
The successes and failures of behavioural models

A.W. Roscoe, G.M. Reed and R. Forster∗

Oxford University Computing Laboratory
Wolfson Building

Parks Road
Oxford OX1 3QD

August, 1999

Abstract

We examine the advantages and disadvantages of modelling concurrent processes
in the style of Hoare, where a process is modelled as a set of relatively simple be-
havioours, as opposed to modelling them as transition systems. A special study is
made of the way these two theories handle the topic of noninterference from computer
security.

1 Introduction

Concurrency is a complex and fascinating subject, and the ways in which a system com-
posed of many processes running in parallel and interacting with each other might behave
would seem to most people to defy description. One of Tony Hoare’s great insights is
that it is possible to get useful models of a concurrent system by recording the set of all
the behaviours that an experimenter with an appropriate degree of interest might record
from single observations of it, such as traces or failures.

The vital principles required of one of these behavioural models are that they should
convey useful information about the system being modelled – possibly or possibly not a
‘complete’ description of it – and must be compositional. This means that whenever a
construct in our chosen language is used to build a process from syntactic subcomponents –
such as putting P and Q in parallel to get P ‖ Q – it must be possible to calculate the
set of behaviours our experimenter might observe of the compound process from those of
its parts.

What we will do in this paper is to examine the successes and failings of this seman-
tic approach, comparing where appropriate with ones based on transition systems. A
particularly telling test-bed is the subject of specifying (the lack of) information flow in
computer security research, so in the last section we concentrate on that.

∗The work reported in this paper was supported by grants from the US Office of Naval Research

1

2 Traces, failures and beyond

Here we examine the basic properties of behavioural models. Lack of space prevents us
from presenting many technical details here. The best general source for finding out more
is [31], though for more specialised topics it is necessary to consult the references directly
quoted.

Before we start to look at specific behavioural models, it is useful to describe the
most frequently-used alternative, the labelled transition system (LTS). In this, a process
is assumed to have some set of states V and a ternary transition relation p x−→ q where
p, q ∈ V and x is some action that might occur as state p is transformed to state q . The
action x might be externally visible and controllable by whoever is interacting with the
process, or it might be invisible and uncontrollable. (The idea of an action that is invisible
but controllable is ridiculous; the concept of one that the environment can observe but
not prevent – a signal event – does make sense but for simplicity this is a case that we
will be ignoring.) In most treatments there is a single invisible action, labelled τ .

Thinking of processes in this way is enormously attractive because it seems to give
us a very clear understanding of how the execution of a process proceeds: we can see,
and reason about, the individual steps. It is just about universally accepted that this
model contains too much detail about how processes act if what we are trying to do is
decide on whether a pair if them are ‘essentially’ the same. For example, different finite
patterns of τ actions leading overall to the same range of eventual states would often
be regarded as creating equivalent processes. Thus, raw transition system semantics
are usually characterised as ‘operational’, and theories are built over them to decide on
whether a pair of processes are equivalent or not. The best known example of this type of
theory is Milner’s CCS[18], which has spawned both a wide range of theories for analysing
its operational semantics and many related process algebras.

Transition systems do impose a very particular intuition about what processes are. We
might observe, for example, that they give a highly sequential view of what a process is:
to all intents and purposes they identify processes with a type of state machine, and imply
that actions are always temporally ordered with intermediate states, even when in reality
the actions may be happening quite independently at distant corners of a parallel network
at the same time. Debate has flourished for many years between people who prefer this
style in which processes that are really concurrent become identified with sequential ones
(the so-called interleaving style of semantics) and a variety of semantic styles in which
this identification is not made (usually called true concurrency). Secondly, they make it
natural to define operators over processes by what they do operationally rather than how
they look to an outside observer.

The most striking example of the latter feature is the + operator of CCS (which creates
a choice between two processes). Even though the observational theory of CCS equates
the processes P and τ.P , the operational theory allows the τ to resolve the choice, and
therefore P+Q and τ.P+Q are not always observationally equivalent. Thus observational
equivalence is not a congruence: a feature of CCS which complicates it (as well as the
other languages that have borrowed this operator) greatly.

2

The corresponding formal intuition underlying Hoare’s development of the form of
CSP found in [15] was rather different: mathematical models based on observable process
behaviours. These were the traces model of [14], and the failures model of [3] (later
replaced by the failures/divergences model of [4] – see below). In each case a process was
identified with the set of things a particular observer might see. In the traces model these
are finite sequences t ∈ Σ∗ (where Σ is the set of visible actions and A∗ are the finite
sequences with members drawn from A). A process is then a nonempty, prefix-closed
subset of Σ∗. (These are the healthiness conditions which state which sets of behaviours
are reasonable pictures of processes.) The traces model T is then the set of all these
processes.

It is remarkably straightforward to give the traces semantics of CSP: we simply give
rules which show how, for example, to compute the traces of P ‖ Q from those of P
and Q . For all non-recursive operators of the standard language it is possible to do this
by lifting one or more relations on individual traces. The parallel operator has just one
relation: a ternary one which relates a trace of P and one of Q to one of P ‖ Q , but
sometimes there are more. For example, with the prefixing operator a → P , the most
natural presentation has a unary relation showing that we get the empty trace 〈〉 without
P performing any trace, and a binary relation mapping each trace s of P to 〈a 〉̂ s.

The existence of this type of representation automatically gives all these operators
properties of distributivity over nondeterministic choice (the operator P � Q , which is
described in all behavioural models by the union of the behaviours of P and Q), and of
continuity with respect to the direct-inclusion order on behaviour.

This continuity is fortunate because it is necessary to compute the semantic value of
recursive processes defined both by simple equations like P = a → P and by complex
mutual systems of equations. For unlike the case with transition systems, where defining
recursion by an unwinding rule is trivial, in a behavioural model we always have to have
some mathematical structure on the model (and the class of definable operators over it)
which guarantees the existence of a fixed point. In the case of the traces model the theory
is that of least fixed points of continuous functions over the complete lattice (T , ⊆).

If traces were enough to give a complete picture of how concurrent systems behave
then all would be easy. Unfortunately the phenomenon of nondeterminism is fundamental
in concurrency, meaning that in any reasonably complete theory it is certain that we will
be able to create processes which can take internal decisions (one manifestation of which
in LTS’s is the selection of which of a number of τ transitions to pick), and traces alone
can neither detect nondeterminism nor distinguish between processes that must offer a
particular event and ones that may choose not to. Hoare’s solution here was to add as
little information as possible onto traces to allow the detection of deadlock: a failure
(s,X) is the combination of a trace and a set of events that the process might refuse
(indefinitely) if offered after s. There are really two ways in which a process might
indefinitely refuse a set of events X that has been offered to it: it might get stuck in a
state where neither internal progress nor a member of X is possible, or it might engage
in an infinite succession of internal events (behaviour which is termed divergence). After
attempts to model CSP without special treatment of divergence were found to be subtly

3

flawed, it proved necessary to include explicit treatment of divergence in the model, thus
representing each process by its sets of failures and divergences (traces on which it can
diverge). The resulting failures/divergences model has proved extremely successful.

It has a more complex set of healthiness conditions than the traces model, the most
interesting of which are those which say that we do not record details of processes after
potential divergence and the following, which says that impossible events are always
refused:

(s,X) ∈ F ∧ Y ∩ {a | (s 〈̂a〉, {}) ∈ F} = {} ⇒ (s,X ∪ Y) ∈ F

All behavioural models naturally model process refinement by reverse inclusion: P � Q
if the behaviours of P include all those of Q . This is because each of the behaviours is
only a possibility whose presence in the model does not mean we can rely on it in a given
execution, and therefore is perhaps better thought of as a potential violation of some
specification than as an asset. Having less potential behaviours is regarded as reducing
the potential nondeterminism of the process.

The fact that the traces model has a process that is maximal under refinement (STOP)
is further evidence that it does not give a complete picture of processes. It is mainly as
a consequence of the above healthiness condition that the failures/divergence model has
much more satisfying structure: its maximal elements are precisely the deterministic
processes, which are divergence-free and satisfy

∀ s ∈ Σ∗. ∀ a ∈ Σ.¬((s, {a}) ∈ F ∧ (s 〈̂a〉, {}) ∈ F)

This simply says that a deterministic process is one that never has the option of whether
to offer an event or not. Provided we ignore the complications sometimes introduced to
handle process termination, there is exactly one deterministic process for each member of
the traces model: the kind implementation that can be guaranteed to progress through
any one of its traces if offered the right events in turn.

While this behavioural style of modelling and the LTS style were quickly brought
together by many connecting theories such as testing [5, 13], full abstraction and giving
CSP congruent operational semantics (e.g. [2, 22]), the differences in modelling style have
led to some interesting contrasts in how the theories have developed. One of the most
obvious is in the choice operators: CSP does not give the same role to τ and therefore
has separate operators for nondeterministic (i.e., internal) and external choice, namely
P � Q and P � Q , which are given different semantics for their failures on the empty
trace.

It seems to make a great difference that in behavioural models a process is modelled
directly by its semantic value rather than having to argue what equivalence relation to
put over operational semantics. One of the most attractive consequences is that it leads
to a completely natural and unproblematic theory of refinement (as discussed above),
something which is often not true of other types of model.

The behavioural style of model has led to a greater emphasis on the application
of “continuous” mathematics such as topology, order analysis and metric spaces (even

4

though the structures they were applied to were usually relatively discrete when looked
at carefully).

The first topological application was a recursion induction theorem for the failures
divergences model based on contraction mappings over a complete metric space defined
on processes [26] (developed further in, for example, [28]); such a theorem was needed
since the Scott recursion induction theorem for complete partial orders requires that the
specification be true of the bottom element (which in the failures divergences model is
rarely desirable – the bottom element is the most nondeterministic and divergent process
div). Recently in [17], new recursion induction theorems have been established for CSP
which directly relate the partial orders to developable spaces (a class more general than
metric spaces) in a natural and unexpected manner.

A second topological application for the behavioural semantics of CSP is found in the
models for timed CSP [23, 24, 25]. In developing these models, it quickly became clear
that complete partial orders were not appropriate. For example, there is no obvious “most
nondeterministic” timed process, particularly if one wishes to postulate that a process can
do only a finite number of events in a finite amount of time. Furthermore, there proved
to be no least upper bound for increasing sequences arising from the natural candidates
for partial orders. Fortunately, the concept of time itself provided a natural metric on the
set of timed behaviours; the distance between two processes is simply expressed using the
time for which they behave indistinguishably. By imposing a constant representing the
minimum time necessary for the unwinding of any recursion, it was possible both to satisfy
the finitary postulate above and to ensure that all recursions represented contraction
mappings over the resulting complete metric space of behaviours. Hence, unique fixed
points are guaranteed by the Banach fixed point theorem, and recursion induction is again
accomplished under the metric approach.

Finally, the behavioural style of modelling CSP has led to models which are neither
complete partial orders nor topological spaces. Roscoe established in [29] that unbounded
nondeterminism in CSP would require such models. The appropriate models were pre-
sented in [29, 1, 20], and were based on the concept of “locally complete” partial orders.
These models required the development of a new fixed point theory for domains, and have
inspired considerable further theoretical work, e.g. [19].

A great advantage of the behavioural approach has been the possibility to reason about
features of a CSP process using several of the above models simultaneously. Although
involving metric spaces, a variety of partial orders, and new mathematical structures, the
natural mappings between behaviours have provided useful theories for formal analysis
and proof.

Many behavioural models have been created, encompassing time and infinite non-
determinism as discussed above, probability [16], processes with assignable state [27],
different flavours and interpretations of of behaviour (two examples closely related to
what we have seen are [21, 35], and there are many others) and combinations of these
things. Of course, transition system models have been created for all these things too.
Some of the literature could be said to be at the boundary between the two styles, since
it relates to congruences (i.e., language preserving equivalences) over transition systems

5

rather than having the primary aim of giving the semantics in the chosen model. The
major technical difference here is that in this case there is not the same need to provide
a (fixed point) semantics for recursion, which is therefore often not done. Applications of
such congruences are then, of course, limited to recursion-free contexts.

The greatest semantic difference between transition systems and behavioural models
appears in their ability (respectively inability) to see when a nondeterministic choice gets
made. The processes C1 = a → (P � Q) and C2 = (a → P) � (a → Q) will be equivalent
in any behavioural model, assuming it does not see internal activity directly (or the time
this takes), since on any single execution from the initial state of the processes the two
processes have exactly the same possibilities. This is, of course, the distributivity of
prefixing over nondeterministic choice – and, as described above, distributivity is often a
natural consequence of the behavioural style.

There are strong arguments for not recording details of when these choices are made
if it is unnecessary, and even stronger ones for using something like LTS’s when it is nec-
essary. It might be necessary for one of two reasons, both of which are rare. One of these,
the possibility that the specification might need this level of detail, will be the subject of
the next section. The other is if our language contains some operator which can do some-
thing like take a snapshot of a process in mid-flight and then compare several instances
of this. Standard process algebras have no such operators, but they have appeared, for
example, in many exercises. Imagine, for example, an operator Checkpoint(P) which be-
haves like P except for two special events snapshot and backtrack, where communicating
the latter has the effect of restarting P from the state it was in the last time snapshot
occurred. Consider Checkpoint(C1) and Checkpoint(C2) in the context that snapshot
was communicated after the initial a and subsequently enough has happened to allow the
user to tell whether the nondeterminism has chosen P as opposed to Q . If backtrack then
occurs in C1, it might behave like either P or Q , since we do not know if the snapshot
occurred after the choice or not. The same experiment on C2, on the other hand, would
be certain to lead to behaviour like P again, since we know the choice has already been
made.

If forced to give semantics to an operator like Checkpoint over a behavioural model,
all one can do is to give the most pessimistic (i.e., least refined) answer, which in the
above case would be Checkpoint(C1). However one has to recognise that this is a true
approximate answer in a sense that does not occur with the usual operators, for which
exact operational congruence holds.

3 Modelling information flow

As we have begun to see in the first part of this paper, there are many subtle questions
involved in deciding what is the right model for concurrent systems. Either fortunately
or unfortunately, depending on your point of view, most practical specifications which
arise in real life are fairly blind to the distinctions between these theories. With hardly
an exception, in eight years of applications of the CSP refinement checker FDR [6] in a
wide variety of practical examples, it has always been possible to formulate the desired

6

correctness properties in the standard CSP behavioural models it supports. The great
majority of these applications, in turn, reduced to simply checking that the proposed im-
plementation Impl refined a process Spec representing the specification. Such behavioural
specifications could equally well be formulated in any of the standard theories of transi-
tion systems. Thus, for most purposes, the question of which theory to use reduces to
secondary (though important) considerations such as ease of expression and efficiency of
implementation.

By far the most important exception to this rule that we know is in the area of
computer security, when we attempt to analyse the potential for information flow across
a process from one user to another. Imagine the alphabet of process P is partitioned
into two sets H and L (respectively the interfaces of high and low level users with the
same names), and that we are happy for what appears in the H events to be influenced
by the decisions made by the user L, but do not wish L to be able to detect anything
about what H has done from its interactions with P . This is an important topic as it
relates to areas such as multi-level file systems and shared use of communication media
and other resources by users with different security classifications. It has been the subject
of an enormous amount of literature, much of it formulated in various process algebras.
A small selection is [11, 34, 12, 33].

The concept of “security” is not one that we would wish to depend on the precise
model used to give semantics to a process: it is, after all, unrealistic to assume that a spy
is going to restrict his observations to those recorded in a specific model of concurrency.
However, since it is clearly open to the spy to watch every detail of a process that a model
records and to infer what he can about H ’s behaviour from these, it is difficult in general
to satisfy this aim.

Most formulations of the virtually indistinguishable notions of independence and non-
interference (both meaning lack of information flow) take the form of asserting that the
behaviour visible to L does not depend on what H does. There is, of course, a lot of varia-
tion in how the details are put into this outline. It is easy to make subtle mistakes in doing
this, most often by believing in one’s model – and the way it handles nondeterminism – a
little too much. One of the most common phenomena is the so-called refinement paradox,
under which we can have P � Q , with P satisfying an independence property and Q not.
If � really does represent refinement as it usually understood, this is ridiculous as it is
permissible for P always to behave like Q , namely insecurely.

It follows that whenever there is nondeterminism visible to L subsequent to a decision
H has made, we cannot consider a process secure unless a lot more is known about how
the nondeterminism is resolved than we usually choose to know. We will see some more
examples later that will re-emphasise this.

If the only potential source of nondeterminism visible to L is high-level behaviour
then the situation is easy: if an appropriately formulated low-level view of the process
(i.e., with the high-level behaviour abstracted away) is nondeterministic then there is
a mechanism for H to pass information to L through P . On the other hand, if it is
deterministic then whatever H does has no effect on what L sees, so no information can
flow (at least through observations supported by the model in use). In other words, if P

7

is locally deterministic in L (implied by full determinism of P) then it is independent if
and only if LH (P) (the result of applying an operator that turns all action or inaction by
H into internal nondeterministic choices) is itself deterministic.

The failures/divergences model has considerable advantages when it comes to speci-
fying all of the important terms in this statement. We need its extensional formulation
that a process is deterministic if it is divergence free and can, after no trace s both accept
and refuse any event a (or an event a in L for local determinism in L). The most natural
definition of “determinism” in LTS models is that of a deterministic state machine, which
is too restrictive since the essence of the security conditions are that turning all high-level
choices into nondeterminism within the LTS somehow manages to preserve extensional
determinism (i.e., every choice apparently introduced leads to equivalent processes).

The failures/divergences model also provides an ideal vehicle for describing the form
of abstraction required: the lazy abstraction of the events H in a divergence-free, finitely
nondeterministic process P is the process LH (P) which behaves like P \ H (the process
where events from H are turned into τ actions) except that we cannot rely on the inter-
nalised H actions occurring (as the high-level agent may opt to do nothing). Its failures
are

{(s \ H ,X) | (s,X ∩ L) ∈ failures(P)}

as opposed to those of P \ H :

{(s \ H ,X) | (s,X ∪ H) ∈ failures(P)}

Remarkably, the structure of the model – specifically the maximality under refinement
of deterministic processes – provides the key to an efficient decision procedure for whether
a process P is deterministic or not. We simply pick (using LTS determinisation) an
arbitrary deterministic refinement P ′ of P and test to see if P ′ � P . This is true if and
only if P was deterministic (and hence failures/divergences equivalent to P ′).

The definition that lazy independence holds if LH (P) is deterministic is still safe even
when P is not locally deterministic in L, but may well give false negative results. It
regards all nondeterminism of this process as potentially conveying information about H ,
even though it may not. This is the formulation of security proposed in [32] with further
development in [30, 31, 36], for example.

There is a high degree of agreement that this is the right definition in the class LD
of processes that are locally deterministic in L – because other formulations, whether in
terms of behavioural models [30] or transitions systems [8, 10] all coincide with it in this
case. The situation when we step outside this area becomes much more controversial,
however.

Consider the process LEAK � ChaosL, which can opt either to behave like the
arbitrary and potentially leaky process LEAK or to behave like ChaosL, which never
communicates with H at all but behaves like the most nondeterministic divergence-free
process in the alphabet L. (A convenient example process to imagine for LEAK is one like
LEAK = high?x → low!x → LEAK.) Do you think this process is secure, and would

8

it be any more secure if ChaosL were replaced by ChaosL∪H ? In both cases one can
argue that L can infer nothing definite about what H has chosen to do since the process
can opt to behave like Chaos and show anything to L off its own bat. On the other
hand we may choose (under the conventional understanding of nondeterminism in CSP)
to implement this process as LEAK, and even if we do not it may behave like LEAK.
In the first case (ChaosL) it is certain that anything H actually gets to communicate is
transmitted straight to L, and in either case it might be reasonable for L to infer that if
what he sees is making sense that the nondeterministic choice was probably resolved in
the direction of LEAK. We believe it is very dangerous to regard either of these processes
as secure: this is all the more confusing in the second case, since this process is actually
failures/divergences equivalent to

ChaosH∪L = (?x : H ∪ L → ChaosH∪L) � STOP

a process with no mechanism for transmitting information from high to low.
This certainly illustrates that the failures/divergences model is not adequate to tell

secure processes from insecure ones outside the class LD. Both examples illustrate the
problems that can be caused by confusing the sort of nondeterminism created by H with
intrinsic nondeterminism, and by identifying nondeterministic choices made immediately
(as the crucial choice is made in both these examples) with ones made subsequently. One
of the major questions it asks is whether the possibility that a nondeterministic choice
might lead the process into a disastrously insecure state, like the specific LEAK quoted
above, should or should not automatically condemn the entire process as insecure. Natural
caution suggests to us that it should.

The obvious solution is to look for definitions of independence over LTS’s, because
these give finer equivalences than the failures/divergences model, and in particular allow
us to see exactly when a nondeterministic choice gets made. This is what Focardi and
Gorrieri did (expressed in a modified form of CCS) [7]. They give a wide range of security
conditions, and show that in what is essentially the case LD that their main conditions
(including the ones quoted below) agree with lazy independence. We do not have space
here to quote many of their definitions or results, but it is fair to say that they regard
their primary definition of independence as the following condition BNDC (standing for
bisimulation nondeducibility on compositions and expressed in their modified CCS):

∀Π ∈ EH .P \ H ∼=B (P | Π)\H

This says that the view of the low-level agent is independent of what the high-level one
chooses to behave like (EH being the set of all possible high level agents), equivalence
being judged using weak bisimulation equivalence [18] (which for divergence-free pro-
cesses is much stronger than failures/divergences equivalence).1 Since this is squarely
in accordance with the outline definition of independence given earlier, all seems well.
Unfortunately, however, it is possible to construct something very like LEAK � ChaosL

1P\H is a restriction operator: it means “P with events from H prevented” as distinct from P \ H ,
where they are turned into τ ’s and thus hidden.

9

which puts it very much in question: for any process P , the process

P � �{(P | Π)\H | Π ∈ EH }

(expressed, for convenience, in a mixture of CSP and CCS2) satisfies BNDC even though
it can choose to behave like the arbitrary process P and certainly does whenever H does
anything.

Yet again, we can guarantee here that if H has been allowed to do anything at all
by the process then it has behaved insecurely. The root causes of this problem are again
the difficulties caused by the different sources, and decision points of, nondeterminism. It
was certainly much easier to create this counter-example because BNDC looks at multiple
views of the initial state of the process rather than demanding that something appropriate
holds of each state that P can reach.

It is interesting that Focardi and Gorrieri introduce a condition stronger than BNDC
which does have this latter form. This is the condition SBSNNI (strong bisimulation
strong nondeterministic noninterference), whose main motivation is that it implies, and
is easier to decide than, BNDC:

∀P ′.(∃ s.P s=⇒ P ′) ⇒ P ′ \ H ∼=B P ′\H

In other words, all reachable states P ′ of P behave equivalently with H actions hidden
and, respectively, prevented. The extra strength of this condition, and in particular the
“for all states” form, makes it more difficult to find arguably insecure processes satisfying
it. However because it does not distinguish between different H events there are still
examples in which L can distinguish which – if any – H action has occurred at some
point. For example the process shown in Figure 1 – drawn as an LTS for clarity – satisfies
it. Here each bit that H communicates is passed to L amongst some randomly created
noise. One might reasonably expect L to be able to tell the difference between what he
sees when H constantly presses the 0 key as opposed to the 1 key. The same example
would, of course, work with a much larger type than bits, in which case an intelligent L
might have a reasonable expectation on seeing a coherent message appearing that it was
much more likely to result from H rather than noise.

Forster [9], having discovered these problems, goes on to introduce two conditions
which take as their basic thesis that each individual state of an implementation has to
be examined for security. The simpler of these is strong local noninterference, which P
satisfies when all its reachable states P ′ have

h ∈ H ∧ P ′ h−→ P ′′ ⇒ P ′\H ∼=B P ′′\H

In other words, each individual H action has no effect on what L can do to P thereafter.
The difference with the weaker condition local noninterference is that when a given P ′

2The finer equivalences of CCS make the concept of a universal most nondeterministic process on an
alphabet like ChaosL problematic, but the construction above produces essentially the same result on a
case-by-case basis. Depending on the value of P , the number of ∼=B equivalence classes of (P | Π)\H as
Π varies might or might not be finite – if it is finite then an equivalent process could be created without
the infinitary nondeterministic choice used above.

10

τ l.1
l.0

P

h.0 h.1τ

Figure 1: Process that satisfies SBSNNI

has several transitions with the same h label, these are aggregated on the basis that H
has no control over which of this set of transitions is followed:

h ∈ H ∧ P ′ h−→ P ′′ ⇒ P ′\H ∼=B �{P ′′\H | P h−→ P ′′}

As shown in [10], where they are examined in detail, both these conditions agree on
LD with lazy independence, imply SBSNNI and hence BNDC, and find all the potential
security leaks in examples we have found.

It is interesting to note that in order to get what seem to be satisfactory conditions over
transition systems we have been forced into direct examination of the transition structure,
as opposed to the pleasing abstraction of BNDC and lazy independence. This has another
effect: the new conditions rely on a literal interpretation of what an LTS is, for example
that each time we reach a state with nondeterminism in it (τ branching or multiple actions
with label h) then each choice is one that might actually be chosen. There must be no
mechanisms that resolve this nondeterminism hidden in the abstraction process. Since,
as discussed earlier, the LTS model usually is best regarded an abstraction of some more
concrete operational model, this issue must be given attention in any application.

Because of the reliance that these conditions place on the range of possible behaviours
in an LTS definitely being possible on every run, they are inconsistent with any notion of
refinement. In order for these conditions to make sense, our idea of what nondeterminism
is has to become a lot narrower than usual.

The more one thinks about it, the more one realises that one’s view of whether some
processes outside LD are secure or not depends crucially on one’s exact assumptions about
how nondeterministic choice is resolved and how much the processes themselves can see
this mechanism. Consider, for example, the pair of processes, in which all the data values
are bits and ⊕ is exclusive or

XOR1 = (high?x → low !x → STOP) � (high?x → low !x ⊕ 1 → STOP)

XOR2 = high?x → (low !x → STOP) � (low !x ⊕ 1 → STOP)

11

Even though standard CSP equivalences would make these two processes equivalent, there
is a potential channel from high to low which is present in XOR1 but not XOR2: if H
could determine somehow which way the nondeterministic choice in XOR1 had been
resolved, he could decide what to output on high in order to achieve the desired output
to L, an option not available on XOR2 where the nondeterminism is not resolved until
after he makes his choice. (Both these processes have the additional insecurity that L
will in any case know that H has done something when communication appears on low.
The same issue can be reproduced in otherwise secure processes, but this would lose the
simplicity of XOR1 and XOR2.) The local noninterference properties (and to some extent
SBSNNI) will catch this type of potential leak and some which are even more subtle and
rely on L being able to do things similar to those seen in the Checkpoint operator in the
last section. Whether or not these conditions are thereby over-pessimistic or correctly
vigilant will depend on the answers to questions we usually prefer not to ask about the
operation and observation of transition systems.

All the conditions we have seen giving definitions of security outside LD have essen-
tially the same intent: whatever H does, the range of nondeterministic options on what
L sees should not change. This does, of course, assume that whatever demon resolves
this nondeterminism is benign (does not base its choices on what H has done). They
are possibilistic, as opposed to probabilistic definitions because they do not take account
of any changing probability distributions amongst the nondeterminism. There are strong
arguments for wanting to incorporate this type of reasoning into noninterference analysis,
but as yet we are not aware of any model of concurrency which simultaneously deals with
both probabilistic and non-probabilistic nondeterminism sufficiently flexibly to achieve
this.

Our conclusion, then, is that the behavioural models provide the most natural way
of identifying the case in which specifying noninterference is relatively uncontroversial
and of specifying it in that case. They are, however, far too weak (thanks to the same
distributive properties over nondeterminism which caused problems with Checkpoint) to
address the issue outside this range, but if one does choose to step outside it then extreme
care is required. We think it is also true that the subject of noninterference provides the
best practical arena for exploring the differences between ways of modelling concurrent
systems, since the nuances which make little difference elsewhere seem to loom large when
discussing information flow.

References

[1] G. Barrett. “The fixed-point theory of unbounded nondeterminism”, Formal As-
pects of Computing, 3, 110–128, 1991.

[2] S. D. Brookes. “A Model for Communicating Sequential Processes”, DPhil, Oxford
University (1983). (Published as a Carnegie-Mellon University technical report.)

[3] S. D. Brookes, C. A. R. Hoare and A. W. Roscoe. “A Theory of Communicating
Sequential Processes”, Journal of the ACM 31:3 (1984), 560–599.

12

[4] S. D. Brookes, A. W. Roscoe. “An Improved Failures Model for CSP”, Proceedings
of the Pittsburgh Seminar on Concurrency, Springer LNCS 197 (1985).

[5] R. de Nicole and M. Hennessy. “Testing Equivalences for Processes”, Theoretical
Computer Science 34:1 (1987), 83–134.

[6] Formal Systems (Europe) Limited. “Failures-Divergences Refinement: User Manual
and Tutorial”, Available by FTP from Oxford University.

[7] R. Focardi, R. Gorrieri. “An Information Flow Security Property for CCS”, Proceed-
ings of Second North American Process Algebra Workshop (NAPAW’93) (August
1993).

[8] R. Focardi. “Comparing Two Information Flow Security Properties”, Proceedings
of 9th IEEE Computer Security Foundations Workshop (CSFW’96) (June 1996),
116–122.

[9] R. Forster. “Non-interference Properties for Nondeterministic Systems”, Disserta-
tion for transfer to DPhil status, Oxford University Computing Laboratory, 1997.

[10] R. Forster. “Non-interference Properties for Nondeterministic Systems”, DPhil, Ox-
ford University (forthcoming 1999).

[11] J. A. Goguen, J. Meseguer. “Security Policies and Security Models”, IEEE Sympo-
sium on Security and Privacy (1982), 11–20.

[12] J. Graham-Cumming. “The Formal Development of Secure Systems”, DPhil, Oxford
University (1992).

[13] M. Hennessy. “Algebraic Theory of Processes”, MIT Press (1988).

[14] C. A. R. Hoare. “A Model for Communicating Sequential Processes”, On the Con-
struction of programs (McKeag and MacNaughten, editors), Cambridge University
Press (1980).

[15] C. A. R. Hoare. “Communicating Sequential Processes”, Prentice Hall (1985).

[16] G. Lowe “Probabilistic and prioritized models of timed CSP”, Theoretical Computer
Science 138:2 pp315–352 (1995).

[17] K. Martin and G. M. Reed. “Measurements and Models in Domain Theory”, to
appear.

[18] R. Milner. “Communication and Concurrency”, Prentice Hall (1989).

[19] M. W. Mislove. “Denotational models for unbounded nondeterminism”, Proceedings
of MFPS XI, Electronic Notes in Theoretical Computer Science, Vol 1 (1995).

[20] M.W. Mislove, A.W. Roscoe and S.A. Schneider. “Fixed points without complete-
ness”, Theoretical Computer Science 138, 2, 273–314, 1995.

13

[21] A. Mukarram. “A refusal testing model for CSP”, Oxford University D.Phil. thesis,
1993.

[22] E. R. Olderog and C. A. R. Hoare. “Specification-Oriented Semantics for Commu-
nicating Processes”, Acta Informatica 23 (1986) 9–66.

[23] G. M. Reed. “A Hierarchy of Models for Real-Time Distributed Computing”, Pro-
ceedings of the Fifth Workshop on the Mathematical Foundations of Programming
Language Semantics, LNCS 442 (April 1989), 80–128.

[24] G. M. Reed and A. W. Roscoe. “Metric spaces as models for real-time concurrency”
Proceedings of MFPS 1987, Springer LNCS 298, 1987.

[25] G. M. Reed and A. W. Roscoe. “The timed failures-stability model for CSP”, The-
oretical Computer Science 211 pp85-127 (1999).

[26] A. W. Roscoe. “A Mathematical Theory of Communicating Processes”, DPhil, Ox-
ford University (1982).

[27] A. W. Roscoe. “Denotational semantics for occam”, Proceedings of the Pittsburgh
Seminar on Concurrency, Springer LNCS 197 (1985).

[28] A. W. Roscoe. “Topology, computer science and the mathematics of convergence”,
Topology and category theory in computer science, OUP (1991).

[29] A. W. Roscoe. “Unbounded Nondeterminism in CSP”, Two papers on CSP, Tech-
nical Monograph PRG-67, Oxford University Computing Laboratory (July 1988).
Journal of Logic and Computation 2:5 (1992), 557–577.

[30] A. W. Roscoe. “CSP and Determinism in Security Modelling”, 1995 IEEE Sympo-
sium on Security and Privacy (1995), 114–127.

[31] A. W. Roscoe. “The Theory and Practice of Concurrency”, Prentice Hall (1998).

[32] A. W. Roscoe, J. C. P. Woodcock, L. Wulf. “Non-interference through Determinism”
ESORICS 94, Springer LNCS 875 (1994), 33–53.

[33] P. Y. A. Ryan, S. A. Schneider. “Process Algebra and Non-interference”, 12th IEEE
Computer Security Foundation Workshop (28–30 June 1999), 214–227.

[34] D. Sutherland. “A Model of Information”, Proceedings of the 9th National Com-
puter Security Conference (September 1986), 175–183.

[35] A. Valmari and M. Tienari. “An Improved Failures Equivalence for Finite-State Sys-
tems with a Reduction Algorithm”, Protocol Specification, Testing and Verification
XI, North-Holland (1991).

[36] L. Wulf. “Interaction and Security in Distributed Computing”, DPhil, Oxford Uni-
versity (1997).

14

