
Under consideration for publication in Formal Aspects of Computing

On the expressive power of CSP

refinement
A.W. Roscoe

Abstract. We show that wide ranging classes of predicates on the failures-divergences model for CSP can
be represented by refinement checks in a general form. These are predicates of a process P expressible as
F (P) ⊑ G(P), where F and G are CSP contexts and ⊑ is refinement. We use ideas similar to full abstraction,
but achieve a stronger property than that. Our main result is that topologically-closed predicates are precisely
those representable when F and G are both uniformly continuous. We show that sub-classes of predicates
such as refinement-closed and distributive ones are represented by special forms of this check.

Keywords: CSP, refinement, topology, full abstraction

1. Introduction

The purpose of this paper is to classify the types of predicates1 which can be decided, in its standard
models, of processes in the CSP process algebra using refinement checking. The main motivation of this is
to determine what can be achieved using FDR [FDR], which is a refinement checker for CSP. The two main
references for CSP are [Hoa85, Ros98]. Throughout this paper we will use the notation and conventions of
the second of these (the author’s book).

This paper revises and extends a draft which was presented at AVOCS ’03 [Ros03]. The main addition
is Section 5.

Both Hoare’s use of P satR, where R is a property of behaviours rather than sets of behaviours, and the
fact that FDR is the only widely-used verification tool for CSP, have tended to concentrate the language’s
users on so-called behavioural predicates, namely ones which are judged true of a process when and only
when all the process’s behaviours (traces, failures, divergences) are acceptable. Every specification of the form
P sat R can be checked by testing if P refines the characteristic process of R (namely the nondeterministic
composition of all processes Q such that Q sat R). Furthermore, the most natural style of using FDR is to
check that Spec ⊑ P for some Spec representing the predicate being asserted. In the second case (FDR),
process P passes just when all its behaviours are ones of Spec (since refinement is defined to mean reverse

Correspondence and offprint requests to: A.W. Roscoe, Oxford University Computing Laboratory, Wolfson Building, Parks
Road, Oxford OX1 3QD, UK. email Bill.Roscoe@comlab.ox.ac.uk
1 A predicate is simply a condition that maps a process to true or false, in other words a property of processes. The reason why
we use the term “predicate” in this paper is to distinguish linguistically the properties of processes we are trying to characterise,
from the many other uses of the word “property” in this paper.

2 A.W. Roscoe

containment over behaviours). Of course in both cases the precise types of behaviours checked will depend
on which CSP model is used.

Let us term a predicate of the form Spec ⊑ P (for P the process we are checking and Spec fixed) a simple
refinement check. Of course the large number of applications of behavioural predicates and that fact that
functional specifications are naturally of this sort suggest that most practical predicates one will wish to
prove will be behavioural.

However there are more sophisticated specifications which can not be so expressed, usually ones which
judge combinations of a process’s behaviours rather than individual ones. The classic example of this is the
extensional notion of determinism from the failures/divergences model:

• P must be divergence-free, and

• if P has trace s 〈̂a〉 then it does not have the failure (s , {a}): P cannot have the option either to accept
or refuse a. (In fact, for technical reasons, this second condition implies divergence freedom.)

The first clause of this can be checked by refinement against the most nondeterministic divergence-free
process ChaosΣ, but the second cannot. A striking way of seeing this is to observe that every predicate of
the form P ⊒ Spec is distributive – if P and Q satisfy it then so does P ⊓ Q – but it is self evident that
determinism is not distributive.

We will see later that, in common with many other such predicates, though determinism is not checkable
via a simple refinement check, it is decidable using a refinement check of a more elaborate sort.

In Sections 1–4 of this paper we will concentrate mainly on a single model, namely the failures-divergences
one, making two further assumptions:

• We only consider predicates which exclude divergence, which is (as remarked above) a straightforward
simple refinement check.

• We use the model without the addition of X (termination), and therefore no process we consider can, at
the outermost level, be capable of terminating via SKIP .

Let us call the divergence- and X-free portion of the failures-divergences model N+. (The whole model is
generally termed N [Ros98].) The main reason for these restrictions is that they simplify the order-theoretic
properties of the model, giving us the following proposition and reducing the number of special cases in
definitions and arguments. In particular it yields the following.

Proposition 1.1 Each process P in N+ is equivalent to the nondeterministic choice of all deterministic

processes that refine it, namely ⊓{Q ∈ N+ | Q ⊒ P ∧Q is deterministic}.

Furthermore, since this is in any case a practical requirement for FDR, we will assume that the alphabet
Σ over which processes are built is finite. It also has the following mathematical advantages:

• All definable CSP operators become continuous in the standard order-theoretic sense, using the refinement
order.

• Point-set topology is important in the classification of properties over partial orders like CSP models;
there are various topologies over CSP models described in [Ros91, Ros92] but as established in those
papers they all collapse to the same one when Σ is finite; this has numerous useful properties such as
compactness.

We will, however, feel free to add finite collections of events to our alphabet for the purpose of expressing
predicates.

The rest of this paper is structured as follows. In the next section we will prove a general theorem
(the main one of this paper) that shows that an unexpectedly large class of predicates are all expressible
as refinement checks. In the following sections we look at two important subclasses of predicate, namely
refinement-closed ones and distributive ones, which each have distinctive styles of representation and which,
in the author’s experience, constitute most practical predicates that are not behavioural. We consider various
examples of these two classes, which are formally defined:

Definition 1.1 The predicate R is refinement-closed if and only if R(P) and P ⊑ P ′ implies R(P ′). Namely,
if P satisfies the predicate then all its refinements do.

R is distributive if and only if whenever S is a nonempty set of processes satisfying R, then R(⊓S).

On the expressive power of CSP refinement 3

Finally we examine what can be achieved if we allow our representations to make use of divergence. For
reasons which will become apparent, we concentrate mainly on traces predicates in that section.

There is an appendix of CSP and other notation.

2. General predicates

The most general basic predicate that can be decided by refinement-checking is of the form

R(P) ≡ F (P) ⊑ G(P) (†)

where F and G are both CSP contexts (i.e., process expressions which may involve the process variable P).
The most general predicates are then logical combinations (using ∧, ∨, ¬) of these. For practical purposes
we should restrict ourselves to combinations of a finite number of these basic predicates, each of which has
the form that F (P) and G(P) are always finite-state when P is – otherwise deciding the predicate would
generate an infinite amount of work for FDR. However this paper explores well beyond this practical domain.

Most of our effort will be spent on basic checks of the form in (†). It is natural to identify each predicate
with the subset of N+ consisting of those processes satisfying it. We will often make this identification.

Conjunction and disjunction

Before we study how to represent individual predicates, it is interesting to show that one can represent both
conjunctions (finite and countably infinite) and finite disjunctions using refinement checks alone. In other
words, one of these logical combinations of refinement checks can be represented as a single refinement check.

Suppose first that Fi(P) ⊑ Gi(P) are all representations of predicates Ri(P). Then if we pick new events

a, b, consider the processes F ∗(P) =⊓{nas(n, b); Fn(P)} and G∗(P) =⊓{nas(n, b); Gn(P)}, where

nas(0, c) = c → SKIP
nas(n + 1, c) = a → nas(n, c)

It is not too hard to see that F ∗(P) ⊑ G∗(P) if and only if Fi(P) ⊑ Gi(P) for all i , since we know instantly
by looking at a trace which of the Fi(P) or Gi(P) it relates to, unless it is a trace consisting only of a’s, on
which the two sides have identical behaviour. The single refinement will only hold if all the constituent ones
do, and vice-versa. It is trivial to cut this down to a finite conjunction, but it cannot be extended from these
uncountably infinite conjunctions to uncountably infinite ones without an uncountable alphabet, which we
do not have.

For disjunction, at least over the failures model, we need to extend the alphabet further. Given the
refinements Fi(P) ⊑ Gi(P) for i ∈ {1, 2}, choose an injective renaming R (extending the alphabet if
necessary) such that F2(P)[[R]] and G2(P)[[R]] have disjoint alphabets from both F1(P) and G1(P). (Note
that applying an injective renaming to both sides of a refinement test never changes the outcome.) Call the
resulting alphabets A1 and A2. The refinement

(ChaosA1
||| F2(P)[[R]]) ⊓ (F1(P) ||| ChaosA2

) ⊑ G1(P) ||| G2(P)[[R]]

is then equivalent to the disjunction of the two parts. If either refinement does hold, then by construction
the above holds (as ChaosA is minimal amongst divergence-free processes with alphabet a subset of A). If
it were to hold and neither constituent does then we can find failures2 (s ,X), (t ,Y) respectively of G1(P)
and G2(P)[[R]] which do not (respectively again) belong to F1(P) or F2(P)[[R]]. The failure (s t̂ ,X ∩ Y)
is one of G1(P) ||| G2(P)[[R]] (where s t̂ could be replaced by any interleaving of s and t) but not one of
ChaosA1

||| F2(P)[[R]] or F1(P) ||| ChaosA2
. This is because for (s t̂ ,X ∩Y) to be a failure of Q ||| Q ′, where

Q and Q ′ respectively have alphabets A1 and A2, we must have (s ,X) ∈ failures(Q) and (t ,Y) ∈ failures(Q ′)
by the disjointness of A1 and A2 and our assumptions of X and Y . This gives a contradiction, proving our
claim.

An alternative construction for disjunction over the traces model can be found in Section 5, as can a
discussion of infinite disjunction.

2 Here X and Y are ranging over subsets of the whole alphabet Σ, not just those of particular processes. Indeed we assume
here – as we may – that Σ \ A1 ⊆ X and Σ \ A2 ⊆ Y .

4 A.W. Roscoe

We note here (because it will be of interest later) that the constructions given here for both the left- and
right-hand sides of conjunctions are distributive in P if all the Fi/Gi are. However the construction used for
the right-hand side of disjunction is not distributive since it involves putting two versions of P in parallel
with each other. Later we will see that this non-distributive construction for disjunction is inevitable.

Uniform continuity

Over the finite-Σ case that we are studying, most CSP-definable functions have the following property.

Definition 2.1 A CSP-definable function F is said to be uniformly continuous (relative to a given model)
if, for every length of trace k , there is another length m(k) such that, for all processes P ,

P ↓ m(k) = Q ↓ m(k)⇒ F (P) ↓ k = F (Q) ↓ k (UC)

where P ↓ n behaves exactly like P until n events have been performed, and then diverges (see [Ros98]). In
other words the behaviour of F (P) up to step k is completely determined by the behaviour of P up to step
m(k).

This definition is similar to, but much weaker than, those of the familiar CSP concepts of a constructive or
non-destructive function – see [Ros98].

The only exceptions to (UC) for CSP-definable F and finite Σ are

• When F (·) may introduce divergence through hiding (i.e. F (P) can diverge when P does not). This
does not exclude all uses of hiding, provided the structure of F (·) guarantees that no consecutive infinite
sequence of events will be hidden. In fact, we will use such safe hiding often in the F ’s and G’s we build.

• When unbounded nondeterminism creates a choice between an infinity of processes which have, for a
fixed k , arbitrarily large m(k)’s.

From the standpoint of mathematical analysis (UC) is closely analogous to uniform continuity with respect
to the usual metric on the model

d(P ,Q) = inf{2−k | P ↓ k = Q ↓ k}

(A function from one metric space (A, d1) to another (B , d2) is said to be uniformly continuous if, for all ǫ > 0
there exists δ > 0 such that for all x and y in A, d1(x , y) < δ ⇒ d2(f (x), f (y)) < ǫ.) See [Ros98, Ros92, Ros91]
for details on metric spaces over CSP models. Appendix A of [Ros98] contains a tutorial on metric spaces
from the CSP perspective. In fact the properties (specifically topological compactness3) of N with Σ finite
mean uniform continuity is equivalent to ordinary metric continuity (where δ is allowed to vary with x as
well as with ǫ).

Definition 2.2 A predicate R is said to be closed if the set {P | R(P)} is closed in the metric topology.

So suppose F and G are both (UC) CSP contexts which cannot introduce divergence. (This is equivalent
to F (ChaosΣ) and G(ChaosΣ) being divergence free.) Since any failure of the refinement (†) shows up in
some finite length behaviours (i.e., if H ↓ n ⊑ K ↓ n for all n then H ⊑ K) it follows from (UC) that the
predicate R defined as in (†) satisfies

¬R(P) ⇒ ∃ k . ∀Q .(Q ↓ k = P ↓ k ⇒ ¬R(Q))

This is because, if ¬R(P) ≡ F (P) 6⊑ G(P) then we can pick n with F (P) ↓ n 6⊑ G(P) ↓ n. Setting k to be
the greater of mF (n) and mG(n) (the functions demonstrating (UC) for F and G) then gives the right-hand
side of the above implication.

The above is the usual definition of the continuity property (for predicates) (see [Ros98]) and says that
the set of processes satisfying R is closed in the metric space. (Namely, if 〈xi〉 is a convergent sequence of
processes in R, then its limit is also in R.) Indeed a predicate is closed if and only if it is continuous: these
are just two ways of viewing the same phenomenon.

3 Compactness is a strong property of a topological space which says, in a fairly strong sense, that the whole space is bounded.
In a metric space, as we have here, compactness is equivalent to there not existing an infinite set D of points with no limit
point, namely a point z such that for every ǫ > 0 there are infinitely many points of D within ǫ of z .

On the expressive power of CSP refinement 5

Representing closed predicates

We have thus shown that all predicates representable by (†) using (UC) F and G are closed. Our main result
is going to be the reverse of this: showing that all closed predicates are expressible using (†) using F and G
which satisfy (UC). It is helpful to turn our attention from the metric space to one of the other topological
views of CSP from [Ros91, Ros92], namely the δ-topology4.

Definition 2.3 The δ-topology on N is defined by specifying that a set C ⊆ N is closed if and only if,
whenever P 6∈ C , there exist finite sets Φ of failures and ∆ of divergences such that for all Q ,

failures(P) ∩ Φ = failures(Q) ∩ Φ ∧ divergences(P) ∩∆ = divergences(Q) ∩∆ ⇒ Q 6∈ C

(A topology is defined by its set of closed sets.)

Note that, unlike the metric one, the δ-topology is not based on lengths of traces. The reason we use the
latter here is that it allows us to understand closed predicates in a rather intuitive way, as we will see. This
is especially important when we come to study distributive and refinement closed predicates.

For N+ (where all processes are divergence free) we need only consider Φ: a predicate is closed if and
only if, whenever ¬R(P), there is a finite set Φ such that for any Q , if

failures(P) ∩ Φ = failures(Q) ∩ Φ

then ¬R(Q).
For example, the predicate defined R(P) ≡ Q ⊑ P (for any fixed Q) is closed because ¬R(P) implies

that there is f ∈ failures(P) \ failures(Q). Evidently if failures(P) ∩ {f } = failures(P ′) ∩ {f } then ¬R(P ′),
so we can set Φ = {f }.

In our finite-alphabet case this topology coincides with the metric one since there only are finitely many
failures and divergences with traces of length less than any chosen k . But the above (restricted to failures
because of our initial assumption that we are only considering predicates of divergence-free processes) gives
the following useful representation of closed predicates, noting that a predicate is closed in this topology if
and only if it is closed in the metric one.

Choosing Φ for every P such that ¬R(P), and setting Ψ = Φ∩ failures(P), it follows that if R is a closed
predicate then there is a set RefR of pairs (Φ, Ψ) of finite sets of failures with Ψ ⊆ Φ such that

R(P) ≡ ∀(Φ, Ψ) ∈ RefR.failures(P) ∩ Φ 6= Ψ

This observation leads to the following definition.

Definition 2.4 If, for a predicate R, (Φ, Ψ) is such that

∀P .(failures(P) ∩ Φ = Ψ⇒ ¬R(P))

then we say that (Φ, Ψ) is a refutation for R. If Ref is a set of refutations which is sufficient to have a
(Φ, Ψ) ∈ Ref refuting every P such that ¬R(P), but no P with R(P) is refuted by any member of Ref ,
then we will call it a a complete set of refutations for R. (A given predicate R may have many such sets
representing it.)

So RefR is a complete set of refutations for our R.
For example, in the case of the predicate R(P) ≡ Q ⊑ P , a complete set of refutations is {({f }, {f }) |

f 6∈ failures(Q)}.
For the time being let us concentrate on a single refutation (Φ, Ψ) which is one member of a complete

set Ref representing R. Then failures(P) ∩ Φ = Ψ implies ¬R(P). We can try to construct FΦ,Ψ and GΦ,Ψ

such that

FΦ,Ψ(P) ⊑ GΦ,Ψ(P) ($)

if and only if failures(P) ∩ Φ 6= Ψ. One way of approaching this is to aim for the following

4 The topologies defined in those papers are actually over possibly infinite product-spaces of processes. Since, for the time being
at least, we are only interested in predicates of single processes, our definitions are a little simpler. In any case the significant
differences in considering product spaces only appear in infinite ones, which are most unlikely to be of practical interest in
refinement checking.

6 A.W. Roscoe

• Make FΦ,Ψ(P) and GΦ,Ψ(P) always equal one of Θ = e → STOP and Ξ = (e → STOP) ⊓ STOP for e
any fixed event outside the alphabets of the processes P we are considering (noting that Θ strictly refines
Ξ).

• Make FΦ,Ψ(P) equal Θ if and only if failures(P) contains no element of Φ\Ψ. (Equivalently, failures(P)∩
Φ ⊆ Ψ.)

• Make GΦ,Ψ(P) equal Ξ if and only if failures(P) contains every element of Ψ. (This is equivalent, thanks
to our assumption that Ψ ⊆ Φ, to failures(P) ∩ Φ ⊇ Ψ.)

Note that these specifications of FΦ,Ψ and GΦ,Ψ are both monotonic (and indeed both metric and partial-
order continuous), meaning that they are reasonable things to aim to represent via CSP syntax. Importantly,
refinement ($) only fails when FΦ,Ψ(P) = Θ and GΦ,Ψ(P) = Ξ, namely exactly when failures(P) ∩ Φ = Ψ.

Let us first consider how to build FΦ,Ψ(P). What we would like is that it always has the initial capability
to communicate the event e (and only e) but can only deadlock on the first step if failures(P) contains any
element of Φ \Ψ. Let (s ,X) be a typical element of this set. We define a “testing” process for it as follows:

T (〈〉,X) = ?x : X → e → STOP

T (〈a 〉̂ u,X) = a → T (u,X)
2 e → STOP

Test(s ,X ,P) = (T (s ,X) ‖
Σ−

P) \ Σ− ⊓ (e → STOP)

where Σ− is the set of all events other than e.
Since T (s ,X) only has finite traces, the hiding can introduce no divergence. It is obvious that the only

possible traces are 〈e〉 and 〈〉, and that on the empty trace Test(s ,X ,P) can only refuse e when its T is in
state (〈〉,X). This is when it and P have each performed the trace s ; but the combination then will only
deadlock if P is refusing all the events in X . In other words the combination can deadlock on the empty
trace precisely when P has the failure (s ,X). If we now define

FΦ,Ψ(P) =⊓({e → STOP} ∪ {Test(s ,X ,P) | (s ,X) ∈ Φ \Ψ})

it follows that we have exactly the function we want, which is finite-state because Φ is finite.
The nondeterminism here means that we are running the various tests T (s ,X) as alternatives: if any

one of them gives value Ξ then this disjunction does. The function FΦ,Ψ(P) is distributive over ⊓ since each
particular run of it uses P at most once: this will be of interest later.

The situation with GΦ,Ψ(P) is somewhat different, since in order for it to deadlock on 〈〉 we require P
to have every failure in Ψ. We can fix this by replacing the nondeterministic choice above with interleaving:

GΦ,Ψ(P) = ((STOP ⊓ e → STOP) ||| (|||(s,X)∈Ψ Test(s ,X ,P)))
‖

{e}
e → STOP

If P fails to have any one of the selected failures then, since the appropriate component of the interleaving
above cannot refuse e on the empty trace, neither can the whole interleaving. If it does have all of Ψ then
it can, but will certainly have the trace 〈e〉. The second line makes sure that nothing can happen after the
first e, so that it always equals Θ or Ξ. So this definition does what we want; it is not, however distributive
since | Ψ | copies of P are run in parallel. Indeed, we shall see later on that there is no hope of GΦ,Ψ being
distributive.

Therefore we have the FΦ,Ψ and GΦ,Ψ we wanted to represent a single refutation. In order to check
an arbitrary closed predicate, however, we may need to check an infinite number. The fact that we are
considering only a finite alphabet, however, means that there are only (at worst) a countable infinity of
them, and so we can list the whole of our set Ref :

(Φ0, Ψ0), (Φ1, Ψ1), . . .

where the indices range over a set I which is either some {0 . . .n} or the set N of natural numbers. (Obviously
there is no need to worry about the case where I is empty since then the predicate R is true.) We simply
appeal to the ability demonstrated earlier to represent the conjunction of a countable family of refinements,
and the entire closed predicate is represented.

On the expressive power of CSP refinement 7

Though this construction uses unbounded nondeterminism the resulting F and G do in fact satisfy (UC)
because of the traces 〈a, a, . . . , a, b〉 that are introduced: there are only finitely many refutations that are
relevant to traces of any given length in the resulting F (P) and G(P). We can conclude the following.

Theorem 2.1 The predicates of N+ which are closed in the metric topology are precisely those that can
be expressed as a refinement F (P) ⊑ G(P) in which F is distributive, and where each of F and G satisfy
(UC), but where the constructions of F and G are in general infinitary.

Now consider the function H (P) = a → F (P) ⊓ b → G(P), where F and G satisfy (UC) and represent
the predicate R. Since the set of processes

C = {a → Q1 ⊓ b → Q2 | Q1 ⊑ Q2}

is closed, and H −1(C) is precisely the set of processes satisfying R, we get the following result.

Theorem 2.2 The closed sets in N+ are precisely the inverse images of C under uniformly continuous
CSP-representable functions.

(That all such inverse images are closed follows by a standard topological argument.)
This type of analysis does not give us much practical help in designing reasonable ways of expressing

predicates for FDR, but it does suggest that most reasonable predicates can be expressed. More than anything
else, the calculations above resemble those for a full abstraction result (ordinary ones for CSP being in
[Ros98]), and it is indeed a result in the same spirit.5 To be of practical use a predicate would need F (P)
and G(P) to be finite-state if P is, as well as each having finite syntax; and the above certainly do not
achieve this. This is inevitable given the generality of the above result, since the set of closed predicates is
uncountable and the set of finitary (F ,G) is countable. (This is because the number of finite pieces of CSP
syntax is countable.)

In practical terms one will want to keep more careful control over the relationships between the traces
being considered, both for different failures of the predicate and between the different copies of P that are
running: we really do not want to start up several copies of P running to test every single potential failure
of the predicate.

We now illustrate some techniques that can be used to do it more efficiently by means of an example.
This is deliberately chosen so it has neither the distributive nor refinement-closed property which we will
analyse later. That, however, makes it a little contrived since the author cannot think of straightforward
predicates which have a naturally useful interpretation, and which have neither property.

Example 2.1 Consider the following predicate on a process P :

Each trace s of P which has any extension has exactly two: s 〈̂x 〉 and s 〈̂y〉 with x and y being distinct
elements of Σ which may vary with s .

The proof of Theorem 2.1 would suggest we have to look at many distinct finite sets of traces (modelled
as the failures (s , ∅)) to decide this: all sets of the form {s 〈̂x 〉 | x ∈ Σ} whose intersection with P ’s traces
must always have zero or two elements exactly. But in fact we can do a lot better than this. Imagine running
three copies of P side by side, making sure that they maintain the same trace by some mechanism until we
choose to test them. When we test them we must ensure that if there is any next event then the three copies
between them have two but not three. On firing up a test (which will be done by a monitoring process M
running in parallel with them) we can get M to communicate twoevs if it detects there are two options at
this point (from two of the P ’s after the same trace) and threeevs if three. All we have to check then is that
every trace of P that has a continuation can be followed by twoevs but never threeevs. The following uses
the very useful trick of double renaming the copies of P so that as well as following events by their usual

5 In fact the best way to regard our result is as a higher order form of full abstraction. The usual definition of (at least the
main part of) full abstraction is that whenever two processes are distinguished by some model then there is a simple test on
some context of the processes that distinguishes them. What we have here is a proof that, given a closed set of processes, we
can used the same pair of contexts to distinguish between all pairs of processes inside and outside the set.

8 A.W. Roscoe

names they each have a separate tagged copy.

CN (P) = ((rn(1,P) ‖
A

rn(2,P) ‖
A

rn(3,P))

‖
A∪A.1∪A.2∪A.3

M) \ (A.1 ∪A.2 ∪ A.3)

rn(i ,P) = P [[a ← a, a ← a.i | a ∈ A]]

M = ?x : A→ M
2?x .1 : A.1→?y .2 : A.2→?z .3 : A.3→

((card{x , y , z} = 2) & twoevs→ STOP
2 (card{x , y , z} = 3 & threeevs→ STOP))

Note here that all three copies of P keep in synchrony until the first one communicates in its alternative
copy alphabet A.1 with M , which then tests to see what events the other two can do. The copy alphabets
are hidden so we only see ordinary events plus the two signals.

To test the requirement we can cook up a slightly simpler process along the same lines.

TT (P) = (rn(1,P) ‖
A∪A.1

M ′)[[a.1← twoevs | a ∈ A]]

M ′(P) = ?x : A→ M ′(P)
2?a.1 : A.1→ STOP

So for each trace s 〈̂a〉 of P we have the trace s 〈̂twoevs〉 in TT (P), but it never communicates threeevs.
What we actually now require is that TT (P) and CN (P) are trace equivalent: this is easily testable

via two refinement checks, or indeed one if we form a binary conjunctions by prefixing the two sides with
different events (here a and b) and test

((a → TT (P)) 2 (b → CN (P))) ‖ ChaosΣ

⊑

((a → CN (P)) 2 (b → TT (P))) ‖ ChaosΣ

(The ChaosΣ’s make sure that the refinement ignores refusals. Note that this binary conjunction uses a
simpler recipe than the countable form described earlier.)

This particular predicate is neither refinement closed (because a refinement can reduce two continuations
to one) nor distributive (since ⊓ can increase the number of continuations).

We were able to make this check finitary because of the way that all the behaviours we were comparing
at any one time always come from the same, arbitrary trace. These things are not essential – for example
we could use any finitely computable property of traces to tell us which to look at – but they certainly help.
The topic of exactly which predicates may be captured with F and G both finitary remains one for future
research, though some progress is reported in [Ros04].

3. Distributive and refinement-closed predicates

We will now look at two special cases, namely refinement-closed and distributive predicates of N+, as defined
in the introduction.

These are both natural attributes for useful CSP predicates to have: any instance in which a process P
can satisfy anything like a functional specification, and some refinement P ′ does not, requires explanation,
since P is permitted to behave exactly like P ′. The proposer must answer the question of why it is reasonable
for P to satisfy the specification if the totality of its actual behaviour does not. And in many cases we would
expect that if P and Q both satisfy a specification then the process which behaves like either one of them
also satisfies it. The following theorem demonstrates that these two properties together reduce a specification
to a well-known case (a satisfiable predicate is one which is satisfied by at least one thing; it is not equivalent
to false.).

Theorem 3.1 The satisfiable predicate R is refinement closed and distributive if and only if it is expressible
as a simple refinement check.

On the expressive power of CSP refinement 9

Proof. Suppose first that R has these properties. Let χ(R) = ⊓R (where R is identified with the set of

processes satisfying it), then χ(R) ∈ R by distributivity, and χ(R) ⊑ P implies P ∈ R by refinement-closure.
It follows immediately that P ∈ R if and only if P ⊒ χ(R), as required.

Conversely, if R(P) is specified by P ⊒ S , the proofs that it is satisfiable (by S), refinement-closed and
distributive are all trivial.

What we will do in this section is to consider predicates which are either refinement closed or distributive,
and how they might be represented.

3.1. Predicates that are refinement-closed

Since each CSP context F (P) and G(P) is monotonic with respect to P , it follows immediately that whenever
F (P) is constant (not depending on P) then the check (†) is refinement closed. It is therefore reasonable to
speculate, after the result in Theorem 2.1, that every closed and refinement-closed predicate can be expressed
in this way. Since the notation F (P) with F constant is a little confusing, we will in this subsection consider
refinement checks of the form

R(P) ≡ Spec ⊑ G(P) (♯)

It is well-known that all standard CSP operators other than recursion are distributive, in each of their
arguments separately. (A context H (·) is distributive if H (P ⊓ Q) = H (P) ⊓ H (Q) for all P and Q , and

more generally H (⊓S) = ⊓{H (P) | P ∈ S} for all nonempty sets S of processes). If G is distributive it

follows that the R(P) of (♯) is itself distributive, since if G(P) ⊒ Spec for each P ∈ S , then

G(⊓ S) =⊓{G(P) | P ∈ S} ⊒ Spec

Note that in this case we can deduce, by Theorem 3.1, that the specification given us by (♯) can in fact
be written in the form Spec′ ⊑ P : a simple refinement. It follows that in order to get any increase in power
we need to look at non-distributive G(P). A context will typically be non-distributive if a single behaviour
of G(P) depends on more than one behaviour of P , which will be because P is either run in parallel or in
sequence with itself (possibly being operated on first). Running P in parallel with itself is more general, and
in any case the sequence idea is not very useful where we cannot have termination, so we will concentrate
on P in parallel with itself.

Recall the structures of the F and G used in the proof of Theorem 2.1: the distributive function F (P)
uses many instances of P , but they are all on distinct execution paths – no sequence of actions of F (P)
invokes any more than one of them in parallel. On the other hand G(P) interleaves multiple copies of P ,
which leads to it not being distributive. To see why this happens consider H (P) = P ||| P and observe that
if P = a → P and Q = b → Q then

H (P ⊓ Q) 6= H (P) ⊓ H (Q)

since the left-hand side contains traces with both a’s and b’s, whereas the right-hand side does not.
What we now do is to prove what was hoped for at the start of this section:

Theorem 3.2 Every closed and refinement-closed predicate can be expressed in the form (♯).

Proof. If R is such a predicate and ¬R(P) we know that there is k such that

∀Q .Q ↓ k = P ↓ k ⇒ ¬R(Q)

Now suppose R(Q) holds and Q ↓ k ⊑ P ↓ k . The construction

failures(Q ′) = {(s ,X) ∈ failures(Q) | | s |< k ∧ (s ,X) ∈ failures(P)
∨∃u, v .(s = u v̂ ∧ | u |= k ∧ u ∈ traces(P))}

then builds a process that refines Q and for which Q ′ ↓ k = P ↓ k . This is a contradiction since we can
deduce ¬R(Q ′) from the equality of restriction, and R(Q ′) by refinement of Q . Therefore the same value of
k actually yields

∀Q .Q ↓ k ⊑ P ↓ k ⇒ ¬R(Q)

10 A.W. Roscoe

It follows that there is a finite set of failures Φ, namely

failures(P) ∩ ({(s ,X) | | s |< k} ∪ {(s , ∅) | | s |= k})

such that failures(Q) ⊇ Φ implies ¬R(Q). (Φ is just the set of failures which are used in calculating P ↓ k .)
But this is equivalent to having Ψ = Φ in the proof of Theorem 2.1, which will now yield the function

FΦ,Φ for the left-hand side of the refinement check, if we are concentrating on this one set. But this is just
the constant function mapping every P to Θ = e → STOP .

We can now build the complete representation RefR of R as a collection of such Φ’s. There is of course
no need to choose the Φ’s that refute R(P) using just restrictions P ↓ k , provided that for every P with
¬R(P) there is one with

Φ ⊆ failures(P) ∧ ∀Q .Φ ⊆ failures(Q)⇒ ¬R(Q)

(and no other Φ’s than ones with this property). Let S be a set of Φ’s that characterise R in this way.
Since we have the constant Θ on the left-hand-side of our refinement check for every Φ ∈ R, all we need

to do is to check that none of the GΦ,Φ(P)’s can deadlock on the first step. We can therefore dispense with
the form of conjunction which uses separating traces and define, for (♯),

Spec = e → STOP

G(P) = ⊓
Φ∈S

GΦ,Φ(P)

which will generate a predicate equivalent to R.
Unlike the case where the different pairs (Φ, Ψ) were kept apart by different-length traces, this G(P) may

not satisfy (UC) since it makes use of nondeterministic choice in a way that can potentially map arbitrarily
long behaviours onto the initial deadlock. Of course if (UC) were required one could revert to the use of a’s
and b’s.

If we can bound the size of the sets Φ, giving a measure of how many different behaviours we need to
observe at once to refute our predicate R, then a simpler and more practical form of predicate can be found.
A set of pairs {(Φi , Ψi) | i ∈ I } which characterises a predicate in the sense of Theorem 2.1 will be said
to be k -bounded if each Ψ is no larger than k . This is rather more striking for the representations used in
Theorem 3.2 since each ¬R(P) can be detected by observing that one of a selection of bounded sets is a
subset of P .

An excellent example of this is the determinism condition described in the introduction: this fails just
when P has the failures

(s , {a}) and (s 〈̂a〉, ∅)

for some s and a. So this predicate is 2-bounded and every failure of it shows up in P having an offending
pair of behaviours. The way to test for this is to run two copies of P together, with separated alphabets,
and ensure that one of them cannot refuse an event that the other accepts on the same trace. This suggests
the model of running the two copies interleaved, probed and tested by a monitor process that observes their
behaviours and flags errors.

The best way of testing in this way for determinism is for the monitor M to accept any event from the
first copy of P and then force the second to accept it. If this is successful it does the same again, otherwise
P was nondeterministic.

To implement this we run P [[a ← a.1 | a ∈ A]], and P [[a ← a.2 | a ∈ A]] (similarly to the example), where
A contains all events of P , interleaved, and put them in parallel with

Monitor =?x .1 : A.1→ x .2→ Monitor

and the monitor interface MI = A.1 ∪ A.2. In this the Spec to refine G(P) against is just the specification
that G(P) never deadlocks on an odd-length trace (with this formulation also taking into account that A.1
and A.2 events always alternate):

Spec = STOP ⊓⊓
a∈A

a.1→ Spec′

Spec′ = ⊓
a∈A

a.2→ Spec

On the expressive power of CSP refinement 11

This implementation of determinism testing (different from the one used by FDR which is non-monotonic
and outside the scope of this paper) was invented by Lazić [Laz98]. That representation was the starting
point for the work in this paper.

One can modify this test for determinism to avoid the renaming6: choose an event clunk not used by P
and define

Clunks = ?x : Σ \ {clunk} → clunk → Clunks

Clunk(P) = P ‖
Σ\{clunk}

Clunks

Repeat = ?x : Σ \ {clunk} → x → Repeat

DetTest = ((Clunk(P) ‖
{clunk}

Clunk(P)) \ {clunk}) ‖
Σ

Repeat

and this will also deadlock on an odd-length trace just when P has a nondeterminism.
Since we can make processes like M and Repeat monitor the behaviours of various copies of P on different

traces as well as when they are constrained to act the same, it follows that the technique can simultaneously
look for all misbehaviour in any k -bounded representation of a refinement-closed predicate using k interleaved
renamed copies of P . Of course, unless the resulting M is itself finite-state, the implementation of the
predicate will not be either, but the fact that P is used only k times means that M is the only possible
source of infinitary behaviour. In the case where M is finite-state (with #M states, say), then the overall
complexity of the refinement check is bounded by #M .N k where P has N states.

3.2. Distributive predicates

Any predicate that can be written

R(P) ≡ F (P) ⊑ G(P)

with G distributive is itself distributive since, if R(P) and R(Q) then

F (P ⊓ Q) ⊑ F (P) ⊓ F (Q)

by monotonicity of F ,

F (P) ⊓ F (Q) ⊑ G(P) ⊓ G(P)

by R(P) ∧ R(Q) and properties of partial orders, and G(P) ⊓ G(Q) = G(P ⊓ Q) by distributivity of G. It
follows that R(P ⊓ Q) holds.

We might hope, after our experience to date, that any distributive predicate can be expressed in the
above form. It is interesting here that we do not require F to be distributive for R to be.

Remember our earlier construction to represent the disjunction of two predicates. Since the disjunction
of two distributive predicates is not in general distributive, the connection shown above between distributive
G and distributive predicates shows that the non-distributive G remarked on earlier (involving interleaving)
is in fact inevitable. (For example, if Q1 and Q2 are incomparable processes under refinement, the predicate
Q1 ⊑ P ∨Q2 ⊑ P is not distributive even though the two disjuncts obviously are.)

Suppose we are trying to represent a closed, distributive predicate R. Since our predicate is closed there
must be a complete set RefR of refutations (Φ, Ψ) which characterise it, from the definition of the δ-topology.
We can also assume that all are minimal, in the sense that none is trivially implied by another refutation of
R (whether inside or outside RefR) in the following sense.

We can write (Φ, Ψ) ⇐ (Φ′, Ψ′) if Φ ⊆ Φ′ and Φ ∩ Ψ′ = Ψ. In that case, if failures(P) ∩ Φ′ = Ψ′ then
certainly failures(P) ∩ Φ = Ψ. So if (Φ, Ψ) is a refutation for R there is no point in including (Φ′, Ψ′): it is
non-minimal and it would be better to include only (Φ, Ψ).

Note that this is not quite the same as assuming that the set of refutations RefR is itself subset minimal.
Claim that any minimal (Φ, Ψ) has | Ψ |≤ 1. If not we can find one (Φ, Ψ) such that | Ψ |> 1. Minimality

of (Φ, Ψ) tells us that, for each Γ ⊂ Φ, there is some QΓ such that (i) R(QΓ) and (ii) failures(QΓ)∩Γ = Ψ∩Γ.

6 The renaming is awkward in FDR because many extra channel declarations are required in general.

12 A.W. Roscoe

(If this were not the case then (Γ, Ψ ∩ Γ) would be a refutation that implies (Φ, Ψ).) Let G be the set of all
Γ that have Φ \Ψ ⊆ Γ and | Γ ∩Ψ |= 1. (Namely, G = {(Φ \Ψ) ∪ {f } | f ∈ Ψ}.)

Consider Q∗ = ⊓{QΓ | Γ ∈ G}. (Note that all such Γ are proper subsets of Φ by our assumption that

| Ψ |> 1.) Since R is distributive we have R(Q∗), and by construction

• Φ \Ψ ⊆ failures(Q∗) – as this is true for each individual QΓ, and

• Ψ ∩ failures(Q∗) = Ψ – since for each (s ,X) ∈ Ψ there is Γ ∈ G with (s ,X) ∈ Γ.

It follows – by the fact that (Φ, Ψ) are assumed to refute R – that we have a contradiction to the assumption
that | Ψ |> 1.

We therefore need only consider the cases of (Φ, Ψ) where Ψ is empty or a singleton set. If Ψ is empty it
means that for failures(P) to contain no member of the corresponding Φ implies ¬R(P). On the other hand
if Ψ = {(s ,X)} then it means that if R(P) holds and (s ,X) ∈ failures(P) then failures(P) must contain at
least one member of Φ \Ψ.

We can actually guarantee that each Φ occurs in our RefR, with its minimised elements, only with Ψ = ∅
or only with singletons. For if (Φ, ∅), (Φ, {f }) ∈ RefR then clearly (Φ\{f }, ∅) refutes R and is less than both.
(Whether f were there or not, R would be refuted by one or the other.)

It is easy to see that any R represented by such a RefR is distributive: for if P ⊓ Q were refuted by some
(Φ, ∅) then it is clear both P and Q are – neither can contain any member of Φ. And if it were refuted by
(Φ, {f }) then (as nondeterministic choice is union) one of P and Q must contain the failure f , and neither
can contain any member of Φ \ {f }, meaning that the one containing f fails R. In either case we have
¬R(P ⊓ Q)⇒ ¬R(P) ∨ ¬R(Q) which is logically equivalent to

R(P) ∧ R(Q)⇒ R(P ⊓ Q)

namely distributivity. (A slightly altered form of this argument also works for infinite nondeterministic
choice.)

If RefR contains only members of the form (Φ, ∅) then R is closed under anti-refinement – not such an
intuitive concept as being closed under refinement! On the other hand if it contains at least one of the form
(Φ, {f }) then it is not (by minimality of the members of RefR and a simple argument). Notice also that
unless RefR contains at least one (Φ, {f }) with Φ = {f } then ChaosΣ (the refinement-least element of N+)
will satisfy R. A simple refinement specification (which is distributive as observed earlier) is precisely one
that can be represented by RefR containing only pairs of the form ({f }, {f }).

Just as the concept of k -boundedness was so important in the representation of refinement-closed predi-
cates as more convenient refinement checks, it should not be surprising that the shape of RefR plays a large
role in the representation of distributive ones.

It is cleaner to separate out RefR into two sets: C1 being all the pairs with empty Ψ and C2 being those
with singleton Ψ. We can then verify R by two refinement checks, one for each.

So consider first the case of a collection C (= C1, say) of pairs with empty Ψ. It is a corollary to the
proof of Theorem 2.1 that the following theorem below holds. (Each G(Φ,∅) is the constant Ξ meaning that
if RefR is infinite then the G produced by the proof of Theorem 2.1 is the process S which performs any
number of a’s nondeterministically, one b, and then equals Ξ. If C is finite then the same S will still work
with F (P) being the process formed by a selection of the anb traces being followed by one of the F(Φ,∅)(P)’s
as (Φ, ∅) varies over C ; all the rest being followed by Ξ. Alternatively (when C is finite) one can choose a
simpler and finite S .)

Theorem 3.3 The closed R is anti-refinement closed, or equivalently can be refuted using a set of pairs
(Φ, Ψ) such that all Ψ’s are empty, if and only if

R ≡ F (P) ⊑ S (♭)

for some CSP-definable F satisfying (UC), and fixed process S . Furthermore, in the “only if” case we can
choose F to be distributive.

For C = C2 consisting of pairs with singleton Ψ we observe that a process satisfies the equivalent predicate
(i.e., the one for which C is a complete set of refutations) if and only if

failures(P) = failures(P) \ {f | (X , {f }) ∈ C ∧ X ∩ failures(P) = ∅}

On the expressive power of CSP refinement 13

and that this really only means testing left-to-right inclusion. If we could express the right-hand-side as a
process, then this would be a refinement check. But the right-hand side is not necessarily a process, since
it may well not satisfy the model healthiness conditions7 (meaning that there is no hope of expressing it in
CSP). We can, however, do an equivalent trick: let e be an event not appearing in P or Φ, and consider
P ′ = P ‖

Σ\{e}
OneE where

OneE = (?x : Σ \ {e} → OneE) 2 (STOP ⊓ e → STOP)

P ′ ⊑ P , so in particular P ′ has all of P ’s failures. The big difference, however, is that we can remove any
failure (s ,X ∪ {e}) without harming the model axioms, and so we can let

P∗C =

(

failures(P ′) \ {(s ,X ∪ {e}) | (Φ, {(s ,X)}) ∈ C
∧ (Φ \ {(s ,X)}) ∩ failures(P) = ∅}

)

and this always is a process. It removes from P ′ just those (s ,X ∪ {e}) for which the complete set C of
refutations says that (s ,X) may not be in P . This means we can check our predicate via the refinement

P∗C ⊑ P ′ (♮∗)

Of course this is just one possible trick for expressing the predicate of C as a refinement.8 And to use it we
still have to implement P∗C .

So how can we build P∗C ? Obviously it must have all traces of P , with the possible addition of e
(and nothing further) after each of them. We must give it all the failures of P (aside from refusal of sets
including e), and we must allow the presence of sets involving e to be influenced by C and its observations
of failures(P).

One way of achieving this is by the parallel composition

((P ‖
Σ\{e}

Q) ||| Chaos{e}) ‖
Σ

OneE

where Q is a process whose traces include those of P and whose failures on each trace are a subset of those
of P (if the trace is one of P). If Q does not have the failure (s ,X ∪ {e}), which is achieved by making Q
always offer e when it refuses X after s , then the above combination does not have the failure (s ,X ∪ {e}),
but since P ′ does if (s ,X) is a failure of P , the refinement (♮∗) would then fail.

So we would want Q to have the failure (s ,X ∪{e}) only if all of the (Φ, {(s ,X)}) ∈ C (with this failure)
have at least one member of Φ\{(s ,X)} in failures(P). This can be achieved (less clumsily in the case where
the number of (Φ, {f }) with a given f is bounded), but not in ways which seem to the author to lead to
likely practical implementations.

It is appropriate to widen the specific check (♮∗) above to the more general one below, which is closer to
our previously named styles.

Theorem 3.4 Every distributive closed predicate on N+ can be represented by a check of the form

F (P) ⊑ P ′ (♮)

where P ′ is as above and F is a CSP context.

In practice it is often possible to simplify this form with P ′ becoming P . It is an open question whether
it can always be simplified like this.

It is, of course, interesting that distributive predicates can be expressed in this form. Notice that we have
now proved the following:

• Starting from the observation that every behavioural predicate (i.e., one which is refinement-closed and
distributive) can be expressed as a simple refinement Spec ⊑ P ,

7 Such conditions, for example the prefix-closure of the traces of a process, are common to all CSP models. See [Ros98], for
example. The problem we have here is that there is no good reason why the right-hand-side of the above equation is, in general,
a process which satisfies these conditions.
8 To be even more devious, one could use the same trick to code (Φ, ∅) pairs by converting them into (Φ ∪ {(〈〉, ∅)}, {(〈〉, ∅)})
on the grounds that every process has the failure (〈〉, ∅). It is up to an individual as to whether to use this or not, but we will
implicitly do so when claiming that every distributive predicate can be expressed in forms (♮∗) and (♮).

14 A.W. Roscoe

• replacing P by a general context allows us to check any closed and refinement-closed predicate,

• whereas replacing Spec by a general context, and sometimes P by P ′, allows us to check any closed and
distributive predicate, and finally

• making both the left- and right-hand sides arbitrary CSP contexts allows us to check any closed predicate.

4. Examples of distributive and refinement-closed predicates

This paper was inspired by the author’s contemplation of a number of examples, each of which was either
distributive or refinement closed. The crucial thing was that in each case it was possible to find a representa-
tion as refinement even where this seemed (at the time) unlikely. We have already seen determinism above,
whose refinement representation was discovered by Ranko Lazić.

A closely related predicate is that of noninterference, as specified in [Ros95, Ros98]. The impossibility
of things which a high level process with alphabet H transmitting information through a system P to a
low-level one with alphabet L is expressed as

LH (P) is deterministic

where LH (P) is the lazy abstraction operator which provides the view in Σ\H (= L) on the assumption that
there is an arbitrary but unknown process interacting in an unseen way with P in the alphabet H .

Given that LH (P) is defined in [Ros98] to be the divergence-free process whose failures are the stable
ones of

(P ‖
H

ChaosH) \ H

(namely, the failures generated at stable, or τ -free, states as opposed to ones introduced by divergence-
strictness) it becomes straightforward to use Lazić’s technique to convert noninterference (a closed and
refinement-closed predicate) into a refinement check: just substitute the above representation of abstraction
into the determinism check given earlier, and use the failures refinement check of FDR. The latter is done
because it ignores any divergences which this syntactic representation of abstraction introduces.

In fact this representation of the noninterference check is arguably better than using the FDR determinism
check implemented at the time of writing, because it (unlike the FDR one) is never corrupted by one of these
divergences. (Using the FDR determinism check on the process above will sometimes fail to find a result
because of one of these, though there are ways around this by using different representations of the predicate.)

A second predicate is that of fault tolerance, as formulated in [Ros98] for systems in which errors are
triggered by some events that are assumed to be in the hands of some “demon” rather than ordinary users.
One advantage of this approach is that it allows assumptions to be made on the number, frequency, etc. of
errors thanks to parallel composition of the system P with some error regulator, creating an overall system
Preg . A second is that it gives a very elegant characterisation of fault tolerance:

P ‖
E

STOP ⊑ LE (Preg)

where E is the set of fault events. This simply says that the system with faults permitted but abstracted is
a refinement of how the system behaves when there are no faults.

Intuitively this is similar to non-interference, since it says that error events do not significantly affect
what the user sees. It is, however, a different predicate since it allows errors to cut down the nondeterministic
range of behaviour, and indeed allows nondeterminism much more freely in general. Unlike noninterference
it is not refinement-closed, but as the form of the above definition shows (given our earlier analysis) it is
distributive (which noninterference is not). The right-hand side will always be a distributive context, as the
regulator process if any should not involve P .

A little transformation easily converts the above into the form (♮) in the case where Preg = P :

(P ‖
E

STOP) ||| ChaosE ⊑ P

More recently the author was presented with two predicates representing correct interaction between
client/server pairs, developed by Joy Reed and Jane Sinclair. Here it turned out that one was distributive but
not refinement closed, and the other (which is its weakest refinement-closed strengthening) is not distributive.

On the expressive power of CSP refinement 15

His experience in representing these as refinements was similar to that for the above examples, as is reported
in [RSR04]. Some further examples of natural non-behavioural specifications can be found in [Ros04].

5. Divergence and related matters

We showed earlier (Theorem 2.1) that any predicate represented using (†) for F and G satisfying (UC) is
topologically closed. We also observed that hiding, either coupled with infinite nondeterministic choice or
used in a way that might introduce divergence, had the potential to create functions not satisfying (UC).

They can certainly create predicates that are not closed: consider

STOP ⊑ P \ {a, b}

⊓{(P ‖ nupto(n, b)) \ (Σ \ {b}) | n ∈ N} ⊑ b → STOP

where nupto(n, b) is a process that does n events and stops, and additionally stops after communicating b.
The first of these refinements specifies, thanks to König’s lemma and Σ being finite, that P has only finitely
many traces, all of which consist only of a and b. The second says that P can communicate a b at some
point. Both of these predicates fail to be closed: for example each is satisfied by all the processes which
perform n a’s and then a b, but not by the limit of this sequence (the process that performs a’s for ever).

Once we try to extend beyond the world of closed predicates it seems to be the case that the expressibility
of predicates on (finite) traces and refusals starts to differ. For example, we saw above that the predicate “can
communicate b” (a trace property) can be expressed as a refinement. However a similar failures predicate
“there is a trace s after which b cannot be refused” is not expressible. For suppose it were expressed by
F (P) ⊑ G(P). Consider the processes B∗ which can refuse b after any length of trace of b’s, and Bk which can
do the same except not refusing b after k b’s. Plainly we must have F (Bk) ⊑ G(Bk) but not F (B∗) ⊑ G(B∗).

The failure of refinement must be in refusal sets, since the traces and divergences of F (Bk) must be the
same as those of F (B∗) and similarly for G. It follows that G(B∗) must have some failure (s ,X) which is
not in F (B∗) and hence (a) not in any F (Bk) (as these all refine F (B∗)) and thus (b) not in G(Bk) for
any k either. We can be sure that s is a trace of both sides but not a divergence. It is a property9 of CSP
operators that, whenever (s ,X) is a non-divergent failure of H (P), then there is a finite set Φ of failures of
P such that (s ,X) ∈ failures(H (Q)) whenever Φ ⊆ failures(Q). It follows that “(s ,X) ∈ failures(B∗)” is
proved by some finite set of B∗’s failures, which means that it belongs to G(Bk) for sufficiently large k . This
contradicts what we already know. It follows that this predicate is not expressible via (†). (Note that this is
the first such example we have seen.)

The author has identified two reasons for the comparative difficulty in expressing refusal predicates. The
first, seen above, is that since refusals are only ever used to calculate other refusals, we cannot make use of
(for example) divergences to give us extra leverage. The second is that we can only look at one refusal set
per trace, and this is of uniformly bounded size thanks to the finite size of Σ. This is in contrast to traces,
where we can string an infinite collection together and then hide them.

As an example illustrating the power of combining an infinite set of traces into one, consider the predicate
“Q has a trace which is not a trace of P” for any fixed Q . We can assume Q has an infinite (necessarily
countable) set of traces since otherwise it is a closed predicate and therefore representable. Since Q has a
countable set of traces we can enumerate them t1, t2 . . . and build a process TRSQ which performs these
traces, in this order, putting an extra event reset after each. (For example, if Q can do any number of a’s,
then TRSQ might perform no a’s, reset, one a, reset, two a’s, reset, three a’s, and so on.)

Now consider the construct (taken from [Hoa85]):

Resettable(P) = P △ reset→ Resettable(P)

which can perform any sequence of P ’s traces separated by reset’s, and

AllTrQ(P) = (TRSQ ‖
Σ

Resettable(P)) \ Σ

9 This follows from the continuity of all operators over the subset order on the stable failures model F of CSP: see chapter 8
or [Ros98]

16 A.W. Roscoe

AllTrQ(P) can diverge if and only if P has all of Q ’s traces, or in other words if P fails the predicate.
Therefore testing if this context of P refines STOP (the only value other than div for a process with all
events hidden) decides our predicate, which is the negation of the closed

P ⊑T Q

This example shows clearly how we can put infinitely many behaviours of P into a single divergence of
AllTrQ(P). There is no analogue of this construction for failures or divergences.

For these reasons we will consider only trace predicates in the rest of this section, namely ones which
are determined by the set traces(P) of P ’s finite traces. We saw earlier in this paper how to express binary
disjunction of two failures predicates by means of doubling the events and using interleaving (|||). There is
no way in which this approach can work for infinite disjunctions, because:

• it would require an infinite alphabet, which we have excluded, and more importantly

• infinite parallel operators are not properly definable in CSP since they cause great theoretical problems.

Let us consider the disjunction of refinement-closed closed trace predicates. The construction used in the
proof of Theorem 2.1 to demonstrate that closed predicates can be represented as refinements uses failures
refinement essentially, even in the case where what is being tested is a trace predicate. This was because we
could use either traces or refusals to trigger the refusal of the event e and so giving Ξ rather than Θ, but
this would not have been possible in the refinement case if Ξ and Θ had differed in traces. If we had been
interested only in traces predicates earlier, then it would have been straightforward to have used Θ = STOP
and Ξ = e → STOP in modified constructions to get the same representation results as Theorems 2.1, 3.2,
3.3 and 3.4. In particular any refinement-closed closed predicate would be representable by a check of the
form

STOP ⊑T G(P)

in which G(P) can only take the two values STOP and e → STOP .10

If we have a countable collection of these predicates then it is possible to represent each of them like
this, or to modify the construction so that when the kth of them fails the resulting Fk (P) has the traces of
nas(k , e); STOP (in other words it communicates k a’s before a single e. (When it succeeds it only has the
empty trace.) Now consider the process

H ∗(P) =⊓{Fk (P) | k ∈ N}

(using the latter form of Fk) which then has the traces of A∗E =⊓{nas(k , e) | k ∈ N} if and only if all the

constituent refinements fail. Hence

STOP ⊑ AllTrA∗E (H ∗(P))

is equivalent to the disjunction of the individual refinements.
Topologically speaking, this actually implies that all refinement-closed open sets of the traces model (i.e.,

the complements of closed sets) are expressible. For every refinement-closed open set U is the union of the
closed and open (clopen) sets11

{P | P ∩ Σn = F}

for those finite F and n such that the above set is contained in U .12 Since there are only countably many
of these “basic clopen sets” it follows that every open set is the union of countably many closed ones.

For the rather less useful category of anti-refinement-closed trace predicates we can get a similar result.

10 It is of course natural that we should be able to judge trace predicates by means of trace refinement. However bear in mind
below that we will make critical use of divergence to help judge trace predicates, and that in these cases we need trace-plus-
divergence refinement, which can easily be judged in the failures-divergences model. If the presence or absence of refusal sets
were an issue (which it will typically not be below since we hide all events) then parallel composition with ChaosΣ on the
left-hand side of the refinement gives the proper meaning.
11 These sets are, topologically speaking, a basis.
12 If Q is in U then the processes Q ↑ n = Q ∪ {s t̂ | s ∈ Q∧ | s |= n ∧ t ∈ Σ∗} are a sequence that converges to it; therefore
one of them is in U and all that Q ↑ n’s refinements are too.

On the expressive power of CSP refinement 17

We know from earlier discussion that any anti-refinement-closed closed predicate can be represented in the
form

F (P) ⊑ S

However it is clear that if we are simply restricting ourselves to traces predicates then the refinement above
can be trace refinement. This gives us an opportunity to transform it into the form

AllTrS (F (P)) ⊑ div

(judged over the failures-divergences model N) since the left-hand side diverges just when P has all S ’s
traces. Now any nonempty set of such refinements

{Fλ(P) ⊑ Sλ | λ ∈ Λ}

can be disjoined

⊓{AllTrSλ
(Fλ(P)) ⊑ div

This is the disjunction since the refinement plainly holds precisely when the left-hand side can diverge on
〈〉, which is equivalent to at least one of the constituent refinements being true.

This trivially implies that all anti-refinement closed trace predicates are expressible whether open, closed
or neither. We can summarise the above results (plus re-statements and easy re-workings of some from earlier
in the paper) as follows.

Theorem 5.1 The following hold for traces predicates.

• All closed predicates can be decided by (†) using traces refinement ⊑T using functions satisfying (UC).
We can similarly replace ⊑ by ⊑T for the other results of Sections 2 and 3, namely Theorems 2.1,2.2,3.1
3.2, 3.3 and 3.4.

• The classes of traces predicates representable are closed under countable conjunction and finite disjunc-
tion.

• Any countable disjunction of refinement-closed and closed traces predicates is representable via a refine-
ment over the failures/divergences (or alternatively the little-used traces/divergences) model.

• Any anti-refinement-closed traces predicate is representable via a failures/divergences (or traces/diverg-
ences) refinement.

It would be useful to extend the result about closure under countable disjunction to more than the
closed refinement-closed predicates. However the author has been unable to find a construction which
achieves this, under the conventions established in this paper of using any (potentially infinite) CSP con-
struct over the failures/divergences model. However it is possible if we allow ourselves to move to the
failures/divergences/infinite traces model U (see [Ros93, Ros98]). This is arguably a more natural model
given the types of infinitary constructs we tend to use, but does of course take us further from the realms of
practicality.

Consider the following alternative formulation of binary disjunction: suppose we have a pair of refinements
Fi(P) ⊑T Gi(P) (i ∈ {1, 2}). Then the process G∨(P) = G1(P) △ reset → G2(P) (for reset a new event
as before) can perform any trace of G1(P), a reset, and then any trace of G2(P). We can use essentially the
same trick as we did earlier with ||| and define

F∨(P) = (ChaosΣ\{reset} △ reset → F2(P))
⊓ (F1(P) △ reset → ChaosΣ\{reset})

Essentially the same argument used with the interleaving version shows that

F∨(P) ⊑T G∨(P)

is equivalent to the disjunction of the two constituents. This does not work for failures since the refusal at
the end of the first process’s trace is ignored.

It is possible to extend this to countable disjunction, but only if we use a model which admits infinite
traces. For a sequence P = 〈Pi | i ∈ N〉 of processes we define

Π(P) = head(P) △ reset → Π(tail(P))

18 A.W. Roscoe

to be the process which performs one trace of each of the Pi in sequence, separated by reset’s. Suppose we
are given sequences of functions 〈Fi(·) | i ∈ N〉 and 〈Gi(·) | i ∈ N〉 whose refinements over U represent a
sequence of finite-trace predicates where any failure of refinement would show up as an illegal finite trace of
the right-hand side. We can then define Si to be the sequence of processes which is ChaosΣ\{reset} except
at position i , where it is Fi(P) (P being the process we are checking for the disjunction of the implied
predicates), and I = 〈Gi(P) | i ∈ N〉. Then

ChaosΣ ‖
Σ
⊓{Π(Si) | i ∈ N} ⊑U Π(I)

if and only if any one of the constituent refinements Fi(P) ⊑T Gi(P) holds. The “if” part is trivial, for if
ChaosΣ ‖

Σ
Fi(P) ⊑U Gi(P) then

ChaosΣ ‖
Σ

Π(S)i ⊑U Π(I)

For “only if”, observe that if none of Fi(P) ⊑T Gi(P) holds then we can find finite traces si of Gi(P) which
are not possible for Fi(P). The trace s0̂ 〈reset 〉̂ s1̂ 〈reset〉 . . . is then a trace of Π(I) which is not a trace of
any of the constituents of the left-hand side of the refinement above.

The fact that we need to assume that the constituent refinements are themselves judged over U is not a
damaging restriction since all of the constructions used earlier would have worked equally well over the more
elaborate model.

Observing that any open predicate over the traces model is the countable disjunction of clopen ones
(since there are only countably many clopen balls of the form B(r , y) = {x | d(x , y) < r} in total, d being
the metric with the same definition as earlier, but based on the standard restrictions P ↓ n over the trace
model T rather than N) and therefore representable using the above and Theorem 5.1, we get the following
result.

Theorem 5.2 The following are representable as refinements over U :

(a) Any countable disjunction of trace predicates representable as refinements over T .

(b) All open traces predicates.

Unlike the construction involving AllTrQ(P) above, it does not appear to be possible to map this infinite-
trace refinement down to the failures/divergences model by using hiding to create divergences. The reason
for this is that the left- and right-hand sides of our refinement are too complex, and in particular there are
potentially uncountably many different counter-example traces which might be important. (If there were
only countably many we could use similar constructions to the earlier case and the countable construction
given earlier.)

Since U really is a much richer model than the ones based on finite traces it should perhaps not come as
a great surprise that we seem to be able to express richer predicates in it. An interesting question that arises
is whether one can express over it the countable disjunction of predicates based on both finite and infinite
traces (there being no hope for refusals because the arguments above still apply). Certainly the above idea
does not work, even for pairwise disjunction, as the construct never combines two infinite traces into a single
one. The interleaving-based pairwise disjunction from earlier in this paper does work, however.

The author believes it is possible to give a countable disjunction using a combination of the ideas in
these two methods, but the result is even more esoteric than the ideas we have seen before. Simple infinite
interleaving will not work because (i) this construct is itself inadmissible, like all infinite parallel operators in
CSP and (ii) the actions of individual processes cannot be distinguished without using an infinite alphabet.

If, on the other hand, we use the same idea as in our second treatment of determinism checking earlier,
and use Clunk(Fi (P)) and Clunk(Gi(P)) then we can control the order in which the processes perform
actions. For example we can create a process in which

• Any non-clunk action immediately before the kth clunk is the j th action of process i , where (i , j) is
the kth member of an enumeration of N × N. If there is no such action then this process will never be
permitted to communicate again. This allows us to compare the constituent refinements action-by-action
without having an infinite alphabet.

• The ith process is only started up by some appropriate recursive structure once it is actually allowed

On the expressive power of CSP refinement 19

to perform actions. This will mean that at any time there are only finitely many processes running in
parallel.

The details are left to the interested reader.
Returning briefly to the issue of failures, recall that one of our difficulties in combining failures specifi-

cations is that each failure only contains a single refusal set. Just as with the move from finite to infinite
traces, it seems that there is a richer model where things may be easier. This is a model called the refusal
testing model [Muk93] (based on earlier work by Phillips [Phi87]) where refusal sets are recorded throughout
the trace rather than just at the end.

This means that constructions like the second version of binary disjunction will now work over this model
(which, since it is more expressive than the failures/divergences model N , can certainly express any predicate
that N can). However, since it is still (of course) the case that refusal information does not contribute to
traces or divergence information under any CSP operator, there is no chance that we can perform tricks
using divergence like AllTrQ(P) which tell us anything about refusal sets. Therefore there would be more
need than with traces for a variant of the refusal-testing model which as far as the author is aware has never
been studied, namely one in which there are infinite traces (with infinitely many refusal sets interspersed).

6. Conclusions

In this paper we have shown, as the author had long suspected, that wide-ranging classes of predicates on
CSP could be expressed using refinement checking. We have shown precisely which predicates are expressible
using functions satisfying (UC) (uniform continuity).

As ever, answering one question raises others. The previous section has gone some way towards answering
the question of which predicates are expressible using more general functions, but leaves quite a lot of gaps
to be filled in.

A second issue is to gain more insight into the question of which predicates can be captured using
finitary F and G (ones which are finite-state if their arguments are), for these are the ones which are
genuinely decidable using FDR. Some recent work of the author on this question is reported in [Ros04].

A natural question to arise from this work is that of whether there is some interesting temporal/modal
logic which one could show was entirely captured by refinement checking. This question has already been
answered in the affirmative for LTL13 (expressing properties, in essence, on complete and infinite traces:
essentially a type of extended behavioural predicate) in [LMC01]. But that work is very different from the
present paper. It encompasses many non-closed predicates and therefore could only be compared with our
work in Section 5. It is also more restricted in that it only considers specifications of a single execution
path (universally quantified over all such). Essentially an LTL predicate is a behavioural predicate on finite
and infinite execution sequences. The type of predicate dealt with in the present paper allows us to express
predicates on sets of behaviours belonging to a process rather than just one of them. Note, however, that
since this is the nature of models based on individual process executions, there can be no way of detecting
exactly when some nondeterministic choice was made, so we are not in the conventional branching-time
world either.

Finally, the classes of predicates which are on the one hand refinement closed and on the other distributive
have been thrown into focus by this work and the examples discussed above. These should be the subject of
future work.

Appendix: Notation

This paper follows the notation of [Ros98], from which most of the following is taken. Details of all the
operators and models may be found in [Ros98] (URL given in the bibliography).

13 Although there the atomic predicates talk only about performance of events, not refusals. To extend it to the latter requires
(at least) the refusal testing model.

20 A.W. Roscoe

N natural numbers ({0, 1, 2, . . .})
Σ (Sigma): alphabet of all communications
τ (tau): the invisible action
X (tick): the action representing successful termination
An set of all length n sequences over A
A∗ set of all finite sequences over A
Aω set of all infinite sequences over A

〈〉 the empty sequence
〈a1, . . . , an〉 the sequence containing a1,. . . , an in that order
aω the infinite trace 〈a, a, a, . . .〉
s t̂ concatenation of two sequences
s \ X hiding: all members of X deleted from s
s ↾ X restriction: the members of s that are in X

which share members of X and are disjoint elsewhere.
s ≤ t (≡ ∃ u.s û = t) prefix order
≡ equality between boolean expressions and predicates

Processes:

STOP the process that does nothing
SKIP the process that simply terminates (X) successfully
ChaosA the most nondeterministic divergence-free process over A ⊆ Σ
div the process that does nothing but diverge (equivalent to div ⊓ ChaosΣ in N)
µ p.P recursion
a → P prefixing
?x : A→ P prefix choice
b&P conditional execution, equals “if b then P else STOP”
P 2 Q external choice

P ⊓ Q , ⊓S nondeterministic choice
P A‖B Q alphabetised parallel
P ‖

X
Q generalised parallel: P and Q synchronise on X

P ||| Q interleaving (unsynchronised) parallel
P \ X hiding
P [[R]] renaming (relational)
P ⊲ Q ‘time-out’ operator (sliding choice)
P △ Q interrupt

P [x/y] substitution (for a free identifier x)
P ↓ n The least refined process which behaves identically to P

for n steps. In N it diverges (unless P already has) after
every length n trace of P .

d(P ,Q) metric distance between P and Q
= inf{2−n | P ↓ n = Q ↓ n}

Models:

T traces model
N failures/divergences model (divergence strict)
N+ divergence- and X-free portion of N
F stable failures model
U failures/divergences/infinite traces model (divergence strict)
⊑ failures/divergences refinement (reverse containment)
⊑T traces refinement
⊑U refinement over U

On the expressive power of CSP refinement 21

Acknowledgements

I would like to thank Joy Reed and Jane Sinclair for inspiring this work via their client/server predicates,
and Ranko Lazić for his earlier work on determinism. Michael Goldsmith, Joel Ouaknine, Gavin Lowe and
Christie Bolton provided helpful comments on earlier drafts. The clarity of the paper was greatly improved by
comments from anonymous referees. The work reported here was funded by grants from ONR and EPSRC.

References

[FDR] Formal Systems (Europe) Ltd., Failures-Divergence Refinement, User Manual, obtainable from
http://www.formal.demon.co.uk/fdr2manual/index.html

[Hoa85] Hoare, C.A.R., Communicating sequential processes, Prentice Hall, 1985.
[Laz98] Lazić, R.S., A semantic study of data-independence with applications to the mechanical verification of concurrent

systems, Oxford University D.Phil thesis, 1998.
[LMC01] Leuschel, A., Massart, T., and Currie, T., How to make FDR Spin: LTL model checking of CSP using refinement.

In Oliviera, J.N. and Zave, P., Eds. Proceedings of Formal Methods Europe FME’2001, LNCS 2021(DSSE-TR-
2000-10), pages 99-118.

[Muk93] Mukkaram, A., A refusal testing model for CSP, Oxford University D.Phil thesis, 1993.
[Phi87] Phillips, I., Refusal testing, Theoretical Computer Science 50 pp241–284 (1987).
[RSR04] Reed, J.N., Sinclair, J., and Roscoe, A.W., Responsiveness of inter-operating components, Formal Aspects of

Computing 16, 4, pp294–411 (2004).
[Ros91] Roscoe, A.W., Topology, computer science and the mathematics of convergence, in Topology and category theory

in computer science (Reed, Roscoe and Wachter, eds), Oxford University Press, 1991.
[Ros92] Roscoe, A.W., An alternative order for the failures model, Journal of Logic and Computation 2, 5, pp557–577,

1992.
[Ros93] Roscoe, A.W., Unbounded nondeterminism in CSP, Journal of Logic and Computation, 3, pp131–172 (1993).
[Ros95] Roscoe, A.W., CSP and determinism in security modelling, Proceedings of 1995 IEEE Symposium on Security and

Privacy, IEEE Computer Society Press, 1995.
[Ros98] Roscoe, A.W., The theory and practice of concurrency, Prentice-Hall International, 1998. This reference contains

almost all necessary background on CSP. It, like the rest of the author’s papers listed here other than [Ros03], can
be viewed or down-loaded via http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/pubs.html.

[Ros03] Roscoe, A.W., On the expressiveness of CSP refinement checking (Draft version), Proceedings of AVoCS’03,
(Southampton University Technical Report).

[Ros04] Roscoe, A.W., Finitary refinement checks for infinitary specifications, Proceedings of CPA 2004 (IOS Press).

