protocol analysis generates� The aim was to take
a �full�sized� model of a protocol �one with an unbounded number of other agents� and in�nite
sets of nonces� etc�� and to use these methods to reduce the problem of proving the correctness
of System�A�N�NS� for all parameter values to a �nite check�

One of the most important methods for proving data independence theorems is setting up
relations or mappings between the behaviours that two di�erent versions of a parameterised
system can display� This is an application of the theory of logical relations
��� ��� ��� ���
Speci�cally� we can ask the question of when� if T and T � are two values for a type parameter� and
� � T � T � is a function� does the function � �lift� to map each behaviour of the parameterised
process P �T � to one of P �T ���

Given that we are concentrating on traces� this can be done with scarcely any restriction if �
is an injective function �i�e�� does not map two distinct values to the same place�� we always have

traces�P ���T ��� � f��t� j t � traces�P �T ��g ���

for a data independent program P and function � �where� on the left�hand side� � has also been
applied to the values of any constants of appropriate type within P � and on the right�hand side�
the application of � to a trace means its application to each member of T that occurs within t��
As soon� however� as we have a non�injective function the situation becomes more di�cult� since
it can change the results of whatever equality tests occur within the program� In other words� it
might map an execution in which two distinct values are input and then compared for equality�
into one where two equal values are input and compared for equality� There may be no relationship
at all between the subsequent behaviours in these two cases� and the above equivalence becomes
the possibly strict inequality

traces�P ���T ��� � f��t� j t � traces�P �T ��g ���

Example � �Variables� Consider the following process

P �T � � in�x � T � in�y � T � if�x � y� then �a� STOP �
else �b� STOP �

Consider the instance of this where T � f�� �g and � is a non�injective function over
T de�ned as�

�

���� � ���� � �

In this example� we have the following sets of traces�

� traces�P ���T ��� � fh i� hin��i� hin��� in��i� hin��� in��� aig

� traces�P �T �� � fh i� hin��i� hin��i� hin��� in��i� hin��� in��i� hin��� in��i� hin��� in��i�
hin��� in��� ai� hin��� in��� ai� hin��� in��� bi� hin��� in��� big

� f��t�jt � traces�P �T ��g � fh i� hin��i� hin��� in��i� hin��� in��� ai� hin��� in��� big

This example illustrates how the equality stated in ��� no longer holds when introdu�
cing non�injective functions�

In the case of variables� the inequality ��� will always hold true� because if we pick T y � T

such that T y contains exactly one value mapping to each member of ��T �� it is straightforward
to see that traces�P �T y�� � traces�P �T �� and that� because � is injective on T y�

traces�P ���T ��� � traces�P ���T y�� � f��t� j t � traces�P �T y��g

However� even the above inequality ��� may not hold if P contains distinct constants of type
T � If there were two constants c and c� with di�erent values in T but mapping to the same
thing under �� this argument would not work� for this reason� we will exclude the possibility of
constants occurring in P until we develop a condition below that handles them properly� What
the inequality ��� above says� in essence� is that with a bigger type T we may be able to exercise
more of P 	s behaviour�

Example � �Constants� Consider the following process

P �T� c�� c�� � in�x� if�x � c� and x � c�� then �left�x� STOP �
else �right�x� STOP �

where c� and c� are both constants over the type T of P �T� c�� c���

Consider the instance of this where T � f�� �g� c� � �� c� � � and � is a non�injective
function over T de�ned as�

���� � ���� � �

For this example we have the following sets of traces�

� traces�P ���T �� ��c��� ��c���� � fh i� hin��i� hin��� left��ig

� traces�P �T �� � fh i� hin��i� hin��i� hin��� right��i� hin��� right��ig

� f��t�jt � traces�P �T ��g � fh i� hin��i� hin��� right��ig

This example demonstrates how the inequality ��� does not hold true in the case where
non�injective functions are applied to constants since in this case�

hin��� left��i �� fh i� hin��i� hin��� right��ig

��

There is� however� an important exception to the rule that non�injective functions lose us the
identity ���� namely the case where the result of the conditional when the equality test fails is the
process STOP� in other words� when we can guarantee that the result of an equality test proving
false will never result in the process performing a trace that it could not have performed �subject
to appropriate replacements of values of type T � were the test to prove true� This is a form of
the condition PosConjEqT �Positive Conjunctions of Equality Tests� of data independence� �It
is one of a number of technical conditions derived by Lazi�c� see
��� for example� The form we
quote here is slightly simpli�ed but is valid in the contexts in which we use it� speci�cally on
the right�hand sides of trace re�nement checks�� In such programs without constant symbols the
equivalence above is regained� and we can regard it as a �collapsing� mechanism since it allows
us to compute a great deal about how a program P �T � treats a large T in terms of how it treats
a small one�

Example � �PosConjEqT condition and variables� Consider the following process

P �T � � in�x � T � in�y � T � if�x � y� then �a� STOP �
else STOP

Process P �T � obeys the PosConjEqT condition� since the result of its equality test
proving false results in STOP � Consider the instance of this where T � f�� �g and �

is a non�injective function over T de�ned as�

���� � ���� � �

For this example we have the following sets of traces�

� traces�P ���T ��� � fh i� hin��i� hin��� in��i� hin��� in��� aig

� traces�P �T �� � fh i� hin��i� hin��i� hin��� in��i� hin��� in��i� hin��� in��i�
hin��� in��i� hin��� in��� ai� hin��� in��� aig

� f��t�jt � traces�P �T ��g � fh i� hin��i� hin��� in��i� hin��� in��� aig

This example illustrates how introducing the PosConjEqT condition for variables
regains the equality ����

If a program with constant symbols satis�es the PosConjEqT property� then we need not
necessarily get the equality ���� but we can guarantee the following inequality

f��t� j t � traces�P �T ��g � traces�P ���T ��� ���

Note that this inequality is the opposite to the inequality ����

Example � �PosConjEqT condition and constants�

P �T� c�� c�� � in�x� if�x � c� and x � c�� then �left�x� STOP �
else STOP

where c� and c� are both constants over the type T of P �T� c�� c���

Consider the instance of this where T � f�� �g� c� � �� c� � � and � is a non�injective
function over T de�ned as�

��

���� � ���� � �

For this example we have the following sets of traces�

� traces�P ���T �� ��c��� ��c���� � fh i� hin��i� hin��� left��ig

� traces�P �T �� � fh i� hin��i� hin��ig

� f��t�jt � traces�P �T ��g � fh i� hin��ig

This example illustrates how the inequality ��� holds true� but the equality ��� may
not for processes with the PosConjEqT property where non�injective functions are
applied to constants�

We noted in the last section that some aspects of the protocol examples� such as the ways in
which agent processes handle keys� nonces and identities� �t into this PosConjEqT framework�
This is something that will be useful to us later� One exception to this is that we noticed that
agent processes may well perform inequality checks with a few constants� such as their own names�
Additionally� the presence of a parallel process whose alphabet and communications involve a given
constant like this will generally introduce such inequality checks implicitly� as will the special�case
of constants belonging to the intruder	s initial knowledge� For example� the combination

P k
fjcomm�Alicejg

Q

where Alice is a constant of the data independent type Agent� requires the equality test
x � Alice to determine whether the event comm�x is synchronised or not� Finally� a process
involving constants can legitimately depend on their mutual inequality even when it does satisfy
PosConjEqT� and it would then be equally inappropriate to apply a function � that identi�es
these values�

We thus de�ne a condition PosConjEqT�
C for C a set of constants� the program satis�es

PosConjEqT except that it may have non�STOP results for equality tests involving at least one
member of the set C of constants� What we �nd here is that the collapsing result above holds
provided � is faithful to the values of the constants in C� for x � T and c � C� ��x� � ��c� if and
only if x � c�

��� Positive deductive systems

The agent processes in a protocol model are fairly standard�style processes and easy to check
for properties like PosConjEqT�

C � The conditions satis�ed are always natural consequences of
the protocols	 structure and are very easy to check visually� In addition� we will shortly have
automated tools which will perform these checks� The intruder process is� however� of unusual
construction� depending as it does on sets and a deductive system� As discussed brie�y above�
the role of constants in the initial knowledge of the intruder �such as knowing all secret keys
except those of Alice and Bob� has an e�ect that is easy to see� but more interesting is the role
of the deductive system� What turns out to be crucial here is the nature of the preconditions of
deductions�

It is frequently the case that a deduction �X� f� will only be able to occur when two objects of
a type T �possibly proper subcomponents of members of X� are equal� for example the deduction

��

�	Encrypt �k� m�� k
� m�

carries an implicit equality check between the key in the encryption and the free�standing key� This
is entirely within the spirit of PosConjEqT and has the crucial property that the identi�cation
of two keys by a function will never disable a deduction� It is easy to imagine deductive systems
that do not have this property� for example if knowing � distinct encryptions of agents	 names
under key k allowed us to deduce k� and the low exponent deduction on RSA �as deductions��X��
described earlier falls into this category since it relies on the distinctness of the objects that are
in a linear relationship�

Formally� we will de�ne a deductive system to be positive relative to some type parameter
T if� for any function between types � � T� � T�� whenever �X� f� is an inference the system
generates for type T�� then ���X�� ��f�� is one generated for T�� What this essentially requires is
that the generation of the deductions is symmetric in T �i�e�� treats all members of T equivalently�
and never has an inequality requirement over members of T between places they appear on the
left�hand side of a deduction�

The standard deductive system described earlier has this property� as do many variants� How�
ever� as the counter�example above and deductions� show� it is something that one has to be
careful of�

The important property we can now state is this� if we build an intruder over a positive
deductive system� and its initial knowledge set contains no inequality tests �explicit or implicit�
with members of our type T other than the constants C� then the resulting process �and hence�
subject to obvious conditions on the other parts of the network� the entire protocol model� satis�es
PosConjEqT�

C �

��� A simple application� agent names

Almost all protocol models for model checkers that one sees make the simpli�cation of allowing
the intruder only a single identity� In other words� the intruder	s role in acting as all the agents
in the system other than our trusted Alice and Bob is reduced to giving it a single name to play
with in this regard� This is usually justi�ed by the claim that any attack in which the intruder
used multiple identities would work equally well if all the other identities were reduced to a single
one� What we can now do is prove this assertion as a consequence of the theory we have been
developing under a few natural conditions�

Proposition � Suppose System�A�N�NS� represents the CSP model we would obtain if we
modelled a given protocol using agent type A� in which all the abilities of agents other than those
in some proper subset C of A �typically fAlice� Bobg� are given to the intruder� where NS are
nonces known to the intruder including all those created by nodes outside C� Suppose further
that

� All processes are data independent in the type of agent names�

� The agent processes representing C each satisfy PosConjEqT�
C �

� The intruder process satis�es PosConjEqT�
C in the sense discussed in the last section

�through having a positive deductive system��

� The speci�cation we are trying to prove relates only to nodes	 communications involving
the names in C� In other words it can � as in our example � be decided by looking at the

��

traces of System�A�N�NS�nX where X includes every event� mentioning an agent name
outside C�

� Further processes such as servers satisfy PosConjEqT�
C �

Then if System�C � fCamerong� �where Cameron is any name outside C� satis�es the speci�c�
ation S� then System�A� satis�es S for all A � C�

Proof Under these circumstances� we know that for any A� we can de�ne a collapsing function �

that maps every name other than those in C to a �xed name �say Cameron� and that this would
simply produce the system

System�C � fCamerong� N�NS�

and� since the application of � to any trace t produced by hiding the above X is just t �for �

leaves the only remaining names in t� if any� alone� we get

traces�System�A�N�NS�nX� �
traces�System�C � fCamerong� N�NS�n��X��

so plainly the big system satis�es our speci�cation if and only if the small one does�

What we have done here is to derive criteria under which a standard informal argument can
be made rigorous�

Note that the particular speci�cations we are using in our NSPK example do not mention
any members of A or any other data independent types� error conditions are caught within the
process itself and �agged via �xed events� This simpli�es proofs using collapsing functions� for if
P �T � is any process in which all events involving members of T are hidden� then� if the collapsing
identity holds for ��

traces�P �T �� � traces�P ���T ���

and they obviously satisfy the same speci�cations� The same is essentially true under the condition
given above that the speci�cation only mentions names in T that are the values of the constants
that our collapsing function must keep separate� all other values of P �T � being hidden� As soon
as one starts to include behaviour involving general members of T explicitly in the speci�cation�
life becomes more complex�

Fortunately it seems to be rare for other styles of speci�cations about sessions between agents
A and B to constrain events mentioning other agents� so the above argument applies widely�

� Towards a general proof

In our example �NSPK�� we have shown that it is su�cient to deal with the case of two�plus�one
agent names� but there is still the problem of the in�nite type of nonces that is required� All parts
of our program� apart from the mechanism that generates nonces for Alice and Bob �whom we are
assuming always use entirely fresh ones�� satisfy PosConjEqT in the type of nonces� but that
mechanism assuredly does not� It is not hard to argue� however� using similar methods to the last
section� that we can assume that the intruder initially has only one nonce n in its knowledge� and
that n is never generated for the two trustworthy users by our nonce�creation function�

�This condition can be relaxed a little in the more general context of data independence arguments� but the
extra complications seem unnecessary here�

��

Noticing that each time a node generates a nonce� it immediately communicates it to another
user� it is possible to re�cast the original descriptions of reliable users so that the choice of which
nonce they create is delegated to an external nonce manager process NM � you can think of this
as an artifact of our modelling technique� in much the same way that the intruder is� Every time
a process wants to create a nonce with an output communication� we turn the communication
into an input of the nonce and force the communication to synchronise with NM �in addition to
all the other processes it is synchronising with��

If we then program NM so that it remembers all the nonces it has given out and never
issues the same one twice or the one belonging to the intruder at all� we have implemented our
assumptions about how nonces are selected� Aside from this process� our example system satis�es
PosConjEqT on the type N of nonces� but plainly the complete system does not�

As our system runs� the trustworthy nodes hold a small �nite number of nonces at any one
time �in the case of NSPK�� at most ��� but the other two processes �intruder and the nonce
manager� both hold an unbounded number� NM remembers all the ones seen so far so that it
doesn	t repeat itself� and the intruder remembers everything it has seen �including objects that
together contain an arbitrary number of nonces� so that this can potentially be exploited in future
attacks� Notice that what really matters about NM is that it always hands out a nonce unknown
to any of the other processes�

It may seem like a strange thing to do� but there is no reason why we should not apply a
transformation function � to a data independent program in the middle of a run� Suppose P

is such a program� satisfying PosConjEqT� Any state P � that P may have reached during its
execution �i�e�� P � is a state reached in its operational semantics� namely a program that represents
how P behaves after some sequence of actions� will still be a data independent program� though it
could well have acquired some values from T that it holds in its identi�ers which were not present
in its initial state�� For a given assignment to these identi�ers� we will always have

traces���P ��� � f��t� j t � traces�P ��g

because of the PosConjEqT property� but the inequality may be strict because some values held
in identi�ers in P � that are distinct may get mapped to the same place by �� resulting in an
equality test in ��P �� giving the answer true where it gave false in P �� The values variables hold
at the point � is applied behave like the constants in Example � above�

What we are going to do is to apply transformations that identify some of the old nonces� no
longer known to Alice and Bob� but remembered by the intruder� This does not directly a�ect the
states of the trustworthy node processes� but can potentially increase the traces of the intruder
because of the above inequality� and might therefore lead to the resulting process failing to satisfy
a trace speci�cation though it did before� We will see an example of this later� What it cannot do�
however� is lead to it satisfying a trace speci�cation not mentioning T that it did before� Hence
if the transformed P � meets such a speci�cation� then so did the untransformed one�

These transformations can be carried out whenever we wish during the execution of our pro�
gram� and in practice have to be programmed into the intruder �whose memory gets transformed
each time� and NM � which can itself now re�use the values that the intruder has �forgotten�
through the transformation� If we make sure that the number of distinct values remembered by
the intruder is bounded� by applying transformations whenever it gets too large� then we can get
away with having only a �nite set of nonces� We have found a way of using the same ones as
�fresh� over and over again�

�For this bound we are assuming that neither node is active in more than one protocol run at a time� this issue
is discussed a little more in the Conclusions�

�For example� the process in�x� in�y � P �x� y	 has acquired values x and y after a trace of length ��

��

This provides a �fail�safe� method for attempting to prove traces properties of protocols using
�nite types� The proof of the following proposition is essentially as argued above�

Proposition � Suppose one of our protocol models has �i� a positive deductive system� �ii�
the trustworthy processes satisfy PosConjEqT in the type N and �iii� the trace speci�cation S

does not explicitly constrain N � �So the speci�cation is judged by the check S vT PnX where
X includes all the communications involving N �� Let P y be a model of the protocol with the
addition of events collapse�� which� when executed� apply � to all values of type N held in state�
Further suppose that P y uses a �nite type N but is always able to perform some proper collapse
when it reaches a state where the whole of N is in use� Then

S v P ynX � S v PnX

where P is the same protocol model without collapses but with arbitrary �including in�nite� N �

Fail�safe here means that it will guarantee to �nd an attack if there is one� but may still fail
even when there is no attack because a transformation has enabled the intruder to perform an
inference it could not have performed otherwise� Whether or not such false attacks are thrown up
is heavily a�ected by the strategy that is used for generating the transformations applied during
execution� that is what we now discuss�

From an implementation and clarity point of view� we have found it useful to divide the type
N into two parts which we might term foreground F and background B� The foreground values are
the ones supplied to the trustworthy nodes when they request a fresh value� and the background
values contain all those initially known to the intruder and those to which redundant foreground
values are mapped� The background values will be accepted by Alice and Bob as valid nonces�
but will never be generated by them as their own� When the intruder needs to use a nonce in
a message it is creating then it can use any background or foreground value it knows� so as not
to restrict its behaviour unreasonably you should make sure that it always knows at least one
background nonce �and one member of each other type being given similar treatment��

Provided the manager process is kept accurately up to date with which foreground values are
presently known to Alice and Bob� the size of F needs to be at least the largest number of nonces
that �a� were generated by one of these two nodes and �b� have continuously been known to at
least one of them ever since� In our example protocol� this is evidently no more than �� and is
in fact� �� Using more foreground values than are needed will not given any more stringent a
check of the protocol and will usually � though not invariably� owing to the e�ects of symmetry
reductions � slow the check signi�cantly�

The more background values there are� the more �exibility there will be in deciding where to
map each redundant member of F � In designing the strategy for determining where to map each
one� one should be conscious of the desirability of enabling as few spurious deductions as possible�
The following principles seem to the authors to be desirable� the �rst of them indispensable�

�a� If the type under consideration ever gets used as keys� one must never � unless� perhaps
examining the e�ects of key compromise � identify one that the intruder presently does
know with one that it does not�� For that would give it the immediate �ability� to decrypt
all the messages it may hold under the unknown key�

�If you do attempt to use a smaller
than
obvious number like this it is important that the model you use generates
an error �ag if the supply does not� in the event� prove adequate� This is done in our implementations�

�In some protocols� especially ones with servers that perform some translation function� one has to be careful in
deciding how to discriminate between values that are known or� in some subtle sense� knowable� and other ones�

��

�b� It might cause problems if a redundant member of F is mapped to a member of B that is
currently meaningful to a trustworthy node� for this might give the intruder extra messages
it can use in its dealings with that node�

In the case of our example� precaution �b� is not necessary� no new attacks are created by
ignoring it� though the authors expect that there will be protocols where it is necessary� Precaution
�a� is not necessary for the authentication speci�cation� which still succeeds if it is ignored� It
is� however� necessary for the secrecy speci�cation� because of the way we have used the nonces
generated during runs as session keys� if Alice runs a session with Cameron	 �the intruder� and
then one with Bob� she will actually use separate nonces for these runs� But if our mappings
send them both to the same value when they become redundant� then the intruder will become
 able	 to decrypt the messages that passed between Alice and Bob during their session because it
legitimately knew the nonces that appeared during its own session with Alice�

There is one potential problem with precaution �a�� namely that the intruder might learn�
through inferences� all of the values in B that are set aside as targets for mapping unknown
redundant values� It is wise� therefore� to put an error�trap into one	s model to detect this
situation� in the same way that we guarded above against running out of members of F � In
our example� however� this does not occur and it is possible to get both speci�cations to run
successfully with the three members of F already mentioned� and two members of B� one initially
known to the intruder �and the target of all redundant values that are� and also one that is not
�and fortunately never becomes known during the run�� This proves� therefore� when combined
with the preceding analysis� that System�A�N�NS� satis�es both these speci�cations however
large the three types become�

The authors suspect that� provided the two precautions above are followed in the nonce reduc�
tion strategy� it will be very rare to �nd false attacks against speci�cations of the type described
in this section� but there is no sense in which they are claimed to be complete� We conjecture
that in any case where the only factor making the type of facts relevant to the intruder in�nite is
the type N we are manipulating� then it is possible� for large enough �nite B� to create a strategy
that is guaranteed not to introduce false attacks� Such a result would be interesting theoretically
in the sense that it would imply decidability� but the size of B generated would probably be so
large that the resultant check would be impractical on FDR�

� Implementation considerations

When implementing the very active nonce management regime discussed in the last section it is
necessary to include enough communications from Alice and Bob to NM so that the latter knows
what nonces are meaningful to them� Such messages are� of course� an arti�ce of the model with
no analogue in the real world� The process NM then issues fresh	 nonces to Alice and Bob as
discussed above� and issues commands to the intruder to map redundant nonces in F to nonces
in B� To implement precaution �a� above� it is necessary that NM can enquire of the intruder
whether or not it already knows a particular nonce� so that it can map it to an appropriate place�

So the state of the process NM has to contain information on how many times each nonce is
presently relevant to �each of� Alice and Bob �bearing in mind that they may be persuaded to
give a nonce more than one role in a protocol�� As necessary� it generates mappings of nonces in
F that are not relevant to Alice or Bob� to whatever member of B its strategy dictates�

The intruder process has to be modi�ed so that it can tell NM whether it knows a particular
value in B� and more signi�cantly has to become able to implement the mappings on its memory
requested by NM � This is trivial in the case of the abstract Spy��X� process described earlier�

��

but requires a little more ingenuity in the case of the lazy	 intruder built out of many parallel
components� What happens is that� to map nonce n� � F to n� � B� components of the lazy
intruder that know something involving n� are commanded to transfer their knowledge to the
corresponding component involving n�� before forgetting what they knew�

If NM has several values it can hand out when asked for a fresh nonce� then clearly it does not
matter which it gives� because all are treated completely symmetrically by the rest of the network�
Therefore �i� there is no point in investigating the e�ects of handing out di�erent options and �ii�
there may be scope for choosing which value to hand out with a view to cutting down the overall
range of states visited� The concept of symmetry reductions over states spaces is well known to
be related to data independence and is discussed� for example� in
�� �� ���

The result of all this e�ort is a model which has roughly the same number of nonces as the
protocol models we were accustomed to running previously� though the additional complexity of
the intruder� the extra process NM � and the fact that the nonces get used in more permutations
than had previously been the case� mean that it has both somewhat more and larger �and so slower
to run� states than earlier models �see� for example�
�� and
���� FDR can check the resulting
�le in a few minutes on a ���MHz Pentium II laptop� though the size and complexity of the states
�which incorporate the large intruder processes and the e�ects of the chase compression� mean
that this and our other protocol examples are signi�cantly slower �in states per second� and larger
�in space per state� than most FDR models� perhaps one order of magnitude in space and two in
time� because as well as the increased number of states� checks will take longer due to the increase
in complexity of the intruder process�

� General speci�cations

In the introductory treatment above we deliberately chose a speci�cation style that allows us to
hide �in the implementation� all the values that are being manipulated by collapsing functions�
If P is such an implementation� with the hiding� but without collapsing and therefore de�ned
over in�nite types where an unbounded supply of distinct values is required� and P y is a version
incorporating collapsing� the assumptions and results we have derived so far establish

traces�P � � traces�P y� n fjcollapsejg

or in other words P is a trace re�nement of P y once the extra events are removed� We have
therefore been able to localise the gross e�ects of the collapsing entirely within the implementation�
proving a trace speci�cation of P y automatically proves the same speci�cation of P �the process
we are really interested in but which is unmodellable because it is in�nite state��

This has advantages in both theoretical simplicity and �at least relative�� clarity� It does�
unfortunately� exclude just about every other style of speci�cation that is used with FDR for
security protocols� For other forms of speci�cation tend to constrain the relationships between
the protocol messages seen by the two participants in a way that requires us to leave some or all
of the nonces� keys� etc� visible�

Two such styles are described below�

� The canonical intensional speci�cation of
�� states that no agent ever believes it has com�
pleted a protocol run with another �both being trustworthy� unless the sequence of sends
and receives implied by the protocol description has actually occurred as a subsequence of
the preceding trace�

� in the right order �i�e�� Alice sent message �� then Bob received it� then he sent message
�� etc���

��

� with all the values in these messages being appropriate �e�g�� the nonce NA received by
Bob is the one sent by Alice��

� with separate runs being disjoint �e�g�� if Bob thinks he has performed two separate
runs� then Alice must too��

until the given agent	s last message in the protocol�

� The speci�cations used by Lowe in
�� and Casper take the form of getting agents running
a protocol to send a special message saying this� and then a second message when they
have �nished� These messages carry the data values of the protocol� so we can specify
�for example� that if Alice thinks she has completed a protocol run with Bob with values
�NA� NB�� then Bob has said he is running the protocol with Alice with these same values�

In either of these cases� it is seemingly necessary to have values of the types we are collapsing
visible in the processes on the right�hand sides of re�nement checks� and to constrain how they
behave on the left�hand sides� It is clear that the left and right hand sides of a check then have to
be coordinated about the e�ects of collapsing� we can achieve this by including the collapses in
the traces of both sides� Even if we do this� it is necessary to be very careful� throughout our work
so far we have been lucky that collapses tend to increase trace sets� since on the implementation
side this results in false negatives �i�e�� false attacks� rather than false positives� However� on the
speci�cation side this same e�ect works against us�

Example � Consider the following pair of processes

P� � a�x� a�y � b�x� STOP

P� � a�x� a�y � b�y � STOP

Plainly P� does not� in general� re�ne P�� If we allowed an on�the��y collapse of the
data type after the two inputs� there is the danger that the two input values might be
identi�ed resulting in a false positive answer�

There are two dangers� the �rst is that through a collapse the traces of the speci�cation
itself might be increased �by changing the answer to an equality test�� The second� and the one
displayed by the example above� is that a collapse might result in equating a value held in an
identi�er in the speci�cation with one in the implementation� Either could lead to a false positive
in a re�nement check�

To avoid these twin dangers it seems to be necessary to be rather more draconian � and
hands�on � in how we handle a speci�cation under an on�the��y collapse than was the case with
implementations� Suppose we have a speci�cation process S which applies to a system P without
collapses� and we want to create� without the danger of false positives� a version Sy which applies
to P y in which each collapse that occurs is displayed in the trace�

Unless we have some knowledge of how collapses occur that allows us to restrict where this is
done� we need to augment each state of S with the possibility that any collapse � might occur�
and decide what state the speci�cation now moves to� So suppose Sn�X� is such a state� where X
represents all the parameters acquired by this point in the run� The corresponding state Sy

n�X�
of Sy will have all the actions of Sn�X� plus� for each collapse �� the action collapse �� leading to
a state Sy

m�X �� which must have the following properties�

�a� traces�Sy
m�X ��� � ��traces�Sy

n�X��

��

�b� X � contains no value in T which is the image under � of more than one thing�

Proposition � Suppose P and P y are de�ned as in Proposition �� and S� Sy are de�ned as
above� Then

Sy vT P y � S vT P

Proof This is an induction on the length of the execution sequence �visible and invisible actions�
of P � At each stage either P y can perform an analogous action or a collapse� followed by an
analogous action� and the e�ect of the collapse is to make Sy �if anything� more stringent and P y

�if anything� worse� Condition �b� above ensures that any equalities which exist after the collapse
between values in the states of Sy and P y also held before�

Restriction �b� on the construction of Sy is� of course� there to prevent the problem illustrated
by P� and P� above� It may in many applications be an uncomfortably strong condition� but
fortunately it matches the way we are modelling protocols well in most cases� To illustrate this�
we consider a pair of speci�cations that are mid�way in spirit between the two examples quoted
above�

Suppose Alice has �apparently� initiated a session of the modi�ed NSPK protocol with Bob�
Each �it is reasonable to assume� believes the protocol to have been completed when it has
performed its own last action� In the case of Alice� this is sending message � and� in the case of
Bob� it is receiving �and accepting� the same message� It seems reasonable to specify that

�i� Bob never accepts message � apparently from Alice� unless Alice has actually sent the same
message to him� and

�ii� Alice never sends message � to Bob� unless he has sent her a consistent message � �i�e�� one
with the same NB��

�iii� and furthermore� each of these is on a one�to�one basis �so neither thinks it is in more
sessions with the other than can reasonably be justi�ed��

We can specify the two directions of this separately using similar speci�cations� �i� �with �iii��
above� the authentication of initiator Alice to responder Bob� is captured by the speci�cation
S�BA�	
�� where

S�BA�X� � take�AB�Nb �� S�BA�union�X�	Nb
��

�� fake�AB�Nb�X �� S�BA�diff�X�	Nb
��

provided the implementation is renamed as follows�

� The actions of the intruder taking the message � containing some nonce Nb sent by Alice
and intended for Bob are mapped to the event take�ABNb� and

� The actions of the intruder faking these intercepted messages containing some nonce Nb to
Bob from Alice are mapped to the event fake�AB�Nb�X� where X is the set of nonces which
are present in the messages � sent by Alice to Bob and taken by the intruder�

This speci�cation simply says that each acceptance of a �fake� of the given type is preceded
by a �take� of exactly the same message� so that the intruder has merely acted like a faithful
�and non�duplicating� messenger� �We do not have to worry about direct communications of
this message from Alice to Bob on channel comm� as each message � accepted on this has by
construction been appropriately sent��

��

S�BA does not take account of collapses� and would not be an appropriate speci�cation to
use of the protocol implementation that incorporates them� After all� we would not want the
�justi�cation� of a given receipt of message � to be the fact that one has previously been sent
with the same actual value Nb� but where an alphabet transformation involving this value had
occurred in between� We can form a version that does take account of collapses by following the
above rules� Instead of the event collapse ��� we have replace�n��n�� meaning that n� gets
mapped to n� and all others to themselves� �This channel replace is what implements collapses
in our protocol messages� carrying commands from the nonce manager to the intruder��

SC�BA�X� � take�AB�Nb �� SC�BA�union�X�	Nb
��

�� fake�AB�Nb�X �� SC�BA�diff�X�	Nb
��

�� replace��n��n�� �� SC�BA�diff�X�	n��n�
��

The set di�erence in the last line enforces condition �b� in the rules for the creation of Sy and
therefore prevents false positive results of the type seen in Example ��

The protocol model used with the original speci�cation can now be modi�ed by the removal
of the Session phase of the agent programs �on completing a protocol run� they simply perform
the appropriate close event and start again�� It checks successfully against the speci�cation
SC�BA�	
�� With the symmetric speci�cation SC�AB�	
� that Bob in the role of responder is
authenticated to Alice as initiator �i�e�� �ii� above�� we have to be a little careful about the
mapping strategy of nonces� because of the possibility that Bob might give up on a protocol run
between sending a message � and Alice receiving it� If this happens� then there is a moment when
neither Alice nor Bob knows NB� If a collapse then occurs which identi�es NB with something
else� the transformation of the speci�cation analogous to the above creates a false �attack�� We
avoided this by mapping NB to a value which is itself mapped elsewhere�

We can thus conclude that the protocol model de�ned over an in�nite set of nonces� and
without collapsing� satis�es both of these speci�cations that examine the �nal messages of protocol
runs� as well as the ones given earlier in terms of the Session phase�

Hopefully the above constructions are clear enough to justify the requirements of the trans�
formed speci�cation Sy on an intuitive basis� An important part of the formal proof was the use
of a testing process� any trace or failures re�nement check Spec v Impl can be shown equivalent
to one of the form

T v �dSpec k
A

Impl�nA

where T is very simple and independent of Spec and Impl �in the case of traces checks it is
STOP�� dSpec is a testing process that runs in parallel with Impl and generates an easily detected
error if it does something contrary to Spec� and A includes all events of Impl and Spec� The
virtue from our point of view of this transformation was that once again the speci�cation �T �
ignored the data independent type� The use of testing processes is explained further in
���
The requirements which data independence arguments and theories place on implementations are
generally much weaker than those placed on the speci�cations� Thus having the testing process
dSpec on the �implementation� side of the check makes the analysis of the collapsing signi�cantly

easier than leaving it on the left hand side� We have in fact found practical advantages in using
this transformed formulation of the correctness condition on FDR� including the testing agent as
part of the �implementation� as this does means that it can be incorporated into compressions
used to reduce the size of the state space�

In the rest of this paper� we study the use of the two styles of speci�cation seen to date � the
Session based ones and this last�message authentication � on a variety of protocols� Before we
do this� we will discuss brie�y how the other styles of protocol speci�cation mentioned above �

��

the canonical intensional� and Lowe�style� speci�cations with signal events � might work within
our framework�

As far as we know� neither creates any di�culties in the principles of how to prove a speci�c�
ation via on�the��y collapsing that we have not already solved� However� in each case we think
there may be penalties to pay in terms of running speed of the checks that are more severe than
the corresponding runs without the collapsing machinery to attempt a proof�

The sizes of the data types used with the collapsing methods �in the example above� the
type of nonces� are somewhat larger than in most earlier FDR protocol models� This presents a
particular problem in the �rst case above� of the canonical intensional speci�cation as presented
in
��� because the time taken to normalise these particular speci�cations �something FDR does
to the left�hand side of every re�nement check� grows very quickly with the size of the alphabet�
It ought to be possible to reduce or eliminate this problem by strengthening the speci�cation in
a case�by�case way� but this would seemingly lose the ease in which this speci�cation is generated
just about automatically from the protocol description� This is a topic for further work�

In the second case� we may su�er simply because the insertion of extra �signal� messages has
a signi�cant e�ect on the state�spaces of the protocol implementation models� It is comparatively
rare for the implementation state�space size to be the limiting feature on protocol checks without
the additional features we have developed for proof� but much more common with these features �
so the extra states this method generates become less of an a�ordable luxury� It is the very action
of sending or receiving a protocol message that triggers Lowe	s agent models to send signal events�
treating these causal events as the signals� as the style of speci�cation we have used above does�
allows us to create equivalent tests of protocols without the increased number of states�

The exception to this is when the protocol messages do not contain all the information we want
to signal� The example above displays this potential problem� as we might reasonably want not
only to ensure that our two nodes can authenticate each others	 presence in a session with them
and agree on the nonce NB �which the speci�cations S�AB and S�BA achieve�� but also agree	 on
NA� Since this is not contained in message �� there is no way that speci�cations in which instances
of message � can occur can achieve the latter� If we know that a given event e of the protocol
would cause� in Lowe	s model� a signal whose information content is not contained in e� then it is
more e�cient to add this information to e in a way that does not a�ect how the protocol runs� or
how the intruder behaves� In our protocol this would mean adding NA as a �eld that both sender
and receiver signal to the environment at the same time they either send or receive message ��
but these extra �elds are not synchronised nor noticed by the intruder� In recent work with Lowe�
we have modi�ed his tool Casper to adopt this approach� generally gaining substantial e�ciency
improvements�

� The TMN protocol	 handling servers and staleness

Originally proposed as a protocol for use in mobile telecommunications� TMN �Tatebayashi�
Matsuzaki�Newman�
�� is a favourite protocol for running protocol analysis tools on because
there are so many attacks against it� Obviously there is no point in attempting to prove the
original version correct� so we take as our starting point the �nal version of
�� which is claimed
to have reasonable properties� The objective of the protocol is to establish a session key between
Alice and Bob� in doing this� they communicate only via a central server process� �How they

�Agreement on NA may or may not seem an academic nicety in the case of this protocol� but it would be
obviously essential in the case of a data item of importance outside the protocol such as an amount of money being
transferred or a session key to be used after the run�

��

choose to communicate later using the key is no concern of ours��
For two agents to establish a secure session with each other� the protocol performs the following

steps�

Message �� A� S � fB� secA� kAgpk�S�
Message �� S � B � A

Message �� B � S � fA� secB � kBgpk�S�
Message �� S � A � V �kA� kB�

where A is the initiator agent� B is the responder agent� S is the server� secA and secB are the
secrets shared with S belonging to agents A and B respectively� to authenticate their messages
to S� and kA and kB are the symmetric keys created by A and B respectively� Messages � and ��
which have essentially the same content� have di�erent formats to disambiguate them�

There are two encryption methods used in this protocol� namely public key encryption and
Vernam encryption� All agents know the server	s public key pk�S�� and it is assumed that the
corresponding secret key is known to the server only�

The function of the Vernam encryption in message � is to ensure that only the initiator is able
to decrypt the responder	s key� since it is hoped that� apart from the server� only the initiator will
know its own key speci�ed in the Vernam encryption�

Our initial implementation of this protocol followed the methods described in the previous
section closely� and concentrated on the extensional� Session�based speci�cation� There was
once again a single type requiring the use of on�the��y collapsing� namely that of keys� The
main addition to the network is the server process� which evidently can hold several of these keys�
Initially we assumed that there was only a single� sequential server even though that was probably
not realistic �for otherwise one pair of agents in the middle of a run could hold up all others��

We found it necessary to give the key manager process �ve foreground keys and the two
background ones used under a similar principle to that described for NSPK �one as target for
keys the intruder has su�cient information to deduce� and one for others��

Unfortunately� this led to a model for which the attempted check did not terminate� We
believe it had many more states than the approximately � million we ran it for� This led us to
re�examine the check and discover two quite separate strategies for cutting down this explosion�

�� The server is not responsible for generating fresh keys or any other new values which are
unknown to any other process in the system� All the messages sent by S are built either
from information known publicly to all participating processes �for example� agents	 names��
or from data values received in previous messages from agents� During a complete run of
the protocol� the server will receive two keys� namely� a key kA from the initiator agent� and
a key kB from the responder agent� The server initiates and sends the following � messages�

� Message �� is simply built up from public knowledge �i�e� agents	 names� as a result of
a corresponding message ��

� Message �� is built up from the keys� kA received in message � by the initiating agent
and kB received in message � by the responder agent�

Rather than implement the server as a separate process� we can incorporate its functionality
into our intruder process� We have already observed that our server generates messages
based on information in previous corresponding messages only� We also know that our
intruder can create and deduce messages by means of a set of de�ned deductions� Therefore�

��

we can extend our intruder	s functionality to include that of the server� by adding the
following appropriate deduction function�

deductionsS �

Union�	

	�	pkserver�Sq�a� k� sc�b����pkserver�Sq�k�� b� sc�a���
�

vernam�k� k��� � k �� keys� k� �� keys� a �� agents�

b �� agents

�

This deduction function can be interpreted as follows� If the intruder knows a message �
�pkserver�Sq�a� k� sc�b���� and a message � �pkserver�Sq�k�� b� sc�a����� then
it can deduce a message � �vernam�k� k��� which corresponds to the message � and message
� already known� Since the intruder is able to overhear all messages� we can safely have the
creation of the required message � to be dependent on the intruder knowing the message �
and message ��

It may seem odd to include a trustworthy party into the intruder in this way� However the
powers we have given our intruder to overhear� take and fake messages mean that ordinary
nodes	 interactions with the server are in any case so much within its control that we might
as well regard the server as being its slave� The only thing that this particular server enables
the intruder to do that it could not do before is to convert a �message �� message �� pair into
the corresponding message �� and it is this that the above additional deduction achieves�

An immediate advantage we gain from this is that the sequentiality of the server process
disappears� the above deduction allows the intruder to generate any behaviour it could
engineer with an arbitrary number of the original servers operating in parallel�

The idea of removing the server process� and incorporating its functionality into the in�
truder� not only reduced the number of processes running in the system by one� but just as
importantly reduces the minimum number of foreground keys from � to �� The state saving
is created by a combination of this e�ect and the removal of some irrelevant interleavings
of actions�

There are arguments for doing the same thing to any party in a protocol such that we are
neither specifying anything about its state of mind nor the sequence of messages it performs�
both of these things are lost by incorporation into the deductive system of the intruder� One
possible application of this idea will be discussed in the Conclusions�

�� We know that the foreground keys get mapped to background keys in the intruder	s memory�
to provide the illusion that our Key Manager is able to generate an in�nite supply of fresh
keys� This means that for all de�ned messages in the protocol model� the intruder will
eventually know them with the appropriate key transformations applied� By messages� we
mean the � complete messages	 structure de�ning the TMN protocol �as previously de�ned��
Since the intruder will eventually have all these stale messages containing background keys
in his knowledge set anyway� we could place them in the intruder	s initial set of knowledge�
By doing this� we are not allowing the intruder to perform any deductions or attacks which
it could not have performed before� since the intruder would have reached a state consisting
of this knowledge eventually� and therefore would be able to perform the same actions�
However� by giving the intruder this initial knowledge� we are eliminating a number of

��

possible states which the intruder can be in� More precisely� we are eliminating the states
which do not yet know all these stale messages in the intruder	s knowledge�

This is a safe transformation in the sense that giving the intruder more knowledge will never
remove an attack �as it can only increase the global set of traces�� As with other things we
have done� the worst thing that can happen is that we might introduce a false attack� but
even that should be impossible if the set of stale messages is accurately calculated�

This opens up the possibility of deliberately giving the intruder other extra knowledge that�
it is believed� should not create attacks� with the sole purpose of cutting down the state
space� This is not something we have tried�

Each of these two transformations individually brought the system down to about the limit
of what could be checked on FDR using the machines at our disposal �����M states�� Combined�
they made it very small and quick �about ������ states��

While we developed these strategies for use in the CSP scripts used for data independent

proofs of protocols� there is no reason why they could not be used in other CSP models� The server

transformation should still have a signi�cant e�ect on state space �though less spectacular because

it would no longer directly enable a cut in type size� and the incorporation of stale information

would enable related attacks to be found much faster�

This implementation was checked for authentication and con�dentiality properties by the
re�nement checks stated in the previous results section� We found that this TMN protocol model
does satisfy both the Session�based extensional speci�cations�

These e�ectively say that by the time a session is up and running� with either party under�
standing the messages it is receiving using the key generated in the run� then we have the obvious
properties of con�dentiality and authentication of who we are talking to�

Both
�� and
�� note that this protocol does not have stronger authentication properties of
the general type studied in Section �� Plainly the responder has no assurance� from the protocol
run alone� that the initiator was even present� Anyone could have sent him message �� The
initiator would have slightly stronger guarantees were it not for the use of Vernam encryption
�bit�wise exclusive or� in message �� Once she has sent message �� she cannot tell that any
sequence of bits of the appropriate length is not the encryption of some session key under kA�
Nevertheless� we conducted a brief exercise to see what our methods would have produced with
the stronger notion of authentication� As is frequently the case� the exercise in formulating the
speci�cations made it hard not to spot the problems� and actually running checks revealed a
variety of weak attacks�

 Further protocols	 generative servers

��� Needham�Schroeder Symmetric Key

The Needham�Schroeder Symmetric Key �NSSK� protocol is one of the best�known and most
studied protocols in the literature� The objective is to establish a session key between two parti�
cipants using only symmetric key encryption� Like the TMN protocol� it uses a server� but one
with completely di�erent functionality� The sequence of messages is given below

�The precise form of the message � stated here is slightly dierent from others found in the literature� but has
essentially the same meaning� The more standard form of the �nal message would contain the encrypted message
NB��� to dierentiate between message � and �� Since we are seeking a data independent type� we cannot perform
a subtraction of this kind� Therefore we simply use another operation that straightforwardly makes the body of

��

Message �� A� S � �A�B�NA�
Message �� S � A � fNA� B�K� fK�AgKbsgKas

Message �� A� B � fK�AgKbs

Message �� B � A � fNBgK
Message �� A� B � fNB � NBgK

where A is the initiator agent� B is the responder agent� S is the server� NA and NB are nonces�
A and B respectively have long term symmetric keys Kas and Kbs with the server� and K is
symmetric key generated by the server for the session between agents A and B�

This protocol di�ered from those we have seen before in two important respects�

� There are now two separate data independent types that we will need to collapse� nonces
and session keys� In fact there are arguments for splitting the nonces into two types� those
used for messages � and �� and those used for messages � and ��

� The server is now responsible for generating fresh values of one of the types in question�
This means that its behaviour cannot simply be embedded into the intruder as an extra sort
of deduction�

The �rst of these problems simply requires that we have more than one manager process
present in the network� We had no di�culties in running versions with three or two of these
�depending on whether the nonces had been split in two or not��

The increased complexity of this protocol �in terms of the size of messages� which directly
relates to the cardinality of alphabet and number of facts relevant to the intruder� made it
unattractive to lose the advantage gained by incorporating the server	s functionality into the
intruder� It is� however� seemingly impossible to do this within the established model of the
intruder �something we were able to do in the case of TMN�� This is because there is no way
that a deductive system of the form used in the intruder can produce a notion of freshness� which
requires that when a given value has been used once it may not be used again� After experimenting
with several possible solutions to this� we decided that the best and most general solution is the
following�

In the existing intruder model we have events of the form infer�X�f� which are communic�
ated when� on the basis of our cryptographic assumptions� a intruder with knowledge X �a �nite
set of facts� could reasonably create f �a single fact�� We decided to add an analogue of this that
would allow the intruder �in its role as a pseudo�server� to synchronise with key�nonce manager
processes to create the messages that the server issues containing fresh values� For simplicity� we
consider here the case where the server is only issuing a single fresh value at once�

In the real system we are trying to model� the proper agents or the intruder can get the server
to produce one or more messages that will depend on this fresh value by sending an appropriate
set of requests to it� In the case of NSSK� there is only one message produced �message �� and one
required to get it to do so� We now model this behaviour by a modi�ed version of the inferences
above� A generation is a triple �k�X� Y �� where k is the fresh object being created �in the case
of NSSK a session key�� X is the set of objects that the intruder has to have in its possession to
get the server to act �in our case a single set containing message �� and Y is the set of messages
containing k that the intruder can thus learn �in our case� a singleton set containing the message
� that corresponds to the other two components�� We will see examples later where X and Y are
not singleton sets� The event server�k�X�Y� can then occur just when

message � from that of message � without allowing a replay of one as the other� Plainly this substitution would
not be valid if either this changed any potential confusion of messages or either allowed or disallowed any potential
deductions� We are con�dent that with the standard cryptographic model there are no such problems here�

��

� the �key� manager issues the fresh value k �by synchronising with this action�� and

� each fact in X is known by the intruder�

and leads to the state where the intruder knows each of the facts in Y � �Assuming the value k

really is fresh� we can guarantee that the intruder does not know anything in Y � Unless k is a
member of Y � which is very unlikely � the intruder does not learn k directly from this action��

The involvement of the key manager process means that a given generation will only occur
once �until a key gets recycled using a collapse�� This is why the �nal component of a generation
has to be a set of results � which are all tied to a single key � rather than a single fact�

There is one remaining problem� namely that the intruder can ask the server �whether the
server is a separate process or is included in the intruder in the way described above� for as many
fresh keys �buried in message �	s� as it likes� given a single message �� And similar situations
will arise in other protocols where the server is generating fresh values� as soon as the intruder
can validly ask for one it can ask for any number� Evidently this e�ect has to be controlled if we
are to keep the sizes of our types of fresh values small and �nite� The approach we have taken
has been to forbid the intruder from requesting a new fresh value while both Alice and Bob are
already holding as many as they can� on the grounds that the intruder cannot then exploit the
value immediately against Alice or Bob� and it might as well have waited until one of them had
forgotten a value before requesting the fresh one� We think this will be a valid argument in just
about all practical examples� but in order to justify it in a given case� you must ensure that there
is nothing the intruder might be able to get at �either directly or using subsequent inferences� not
involving a fresh value that the intruder might be able to obtain� and then exploit� as a side�e�ect�

We were able to prove that this protocol� under standard cryptographic assumptions� satis�es
both the Session�based speci�cations and last�message authentication speci�cations analogous
to those described for NSPK in Section ��

More interesting results were obtained when we assumed that old session keys were com�
promised� This requires only a trivial modi�cation of our model� when a forgotten key that the
intruder does not know is sent to a background value� then it gets mapped to one he does know
rather than one he does not� Upon doing this our model �as we expected� immediately yielded an
equivalent of the Denning�Sacco attack
�� whereby the responder is susceptible to a replay of a
message � �which the intruder knows� containing an old session key which he has cracked� He is
then able to respond �pretending to be the initiator� to message �� A side e�ect of our inclusion�
as described earlier� of the data of stale sessions in the intruder	s initial knowledge� is that this
attack appears on a very short trace� This is because in the classic presentation of the attack�
most of the messages are present simply to give the intruder knowledge which it will later exploit
as stale� and obviously these messages are not now needed�

��� Otway�Rees Protocol

The Otway�Rees protocol consists of the same components described in the Needham�Schroeder
Symmetric Key protocol and is de�ned in
�� as the following sequence of messages�

Message �� A� B � �IA� A�B� fNA� IA� A�BgKas�
Message �� B � S � �IA� A�B� fNA� IA� A�BgKas� fNB � IA� A�BgKbs�
Message �� S � B � �IA� fNA�KgKas� fNB �KgKbs�
Message �� B � A � �IA� fNA�KgKas�

��

where A is the initiator agent� B is the responder agent� S is the server� NA and NB are nonces
belonging to agents A and B respectively� IA is the index number generated by the initiator agent
A and K is a symmetric key generated by the server for the session between agents A and B� We
treat IA in the same way as we treat a nonce� Each run has four values that we might expect to
be fresh� three nonces and a session key�

The only encryption method used in this protocol is symmetric key encryption� The server
S shares a unique symmetric key with each agent �unknown to the others� which is used to
encrypt�decrypt messages between them�

In this protocol� we have an additional data independent type� namely� the index value gener�
ated by the initiating agent in message �� This index value is passed through every message� and
clearly becomes known to the intruder as soon as it is generated�

The function of the server here is similar to the NSSK protocol in that it is responsible for the
generation of fresh session keys� The �rst message received is from the responder agent �in the
de�nition above this is agent B� consisting of an index number� two agent names� and the two
messages from the initiator and the responder agents each encrypted in their respective symmetric
keys�

An important feature of the Otway�Rees protocol which di�ers from previous protocols we
have analysed� is the length of the individual messages� in particular� message � and message ��
These messages contain signi�cantly more data objects than the message constructions of other
protocols� The resultant e�ect of this is that the state space required for the standard checks we
perform will be signi�cantly increased� probably beyond what we can handle�

Our aim is to rede�ne the set of messages such that it still correctly represents the Otway�
Rees protocol� but reduces the length �in terms of the number of di�erent data objects� of each
message� We de�ne the messages as follows���

Message �� A� B � �IA� A�B�
Message �� A� S � fNA� IA� A�BgKas

Message �� B � S � fNB � IA� A�BgKbs

Message �� S � A � �IA� fNA�KgKas�
Message �� S � B � �IA� fNB �KgKbs�

The underlying change has been to divide the old message � and message � construction into
two separate messages each�

The design used for implementing the Otway�Rees protocol model was based on the imple�
mentation methods presented for the Needham�Schroeder Symmetric Key protocol above� We
need to introduce an Index Manager which has the same style of implementation as the Nonce
Manager� except that it is responsible for supplying fresh index values to the initiator agent of a
run�

We must also rede�ne our Generations set� which determines what deductions the intruder
is able to perform �in order to re�ect the server	s functionality�� In this protocol� we need the
intruder to be able to obey the following inference rule�

If the intruder knows a message � and a message �� such that the index values� the

�	This restructuring of messages de�ning the Otway
Rees protocol has been used before� for example by Lowe�
and it can been shown that any attack on the revised or original protocol� could be transformed from one to the
other� The basic argument here is that B is simply acting as a dumb messenger for the components of messages �
and � of the �rst encoding that he cannot understand� he cannot check their contents and simply passes them on
blindly� The intruder cannot do anything dierent to this message in two hops via B than it could do to the same
message in a single hop� and all the transformation does is to transform the two
hop transmissions to direct ones�

��

initiator agent identities and the responder agent identities in both messages are all
equal �respectively taking values I� A and B�� and he is given some key K� then he is
able to infer the following two messages�

�� One message � consisting of the index value I� initiator agent A and the nonce
NA present in the corresponding message � and the given key K� and

�� One message � consisting of the index value I� responder agent B and the nonce
NB present in the corresponding message �� and the given key K�

Below� we present an example of a valid deduction the intruder could perform�

The intruder has intercepted the following message � from Alice to the server Sam�

Alice� fIA� NA� Alice�BobgKas � Sam�

followed by the intruder intercepting the following message � from Bob to the server�

Bob� fIA� NB � Alice�BobgKbs � Sam

From these two messages� the intruder is able to infer the following message � and � respectively�

�IA� fNA�KgKas�� and �IA� fNB �KgKbs�

where K is some key which will be supplied by the key manager as in the case of NSSK�

In the NSSK model� the intruder could only ever deduce one message for a given key K� In the
Otway�Rees protocol� we require the intruder to create two messages for every one key it receives�
and we ensure that these two messages are precisely the correct ones by placing a more stringent
constraint upon the preconditions of this deduction �i�e� the contents of the two corresponding
messages � and ��� Note that the Generations set thus produced now has two members in the
sets in the second and third components of each triple�

The two Session�based checks completed successfully� proving that this would be the case
without collapsing and with in�nite supplies of indexes� nonces and keys�

The �nal�message authentication check that the initiator is authenticated to the responder
�i�e�� that B does not accept message � unless A has sent messages � and �� failed� This was a
surprise to us when it occurred� though subsequently we discovered the same weakness in this
protocol described in
�� It revealed that the intruder can convince B that A wants a session with
him by replaying messages � and � from an old session that A and B have run in the same roles�
�With the original version of the protocol the corresponding action would be a replay of an old
message ��� This leads to B getting a key in message �� after the intruder has stopped message �
from reaching A �who is not expecting it anyway�� This attack does not reveal any secrets to the
intruder� but does allow him to convince B that A has recently wanted a session with B�

As was the case with the Denning�Sacco attack� this attack appeared after a short trace
because of the way it exploits stale data which we include in the intruder	s initial knowledge�

��� Yahalom Protocol

The Yahalom protocol �see
�� is known to be a particularly subtle protocol� It consists of the
same components described in the Otway�Rees protocol and is de�ned as the following sequence
of messages�

��

Message �� A� B � �A�NA�
Message �� B � S � �B� fA�NA� NBgKb�
Message �� S � A � �fB�K�NA� NBgKa� fA�KgKb�
Message �� A� B � �fA�KgKb� fNBgK�

Here� A is the initiator agent� B is the responder agent� S is the server� Ka and Kb are the
symmetric keys belonging to A and B respectively �known only by themselves and the server��
and K is the symmetric session key supplied by the server�

Like Otway�Rees and NSSK it uses the server to generate fresh session keys� so we must expect
to use a similar structure of CSP model to those seen for them� Like NSSK it uses the new session
key to provide a �nal authentication� and this creates the danger of a Denning�Sacco�like attack
in the case where a session key gets compromised� Notice that� as with Otway�Rees� one of the
agents �A� acts as a dumb messenger for an encrypted packet understandable only to S and B�
For the same reasons� and with the same justi�cation� we chose to restructure the protocol by
making the transmission direct� thus splitting messages � and ��

Message �� A� B � �A�NA�
Message �� B � S � �B� fA�NA� NBgKb�
Message �a� S � A � fB�K�NA� NBgKa

Message �b� S � B � fA�KgKb

Message �� A� B � fNBgK

Given this restructuring� the Generations set �again modelling the way the server creates keys�
has members whose second components contain just a message �� and whose third component
contains the corresponding messages �a and �b�

The analysis of this protocol using our methods presented no new challenges� It proved to
satisfy both the Session�style and the stronger authentication speci�cations� even under the as�
sumption that old session keys and old nonces are compromised when the responder is guaranteed
to time out of a protocol run before the intruder deduces the session key �possibly from messages
the initiator sends under it once she thinks the protocol is complete�� Failure to do this would
allow the intruder to �nish o� the protocol with the responder even though the initiator may have
closed or otherwise have given up on the session� In other words� the susceptibility exposed� in
the case of NSSK� by the Denning�Sacco attack does not apply here provided we make reasonable
assumptions and take reasonable care in implementation�

� Conclusions and prospects

We have developed methods by which it is possible to prove far more complete results on model
checkers than hitherto� We are con�dent that any protocol which uses the range of security
features seen in the examples in this paper �standard public and symmetric key encryption and
nonces� can be addressed using these methods� The use of speci�c encryption methods with
further properties� such as the Vernam encryption used in TMN� do not cause problems provided
these can be described symbolically in a positive deductive system�

There are� of course� other features used for security in protocols� Hashing should not present
any di�culties to our approach� since it is symbolically no di�erent to asymmetric encryption in
which no�one knows the decrypting key� Timestamps and sequence numbers present more of a
problem� however� since the operations on them �comparison� adding� etc�� take them outside the
range of data independence � further research is required here�

��

One should always be careful to state the limits of what one has proved in a case like this�
Evidently the use of an abstract data type and a speci�ed set of deductive rules over it implies
that we are assuming� in our proof� that there are no other subtle properties of the encryption
system that an intruder can exploit and� unless it has been built into the deductive system in some
way� no way that the intruder can decrypt messages without the possession of the appropriate key�
Secondly� we are assuming that a node will impose whatever discipline on accepting messages is
implied by the protocol� in particular that it will not interpret a message in one shape as a message
in another� Thus we have not allowed in this treatment for attacks based on type confusion� under
which� for example� some advantage might be gained if an agent could be persuaded to accept
another agent	s name as a nonce�

An important limitation on the result one has proved with a check of the form we have
described is that it does not normally allow for either of Alice or Bob running more than one
session at a time� If it is realistic that they might� then you should really include an appropriate
number of copies of each in the network� which would in turn increase the number of foreground
values in our types� This would increase the number of states in our example to a prohibitive level
even with two copies of each agent��� and of course we would like to prove appropriate results
for an arbitrary number of copies of each � in other words� factoring a further parameter out of
the system� This must remain a topic for future research� one possible approach we intend to
investigate is to incorporate part of the trustworthy agents into the intruder model� as we have
already done to the server� This would give the intruder the ability to use the honest activities of
separate instances of a given identity against a �xed one� just as the techniques we have developed
here already allow the intruder to use the proper activities of the server for its own ends�

Our analysis has been based on trace speci�cations� both because the protocol models we
are considering do not attempt to satisfy any stronger variety � to do so requires many further
implementation details and assumptions about the intruder � and because it simpli�es the data
independence arguments� It is� nevertheless� possible to apply data independence arguments to
stronger styles of speci�cations� as shown by
��� ��� for example� The fact that we do not now
have to restrict how many runs an agent can perform suggests that our new modelling techniques
are likely to be extremely useful in liveness and no�loss�of service analyses� Something that would
require care in this event would be any use made of the trick of incorporating the server into
the intruder	s deductive system �if necessary via the set of generations�� For we would have
to distinguish between general intruder actions � upon which we would not wish to place any
reliance � and those in which it acts as a server� For in the latter case it is the absence of
communications that represent malicious behaviour�

Three separate pieces of work in this area by Gavin Lowe will have a direct bearing on our
methods�

��� He has followed an independent line of research with the same general end of proving pro�
tocols via �nite check
��� Instead of using data independence he establishes conditions�
by detailed reasoning by case of what could happen� under which any attack on a protocol
would appear in a check containing just two agents �no separate name like Cameron for the
intruder� who are able to run the protocol only once each� The restrictions he works under
are fairly severe� both on the nature of the protocol and on the speci�cation � thus far he
can consider only secrecy rather than authentication� and none of the protocols we have
considered meet his constraints� His result� when it applies� has the advantage that the
necessary check is smaller and covers without restriction the case of parallel protocol runs

��The most we have been able to run� even for the simpler of the protocol examples� is two copies of one agent
and one of the other�

��

by one agent�

One can imagine using methods such as these in conjunction with ours� in cases where it
proves impossible to get such a tight bound as in Lowe	s result� This might be to cut down
the size of necessary checks by removing the need to search for some types of behaviour� or
to encompass parallel runs�

��� In
��� M� Hui and G� Lowe have formulated ways of simplifying complex protocols in
ways that guarantee not to eliminate attacks� This is practically very important work since
it means that it becomes possible to address practical protocols from areas like electronic
commerce that are considerably more complex than the comparatively tractable examples
in this paper� and which in their original forms would not be checkable on FDR etc� The
methods we have developed in this paper could be used to prove properties of the simpli�
�ed protocols� and hence the original ones� The conditions under which the simpli�cation
methods apply have much in common with some of the work in this paper� for example
they require something very close to our concept of a positive deductive system�

��� Finally� there would seem to be signi�cant potential advantages in extending Lowe	s Casper
protocol�to�CSP compiler to analyse the applicability of the techniques in this paper and
build the relatively complex CSP programs needed to exercise them� The creation of one
of these programs is an essentially mechanical procedure in which a large number of inter�
related details have to be remembered� something which makes it all too easy for human
beings to make mistakes� We hope to begin work on this shortly�

There seems no reason in principle why our techniques should not be applicable over a wider
range of notations and model checkers than CSP and FDR� modelling protocols has become
a popular pastime for users of a wide range of tools in the last year or two� The formality of
arguments based on other notation would� however� be limited if they did not have a corresponding
theory of data independence�

Readers interested in discovering the details of the CSP coding of the protocols with manager
processes� etc�� described in this paper can obtain a number of examples via URL�

http���www�comlab�ox�ac�uk�oucl�publications�books�concurrency�examples�security

Acknowledgements

This work would have been impossible without the pioneering e�orts of Ranko Lazi�c in developing
the theory of data independence upon which the arguments here are based� Equally it would have
been impossible without the continued work of the sta� of Formal Systems on the FDR tool� The
paper has been much improved by comments from anonymous referees and G� Lowe�

The work reported in this paper was supported by DERA Malvern and the U�S� O�ce of
Naval Research�

��

Appendix	 An Overview of the CSP notation

We will �rst give a brief overview of the basic machine�readable CSP syntax which is used in this
paper� This will be followed by a more detailed description of the CSP notation used in speci�c
examples throughout the paper�

Fundamental CSP operators

The CSP processes that we use are constructed from the following operators�

� STOP is the simplest CSP process� which can do nothing and is therefore equivalent to
deadlock�

� a �� P is the process which is initially willing to communicate a and will wait inde�nitely
for the a to happen� Once event a has occurred� it behaves like P�

� P �� Q is a process which o�ers the environment the choice of the �rst events of P and of
Q and then behaves accordingly ��� is known as the external choice operator�� This means
that if the �rst event chosen is from P only� then P �� Q behaves like P� while if one is chosen
from Q only� then it behaves like Q� If the environment o�ers the initial events of both P and
Q� then P �� Q will non�deterministically select one� Thus the choice of what happens is in
the hands of the environment�

� P ��� Q is a process which can behave either as process P or as Q� the choice of which
is non�deterministic from the point of view of the environment� This process may reject
either the request of the initial event of P or that of Q by the environment� However� if the
environment o�ers all initial events� then one must take place�

� P k
X Q represents the process where all events in X must be synchronised� and events
outside X can proceed independently� This operator is called the generalised or interface

operator�

� �� x�T � P�x� represents the replication of the external choice operator over P�x�� where
x ranges through the set T� For example�

�� x�f�����g � P�x� � P��� �� P��� �� P���

� ��� x�T � P�x� represents the replication of the internal choice operator over P�x�� where
x ranges through the set T� For example�

��� x�f�����g � P�x� � P��� ��� P��� ��� P���

� P � X is the process which behaves like P except that the events in X have been internalised
and therefore become invisible to and uncontrollable by the environment of P� This is known
as hiding�

Further Detailed CSP Examples

Agent Processes

A sender agent id initiating a run of Lowe	s revised Needham Schroeder Public Key protocol
��
is represented by the following CSP process�

��

Send�id� �

��� b�diff�agents�	id
� �

let na����� within

commidb�PK�pk�b��Sq�na�id��� ��

��� nb�nonces �

commbid�PK�pk�id��Sq�nb�na�b��� ��

commidb�PK�pk�b��nb�� ��

Session�id�b�nb�na��

which is interpreted as follows�

� ���b�diff�agents�	id
� � � represents the replicated internal choice over all agents
de�ned within the system �in the set agents� except for itself� This internal choice re�ects
the initiator agent choosing itself who to start a protocol run with� All proceeding events
containing the variable b are bound to this internal choice made�

� let na����� within � the choice of the nonce used by Send�id� is left undecided�
since that is the essence of this paper�

� commidb�PK�pk�b��Sq�na�id��� � represents the communication of a message � from
sender agent id to responder agent b through the channel comm� The message PK�pk�b��Sq�na�id��
represents the encryption of �na�id� under the public key of agent b� where na is the nonce
supplied by id�

� �� nb�nonces � � represents the replicated external choice over all possible nonces
de�ned within the system� This external choice re�ects the sender agent accepting any
nonce from the responder agent� This is important since the nonce nb is supplied by the
responder agent and therefore the sender should be willing to accept any nonce existing in
the system�

� commbid�PK�pk�id��Sq�nb�na�b��� � represents the communication of a message �
from the responder agent b to the sender agent id through the channel comm� The message
PK�pk�b��Sq�nb�na�b�� represents the encryption of �nb�na�b� under the public key of
the sender agent id� where nb is the nonce supplied by b and na is the nonce supplied by
id�

� commidb�PK�pk�b��nb�� � represents the communication of a message � from the
sender agent id to the responder agent b through channel comm� The message PK�pk�b��nb�
represents the encryption of nb under the public key of the responder agent b� where nb is
the nonce supplied by b�

Abstract Data Types

At the simplest level a data type can be used to de�ne a number of atomic constants� for example�

datatype Agent � Alice � Bob � Cameron

This means that any variable set to the type Agent can either take the value Alice or Bob or
Cameron�

A data type can also be de�ned in terms of a number of values which are associated with tags�
for example

��

datatype T � Agent AGENT � Nonce NONCE

where AGENT � 	Alice� Bob� Cameron
 and NONCE � 	Na�Nb�Nc
� Examples of possible
constructs of type T are Agent Alice and Nonce Na�

A data type can also be de�ned recursively� for example�

datatype fact � PK �fact�fact� �

pk AGENT �

Nonce NONCE

where NONCE � 	Na� Nb� Nc
 and AGENT � 	Alice� Bob�Cameron
� An example construct
of type fact is PK �pk Alice� Nonce Nb��

The messages passed round the implementation of a protocol are drawn from an abstract�
constructed data type that allows us to treat operations such as encryption as symbolic� For
example� for Lowe	s revised Needham Schroeder Public Key protocol� we de�ned the following
data type to represent all possible message constructions�

datatype fact � Sq Seq�fact� �

PK �fact� fact� �

Encrypt �fact� fact� �

Agent AGENT �

Nonce NONCE �

pk AGENT � sk AGENT �

AtoB � BtoA � Cmessage

where AGENT is the set of agents and NONCE is the set of nonces de�ned within the protocol
implementation� For example� from this data type� we can construct a symbolic representation
of the encryption of the message fNa�Aliceg �message � of this protocol� under the public key of
Bob as follows�

PK �pk �Bob�� Sq �Nonce Na� Agent Alice��

��

References

� P�J� Broadfoot� Application of Data Independence Techniques to Security Protocols� Oxford
University MSc Dissertation� �����

� M� Burrows� M� Abadi and R�M� Needham� A logic of authentication� Proceedings of the
Royal Society of London ���� �������� �����

� D� Coppersmith� M� Franklin� J� Patarin� and M� Reiter� Low�exponent RSA with related

messages� In Advances in Cryptology � EUROCRYPT 	�� �LNCS ������ �����

� D�E� Denning and G�M� Sacco� Timestamps in key distribution protocols� Communications
of the ACM ����� �������� �����

� W� Di�e� P�C� van Oorschot and M�J� Weiner� Authentication and key exchanges� Design�
Codes and Cryptography �� �������� �����

� D� Dolev and A�C� Yao� On the security of public key protocols� IEEE Transactions on In�
formation Theory� �	� �� �����

� Proceedings of DIMACS workshop on the design and formal veri�cation of
cryptographic protocols� ����� Published on the world�wide web at URL�
http���dimacsrutgersedu�Workshops�Security�program��programhtml

� E�A� Emerson and A�P� Sistla� Utilizing symmetry when model checking under fairness as�

sumptions� an automata�theoretic approach� Proceedings of the �th CAV� Springer LNCS
	�	� �������� �����

� E�A� Emerson and A�P� Sistla� Symmetry and model checking� Formal Methods in System
Design 	� �������� �����

�� M� Hui and G� Lowe� Safe simplifying transformations for security protocols� Proceedings of
the ��th IEEE Computer Security Foundations Workshop� �����

�� C�N� Ip and D�L� Dill� Better veri�cation through symmetry� Formal Methods in System
Design 	� ������ �����

�� R�S� Lazi�c� A semantic study of data�independence with applications to the mechanical veri�

�cation of concurrent systems� Oxford University D�Phil thesis� �����

�� R�S� Lazi�c and A�W� Roscoe� Using logical relations for automated veri�cation of data�

independent CSP� Proceedings of the Workshop on Automated Formal Methods �Oxford�
U�K��� Electronic Notes in Theoretical Computer Science �� �����

�� R�S� Lazi�c and A�W� Roscoe� A semantic study of data�independence with applications to

model�checking� Submitted for publication� �����

�� R�S� Lazi�c and A�W� Roscoe� Verifying determinism of data�independent systems with la�

bellings� arrays and constants� Proceedings of INFINITY �����

�� G� Lowe� Breaking and �xing the Needham�Schroeder public�key protocol using FDR� Pro�
ceedings of TACAS 	��� Springer LNCS ����� �����

��

�� G� Lowe� Some new attacks upon security protocols� Proceedings of ���� IEEE Computer
Security Foundations Workshop� IEEE Computer Society Press� �����

�� G� Lowe� Casper� a compiler for the analysis of security protocols� Proceedings of ���� IEEE
Computer Security Foundations Workshop� IEEE Computer Society Press� �����

�� G� Lowe� Towards a completeness result for model checking of security protocols� Proceedings
of the ��th IEEE Computer Security Foundations Workshop� �����

�� G� Lowe and A�W� Roscoe� Using CSP to detect errors in the TMN protocol� IEEE transac�
tions on Software Engineering ��� ��� �������� �����

�� J�D� Guttman� Honest Ideals on Strand Spaces� Proceedings of the ��th IEEE Computer
Security Foundations Workshop� �����

�� J�J� Mitchell� Type systems for programming languages� in Handbook of theoretical computer
science	 �van Leeuwen� ed�� Elsevier� �����

�� L�C� Paulson� Mechanized Proofs of Security Protocols� Needham�Schroeder with Public Keys�
Report ���� Cambridge University Computer Lab� �����

�� G�D� Plotkin� Lambda�de�nability in the full type hierarchy� in To H�B� Curry� essays on
combinatory logic� lambda calculus and formalism	 �Seldin and Hindley� eds�� Academic
Press� �����

�� J�C� Reynolds� Types� abstraction and parametric polymorphism� Information Processing
��
�������� North�Holland� �����

�� A�W� Roscoe� Modelling and verifying key�exchange protocols using CSP and FDR� Proceed�
ings of ���� IEEE Computer Security Foundations Workshop� IEEE Computer Society Press�
�����

�� A�W� Roscoe� Intensional speci�cations of security protocols� Proceedings of ���� IEEE Com�
puter Security Foundations Workshop� IEEE Computer Society Press� �����

�� A�W� Roscoe� The theory and practice of concurrency� Prentice Hall� �����

�� A�W� Roscoe� Proving security protocols with model checkers by data independence techniques�
Proceedings of the ��th IEEE Computer Security Foundations Workshop� �����

�� A�W� Roscoe and M�H� Goldsmith� The perfect �spy	 for model�checking crypto�protocols� in

��

�� A�W� Roscoe and J�T� Yantchev� Testing speci�cations for better compression� to appear�

�� B� Schneier� Applied Cryptography� John Wiley ! Sons� �����

�� M� Tatebayashi� N� Matsuzaki and D�B� Newman� Key distribution protocol for digital mobile

communication systems� Advances in Cryptology� Proceedings of Crypto 	��� Lecture Notes
in Computer Science ���� �������� Springer�Verlag� �����

�� P�L� Wadler� Theorems for free
� �������� Proceedings of the �th ACM FPLCA� �����

�� P� Wolper� Expressing interesting properties of programs in propositional temporal logic� ����
���� Proceedings of the ��th ACM POPL� �����

��

