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Abstract

We carry forward the work described in our previous papers [5, 20, 18]
on the application of data independence to the model checking of secu-
rity protocols using CSP [19] and FDR [10]. In particular, we showed
how techniques based on data independence [12, 19] could be used to jus-
tify, by means of a finite FDR check, systems where agents can perform
an unbounded number of protocol runs. Whilst this allows for a more
complete analysis, there was one significant incompleteness in the results
we obtained: While each individual identity could perform an unlimited
number of protocol runs sequentially, the degree of parallelism remained
bounded (and small to avoid state space explosion). In this paper, we
report significant progress towards the solution of this problem, by means
anticipated in [5], namely by “internalising” protocol roles within the
“intruder” process. The internalisation of protocol roles (initially only
server-type roles) was introduced in [20] as a state-space reduction tech-
nique (for which it is usually spectacularly successful). It was quickly
noticed that this had the beneficial side-effect of making the internalised
server arbitrarily parallel, at least in cases where it did not generate any
new values of data independent type. We now consider the case where
internal roles do introduce fresh values and address the issue of capturing
their state of mind (for the purposes of analysis).

1 Introduction

We carry forward the work described in our previous papers [5, 20, 18] on
the application of data independence to the model checking of cryptographic
protocols using CSP [19] and FDR [10], often via extensions to Casper [13]. Since
FDR can only check a finite instance of a problem, it was originally only possible
to check small instances of security protocols (only involving a few agents and
runs). This was excellent for finding attacks, but unsatisfactory as a method of



proof of correctness. There has been work on getting round this limitation in a
variety of related approaches to protocol modelling, for example [14, 16, 23].

In our previous papers we showed how techniques based on data indepen-
dence [12, 19] could be used to justify, by means of a single finite FDR check,
systems where agents could undertake an unbounded number of runs of the
protocol. Most of this work was devoted to showing how a finite type could
give the illusion (in a way guaranteed to preserve any attack) of being infinite
by a careful process of on-the-fly mapping of values of this type (which might
be nonces or keys) once they have been forgotten by trustworthy processes (i.e.,
become stale). Since the CSP codings of security protocols, having been rather
complex prior to this work, became far worse with these mappings implemented,
their creation was automated in Casper.

Aside from restrictions necessary to make our results work (see below), and
assumptions common across the whole field arising from the symbolic represen-
tation of cryptographic primitives, there was one significant incompleteness in
the results we obtained. This was that, while each individual identity could
perform an unlimited number of protocol runs, it usually had to do them in
sequence. (For small protocols it was possible to run two parallel instances of
an agent, but even that was of course far from unbounded!)

We now report significant progress towards the solution of this problem, by
means anticipated in [5], namely by “internalising” protocol roles within the
“intruder” process. The internalisation of protocol roles (initially only server-
type roles) was introduced in [20] as a state-space reduction technique (for which
it was usually spectacularly successful). It was quickly noticed that this had the
beneficial side-effect of making the internalised server role arbitrarily parallel, at
least in cases where it did not generate any new values of data independent type.
But there were two problems which prevented us from immediately internalising
all roles:

• Firstly, an internalised protocol role which creates a value during a run
can, if it has arbitrarily many protocol runs “live” at the same time,
require an unbounded number of fresh values. Our existing methods of
mapping stale values could not handle this situation, so there was no way
of achieving the essential goal of keeping types small and finite.

• Secondly, an essential part of our CSP models is knowing what a given
agent believes about the progress of its protocol runs. To this end we have
typically either treated specific protocol messages they send or receive
as evidence for their state of mind or included specific signals (to the
environment) in the definitions of CSP processes representing trustworthy
agents. When internalising roles whose progress and state of mind plays a
part in the specifications, these standard techniques no longer apply. This
is not an issue that arises for server-type roles, since they do not usually
form part of the specifications.

This paper is an extended and adapted version of our CSFW paper [6] which
was in turn related to the extended abstract presented at WITS [7]. We present
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Figure 1: Standard protocol model in CSP.

the techniques we have evolved for internalising agents, as well as the solutions
we have devised for the two problems described above. The work this paper
reports is based on the later parts on the first author’s D.Phil. thesis [3], as well
on advances achieved subsequently. In work drawn from [3] we have sometimes
abbreviated technical details of examples and proofs, but these can be found in
the thesis.

2 Traditional protocol models in CSP

We analyse security protocols using the process algebra CSP [19] and its model
checker FDR [10]. In this section, we give a brief and informal overview of the
traditional approach, without the application of data independence or the new
techniques presented in this paper. Further details can be found in [21].

A security protocol is a sequence of steps taken between two or more par-
ties using cryptography to establish security properties in a potentially hostile
environment. In this paper, we will refer to these parties as protocol roles. For
example, the protocol in Figure 1 comprises the following 3 roles: an initiator
A, a responder B and a server S. We refer to instances of protocol roles that are
participating in an execution of the protocol as agents; each agent is instanti-
ated with an identity. For example, a protocol run could comprise agents Alice
as role A, Bob as role B and Sam as role S. An agent can play multiple roles,
for example, Alice may be running the protocol as roles A and B.

Each honest agent of the protocol is modelled as a CSP process that can send
and receive messages according to the protocol description. These processes are
straightforward to derive from standard protocol descriptions in the literature.
A run of an agent Alice is a (not necessarily contiguous) subsequence of messages
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sent and received by Alice. The structure of an initial subsequence of Alice’s
messages is implied by the protocol and agrees with Alice’s a priori knowledge
(as far as she is able to determine) on the values of all identities, keys, nonces
and so on. A run is complete if it contains every message that Alice performs
in the protocol.

The intruder is also modelled as a CSP process who can interact with the pro-
tocol by overhearing all messages that pass between the honest agents; prevent-
ing a message sent by one agent from reaching the intended recipient; generating
new messages from those messages held initially or subsequently overheard, sub-
ject only to derivation rules that reflect the properties of the crypto-system in
use; and sending such messages to any agent, purporting to be from any other.
We only allow the intruder to generate messages of size bounded by the message
structure of the protocol, so we do not consider messages that do not correspond
to part of a genuine protocol message. This is a standard assumption and one
which can be justified in many cases, but it should be borne in mind that as with
various points of our modelling, all our results are relative to it. The intruder
has a deductive system that enables him to deduce information based on his
initial knowledge and messages he learns across the network.

As illustrated in Figure 1, the trustworthy and intruder processes are placed
in parallel and synchronise upon appropriate events, capturing the assumption
that the intruder has control over the network and so can decide what the honest
agents receive. We define a specification process that captures the security
requirements to be analysed; the model checker FDR is then used to discover
whether the specification is satisfied.

In this traditional modelling approach, the number of trustworthy partici-
pants running in parallel and the number of runs each one can perform are finite
and small (typically 1 or 2 instances of each protocol role).

CSP always models data objects and operations symbolically, so that all
messages and their constituents are members of an infinite data type of values.
In practice we always limit the size of objects within the data type that are
considered by our models to be the maximum size of any message carried within
the protocol, so we end up considering a moderately large finite set. For most
examples, namely where agents do not do things like sign objects which they
do not understand the type of, and where the rules of deduction and algebraic
equivalence over data objects are not unusually subtle, this is not a problem and
no attacks can be lost. However this limitation should always be remembered,
and it applies in the present paper as well as earlier ones.

3 Data independence techniques

In this section, we give a brief summary of the data independence techniques
presented in [20] and the early chapters of [3]. Data independence allows us to
simulate a system where agents can call upon an unbounded supply of fresh keys
even though the actual type remains finite. In turn this enables us to construct
models of protocols where agents can perform unbounded sequential runs and
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verify security properties for them within a finite check. This is achieved in the
CSP models by (i) treating the types of the values freshly supplied (such as keys
and nonces) as data independent and (ii) implementing a recycling mechanism
upon them. We give a brief and informal overview of this approach below.

Special processes, known as manager processes, are responsible for supply-
ing the network with fresh values upon request. This method relies upon the
assumption that a trustworthy agent (or server) will only store these values for
a limited duration; for example, in the standard protocols commonly analysed,
an agent will typically remember fresh nonces and session keys solely for the
duration of a single protocol run. A fresh value v is referred to as forgotten
precisely when v is no longer known (stored) by any trustworthy participants.
The only component that never forgets these values is the intruder, since he
stores all messages ever seen across the network in case they become useful in
a later subversion. It is upon these fresh values stored in his memory that the
collapsing functions are applied. The recycling of a fresh value v involves all
instances of v being mapped to some representative stale (or old) value, known
as background value, throughout the intruder’s memory (there can be any finite
number of these values for a particular type, most commonly two). Once the
value v has been mapped in this way, it can be re-used as fresh – this mapping
process known as the recycling mechanism. It is this mechanism that enables
us to create the illusion of having an infinite supply of fresh values from a small
finite source.

This technique is sound [18, 20], in the sense that any attack that exists
upon the infinite system has a counterpart in the transformed system.

As in our previous papers, we restrict our attention to protocols where each
run involves a fixed number of participants (in our examples invariably two plus
perhaps a server). While agents can rely on equality between two values of
a given type (e.g. nonces) for progress, they never rely on inequality (except
perhaps with the members of a fixed finite set of constants). A similar condition,
termed positive deductive system applies to the inferences made by the intruder.
For more details see [20]. We have recently been interested to see that this
condition is proving necessary for protocol analysis within the rank function
and the strand space frameworks [11].

An interesting application of our data independence techniques is the Timed
Efficient Loss-tolerant Authentication protocol (TESLA), developed by Perrig et
al. [17]. This protocol differs from the standard class of authentication protocols
previously analysed using model checkers in the following way: a continuous
stream of messages is broadcast by a sender; the authentication of the n-th
message in the stream is achieved on the receipt of the n+ 1-th message. Thus,
the receivers use information in later packets to authenticate the earlier ones.
Our data independence techniques were used to capture the unbounded stream
of cryptographic keys. Details of this work can be found in [4].
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Figure 2: Internal server role in a CSP model.

4 Internalising protocol roles

The natural view of an intruder is of an entity who is trying to break the
protocol by manipulating the messages that pass between well-behaved agents.
Therefore placing either a server (alternatively known as “trusted third party”)
or a trustworthy agent within the intruder seems bizarre. However that is not
really what we are doing, which is to replace a CSP agent process with a set
of inferences of the style used within our coding of the intruder that reflects
what the intruder would see if it communicated with the trustworthy agent.
The intruder is never given the secrets of a trustworthy process, only a logical
picture of what it looks like from the outside when using the other party as an
oracle. Figure 2 illustrates this model.

Deductions performed by the intruder take the form X � f , where X is a
finite set of facts and f is a fact that it can construct if it knows the whole of X.
The functionality of an internal protocol role A that does not introduce any
fresh values is captured by this type of deduction within the intruder: we get a
deduction X � f if, after an agent A taking role A has been told the messages in
X in an appropriate order, it can be expected to emit f (where f will, usually, be
functionally dependent upon X). In many cases it will also have emitted other
outputs f ′ earlier in the protocol based on subsets X ′ of the inputs X. The
server role in the TMN protocol [24] is such an example, whose function is to
receive two messages M1 and M3 and construct a corresponding third message
M4, where M4 only contains variables in M1 and M3. Modelled internally, the
corresponding deductions would be all valid instantiations of {M1, M3} � M4.

Internal protocol roles that do introduce fresh values also require a special
type of deduction, known as a generation. A generation has the form t, X � Y ,
where t is a non-empty sequence of the fresh objects being created, X is a finite
set of input facts, and Y is the resulting set of facts generated containing the
fresh values in t. In the CSP implementation, generations are modelled as events
over the channel generate; the manager processes (responsible for supplying the
necessary fresh values) synchronise with the intruder upon these events and
determine which values are bound to values in t.
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Example 4.1 Consider the following hypothetical protocol description:

Message 1. A → S : {B, na}SKey(A)

Message 2. S → A : {na, kab}SKey(A)

where A introduces the fresh nonce na, S is a server introducing the fresh key kab

and SKey(A) is a symmetric key shared only between A and S. If S is modelled
as internal, then its functionality is captured by the following generation:

〈kab〉, {B, na}SKey(A) � {na, kab}SKey(A)

Each time such a generation takes place, the key manager synchronises with the
intruder and determines which fresh key is bound to kab.

Thus, a role A is internal precisely when A’s functionality is captured within
the intruder component by a series of representative deductions and generations.
An instantiation A of a role A is defined to be external otherwise (i.e. when A
is modelled as a CSP process in the standard way and placed in parallel with
the rest of the network).

When internalising roles (especially non-server ones) it is often necessary to
restrict the patterns of these deductions and generations within the intruder
so that they correspond more accurately to the behaviour of real agents. We
achieve this (see [3] for details) by means of a special class of constraint pro-
cesses called Supervisors. These are designed to ensure that the internal role’s
behaviour, after a given generation, follows the protocol sequentially and most
particularly does not miraculously “branch” into several continuations of the
same run.

There are two main advantages for modelling protocol roles internally within
the intruder. The first is that this approach serves as an effective state space
reduction technique (as discussed and illustrated in [3]). The second advantage,
and one we will be focusing on in this paper, is that the internal model of a
protocol role A naturally captures a highly parallelised version within A. If A
does not introduce any fresh values (for example, the server role in the TMN
protocol), then the intruder is able to capture any degree of parallelism within
A by performing the standard deductions on behalf of A. On the other hand,
if A introduces fresh values, then the degree of parallelism within A that the
intruder can capture is dependent upon the supply of fresh values. In a model
where there is an infinite supply, the intruder is able to capture any degree of
parallelism within A; however, if this supply is bounded, then the intruder may
be restricted to only being able to perform a small number of instances of A in
parallel at any one time.

One of the problems that arises from this new modelling approach is that
if the intruder is unrestricted, then he can perform any number of these gen-
erations he wishes, each time requesting a fresh value; this will result in the
corresponding manager running out of fresh values (since there is only a finite
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source). The intruder can do this, for example, by using the same message 1
to generate many different message 2’s, each characterised by a distinct fresh
value. Furthermore, he can build up a store of these values and later use them
one at a time with the honest agents. For this reason, the recycling mechanism
used elsewhere cannot necessarily be applied to these multiple message 2’s held
within the intruder. As an example, consider the generation of the internal
server role in Example 4.1. If the key manager is given a set of n fresh values
and the intruder has intercepted the message 1 {Bob, NA}SKey(Alice), then the
intruder could legitimately perform the following sequence of generations:

〈K1〉, {Bob, NA}SKey(Alice) � {NA, K1}SKey(Alice)

〈K2〉, {Bob, NA}SKey(Alice) � {NA, K2}SKey(Alice)

...
〈Kn〉, {Bob, NA}SKey(Alice) � {NA, Kn}SKey(Alice)

thereby always being able to cause the key manager to run out of values, irre-
spective of the value bound to n. The only way to keep the number of fresh
values manageable (or even bounded) is to prevent the intruder storing many
fresh values for later use.

Internal protocol roles that generate fresh values raise the following prob-
lems: How can we reasonably limit the intruder’s appetite for fresh values when
it has the capability of requesting any number it wishes on behalf of the internal
agents? Furthermore, can we restrict the intruder and still be able to capture
attacks for any degree of parallelism within the internal roles? We address these
questions in this paper.

5 Just-in-time principle

In this section, we introduce a protocol model property, referred to as just-
in-time (abbreviated JIT). This property allows us to derive and justify finite
bounds upon the intruder that prevent him from requesting an unbounded sup-
ply of fresh values, without weakening our analysis (by losing attacks).

We start by introducing a simple definition of equivalence.

Definition 5.1 (External equivalence) Two traces ω and ω′ are defined to
be “externally equivalent” precisely when all behaviour involving external agents
is identical in both traces, namely:

ω � {|send, receive|} = ω′ � {|send, receive|}

where, for a given trace γ and set X, γ � X returns the trace of events in γ that
are members of X. {|send, receive|} is the set of all send and receive events.
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Figure 3: Satisfying JIT

Definition 5.2 (Just-in-time) Consider a CSP protocol model with a num-
ber of externally modelled agents, together with an internal role S, where S
introduces fresh values of some type T .

A fresh value t of type T , received by an external agent, is generated “just-
in-time” (JIT) in a trace ω precisely when t is freshly introduced (via the corre-
sponding generation of S) after the occurrence of all the protocol messages that
precede the receipt of t (in some message M) by the external agent.

S satisfies the “just-in-time” property with respect to type T precisely when,
for every trace ω in the system, either (i) all values of type T are generated
just-in-time in ω, or (ii) there exists another trace ω′ in the system such that
ω′ is externally equivalent to ω and all values of type T received by an external
agent are generated just-in-time in ω′.

Notice that this property is concerned only with those fresh values that are
eventually passed on to external agent processes and the point at which they
are generated; the fact that the intruder can store fresh values that he never
passes on to external agent processes is an issue we discuss later on. Intuitively,
if JIT holds, then there is no advantage to be gained by the intruder to store
this type of fresh values, unknown to any external agent processes, that will
only be introduced into the network later on.

On the other hand, if a CSP protocol model does not satisfy JIT, then there
exists some trace ω that relies on the intruder being able to store fresh values
before the point at which they are passed on to an external agent process. By
doing this, the intruder is able to construct and send out messages using these
values in a way that cannot be reproduced just-in-time. Clearly, this type of
behaviour cannot be discarded or ignored, since it might be crucial towards an
attack upon the protocol being modelled.

Example 5.1 (Satisfying JIT) Consider the (hypothetical) protocol descrip-
tion presented in Example 4.1, where the server role S is modelled as internal.
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Suppose there are 2 instances of role A declared as external agent processes, both
given the identity Alice. Consider the following valid sequence of events:

1. Message 1. Alice1 → IS : {Bob, N1}SKey(Alice)

2. Message 1. Alice2 → IS : {Bob, N2}SKey(Alice)

3. (Generation 1) 〈K1〉, {Bob, N1}SKey(Alice) � {N1, K1}SKey(Alice)

4. (Generation 2) 〈K2〉, {Bob, N2}SKey(Alice) � {N2, K2}SKey(Alice)

5. Message 2. IS → Alice1 : {N1, K1}SKey(Alice)

6. Message 2. IS → Alice2 : {N2, K2}SKey(Alice)

where IS, Generation 1 and Generation 2 represent the intruder acting on behalf
of S.

In this trace, the intruder is not generating the fresh value K2 just-in-time.
However, there exists an equally valid trace of the system that does and is ex-
ternally equivalent to the trace above, where steps 4 and 5 are swapped; this is
illustrated in Figure 3.

Example 5.1 illustrates how the intruder has the ability legitimately to gen-
erate many messages on behalf of the server S without necessarily passing them
on immediately; the number of fresh values he can request is dependent on the
number available. In this particular case, there is no advantage to be gained by
the intruder from performing generations early and storing the fresh values; it
does not enable him to perform any deductions or further generations towards
constructing new messages that he otherwise would not be capable of. The
protocol only introduces a single fresh key (encrypted under a public key) per
run on behalf of S. At any point, the intruder can only ever generate messages
of that form and pass at most one fresh value onto an external agent per run.
Furthermore, any deductions that he was able to perform earlier, he is always
able to perform in the future (since deductions are never disabled).

However, for larger protocol examples, determining whether a given protocol
satisfies JIT is much less intuitive and often very complex. Example 5.2 gives
an example of a protocol that does not satisfy our property.

Example 5.2 (Violating JIT) Consider the following hypothetical protocol,
where one of the security requirements is that the fresh nonce nsec remains a
secret shared only between B and S:

Message 1. A → B : {k1, A}PK(B)

Message 2. A → S : {B, ia}SKey(A)

Message 3. S → B : {k2, k3, ia}SK(S)

Message 4. B → S : {nsec, ia}k2

Message 5. A → B : {npub, ia}k1

Message 6. B → A : npub
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Figure 4: Violating JIT

where k1, k2 and k3 are keys introduced freshly by A and S respectively; ia
is an index value introduced freshly by A; and finally, nsec and npub are fresh
nonces introduced by B and A respectively. PK(X) and SK(X) are the public
and private keys for a given agent/server X respectively, and SKey(A) is a
symmetric key shared only between A and the server S. Suppose S is modelled
as internal and captured by the generation:

〈k2, k3〉, {B, ia}SKey(A) � {k2, k3, ia}SK(S)

Suppose further that the system is composed of one external instance of each
roles A and B with identities Alice and Bob respectively. Consider the following
valid sequence of events:

1. Message 1. Alice → IBob : {K1, Alice}PK(Bob)

2. Message 2. Alice → IS : {Bob, I1}SKey(Alice)

3. (Generation) 〈K2, K3〉, {Bob, I1}SKey(Alice) � {K2, K3, I1}SK(S)

4. Intruder deduces {K2, Alice}PK(Bob) from step 3.

5. Message 1. IAlice → Bob : {K2, Alice}PK(Bob)

6. Message 3. IS → Bob : {K2, K3, I1}SK(S)

The message 3 generated on behalf of the server (in step 3) does not satisfy JIT
in this trace, since he does not immediately pass K3 on to an external agent.
Instead, he deliberately chooses to gather it first and use the fresh key K2 to
construct a new message 1. The intruder then sends this message to Bob in
step 5, pretending to be from Alice. It is only at this point that he sends the
server-message generated earlier, to Bob in step 6.

If there exists an externally equivalent trace ω that satisfies JIT, then ω would
have to capture the fact that the generation of the server-message is delayed until
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immediately before it is sent on to Bob; in other words, after step 3 and before
step 6. However, this is not possible since the intruder specifically wants the
fresh value bound to k1 in step 5 (message 1) to be the same as that bound to
k2 in step 6 (message 3); in this trace he uses the K2 generated on behalf of the
server, as illustrated in Figure 4.

Example 5.2 illustrates how there are cases where it is advantageous for the
intruder to store fresh values, unknown to any external agents, that he will only
pass on to the network later in the trace (thereby violating JIT). The mere
fact that storing fresh values gives the intruder an advantage means that it is
impossible to find an externally equivalent trace where all the fresh values are
generated just-in-time.

Such cases arise when the intruder can exploit dependencies between fresh
values and the ways in which they are used within the protocol description. In
our example above, the intruder exploits the fact that he can bind the same
fresh value to the variables k1 in message 1 and k2 in message 3, by generating
a fresh server-message 3 early on and using the fresh value K2 in a new message
1. The fact that the values bound to these two variables are the same, allows
him to attack the protocol by the sequence of steps taken above, together with
the following subsequent behaviour:

7. Message 4. Bob → IServer : {N1, I1}K2

8. Message 5. IAlice → Bob : {N1, I1}K2

9. Message 6. Bob → IAlice : N1

By sending the final message 6, Bob believes that N1 is a secret nonce shared
only between himself and the server. As we see in step 9, the intruder learns
this secret.

In order to perform this attack, the intruder needs to be able to replay
message 4 received from Bob in step 7 as a message 5 in step 8. The intruder
does this by ensuring that the fresh keys bound to k1 and k2 are the same.
However, the only way he can achieve this, is by generating the server-message
3 before sending the corresponding message 1 to Bob. In turn, this means that
while K2 is generated just-in-time (since it is immediately passed on to Bob as
part of the message 1), the fresh value K3 bound to k3 is not. There is no way
that the intruder can generate K3 just-in-time and bind the same fresh value to
the variables k1 and k2.

Determining whether a protocol model satisfies JIT is not straightforward;
we discuss how we achieve this later on in this paper. However, once we have
established that this property is satisfied by a given protocol model, we are
able to derive bounds upon the intruder that prevent him from requesting an
unbounded number of fresh values through generations of internal roles and
justify that no behaviour of the system is lost.
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6 Constructing a reduced protocol model

In this section, we present an extension to our CSP protocol models that involves
introducing special values, referred to as dummy values, into the data indepen-
dent types being generated. Together with the JIT property we introduced in
the previous section, this extension often enables us to map a protocol model
with an infinite supply of fresh values to a reduced system with only a finite
set of fresh values which simulates the original one in a similar sense to that
achieved in our earlier data independence work with only external agents. The
nature of the simulation will be developed so that it means that no attacks are
lost through the mapping; if no attack is found upon the reduced system, then
none exists upon the original infinite version of the system. This preservation
of attacks is, as explained earlier, a general principle of our work.

6.1 Dummy values

The JIT property is concerned only with the fresh values that are generated by
the intruder and passed on to external agents; it says nothing about any other
fresh values he generates and never sends out. We will refer to this latter class
of values as internal fresh values. It may initially seem rather odd that the
intruder would want to generate fresh values and then never pass them on to
any external agent processes. However, without placing any restrictions upon
the number of fresh values he can request and having an infinite supply of them,
the intruder is free to do and behave how he pleases. There are two main reasons
why the intruder may want to store internal fresh values. The first is simply
because he is able to do so and therefore stores them with no particular gain.
The intruder can do this, for example, by using the same antecedent to generate
many different resulting messages, each characterised by distinct fresh values.

The second motivation for holding data containing internal fresh values is
that it might enable further generations and deductions for the intruder to
take advantage of and construct new messages that he could not have built
otherwise. This ability to internally manipulate messages and construct every
possible valid message is crucial when working towards developing a complete
analysis of protocols, since it considers the full range of the intruder’s abilities.

It is of course possible that a single generation 〈t〉, X � Y may be used at first
as though it was internal – in other words members of Y being used to create
other things not involving t – with a message containing t being delivered to an
external agent somewhat later. However no use like this is ever essential since
the same externally visible effects can in many cases be achieved by performing
two separate generations 〈t〉, X � Y and 〈t′〉, X � Y ′ (i.e. with the same set of
prerequisites X) and delivering two result sets identical except for the name of
the fresh value it creates. The first would be performed at the same time as the
original generation and its results used in the creation of the objects not using
t, and the second as late as possible prior to the delivery of t – now actually t′ –
to an external agent. Demonstrating that a role is JIT essentially comes down
to showing that the second one always can be delayed until the moment before
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the fresh value is delivered.
Identifying these two classes of fresh values in any given trace is the key to

how we extend our CSP models and justify finite bounds upon the intruder.
The observation we make is that it does not actually matter which internal
fresh values are supplied; what is important is that they exist in some form
for the purposes of allowing the intruder to perform whatever manipulations he
needs in order to construct the necessary messages. It is not even necessary for
these values to be fresh, since they are never passed on to external agents. The
intruder could just as easily perform subsequent deductions and generations
with any values that were strictly for internal use only.

Based on this observation, we introduce a new class of values, referred to
as dummy values, that will be added to the data independent types being gen-
erated. These extra values have the special characteristic that they are not
accepted as genuine by any externally modelled honest process (so the latter
will never accept any message involving one). The intruder can use these values
itself like any others, in particular doing deductions involving them. The trick
is that we allow the intruder to perform, at any time, a “generation” based on a
valid input set X, but unless the number of fresh values he is currently storing
(unknown to any external agents) is less than the given bound, the result will
always be based on a dummy value; otherwise, the result may be either a fresh
or dummy value. Hence, for a given bound N upon the intruder, we allow the
intruder to perform a generation 〈t〉, X � Y for a given input set X and a fresh
value t precisely when the intruder stores fewer than N fresh values unknown
to any external agent processes. In Section 8, we discuss what these bounds
should be for various classes of protocols.

In practice, we typically declare one dummy value per generated data inde-
pendent type. However, there is the possibility that this technique introduces
false attacks. An example would be where the value being introduced is a
key K, and one of the messages contains something encrypted under K that the
intruder would not otherwise learn; representing K by the dummy value, which
the intruder could learn from elsewhere, would allow him to deduce the contents
of the message, as a false attack. A solution (also applied to the background val-
ues [20] to avoid false attacks), is to use two dummy values: one that is created
in circumstances where we would expect the intruder to learn it legitimately,
and one that is created in other cases. However, a single value appears to suffice
more frequently than in the analogous case of background values.

In the rest of this paper, we will refer to this implementation of dummy
values within our CSP models as the dummy-value strategy.

6.2 Constructing a reduced model

Given a protocol model that satisfies JIT and has an infinite supply of fresh
values of the data independent types generated, there exists a reduced model,
simulating the original, where there is only a finite source of fresh values, to-
gether with the dummy values for the relevant types. By simulation, we mean
that for every trace in the original infinite model, there exists an externally
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equivalent trace in our reduced model. Such a trace is constructed by mapping
all the internal fresh values to the dummy values, leaving only those fresh val-
ues in the trace that are passed on to external agent processes (and therefore
generated just-in-time). Proposition 6.1 captures this more formally.

Proposition 6.1 Suppose System(AS) is a protocol model with the set of roles
AS, where a role A in AS is modelled as internal and introduces fresh values
of some data independent type T . Suppose further that System(AS) is provided
with an unbounded supply of fresh values of type T . If System(AS) satisfies JIT,
then there exists a reduced (finite) system SystemR(AS) such that, for every trace
ω in System(AS), there exists a trace ω′ in SystemR(AS) where ω and ω′ are
externally equivalent. SystemR(AS) is constructed as follows:

1. The dummy-value strategy is implemented for type T .

2. The maximum number of fresh values of type T the intruder can store
(unknown to any external agents) is equal to the maximum number of
them he can pass on to an external agent in a protocol message.

Proof We need to show that every trace ω in System(AS) can be mapped
to an externally equivalent trace ω′ in SystemR(AS), where SystemR(AS) is
subjected to the conditions presented above. This is quite straightforward by
the definition of JIT, as follows.

By definition, the fact that System(AS) satisfies JIT (with regards to the
internal role A and type T ) means that, for every trace ω in the system, there
exists a trace ω′ in the system such that ω′ is externally equivalent to ω and all
values of type T are generated just-in-time in ω′. We can, therefore, consider
solely these just-in-time traces and still capture all possible behaviour (by the
definition of external equivalence). This is the first step of the reduction. The
supply and storage of fresh values though are still infinite. We now need to
prove that every trace in this subset of traces of System(AS) can be mapped to
an externally equivalent trace in SystemR(AS).

Suppose ω is a trace of the reduced (but still infinite) System(AS), where all
the values of type T are generated just-in-time (by definition of the reduction
step above). There exists an externally equivalent trace ω′ in SystemR(AS),
where all values of type T that have not been generated JIT are mapped to
the dummy value DT . Since the remaining fresh values are generated JIT, the
maximum number of them the intruder will ever need to store (unknown to any
external agents) is the maximum number of them he can pass on to an external
agent for the first time in a single protocol message. This justifies the bound
placed upon the intruder in condition 2 of SystemR(AS). Furthermore, the fact
that there are only ever a finite number of external agents declared in our CSP
models, means that SystemR(AS) will only need a finite source of fresh values
of type T (by the mechanics of the recycling mechanism in our models, together
with the assumption that agent processes never remember fresh values for more
than a single run).
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Example 6.1 Consider a simple protocol defined as follows:

Message 1. A → S : {na}SKey(A)

Message 2. S → A : {k1, na}SKey(A)

Message 3. S → A : {k2, na}SKey(A)

where na is a fresh nonce introduced by A, k1 and k2 are keys supplied freshly
by the server S and SKey(A) is a symmetric key known only by S and A.
Consider the following trace, where the server is modelled as internal, there is
one instance of role A declared externally with identity Alice and no dummy
values are implemented:

• Message 1. Alice → IS : {NA}SKey(Alice)

• (Generation 1) 〈K1〉, {NA}SKey(Alice) � {K1, NA}SKey(Alice)

• (Generation 2) 〈K2〉,
{ {NA}SKey(Alice),

{K1, NA}SKey(Alice)

}
� {K2, NA}SKey(Alice)

• Message 2. IS → Alice : {K2, NA}SKey(Alice)

• Message 3. IS → Alice : {K1, NA}SKey(Alice)

By storing the two server-generated messages 2 and 3, the intruder is able to
replay them in reverse order. This trace does not conform to JIT, since K1 is
not generated JIT. However, there exists an externally equivalent trace in this
model that does, for example:

• Message 1. Alice → IS : {NA}SKey(Alice)

• (Generation 1) 〈K3〉, {NA}SKey(Alice) � {K3, NA}SKey(Alice)

• (Generation 2) 〈K2〉,
{ {NA}SKey(Alice),

{K3, NA}SKey(Alice)

}
� {K2, NA}SKey(Alice)

• Message 2. IS → Alice : {K2, NA}SKey(Alice)

• (Generation 3) 〈K1〉, {NA}SKey(Alice) � {K1, NA}SKey(Alice)

• Message 3. IS → Alice : {K1, NA}SKey(Alice)

where the fresh key K3 is not subsequently used, but exists for the sole purpose
of allowing the intruder to gain access to a message 3 from the server to replay
as a message 2 to Alice. The generation of a message 2 can be performed again
with the same antecedents and another fresh key (K1) just-in-time for supplying
it as a message 3 to Alice. Thus, if we implement the notion of dummy values,
we can map this trace to the following corresponding one in the reduced model:

• Message 1. Alice → IS : {NA}SKey(Alice)
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• (Generation 1) 〈KD〉, {NA}SKey(Alice) � {KD, NA}SKey(Alice)

• (Generation 2) 〈K2〉,
{ {NA}SKey(Alice),

{KD, NA}SKey(Alice)

}
� {K2, NA}SKey(Alice)

• Message 2. IS → Alice : {K2, NA}SKey(Alice)

• (Generation 3) 〈K1〉, {NA}SKey(Alice) � {K1, NA}SKey(Alice)

• Message 3. IS → Alice : {K1, NA}SKey(Alice)

Example 6.1 provides a simple example of how a trace in the original protocol
model (with potentially infinite supply of fresh values) can be mapped to an
externally equivalent one in the reduced model. In this particular example, the
intruder needed to perform a generation with a dummy value in order to gain
access to the second server-message, before passing on the first. Since intruder
deductions and generations are never disabled, he can simply use the same
antecedents (in this case, {NA}SKey(Alice)) to generate another server-message
3 just-in-time. Which actual fresh value gets supplied does not matter (since
the type is data independent), as long as it is fresh. Thus, this has the same
effect as gathering the two messages and playing them in reverse order.

As discussed in the introduction, a protocol model with an infinite supply of
fresh values enables the intruder to perform attacks for any degree of parallelism
among the internal protocol roles. By being able to map an infinite model with
an internal role A to an equivalent reduced one (for protocols that satisfy JIT),
means that we are able to capture attacks upon protocols for any degree of
parallelism within A by performing a finite refinement check.

The main question that we still need to consider is how we determine whether
a given protocol model satisfies JIT and so falls within the scope of Proposi-
tion 6.1.

7 Factorisability of internal protocol roles

We now introduce a new property, namely the factorisability of internal protocol
roles, and show that when satisfied by an internal role A within a protocol
model it makes JIT, and hence the justification of bounds on the intruder, easy
to check.

Establishing JIT turns out to be straightforward for roles that generate at
most one value of type T per run. The following definition captures the essence
of why this is true and allows us to deal with certain protocols generating more
than one. Factorisability says that each run of the role can be factored into ones
where each generates only one non-dummy value. This definition has proved
central to our work on justifying finite bounds on intruders’ memory.
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Definition 7.1 (Factorisability) An internal role A is “factorisable” with re-
spect to some data independent type T precisely when, for each run R of an agent
A taking role A that generates fresh values v1, . . . , vk of type T , the following
conditions are satisfied:

1. There exist runs R1, .., Rk of A, where each run Ri contains the fresh
value vi and the dummy value (and possibly values of type T generated by
agents other than A) only.

2. For each output message M in R, there exists at least one Ri that contains
M , where i ∈ {1, . . . , k}.

3. For all vi and vj of type T generated on behalf of A, where vi �= vj : if A
receives vi back in some protocol message, then neither this message, nor
any subsequent message sent or received by A, contains vj .

We emphasise that this definition only constrains the use of those fresh
values that are generated by agent A. A message can contain as many other
values (presumably introduced by other agents) as it likes. Values above are
identified by their symbolic representations in the protocol definitions, ignoring
any further actual equalities there may be.

An intruder with an internalised factorisable role A is equivalent to one in
which agents taking role A are constrained to deliver at most one fresh value
(plus a dummy value) per run.

Thus, the ability for the intruder to store messages that contain fresh values
(generated on behalf of some internal agent A taking role A) in an infinite model
for the purposes of replaying them in a different order, is simulated here by the
intruder being able to perform an independent run with A for each message
(and fresh value) required. By the definition of factorisability, he can achieve
this by replaying external agent messages as input to the various internal agent
runs he is interested in, since there exists a run for each internally generated
message and fresh value (where all the other fresh values generated are dummy
values).

The fact that the other values generated are dummy values means that
the generation of any message containing a fresh value on behalf of A is not
dependent on A being able to distinguish the runs of the protocol; otherwise
one could not replay the same messages as input to A. Hence the need for the
3rd condition in the definition.

Example 7.1 (Factorisable internal role) Consider the following protocol:

Message 1. A → S : {na, nb}SKey(A)

Message 2. S → A : {k1, na}SKey(A)

Message 3. S → A : {k2, nb}SKey(A)
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Figure 5: Factorisable internal server role S in Example 7.1.

where na and nb are nonces freshly introduced by A, and k1 and k2 are keys
freshly introduced by S.

S modelled as internal is factorisable, since it satisfies the conditions required
in Definition 7.1. As illustrated in Figure 5, it is straightforward to see that we
can factor the runs of S such that each run only ever produces a single fresh value
(the rest being dummy values). Since there are only the two messages generated
on behalf of S where a single fresh value is introduced in each, every possible
output message of S can clearly be generated in one of the independent runs
of S. Furthermore, S does not depend on receiving any fresh values previously
introduced, thereby satisfying the 3rd condition.

Example 7.1 provides a simple example of a factorisable internal server role
S and as a consequence, how the intruder can gain access to the fresh values
bound to k1 and k2 by performing independent runs with S. He achieves this (i)
using the dummy values (as illustrated in Figure 5) and (ii) replaying message
1’s that he receives from the externally modelled instance (for example, with
identity Alice) of role A, to S for each run. Without the use of dummy values,
the intruder could achieve the same result by performing the same independent
runs, where the dummy values are replaced by freshly supplied ones.

Example 7.2 (Non-factorisable internal role) Consider the following se-
quence of messages within a protocol:

Message 1. S → . . . : {k1}E

Message 2. S → . . . : {k2}E

...
Message n. S → . . . : {k1, k2}E
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Figure 6: Non-factorisable internal server S in Example 7.2.

where S is modelled as internal introducing the fresh keys k1 and k2. E is some
encryption key known to S and whomever the messages are intended for; the
type of encryption is not relevant for the purposes of this example.

If S is factorisable, then there exists independent runs for each fresh value
introduced by S. Furthermore, every output message from S must be present in
one of these runs. In this example, two factored runs of S are needed, namely
one where k1 was bound to a fresh value and k2 was bound to the dummy value
KD, and the other vice versa. If the fresh values K1 and K2 are bound to k1
and k2 respectively in separate runs (while the other is bound to the dummy
value KD), then S will either generate a message n of the form {K1, KD}E or
{KD, K2}E; the message {K1, K2}E is not generated in either of the factored
runs. Figure 6 illustrates this problem.

Example 7.2 highlights the problem that can arise as a result of having
multiple fresh values in a single message generated by an internal role, even
though these values were both introduced in previous messages. In order to
satisfy the factorisability property, there cannot be any dependencies among
fresh values introduced by an internal role S of this nature, since they could
result in S being able to distinguish between his runs.

Dependencies between fresh values such as these are not the only source of
problems when it comes to the factorisability of internal agents. A more subtle
way an internal role S can distinguish between runs is if we allow S to generate
a fresh value that depends on S receiving a previously introduced fresh value.
The effect this can have is illustrated in Example 7.3.
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Example 7.3 (Non-factorisable internal role) Consider the following pro-
tocol:

Message 1. S → A : {k1}SKey(A)

Message 2. A → S : {k1, na}SKey(A)

Message 3. S → A : {k2, na}SKey(A)

where k1 and k2 are fresh keys introduced by S, na is a fresh nonce introduced
by A, SKey(A) is a previously established symmetric key known only to A and S.
S modelled as internal is not factorisable, since message 3 relies on S receiving
the previously introduced fresh value k1. This violates the 3rd condition of the
factorisability definition.

Example 7.3 illustrates why we need the 3rd condition of the factorisability
definition. If S is factorisable, then there exists an independent run Ri of S for
each fresh value vi generated by S, where all other fresh values (generated by
S in Ri) are dummy ones. This is not possible for the following reason. An
externally modelled agent Alice playing role A will only generate message 2 in
response to message 1, which must contain a genuine fresh value to be accepted
(recall that external agents do not accept dummy). It follows that S cannot be
factored into separate runs, each of which contains only one of k1 and k2.

The motivation for introducing the factorisability property is to help deter-
mine which protocols satisfy JIT. The relationship between these two properties
is captured by Proposition 7.1.

Proposition 7.1 Consider a CSP protocol model comprising a number of ex-
ternal agents and an internal role A, where A introduces fresh values of some
data independent type T . If A is factorisable, then A satisfies JIT.

Proof For role A to satisfy JIT, it must be the case that, for every trace ω in
the system, there exists an equally valid trace ω′ of the system such that ω′ is
externally equivalent to ω and all the values of type T are generated just-in-time
in ω′.

Suppose ω is a trace of our system (with the factorisable internal role A).
If all the values of type T are generated just-in-time in ω, then clearly our
implication is satisfied. However, if this is not the case, then we can construct
another trace ω′ (valid within the system) that is externally equivalent to ω and
satisfies JIT with respect to T , as follows.

When constructing ω′, we need to consider every fresh value of type T in ω
that is received by an external agent (in some message M) for the first time and
is not generated JIT. Suppose t is such a value, Mt is the message that passes t
on to an external agent B for the first time, and MS is the sequence of protocol
messages, sent and received by external agents, that occur after the generation
of t and before the receipt of Mt by B. Furthermore, let Gt be the generation of
an agent A taking role A that introduces the sequence t of fresh values which
includes t and takes the form t, X � Y , where X is the antecedent (set of input
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messages), known by the intruder (otherwise he would not be able to perform
this generation!), and Y is the set of messages generated as a result.

By definition, no messages in MS contain t (since Mt is the first) and there-
fore none of them rely on the fact that Gt is introducing a fresh value t (as
opposed to a dummy one). Their existence may, nevertheless, rely on Gt taking
place; for example, the intruder may use other components in the set Y (re-
sulting from Gt) to construct some of them (either directly or through further
deductions being enabled), or prompt deductions or generations of A that follow
on from Gt. Thus, when constructing ω′ from ω, we cannot necessarily move
this generation forward on the trace to satisfy JIT. We can, however, construct
this sub-trace of ω′ (with respect to t satisfying our property) as follows. Firstly,
we replace the generation Gt with the generation GDT

, whose only difference is
that the dummy value DT (for type T ) is supplied instead of the fresh value t;
GDT

uses the same antecedent as Gt and therefore takes the form 〈DT 〉, X � Y ′

(Y ′ differs from Y above only in that all instances of t are replaced by DT ).
Secondly, all instances of t in subsequent deductions and further generations
within the intruder, that take place before the receipt of Mt by B, are replaced
by DT . Thirdly and finally, by the definition of factorisability, we extend the
trace with a new independent run Rt of A after the last message in MS and
before the receipt of Mt by B, such that the fresh value required in Mt, namely
t, is generated on behalf of A; any other values generated in Rt are bound to
the dummy value. The intruder can simply replay the same messages he used
earlier on in the trace, to prompt A (through the corresponding deductions and
generations of A) to perform Rt. The fact that S is factorisable means that the
intruder is always able to achieve this, and therefore generate these fresh values
just-in-time.

To construct ω′, we simply repeat this process for every fresh value t of type
T that is not generated just-in-time in ω.

8 Bounding the intruder’s appetite

The results of Sections 3–6 are the key to our approach to constructing CSP
models within the scope of FDR that address the existence or otherwise of
attacks that require a high degree of parallelism within agents. Furthermore,
they allow a variety of sets of structural results implying factorisability and
hence the capture of attacks requiring any degree of parallelism amongst internal
protocol roles. This involves deriving bounds upon the number of fresh values
the intruder may store at any one time (unknown to any external agents) and
justifying them using Propositions 6.1 and 7.1.

The most obvious and trivial one of these is the case where (i) an internal role
A generates 0 or 1 fresh value (of some data independent type T ) per protocol
run and (ii) any protocol message (within the system) contains at most 1 value
of type T . It follows immediately from Definition 7.1 that A is factorisable
and therefore by Proposition 7.1, A satisfies JIT. By Proposition 6.1, there
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exists a reduced (finite) system SystemR, where the dummy-value strategy is
implemented (condition 1) and the intruder is only allowed to store at most 1
value of type T (derived from (ii) above) at any given time, unknown to any
external agent (condition 2). Since this reduced system is externally equivalent
to the same system with an unbounded supply of fresh values of type T and an
unrestricted intruder, SystemR will capture attacks for any degree of parallelism
within A. This simple class would include, for example, server roles whose
function is to supply agents with a fresh session key for every run or to simply
re-compose messages (like the server in the TMN protocol).

An example of a more complex class is defined by the following proposition.

Proposition 8.1 Consider a CSP model System(AS) for some protocol P ,
where AS is the set of roles in P . Suppose the role A in AS is modelled as
internal, where A introduces fresh values of some type T . Suppose further that:

1. Each message M that can be sent on behalf of an agent A taking role A
contains at most 1 value v of type T that was either freshly generated in
M or previously freshly generated in a message on behalf of A.

2. If A receives v of type T in some message M , where v was freshly intro-
duced in a message sent on behalf of A earlier, then no subsequent message
received or sent on behalf of A may contain v′, where v′ is a value of type
T freshly introduced in some message generated on behalf of A and v �= v′.

3. If A generates more than one fresh value of type T per run, then it checks
that no value of type T it receives, apparently introduced by another agent,
was in fact generated by A previously in the run.1

4. The intruder can store N fresh values of type T , unknown to any external
agents, where N is the maximum number of values of type T in any single
protocol message.

If no attack is found upon System(AS) then no attack exists upon P for any
degree of parallelism within A.

Proof As discussed earlier, if System(AS) is given an infinite supply of fresh
values of type T , the intruder would be able to capture any degree of parallelism

1This assumption is required to ensure that non-factorisability of runs involving interven-
tions by the intruder cannot slip in subtly. Such a case can arise when an internal agent A
(as role A) expects to receive a value tb of type T for the first time in some message M (from
some agent B), but instead B replays a value ti that was previously freshly generated by A.
If A unknowingly receives its own value back, this could lead to a non-factorisable run of A.
In some protocols, in which A can neither decrypt nor reconstruct a relevant portion of a
message, the implementation of this assumption may be impossible and so excludes the given
protocol role from our result. Though this assumption violates the requirement for a positive
deductive system, the distinctions required do not in fact invalidate our result because of
the carefully controlled circumstances: We only implement this condition in our model for
fresh values, which is where it is required. These values are never identified by our collapsing
mappings with anything other than stale values, where the condition is not enforced. If, in a
given protocol, this requirement is not implemented for whatever reason, this result does not
exclude attacks in which A’s own values are replayed back at it.
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within the internal role A and therefore perform attacks, irrespective of the
number of instances of A required. For this proposition to hold, it must be the
case that every trace of such an infinite version of this system can be mapped to
an externally equivalent trace in the reduced model, defined by the conditions
presented above. We start by proving that A satisfies JIT and then justify
how this reduced system is externally equivalent to the corresponding infinite
version. To prove JIT, we make use of our factorisability property defined in
Definition 7.1 and Proposition 7.1.

Suppose R is a run of an internal agent A taking role A represented by a
sequence of deductions and generations DGR within the intruder and resulting
in the set of output messages MSR. Furthermore, suppose that t1, . . . , tk are
fresh values generated by the generations G1, . . . , Gk of A respectively, in R. R
can be factored into k independent runs of A, according to the factorisability
definition, as follows.

For each fresh value ti (∈ {t1, . . . , tk}) generated by the generation Gi of A,
the intruder can construct an independent run Ri on behalf of A, by performing
the same sequence of deductions and generations in DGR, where the fresh value
ti is indeed generated as fresh in Gi and all other generations of A are supplied
with the dummy value DT for type T . Consequently, all instances of ti in the
resulting output messages MSRi

from run Ri will remain the same, whereas all
instances of the other fresh values introduced in R on behalf of A will be mapped
to DT . In the case where A receives a message M that contains tj (i �= j), the
run Ri is terminated just before M since by construction an external agent will
never generate M with DT substituted for tj , meaning that the intruder may
never be in possession of M . The intruder is able to perform these independent
runs on behalf of A by simply re-using the same antecedents each time; this
reflects the intruder replaying the same input messages to A, k times. He can
choose to perform these runs in any order, either sequentially or interleaved. We
know, from condition 2 above, that A never relies on the receipt of previously
introduced fresh values (by A) in order to generate fresh values; therefore, A is
not able to distinguish the runs with regards to the input stimuli given.

We must ensure that each output message in MSR is present in one of the
factored runs. By conditions 1 and 3 above, every protocol message M generated
on behalf of A contain at most one value ti of type T , where ti was generated
freshly on behalf of A (either in M or in a previous message). Whenever a
run Rj is terminated just before message M , condition 2 ensures that M and
every subsequent message is present in Ri. Therefore, for each fresh value ti
(∈ {t1, . . . , tk}), the messages in MSR containing ti will be generated in run Ri;
the fact that the other values are mapped to dummy values does not affect these
output messages (since they only contain one fresh value, namely ti). Hence A
is factorisable. By Proposition 7.1, A also satisfies JIT.

By Proposition 6.1, System(AS) with an infinite supply of fresh values of
type T can be reduced to an equivalent one (traces are externally equivalent)
with a finite source under the condition placed upon the intruder. Therefore,
any attack that exists upon the protocol model that supplies agents taking role
A with an infinite number of fresh values of type T (reflecting any degree of
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parallelism within A) and allows the intruder to store any number of them, can
be mapped to an equivalent attack upon the reduced version of the system,
where the intruder is bounded by condition 4 above.

9 Basing specifications on internal roles

When an agent A is modelled as a standard external process, signal events
(capturing the state of mind of A for specification purposes) can be constructed
through the appropriate renaming of messages sent and received by A. However,
an agent B playing an internal role no longer performs send and receive events,
since its functionality is solely captured within the intruder’s deductive system.

Capturing the sending of a message M by an internal agent B is relatively
straightforward, as this corresponds to the deduction or generation of B result-
ing in M . On the other hand, constructing signal events for B that are bound to
the receiving of some message M by B is more complicated, since the intruder’s
deductive system does not directly capture this information. A solution to this
is to ensure (artificially if necessary) that such receipts are immediately followed
by the same agent performing some send.

We cannot, however, simply adopt these signals into the framework we have
been using to date in which all signals come from external agents’ actions.
This is because the JIT property has been based on external equivalence, which
preserves the events relevant to external-agent specifications, but not the ones
used for internal-agent ones. The process of transforming a trace to be JIT has
to be examined so that we understand what happens to the events relevant to
signals. Exactly the same transformations we have performed generally suffice,
observing that

• Each generation or deduction that happened in the original trace t has at
least one analogue in the transformed trace t′, each of which is the same
except that perhaps data independent values are dummy. One of them is
at the original point in the trace, all others follow this, and the last one
creates the value from t.

These transformations are unlikely to create false attacks, since (with the
dummy values being replaced by fresh values) the trace t′ will usually be one of a
system with infinitely many fresh values. But the real concern is that they might
eliminate an attack. While the discussions below will show that no significant
problems arise there from internally-based signals, care will be needed in future
if specifications involving more complex patterns of events are considered.

10 Towards a more complete analysis

Being able to construct signal events for internal agents, strengthens our work
even further, since it allows our models to capture parallelism amongst agents
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that are part of a specification. Further still, it opens potential avenues for cap-
turing more complete results upon protocol analysis, than simply parallelism
of internal agents. This involves carefully selecting which protocol roles are
internalised and which are modelled as external; this is dependent on the spec-
ification being verified. In this section, we outline how this can probably be
achieved for secrecy and authentication properties in turn, though we empha-
sise that the establishment of exact criteria for these claims to apply is work in
progress.

10.1 Secrecy specifications

A specification of the form Secret(A, s, [B1, . . . , Bn]) specifies that in any com-
pleted run, an agent A playing role A believes that the value bound to s is a
secret shared only with agents playing the roles B1, . . . , Bn. We require only
one type of signal event within our protocol model when verifying these speci-
fications; it is constructed through the standard renaming of the last message
received by A. (The same applies to other types of secrecy specifications defined
by Lowe [13]. For the purposes of illustration in this paper we will only consider
the standard one.)

Suppose we model a protocol P with the set of roles AS = {A, B1, . . . , Bn}
and verify specifications of the form Secret(A, s, [B1, . . . , Bn]) for some secret s,
as follows:

1. All roles in AS are modelled as internal.

2. One instance of role A is modelled as an external agent process.

3. The necessary signal events are constructed for the external instance of
A; none are constructed for any internal instances of A.

We believe that, under appropriate bounds upon the intruder (such as that
derived in Proposition 8.1), if no secrecy attack is found in this model (in which
the intruder can exploit an additional identity as is normal), then none exists
upon P for any degree of parallelism within AS.

We justify this claim as follows. The functionalities of all the agents in AS are
internalised within the intruder and therefore, given that we have calculated an
appropriate bound upon him, this represents an unbounded degree of parallelism
within them (for the same reasons described in the earlier propositions). By
definition, a secrecy specification Secret(A, s, [B1, . . . , Bn]) is broken precisely
when there exists an instance of A who believes that the value v bound to s is
shared only with B1, . . . , Bn, while in fact the intruder has been able to deduce
it v. It does not matter which instance of A this is; the only requirement is that
there exists one of them. Our model has one external instance A of A with the
appropriate signal event linked to it. The point is that since in the real world
all instances of A are symmetric, if there is an attack on the protocol then there
is one in which the “complaining” instance of A is the one which is mapped to
A under the reduction process.
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The transformations to make a trace JIT cannot affect the truth or falsity
of the Secret specification as A’s actions are unchanged and if the intruder
knows the value bound to s in the original, he will eventually know it in the
transformed trace.

Our current limitation with this result is that we have not derived bounds
upon the intruder for all general cases. However, deriving such bounds is a
current area of our future research, thereby making a more complete analysis
of protocols as presented above, a feasible achievement. Furthermore, we have
currently only considered internalising one role at a time; extending this to
internalise multiple roles is part of future research.

10.2 Authentication specifications

We can apply a similar approach for capturing non-injective authentication
properties for any degree of parallelism within the models.

The authentication specification Auth(A, B, [x1, . . . , xn]) specifies that if an
agent B playing role B thinks he has successfully completed a run of the pro-
tocol with some agent A as role A, then A has previously been running the
protocol, apparently with B and both agents agree as to which roles they took
and the values bound to x1, . . . , xn. Two types of signal events are required:
Signal.Running and Signal.Commit events. The former of these is identified
with the last message sent by A which affects B either directly or indirectly
and the latter is bound to the last message participated by B.

Suppose we model a protocol P with the set of roles AS and verify specifica-
tions of the form Auth(A, B, [x1, . . . , xn]), where A and B are members of AS,
as follows:

1. All roles in AS are modelled as internal.

2. One instance of role B is modelled as an external agent process.

3. The Signal.Commit events are constructed for the external instance of B
only; none are constructed for any internal instances of B.

4. The Signal.Running events are constructed for the internal instances of A.

We believe that, under appropriate bounds upon the intruder (such as those
derived in the earlier propositions), if no authentication attack is found in this
model, then none exists upon P for any degree of parallelism within AS.

We justify this claim as follows. The functionalities of all the roles in AS
are internalised within the intruder and therefore, given that we have calculated
appropriate bounds upon him, this represents an unbounded degree of paral-
lelism within them. We know that the specifications in question do not demand
a one-to-one relationship between the runs of the two agents being verified. An
attack will be found upon these specifications if there exists at least one case
where some instance of role B (and we don’t care which!) commits himself to
a run of the protocol believing he has done so with an agent A as role A, when
in fact A has not been running the protocol. For each specification, it does not
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matter which instance of role A performs the necessary Signal.Running as long
as there exists one of them that is in that state. Therefore, we can internalise all
instances of A within the intruder and capture the Signal.Running events that
we are interested in through the corresponding deductions and generations. Fur-
thermore, it does not matter which instance of B participates in the run that
leads to the authentication attack; any authentication attack the intruder can
perform upon an internalised instance of B, he can also perform upon the one
external instance B of B. It therefore suffices to have Signal.Commit events for
B only and none associated to any internal instances of B.

Again, the use of internal deductions or generations as the Signal.Running
event is not damaged by the transformations to achieve JIT, since the occurrence
of such an event may be duplicated and/or moved to a later time but is never
removed or moved earlier. These are the only things that could remove a failure
of the authentication specification.

11 Conclusions

As well as proving to be a highly effective state space reduction strategy (by 2
orders of magnitude [3]), we have shown that the internal protocol role model
frequently permits protocols to be analysed with some roles having an arbitrary
degree of parallelism. An example protocol we used for testing purposes was
an extended version of the hypothetical ffgg protocol by Millen [15], where the
secrecy attack requires three instances of an initiator agent running in parallel,
together with a single instance of a responder. Using old modelling techniques,
this model is infeasible to run; using our new techniques and internalising the
initiator role, this attack was found very easily. Details concerning this model
and other examples can be found in [3].

Proposition 8.1 defines the class of protocol roles that we are currently able
to internalise and verify for an arbitrary degree of parallelism within a finite
refinement check. To give an intuitive overview of the protocol roles that satisfy
this proposition, we consider some example protocols in the survey by Clark and
Jacob [8]. All protocol roles are factorisable and satisfy the conditions presented
in Proposition 8.1 in the following protocols:

• All versions of the Andrew Secure RPC, Kao Chow Authentication (v.1
and v.2), Needham Schroeder Public Key, Needham Schroeder Symmetric
Key, Yahalom, Woo and Lam Mutual Authentication, SK3 and TMN.

• The Otway Rees protocol, provided that the index value introduced by
the initiating role is treated as a distinct type from the type of the nonces.

• All versions of the Wide Mouthed Frog and Denning Sacco shared key2.
2In our previous work, we did not address the issue of modelling timestamps in our CSP

models when applying the data independence techniques, since timestamps are not of data
independent type. We have since established that timestamps can be modelled within this
framework, but this work is beyond the scope of this paper.
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There are a few protocol examples in this survey with protocol roles that do
not satisfy the conditions in Proposition 8.1, for example, the KSL and Neumann
Stubblebine protocols. In both cases, the initiator A and responder B generate
fresh values of type number in the latter part of the protocol that depend upon
the receipt of values of type number that they previously generated as fresh.
This violates condition 2 of Proposition 8.1.

Further work planned includes broadening classes of conditions and specifi-
cations where we can use these techniques, wherever possible on all the identities
present in a given protocol.

Blanchet [1] uses a similar idea to ours, especially with regards to the inter-
nalisation strategy of protocol roles (referring to the early stages of this develop-
ment in [5]). The author presents a prolog based framework with the following
two abstractions: (i) fresh values are represented as functions over the possible
pairs of participants and (ii) a protocol step can be executed several times, in-
stead of only once per session. With these abstractions, the author is able to
capture unbounded agent runs and degrees of parallelism within their identities.
Similar to ours, his analysis is fail-safe in the sense that no attacks are lost, but
the potential for false attacks does arise. However, by modelling values that are
expected to be fresh for every run as functions over the participants, it is no
longer possible to distinguish between old values used in previous ones and new.
This means that one cannot verify properties that depend upon freshness. In
his initial work, Blanchet only considered secrecy specifications; more recently,
this has been extended to handle authentication properties [2].

In the later sections of this paper we have envisaged protocol models in
which all roles are internalised (though perhaps additionally having external
copies of some). The concept of an intruder with internalised copies of all roles,
thereby using them all as oracles within the rules of the protocol, is very close
to the concept of the kernel of a rank function in the sense used in [22]. More
precisely, the comparison is between such kernels and the sets which our intruder
can generate at various points in its execution, such as the set of messages and
sub-terms that can be generated without external intervention; the internalised
roles provide similar closure to that required for one of these kernels. The only
real exceptions to this relate to values introduced for or by external agents, and
the additional constraints imposed by our supervisor processes. We are sure
there is some interesting comparative work to be done here, and perhaps also
with the concept of an ideal in a Strand Space [9].
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