
Formal Veri�cation of Arbitrary Network Topologies�

S� J� Creese and A� W� Roscoe

Oxford University Computing Laboratory

Wolfson Building� Parks Road

Oxford OX� �QD� UK

Abstract We show how data independence re�

sults can be used to generalise an inductive proof

from binary to arbitrary branching tree networks�

The example used is modelled on the RSVP Re�

source Reservation Protocol� Of particular inter�

est is the need for a separate lower�level induction

which is itself closely tied to data independence�

The inductions combine the use of the process alge�

bra CSP to model systems and their speci�cations�

and the FDR tool to discharge the various proof

obligations�

Keywords� induction� data independence� CSP�

FDR� model�checking�

� Introduction

Our ability to formally verify systems of real�
istic size is inevitably restricted �in part� by
the limitations of our chosen tool support� For
example� it is not possible to use a �nite space
model checker to reason about a system which
may be of arbitrary size �since its parameter�
isation might lead to an unboundedly large
state space�� In these cases the largest check
which could be performed would depend on the
maximum size the model checker could han�
dle� Whilst this can provide some con�dence
in the system�s integrity� it is not a proof that
the system meets its speci�cations for an arbi�
trary sized parameter�number of components�
This paper presents a technique which is de�
signed to overcome these limitations for certain

�The work reported in this paper was supported by
DERA Malvern and the US O�ce of Naval Research

types of scalable systems� In particular� the
technique uses a unique combination of induc�
tion and data independence to formally estab�
lish properties of arbitrary branching networks�
The technique is implemented using the pro�
cess algebra CSP�	�

� to model systems� and
the FDR model checker tool ��� to help reason
about them� though we have no doubt that our
ideas would work in other contexts as well�

CSP is a process algebra which is useful for
describing systems that interact by communi�
cation� The collection of mathematical models
and associated semantics that make up CSP fa�
cilitate the capture of a wide range of process
behaviours� The theory of re�nement in CSP
allows correctness conditions to be encoded as
re�nement checks between processes� Re�ne�
ment is transitive if process S is re�ned by
process R �written S v R�� and R is re�ned by
T then S is re�ned by T � The FDR tool takes a
machine�readable dialect of CSPM as its input
syntax� and can be used to check re�nements
as well as determinism� deadlock freedom and
livelock freedom of processes�

This paper is organised as follows� we brie�y
survey existing work on structural induction
and the theory of data independence we will
be using we then present the method �nally�
we present our conclusions�

� Structural Induction

It has been demonstrated that induction is a
method which can be successfully used in the
analysis of distributed systems� Kurshan and

McMillan ��� and Wolper and Lovinfosse �
��
published similar work using structural induc�
tion to reason about systems with unbound�
edly large numbers of identical components�
Both methods require an invariant to be de�
�ned and rely on proof obligations which corre�
spond to the base case and inductive step �us�
ing model checkers to discharge them�� The
inductive step�s� corresponding to rules for
construction of the associated networks� In
�
� ��
�� a similar type of structural induc�
tion scheme was perfected for CSP� utilising the
FDR tool to discharge the various proof obli�
gations� It is this type of structural induction
which forms part of the technique we present
below�

The basic induction method involves using
FDR to discharge proof obligations which take
the form of re�nement relations between pro�
cesses� Consider �
� and ��� below�

P v Core ���

P v P �right �� left �Node� ���

where the alphabet of Core and P is frightg�
and the alphabet of Node is fleft � rightg� The
linked parallel operator used in ���� ��right ��
left ��� has the e�ect of piping the two pro�
cesses� renaming the two channels to the same�
putting the relevant processes in parallel over
that channel� and hiding the communications
between them�

Core Node Node Node
right

Figure
� A chain of nodes with all events inside

the dashed box hidden�

Re�nement �
� corresponds to the base case
of the induction� and ��� the inductive step�
It is clear by transitivity of re�nement that
�
� and ��� can be combined to prove that a
Core process can be piped� on its right chan�
nel� into the left channel of any arbitrary num�
ber of Node processes piped together as given
in ���� and the resulting network will always
satisfy property P � Figure
 above shows a
typical system one could create�

In �
� �� this induction technique was used
to prove various end�to�end properties of ar�
bitrary binary tree networks which modelled
aspects of the resource reservation protocol
RSVP�� RSVP is a protocol designed to sup�
port reservation for high�bandwidth multicasts
over IP networks� Resource reservations are
created and maintained along each link of a
previously determined mulitcast route� where
routes consist of multiple sources and receivers
connected by arbitrary numbers of interme�
diate nodes� Messages requesting amounts
of bandwidth originate at receivers and are
passed upstream towards the source� At any
node� if a resource reservation is in place for an
amount of bandwidth then it may be shared by
all receivers downstream� removing any unnec�
essary duplication and reducing network traf�
�c� If at any intermediate node a request is re�
jected a reject message is passed downstream
and the request discarded� Otherwise� requests
are propagated as far as the closest point along
the way to the source where a reservation level
greater than or equal to it has been made�

It is this tra�c�reducing property which is
modelled in �
� ��� Here the protocol nodes
are binary in that they possess two down�
stream channels and one upstream� in contrast
a source process only has a downstream chan�
nel �since it is the ultimate destination�� The
property proven is that the receivers always
receive a response to each unique request for
bandwidth �or� that the interface presented by
the network to a receiver at any point has the
behaviour of a source process independently
of how many intermediate nodes lie along the
path between source and receiver�� It is estab�
lished that this correct behaviour is presented
on a particular interface no matter what events
are performed elsewhere on the network� This
is achieved by lazily abstracting all the net�
work�s behaviour which is not on the path be�
tween the source and receiver under consider�
ation� To lazily abstract a channel means to
hide the channel in such a way that we do not

�A description of RSVP can be found at
http���www�isi�edu�div��rsvp��index�html�

Node

Source

Node

Node

*

*

*

* A

Figure �� A Binary Tree� Dotted boxes containing

� represent the lazy abstraction of all events on that

channel�

assume that hidden events must occur� It pro�
vides the best way of formulating what a pro�
cess looks like to an observer who can only see a
subset of its alphabet �see Chapter
� of �

���

So in Figure � the correct behaviour pre�
sented on the downstream branch at A is in�
dependent of the behaviour of the rest of the
network at the points marked �� achieved by
the lazy abstraction of all events occurring at
the points marked �� In this case there would
be two re�nement relations corresponding to
the inductive step� one for each of the down�
stream channels of a Node where the other has
been lazily abstracted away�

Using this type of structural induction it
would be possible to prove properties of an
arbitrary tree constructed from certain nodes�
However� in such a proof the maximum degree
of branching will be �xed� and separate induc�
tive cases need to be model�checked for each
branching degree� The technique we present
in this paper allows all degrees of branching to
be dealt with at once with a few checks� by
using the techniques of data independence to
generalise arguments�

� Data Independence

A system is said to be data independent of a
data�type variable T when it makes sense for
any non�empty substituted type and it satis�
�es structural rules� meaning that it handles
the type in a relatively simple way� The pro�
cess representing the system may not perform
any operations on values of that type� it can
only input them� store them� output them� and
perform equality tests between them� Many
communications protocols are data indepen�
dent since they simply pass around data en�
suring that only desirable recipients are able
to extract it their behaviour is entirely inde�
pendent of the data itself�

Data independence ideas have been devel�
oped for a number of notations� having �rst
been studied formally in �
��� but we use here
the theory developed for CSP by Lazi�c and
Roscoe �see ��� �� and Section
��� of �

���
They have developed theorems which state
that for certain �data independent� systems it
is possible to verify that the system possesses
certain properties� for all instances of its in�
dependent types� by performing a speci�c ��
nite number of checks with �nite instances of
the types� Data independence theorems fre�
quently allow us to generate thresholds for
given checks� a size of type T such that one
or more checks of a property for this and per�
haps smaller types will imply that the property
holds for all T � Space unfortunately prevents
us from quoting in detail the various theorems
and de�nitions of data independence� for which
we refer the reader to ��� ��

��

However� of particular relevance to the tech�
nique we present in this paper is the ability
to consider data independent processes with
the addition of constant symbols and �in gen�
eral many�valued� predicates on variable types
The theorems used put some constraints on the
use of these predicates� They must be unin�
terpreted� in that they should be treated as
symbols� and the veri�cation will establish a
property for all possible interpretations�� The

�Where there are mutliple predicate symbols� or con�

predicate must be a function into a �xed �nite
type �otherwise the problem would become in�
tractably in�nite�� which in our case will be
ftrue� falseg� Again we must refer the reader
to ��� ��
�� for relevant theorems and de�ni�
tions�

� Data Independent

Structural Induction

We take as our starting point the protocol
model in ���� Our aim is to show that any
arbitrary tree network of N �branching nodes
will o�er correct behaviour� �speci�ed by prop�
erty P �� on any interface to a receiver� In the
case of the binary trees we lazily abstracted
one of the two downstream channels of any
intermediate node in the network� to achieve
N �branching node trees we need to establish
the structural induction for all�but�one of any
number of channels lazily abstracted� So� we
need to establish ��� and ��� below for a Node
with any N down channels� where AlphDown
is the set of all downstream communication ex�
cept that labelled by a particular constant C
�the name of the arbitrary channel we are leav�
ing visible��

P v Source �	�

P v LAlphdown�P �down �� up�Node�� �
�

LA�P � represents the lazy abstraction of the
events in A from P � Super�cially we cannot
do this using a �nite state model checker like
FDR� since it requires an in�nite number of
checks� whose state spaces grow with N � Care�
ful use of data independence� however� enables
it�

Let the type T under consideration repre�
sent the names of the downstream channels of
a node� So long as P and Node can be con�
structed in such a manner as to be data inde�
pendent of T � �and also satisfy various other
rules�� it may be possible to establish a thresh�
old on the size of T for ��� and ���� FDR can

stant symbols as well� it is possible and frequently de�
sirable to check only those cases in which these are in
a de�ned relationship� For example we might want to
check the cases in which one predicate is contained in
another and a constant belongs to their di�erence�

. . .Down(1) Down(2) Down(n)

. . .

. . .

Core

downstream

upstream

Figure �� �a� An n�branching node� Note that all

events internal to the node� inside the dashed box�

are hidden�

then be used to check re�nement relations cor�
responding to ��� and ��� for all sizes smaller
than or equal to the threshold� thus estab�
lishing the structural induction for all possible
sizes of T � and so for any arbitrary number of
N �branching nodes�

The Node process is constructed from a pro�
cess representing its core behaviour �Core� and
the parallel combination of processes service
a downstream channel �Down�� Each of the
Down processes must be data independent in
the type T of allDown processes� as must Core
�though the Down process as its own name as a
constant symbols� Figure � shows a node with
n downstream channels� Each of the Down

processes is responsible for maintaining state
on the reservations already in place on the
node� and can issue responses to requests as
appropriate� If a request is to be propagated
upstream then the Down process sends the re�
quest to the Core � on a local request chan�
nel� The Core process then propagates this up�
stream� In order to perform e�ective merging
of requests� and so achieve the desired tra�c
reduction properties� each of the Down pro�
cesses needs to know of responses to requests
made on the other downstream channels of the
node� Figure � indicates how this is achieved
all replies from upstream are sent to the Core
which in turn forwards these over the one re�

ply channel to all of its Down processes �this is
thus a broadcast communication� as indicated
by the di�erent way this channel is treated in
this and later �gures�� We can hide all of the
internal events of a node since no other pro�
cesses in the network will ever need to synchro�
nise on them� However� we are unable to use
this construction of a node in ��� because in�
dexed parallel composition over data indepen�
dent types is prohibited in the theory of data
independence we are using��

In order to perform our structural induction
we need to use a process in ��� which is equiv�
alent to a node with all but one of its down�
stream channels lazily abstracted� which is not
itself constructed of the parallel composition
of Down processes� Since the lazy abstraction
of events on a channel allows any possible set
of events to occur� including the empty set� it
would seem intuitive that we could push the
lazy abstraction higher up into the node and in�
stead lazily abstract all the events whichDown
uses to send its requests to Core � If we could
show that a node with all but one of its down�
stream channels lazily abstracted is equiva�
lent to one which is not fully constructed� in
that not all of the Down processes are present
on the local request channels of Core � where
all possible requests which could have come
from those Down processes have been lazily
abstracted� then we would have a data inde�
pendent representation of a N �branching node
which could be used as Node in ���� We need
to show that the nodes �a� and �b� in Figure
� are equivalent� We can�t use data indepen�
dence directly for the reasons discussed above�
however� we can show this using a combination
of induction and data independence�

Lemma � Let the node �a� in Figure � be
NODEa� and node �b� be NODEb� then
NODEa � NODEb�

We prove this using a technique called data
independent induction� see ��� for a more de�

�This is largely because allowing such compositions
would allow one to count the type T�

Down(1) . . .

. . .

(a)

Down(2) Down(n)

*

. . .

Core

Down(1)

. . .

* *

(b)

Core

Figure �� �a� A node with n downstream channels�

all but one lazily abstracted� �b� A node with n lo�

cal request channels for Core all but one lazily ab�

stracted away� the remaining one having a Down

process attached to it� In both �a� and �b� the

channel which Core uses to propagate replies to the

Down processes is represented by a large single ar�

row�

tailed explanation� We use data independence
to prove a separate induction for each size of
the type discharging the base and step cases
for all sizes simultaneously with a �nite col�
lection of re�nement checks� We will use this
type of induction to show that if we have a
Core process with a set of n Down processes
on a proper subset of its downstream request
channels� then the process that results from
abstracting the downstream events of this col�
lection of Down processes is the same as re�
sults from lazily abstracting the same set of
channels from Core directly� �i�e� without the

Down process�� The result shown in Figure � is
then implied by the case where there are Down
processes on all but
 of the local downstream
request channels�

The base case �n � �� of this induction is
trivial as the processes which the induction
claims are equal are syntactically the same�
The step case is proved by showing that a sin�
gle Down process� whose external interface is
abstracted� can be removed and replaced by
the abstraction of its request channel to Core �
This is illustrated in Figure �� ABS represents
a set of request channels already abstracted�

. . .

Core

B . . .

.

*(ABS)

*(B) *(ABS)

*(downstream)

Down(B)

Core

(a)

HI(ABS,B)(b)

LOW(ABS,B)

Figure �� We can replace the lazy abstraction of

a downstream channel from Down by the removal

of Down and the lazy abstraction of all events on

its local request output channel to Core� Lazy ab�

straction of channels is denoted by dotted curved

cornered rectangles�

In order to prove equivalence of two pro�
cesses in CSP it is su�cient to show that each
re�nes the other in the failures�divergences

model of CSP� We use data independence the�
orems to generate a threshold� this time on the
size of T � where ABS is treated as a predicate
mapping each member to true if it is in the
set� We can then show that the following re�
�nements hold for all sizes of T for all possible
con�gurations of ABS� equal to the threshold
and below it� then we have shown the two to
be equivalent for all T �

HI�T�ABS�B� vFD LOW �T�ABS�B����

LOW �T�ABS�B� vFD HI�T�ABS�B� ���

As with all the examples in the paper� the
threshold is small and is �� the constant B

outside ABS� one member of T inside ABS

and one outside� This actually only leaves two
checks for each of ��� and �	� which handle the
cases of ABS being empty and of size one� This
pair of lemmas easily justi�es the induction� so
proving Lemma
� which in turn allows us to
use the NODEb in ����

Thanks to the replacement of NODEa by
NODEb ��� and ��� now become properties
which can be proved by data independent rea�
soning �again with a small threshold�� Thus a
few re�nement checks combined with our ear�
lier results show that any branching width of
node can validly be used in our RSVP struc�
tural induction� Hence� a much wider range of
network topologies have been proven to have
the desired property�

� Conclusions

We have shown how data independence can
be used to lift results obtained for limited�
branching networks to ones with arbitrary
branching� The most interesting part of the
proof was caused by the parallel nature of the
individual nodes and the consequent need to
use a separate level of induction to eliminate
most of this parallelism� Since� at least concep�
tually� many system components have simple
message�handling processes resident on many
channels� we imagine that this lower�level in�
duction will have analogues in other applica�
tions� Indeed� there are reasonably close ana�
logues with the second main example of ��� in

which an arbitrary number of channels are mul�
tiplexed along a single pair� However� in many
cases it will be possible to use data indepen�
dence to deal directly �namely without the low�
level induction� with arbitrary branching�

The way data independence is e�ectively
used� in the low�level induction� to verify a
separate induction for each size of type� is de�
scribed in more detail in ��� ��� The examples
there are in some ways more ambitious since
in most cases all nodes are supplied with the
others� identities �as a type� and can use these
in non�trivial ways�

Ongoing developments in the symbolic han�
dling of data in re�nement checks on FDR
should be a great help in discharging the model
checking obligations generated by our tech�
niques� In e�ect this should completely au�
tomate the application of data independence�
It would no longer be necessary to calculate
thresholds �and the ad hoc arguments used to
bring the threshold down�� as all of the anal�
ysis would be done at �run�time� and auto�
matically� Furthermore� there is every hope
that the checks would complete much faster� as
this method should reduce many equivalence�
classes of essentially similar states down to a
single one�

Acknowledgements

We would like thank Ranko Lazi�c for his work
on data independence and Joy Reed for ear�
lier collaborative work on this example which�
indeed� she brought to our attention�

References

��� S�J� Creese� An Inductive Technique for FDR�
Master	s thesis� Oxford University� �

��

��� S�J� Creese and J� Reed� Verifying End�to�End
Protocols Using Induction with CSP�FDR� Paper
accepted for presentation at FMPPTA	

� Puerto
Rico� April �

�

�� S�J� Creese and A�W� Roscoe� Verifying an in�
�nite family of inductions simultaneously using
data independence and FDR� Paper submitted to
FORTE�PSTV 	

�

��� S�J� Creese and A�W� Roscoe� Oxford University
Computing Laboratory Technical Report� PRG�
TR���

�

��� Failures�Divergence Re�nement� FDR� User
Manual� Formal Systems �Europe� Ltd� �

����

��� C�A�R� Hoare� Communicating Sequential Pro�
cesses� Prentice�Hall� �
���

��� R�P� Kurshan and K� McMillan� A Structural In�
duction Theorem for Processes� Proceedings of �th
Symposium on Principles of Distributed Comput�
ing� Edmonton� �
�
�

��� R�S� Lazi�c� A semantic study of data�independence
with applications to the mechanical veri�cation of
concurrent systems� Oxford University D�Phil the�
sis� �

�

�
� R�S� Lazi�c and A�W� Roscoe� Verifying Determin�
ism of Concurrent Systems Which Use Unbounded
Arrays� Proceedings of INFINITY	
�� Aalborg�
Denmark� July �

�� extended version as Oxford
University Computing Laboratory TR���
��

���� R�S� Lazi�c and A�W� Roscoe� Data independence
with predicate symbols� This volume�

���� A�W� Roscoe� The theory and practice of concur�
rency� Prentice Hall� �

��

���� J�N� Reed� D� M� Jackson� B� Deianov and G� M�
Reed� Automated Formal Analysis of Networks�
FDR Models of Arbitrary Topologies and Flow�
Control Mechanisms� Proceedings of ETAPS	
��
Lisbon� Portugal� to appear in IEEE Transactions
on Software Engineering� March �

��

��� P� Wolper� Expressing interesting properties of
programs in propositional temporal logic� �����
�
Proceedings of the �th ACM POPL� �
���

���� P� Wolper and V� Lovinfosse� Verifying Properties
of Large Sets of Processes with Network Invariants
�Extended Abstract�� Proceedings of the Interna�
tional Workshop on Automatic Veri�cation Meth�
ods for Finite State Machines� LNCS ���� �
�
�

