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Abstract. We discuss how to transform a CSP refinement, S C I, to
enable all its events to be hidden; this is useful because many of the
state space compression functions provided by the model-checker FDR
are effective only when events are hidden [1]. In an earlier paper [2] we
described a suitable transformation for the case where the refinement is in
the traces semantics of CSP. This paper extends the approach to the more
difficult case of the stable-failures semantics. In both cases, a watchdog
transformation is applied to the specification S, resulting in a watchdog
process WDgs, which is then composed in parallel with I, or with [ in a
simple context. The watchdog process monitors I and somehow indicates
whether it can behave in a way that is incompatible with refinement of
S. All events of the original assertion can be hidden in the transformed
assertion. We also discuss the design of compression strategies that try
to hide as many events as possible in the component processes of I and
WDg, and compress the composition as it is being built up. We describe
our implementation of the watchdog transformations and some simple
compression strategies.

Keywords: Compression, CSP, FDR, Model-Checking, State Explosion
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1 Introduction

It is widely recognised that the state explosion problem limits the tractability
of model-checking. There are several approaches to combating state explosion,
perhaps the best known of which are compositional reasoning [3], abstraction
[4], symmetry exploitation [5-7], and partial order reduction [8-10]. Symbolic
model-checkers [11] use data structures, often BDDs, for efficiently represent-
ing the explored state space and the state transition function. An alternative
approach is taken by the FDR [12] model-checker for CSP. FDR stores the set
of explored states explicitly, but provides compression functions that approxi-
mate semantic minimisation, reducing the size of the (internal) state machine for



a process, without changing its behaviour. Use of these compression functions
can dramatically improve the tractability of CSP model-checking [13]. Property-
oriented model-checking is a novel technique which uses the property — the spec-
ification process and the semantic model of refinement — to maximise the benefit
of compression.

We discuss how to transform a CSP refinement, S C I, to enable all its
events to be hidden. This is useful because FDR’s compression functions are
most effective when events are hidden [1]. In an earlier paper [2] we described
a suitable transform for the simple case where the refinement is in the traces
semantics of CSP. This paper extends the approach to the more difficult case
of the stable-failures semantics. In both cases, a watchdog transformation is
applied to the specification process S, resulting in a watchdog process WDg
which is then composed in parallel with I, or with I in a simple context. In
a suitable watchdog assertion, the watchdog process monitors I and somehow
indicates whether it can behave in a way that is incompatible with refinement
of S. We ensure that the truth or falsity of the assertion is preserved when all
events of the original assertion are hidden in the watchdog assertion.

The traces watchdog process and watchdog assertion are summarised in Sec-
tion 2. A common special case of the watchdog transformation for the more
difficult case of the stable-failures semantics is presented in Section 3. This re-
striction is removed in Section 4, which presents the general transformation.
These sections informally prove correctness (in a sense made precise later).

It is one thing to hide a given set of process events and then compress, and
another to hide and compress efficiently. FDR operates on processes expressed in
CSPw [14], the machine-readable version of CSP. FDR’s compression functions
generally explore the full state space of a CSPy; process in order to derive a com-
pressed state machine, so naively hiding all possible events and then compressing
would cause FDR to traverse the full state space. Section 5 describes compres-
sion strategies that aim to achieve closer to optimal compression given a set of
events to be hidden. These compression strategies try to reorganise the CSPy
process structure to allow events to be hidden as early as possible when combin-
ing component processes of I and WDg, and thus compress the composition as
it is being built up.

Section 6 discusses the implementation of the watchdog transformations and
of some simple compression strategies. We end with a discussion in Section 7 of
the relationship to other work.

Throughout, we use the notational convention that a(P) denotes the com-
plete alphabet of a process P, and a(P, Q) denotes a(P) U a(Q).

1.1 The Watchdog Approach

The basic technique consists of three distinct steps, the first of which is performed
in a way that guarantees that the second is possible:

1. Transform S C I into an equivalent assertion P(a(S,I)) C F(WDg,I) in
which P is a function from alphabets to processes, and watchdog process
WDg is composed with I using some composition function F.



2. Without affecting its truth, transform this assertion to one where a(S, I) is
hidden on both sides: P(«(S,I)) \ a(S,I) C F(WDg,I) \ (S, I).

3. Simplify the left-hand-side and apply a compression strategy to generate a
compressed state machine for the right-hand-side F(WDg, I) \ (S, I).

2 Watchdog Transformations for the Traces Semantics

The watchdog (process) transformation described in [2] maps a specification
process, S, to a watchdog process that monitors the traces of an implementation
process, I, and indicates whether or not S is refined by I according to CSP’s
traces semantics.

The watchdog process, WDg in Section 1.1, is defined so that it can per-
form a distinguished fail_ event when I performs a trace not permitted by S.
This transformation is most easily defined in terms of a normal form definition
of S. This is unsurprising: the efficient checking of refinement within FDR re-
lies upon normalisation of the specification — determinising the underlying state
machine, while producing sufficient annotations to allow any interesting nonde-
terminism to be reconstructed. Allowed behaviour of the implementation can
then be verified by a local check. Also, a normal form generally has a simple
structure (relying on a restricted set of process operators) which allows a simple
definition of the watchdog process. We use the traces normal form defined in [1]
since this is the one implemented within FDR. This allows the transformation
to be implemented both directly and efficiently, as explained below.

In the remainder of this section, we describe the traces normal form, then
the watchdog transformation for traces refinement, then the watchdog assertion,
and finally we argue that the watchdog assertion holds iff the original assertion
holds.

2.1 The Traces Normal Form

Any process P has a trace-equivalent expression as an entry into a mutual re-
cursion of the following form (for some indexing set and functions A and after):

P'(i) =0 a € A(i) ® a — P'(after(i, a)).

For example, we may take the indexing set to be the set of all traces of P; A(s)
to be inits(P/s), the set of all events that P can perform after the trace s'; and
after(s, a) to be the extended trace s~ (a). In general, though, that particular
construction may give rise to an infinite mutual recursion even for very simple
processes.

P is finite-state (in the traces model) precisely if there is such a representation
with a finite indexing set, and this representation is a traces normal form if there

! The set returned by the function inits is often referred to as the initials of its
argument. Thus, inits(P/s) is the initials of P after it has performed trace s.



is no non-trivial bisimilarity between terms in the recursion. Each set A(7) is the
union of the initial events of all operational states reachable on any trace that
leads to P'(i).

2.2 The Traces Watchdog Process

Given a specification S = §'(4p) as such a (finite) traces normal-form recursion,
we can define a watchdog process, WDTs(4), in terms of a transform WDTs
defined by recursion over the same index set:

WDTs(i) = (O a € A(i) ® a - WDTgs(after(i, a)))
O
(Obe€a(l)— A(i) b = fail_ — STOP)

Note that A(4) is inits(S/s;) for any trace s; that takes S to the state indexed by
i, and 4nits is a semantic function that is not expressible in the CSPy; language;
so A(7) must be calculated (using FDR) as part of the transformation.

The intention is that WDTg(%) can perform any trace ¢r that S can perform,
but it can also perform events from the alphabet of I not allowed by S/tr (after
which it can only perform the fail_ event).

Notice that this definition of WDT is expressed in terms of the alphabet,
a(I), of the implementation process I. Similar formulations independent of a(I)
are possible, but they require a slightly more complex composition function F.
We use the formulation above for simplicity.

2.3 The Traces Watchdog Assertion

Having calculated the traces watchdog process WDTs (i), the transformed
assertion is

RUN(a(S,I)) Cr I (L| I)WDTS(Z'(J) (1)
in which I synchronises with the watchdog process on (9, I), the events of the
original assertion. The process RUN (a(S, I)) has a single state, in which it can
perform any event of the original assertion (and return to the same state).

2.4 Correctness

We say that a watchdog assertion transformation for the traces semantics is
correct if it preserves the truth of a traces assertion. In [2] it is proved that the
transformation described in Section 2.3 (defined in terms of WDT) is correct
in a stronger sense which, in addition, relates counterexamples of the watchdog
assertion to corresponding counterexamples of the original assertion. We do not
describe this stronger property here, due to lack of space.

Essentially, if I can only perform traces of S, then WDTg(4) is constrained
by I to traces of S, so can never progress via its second branch. So the parallel
composition of I and WDTs(4) can never perform the fail_ event. Conversely,



if this composition can perform fail_, then it must be performed by WDTs (i)
via its second branch, in particular after some event e outside inits(S/s), where
s is some trace of S — that is, there must be a trace s~ (e) of I that is not a
trace of S.

Notice that RUN L is invariant under hiding on both sides when the set
hidden is contained in the argument of RUN. Therefore the traces assertion
transformation described allows events of a(S,I) to be hidden on both sides
without affecting truth or falsity. Moreover, FDR’s debugger can ‘look inside’
process operators, in particular the hiding operator; this allows the user to find
a counterexample of the original assertion corresponding to any given counter-
example of the watchdog assertion.

3 Watchdog Transformations for the Failures Semantics

In this section we introduce a stable-failures model watchdog transformation
that is valid for a common special case of S and I. Section 4 describes the
unrestricted form.

It is worth reviewing CSP’s stable-failures model briefly. The failures of a
process P, failures(P), is the set of all possible observations (s, X) of a trace s of
P leading to a stable state that can refuse to engage in any event in X, a so-called
refusal (set) of P/s. (A stable state is one that cannot perform internal actions.)
Then, a refinement P Cx @ holds in the stable-failures model if traces(Q) C
traces(P) and failures(Q) C failures(P). So failures refinement implies traces
refinement?. Additionally, failures refinement requires that the implementation
can never (stably) refuse more events after some trace than the specification
might (stably) refuse after the same trace.

3.1 A First Look at the Failures Normal Form

In the case that there is no unbounded internal progress (which would be
divergence in the failures-divergences model), then each trace necessarily leads to
a stable state and the normal form in the failures model can again be
expressed as a minimal mutual recursion [1], shown below. Here the form of
each clause is somewhat more complex than was the case for the traces normal
form, reflecting the finer discrimination of the richer model.

P'(i) = (O a € A(i) ® a — P'(after(i, a)))
>
(Mme M(i) e« 0a € m e a— P'(after(i, a)))

where > is the untimed timeout operator®, A and after play analogous roles
to those in the traces normal form, and M (%) is a (non-empty, finite) set of

% when we say ‘failures’ without the prefix ‘stable-’ it is shorthand for ‘stable-failures’
3 P> Q may behave like P, but it will always offer the initial actions of Q. P> Q =
@ O P 1M Q (which is independent of bracketing).



incomparable subsets of A(i), the minimal acceptances of P'(i). (The restriction
that M (%) is a non-empty set of minimal acceptances is dropped in Section 4.)
While A(i) represents the choice of events immediately possible for P'(3), the set
M (%) encapsulates the range of nondeterminism within that choice. Each of the
elements of M (%) is a set of events that P’(¢) may nondeterministically choose to
offer; it is not generally possible for an external observer to tell which minimal
acceptance has been chosen by P’(7), but one can rely on all events from at least
one minimal acceptance being offered by the process. This fact is crucial in the
construction of WDFgs below.

Note that a process P'(i) that may immediately deadlock has M (i) = {0},
and the failures normal form of a deterministic process has M (i) = {A(4)} for
each i. A process DF(X) — DF here stands for ‘deadlock free’ — that can do any
sequence of events drawn from X and is the most nondeterministic such process
that can never deadlock, has the single-state normal form with A(i) = X and
M((ip) = {{z} | = € X} and singleton index set {io}.

3.2 The Restricted Failures Watchdog Assertion

In contrast to the traces case, the stable-failures watchdog assertion is a deadlock
freedom check (in the stable-failures model).

Given a watchdog process WDFs(ig), the assertion S Cx I is transformed
to the watchdog assertion

I || WDFs(ip) deadlock free [F] (2)
a(S,I)

which asserts that the parallel composition of I and the watchdog process,
synchronised on all events of the original assertion, is deadlock free in the failures
semantics. (The test for deadlock freedom of a process P can be expressed as a
failures refinement check against the process DF (a(P)), but such checks are suf-
ficiently common to have a special form of assertion in the FDR meta-language.)

3.3 The Restricted Failures Watchdog Process

A suitable failures watchdog process is WDFs(i9) where WDFs is defined (rel-
ative to the stable-failures normal form of §) in CSPy; as follows:

1: channel trace_error_, spec_stopped_
2: sigma = Events — {trace_error_, spec_stopped_}

3:

4: WDFS('l) =

5 (O a: A(i)  a - WDFgs(after(i, a)))

6: O

7 (O a: sigma — A(i) ® a — trace_error_— — STOP)

8: >

9: N(i) ==1and empty(M;1) &
10: — — spec state can stop (so has one minimal acceptance)



11: spec_stopped_ — WDFs(7)

12: O

13:  N(i) > 0 and not empty(M;1) &

14: — — spec state cannot stop (and has at least 1 min acceptance)
15: (|_| Y € {{ml,...,mN(i)} | my € Mi,l;---;mN(i) € Mi,N(i)}

16: eOge Y e a— WDFgs(after(i,a)))

We have written N(¢) above as shorthand for card(M (i)), so we have that
M(i) = {M;a,..., M ni) }- Line 1 defines two distinguished events trace_error_
and spec_stopped_ (identifiers ending in an underscore are conventionally re-
served for machine-generated text). Line 2 defines sigma to be the set of all
events Events except these distinguished events. So sigma contains (at least) all
the events in «(S) and a(I).

3.4 Correctness

Recall that a refinement P Cx @) holds in the stable-failures model if traces(Q) C
traces(P) and failures(Q) C failures(P), where the latter are the sets of all pos-
sible observations (s, X) of a trace s of ) (or P) leading to a stable state that can
refuse to engage in any event in X. Suppose we have normalised P to a mutual
recursion of the form given in Section 3.1, and that 4, is the (unique) index such
that P'(is) = P/s. Then a simple unwinding argument reduces the refinement
check to a check that, for each trace s that both P and @ can perform, any
operational state @’ that @ can reach on s (and so such that Q/s Cx Q') has
the following two properties:

1. inits(Q") C A(4s); and
2. if Q' is stable and can refuse X, then Im € M(i;) such that mN X = {.

The first property says that @' cannot offer more than P/s might, and the
second says that @' must fulfil at least one of the promises that P/s makes
about what is offered.

We need to show that S Cx Tiff I || WDFs(ip) is deadlock free in F. We

a(S,I)
argue both contrapositives.

Suppose that S Cx I does not hold; then there are two generic possibilities,
which we narrow by considering minimal counterexamples: either there is a trace
s (a) € traces(I) such that s € traces(S) Ntraces(I) but s~ (a) & traces(S); or
there is a failure (s, X) € failures(I) — failures(S) where s € traces(S).

In the first case, since s~ (a) is a trace of I, it is possible for the left-hand-
side of the parallel composition to perform s and reach a state that can do a;
and, as s is a trace of S, a possible execution of the right-hand-side is always to
take line 5 of the definition of WDFgs. So we reach a position where i = i, is by
assumption such that a ¢ A(i), and so line 7 can contribute a. Thus the parallel
composition can evolve by synchronising on a, after which the watchdog can do
trace_error— and prevent I doing any further events, by becoming STOP. So



the system can deadlock on the trace s~ (a, trace_error_) and is therefore not
deadlock free.

In the second case, again we can reach a state where the system has performed
s and I has reached a state that can stably refuse X. The watchdog can then
‘timeout’ to the choice at lines 9-16. The boolean guard at line 9 cannot be true
(as then S/s can refuse anything, in particular X), but the guard at line 13
is true, so the watchdog reduces to the last two lines. Property 2 above is not
satisfied, since the refinement doesn’t hold, and therefore for each My € M (4s)
there is a witness my € My N X. Then {my, ..., mp(,,)} is one of the possible
nondeterministic choices for Y at line 15, and so the watchdog can offer only
that Y (and we are only interested in the possibility of deadlock), while the left-
hand-side of the parallel can refuse it (because ¥ C X, and refusals are closed
under subset). So, again, the composition is not deadlock free.

Conversely, suppose the implementation in parallel with the watchdog dead-
locks after some trace s;, say; let us consider the state of the watchdog at that
point. One possibility is that the watchdog is on line 7; but it cannot be before
the trace_error_ event, since that can happen without the cooperation of its
peer, and in any case the timeout operator could make internal progress and
transfer control to the lower half of the process. So in this case it must have
already done the trace_error_ event; but that can only happen when I/s; can
do an event that S/s; cannot, and so the refinement cannot hold. Similarly, if the
guard at line 9 is true, the spec_stopped_ event can happen autonomously, and
repeatedly, and no deadlock is possible (this is, of course, the reason for the in-
clusion of this clause: if the specification is allowed to deadlock after some trace,
we must ensure that this new composition does not deadlock at that point). So
the guard at line 13 must be true, and it will have picked a particular Y with
an element of each element of M (¢). Since there is a deadlock after trace s;, I/s;
must be able to refuse all of Y, which implies that some operational state @',
reachable by I on s;, refuses all of Y. But then I/s; has a refusal X (= Y) that
does not satisfy property 2 above, and the refinement does not hold (as (s;, X)
is a failure of I but not S). This completes the proof.

In the stable-failures model, P \ X is deadlock free iff P is deadlock free, for
arbitrary process P and set of events X . So this transformed assertion is suitable
for our overall game-plan.

4 General Watchdog Transformations for the Failures
Semantics

We have explicitly assumed, in the previous section, that M (i) is non-empty
for all 4, and we have implicitly made use of an analogous assumption about
1, although it may not be immediately obvious where. But these assumptions
do not hold, in general, for processes in the stable-failures model. The reason it
is the stable-failures model is that we only record failures that are stable. The
definition of refinement mentions traces as well as failures because a process



might be able to perform some particular trace but never reach a stable state
without subsequently doing a further event; and possibly not even then.

Such instability is analogous to divergence in the failures-divergences model,
but the two denotational semantics (and, consequently, the two algebras) treat
it rather differently. In particular, there are many different unstable processes,
in contrast to the single and catastrophic divergence: in fact, any subsequent
behaviour is possible in the stable-failures model. If the definition of distributed
nondeterministic choice is extended so that (the usually illegal term) M @ is
identified with the pure unstable process div = P \ {a}, where P = ¢ — P,
then the definition of failures normal form in Section 3.1 continues to make sense
even when some M (i) are empty. Note that div, and more generally div O @ for
any @) such that inits(Q) # Events, are rather miraculous in the stable-failures
model: there are events that they can never do, but equally never refuse to do;
this contradicts one of the (quite intuitive) axioms of the failures-divergences
model. Also, not every divergence corresponds to an instability: because div is a
unit of M, it is only when an operational divergence is unavoidable that it gives
rise to instability; there are no refusals belonging to a trace only when there are
no finite maximal 7-chains from any state that can be reached on that trace.

4.1 The General Failures Watchdog Process

The previously vacuous conjunct N (i) > 0 in the guard at line 13 now comes
into play: if S/s is denotationally unstable (i.e., it has no minimal acceptances)
then neither of the guards in the second half of the definition of WDFs(is) is
true, and therefore the body of the definition degenerates to ... > STOP. Since
the alphabet of I is a subset of the synchronisation set «(S,I), the parallel
composition must be able to deadlock... unless I/s itself is unstable. (The
semantics of the parallel operator essentially make the refusals of the compound
the pairwise unions of refusals of the components, and so if either side has none,
then so does the whole.) And div O ... has no refusals on the empty trace. But
this is precisely what we want: if S has no refusals on s, we want I to have none,
also, as otherwise that would be a failure too many.

Thus the existing definition of WDFs will serve admirably in the general
case.

4.2 The General Failures Watchdog Assertion

Unfortunately, the same feature of the semantics that gives us the correct be-
haviour when the specification is unstable, allows the possibility of masking a
trace error if the implementation can become unstable after performing some
illegal event: the trace_error— event may happen, since the implementation
cannot influence that, and thereafter no event in «(S,I) can happen. But,
equally, they may not be refused by a miraculous state of the implementation:
(div O ..)] ... []STOP is deadlock free, provided the left-hand-side cannot
make a transition to a stable state.



The full-abstraction results in [1] establish that we must be able to separate
the test into one on traces, and another for immediate deadlock; but this would
require two traversals of the complete state-space of I and, worse, two different
transformations of S, including normalisation in two different models. We much
prefer to find a modification to the transformed assertion that allows the test to
be completed in a single check.

In fact, the change required is quite straightforward: we simply check

(I A trace_error_ — STOP) | WDFs(i) deadlock free [F]  (3)

a(S,I)U{trace—error—}

where A is the CSP interrupt operator, which effectively adds a deterministic
choice of doing its second argument to every state of its first; it is not com-
positionally definable in terms of the other operators of the language, and we
believe that this conflation of the checks into a single check could not be encoded
without it.

4.3 Correctness

Essentially, the argument of Section 3.4 carries through unchanged, apart from
the claim that the STOP after the trace_error_ event at line 7 introduces dead-
lock. This is not necessarily true in the presence of instability, as pointed out
above.

Now, however, the trace_error_ event cannot occur without the cooperation
of the left-hand-side of the parallel; and since trace_error_ & a(I), it must be
the right-hand operand of the interrupt that does it. The left-hand-side of the
parallel then becomes STOP, which (stably) deadlocks. So if trace_error_ does
occur, then both sides of the parallel are stable and deadlocked, so the whole
parallel is also. It may be that I can make infinite internal progress instead
of performing that event, but the interrupt operator ensures that it is always
available, and the deadlock check will explore every possible execution, including
those where it is eventually chosen.

5 Compression Strategies

As explained in Section 1, our motivation for the watchdog transformations
presented above was the desire to improve the effectiveness of compressions. In
this section we outline the approach we have taken to developing compression
strategies that (attempt to) take full advantage of the increased amount of hiding
that the watchdog transformations allow. This section is not intended to provide
a full and final description of the compression strategies, which are still being
developed. Our intention here is to outline our approach in order to indicate how
the watchdog transformations above can be exploited.

The original refinement assertion has now been transformed to a suitable
watchdog assertion. In the traces case, the watchdog assertion is a traces refine-
ment, and in the failures case it is a failures deadlock-freedom assertion (which



can be expressed as a failures refinement). In both cases all events of the orig-
inal assertion can be hidden without changing its truth or falsity, and we can
construct an original counterexample from any watchdog counterexample.

Unfortunately, the naive approach of hiding all possible events and then
compressing the whole process in one step is inefficient: FDR, will traverse the
full state space when calculating the compressed state machine.

Compression strategies generate a compressed state machine representation
of a process. To explain how our compression strategies work, we begin by making
four observations:

1. Compressing component processes before composing them can avoid the
construction of large state machines that are later compressed.

2. Pushing hiding down through a process operator allows the composition
to be compressed more effectively. Of course, events on which component
processes synchronise with other processes cannot be hidden inside a parallel
composition.

3. Rearranging the syntax tree of a process expression sometimes allows more
hiding to be pushed down through process operators.

4. The syntax tree can be conveniently rearranged, without affecting semantics,
when process operators are associative (perhaps allowing synchronization
alphabets to change) and commutative.

These observations (in reverse order) motivate four principal compression activ-
ities: transform some or all parallel compositions to alphabetised parallel form,
rearrange the order of alphabetised parallel compositions, push hiding down the
syntax tree and, finally, apply one or more of FDR’s compression functions at
some places in the syntax tree. These activities are described in more detail in
the following subsections.

5.1 Transforming parallel compositions to alphabetised form

CSPy, includes four parallel operators:

alphabetised parallel P 4y @
shared parallel P Q
X
interleaving Pl @
linked parallel Pla © biyeeyan ¢ by] Q

The alphabetised parallel operator synchronises processes on specified alphabets
and constrains them to perform events within these alphabets. The shared par-
allel operator synchronises processes on the specified alphabet and interleaves
them on other events. Linked parallel synchronises events of one process with
corresponding (linked) events of the other; events that are not thus linked can
occur independently of the other process.



Alphabetised parallel is the only associative parallel operator. We prefer
to describe it as pseudo-associative, since there is an obligation to manage
the synchronisation alphabets. By saying that alphabetised parallel is pseudo-
associative we mean:

P X”YuZ (Q YHZ R):(PXHY Q) XUY”Z R.

We wish to express all parallel compositions in terms of the alphabetised parallel
operator.

Interleaving and linked parallel can be represented in terms of shared parallel,
renaming and hiding:

PIIIQ=P|m|Q
and

Play < by, eyan < 0,]Q = (rP || Q) \ {c1y-esCn}

{Cl,---,Cn}

where rP = P [[a1 ¢ ¢1,.r,0n < Cp]], 7Q = Q [[b1 < c1,--,bn  ¢,]] and
1, ..., cp are distinct new events.
To convert shared parallel into alphabetised parallel, we need two renamings:

P}ll Q = (TP XUa(rP)”XUa(Q) Q) [[b]_ $— A1y eeey bn $— a/n]]

where rP = P[[ay < b1, ..., an, < b]], a1, ..., an are the events outside X that
are in both a(P) and a(Q), and by, ..., b, are distinct new events. Essentially, if
we simply put two processes P and ) from a shared parallel composition into
alphabetised parallel over their respective alphabets, then synchronisation would
occur on any event that both P and ) could perform. We want synchronisation
to occur on only the set X (the set over which the processes synchronise in the
shared parallel composition). So, before composing we rename those events of
P on which undesired synchronisation would otherwise occur, and rename them
back afterwards.

5.2 Reordering alphabetised parallel compositions

We are working on several alternative heuristics for the reordering of parallel
process composition. Space does not allow sufficiently detailed description of
these heuristics, so we outline the approach here and discuss only the simplest
heuristic in any detail.

Recall that we are trying to gain some advantage by pushing hiding down
a syntax tree towards the leaves. In the traces case, the tree will initially look
something like Figure 1, which depicts the case I = Impll a(Impl1)||a(Impl2)
Impl2.

Unfortunately, the watchdog process generated by transforming the specifica-
tion synchronises with the implementation on all the events, a(S, I), of the orig-
inal assertion, so hiding cannot be pushed far in. Therefore we want to transform
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Fig. 1. Watchdog process at the top of the syntax tree.

the syntax tree, moving the watchdog process downwards; we need associativity
and commutativity to do this.

Our simplest heuristic pushes the watchdog process as low in the syntax tree
as possible. To illustrate this, consider again the syntax tree shown in Figure
1. Now, neither the implementation process nor any of its component processes
can hide events that are (or are eventually renamed to) events in the alphabet
of the implementation process. As already noted, this places a severe restriction
on the effectiveness of compressions applied below this point in the syntax tree.

To make it possible to hide more events low in the syntax tree we can change
the tree in Figure 1 to the one shown in Figure 2.

e
AN

Watchdog Impl1

Fig. 2. Transformed syntax tree with the watchdog process moved down

That is, we can change
WatCthg sigma||a(1mpll,1mpl2) (Impl]‘ a(Impll)||a(Impl2) Impl2)
to
(WatChdog sigma“a([mpll) Impl]‘) sigma”a(lmplZ) Impl2

and so allow events on which Impl2 does not synchronise to be hidden and then
compressed from the composition of the watchdog process and Impll. Once



the watchdog process has been moved down the syntax tree, there is scope to
re-arrange the components of the implementation, depending perhaps on the
respective sizes of their interface alphabets. In the case described above, it might
be worth composing Impl2 with the watchdog and then composing the result
with Impll.

Clearly, the reordering heuristic described above is very simple, and we do
not claim it is optimal. Nevertheless, it has the virtue of addressing an important
limitation - outlined above - on the effectiveness of compressions: that one cannot
‘compress away’ transitions of a state machine that are needed for synchroni-
sation. The framework we have developed allows us to experiment conveniently
with a variety of heuristics and so compare them empirically; the emerging re-
sults, however, are postponed to a follow-up paper due to lack of space.

5.3 Pushing hiding down the syntax tree

It is easy to justify pushing hiding down any particular syntax tree. Once we
have a syntax tree that composes processes in an optimal order, we are ready to
push hiding down this tree, through the process operators.

Hiding can be pushed through alphabetised parallel compositions using the
law:

(P xlly Q\H=P\ENX-Y 4|, Q\HNY-X)\ HNXNY

which exploits the fact that N and — associate. A corresponding law for shared
parallel is:

(P)||(Q)\H=(P\H—X)||(Q\H—X)\H0X

These laws state that we can hide events from the set H at the level of P and
@, gaining efficiency, but only if P and @ cannot synchronise on these events
when composed. There are similar laws, not presented here, that allow hiding to
be pushed through other CSPy; operators.

5.4 Applying compressions

There is some choice of which of FDR’s compression functions to apply to which
compositions (i.e., at which nodes of the syntax tree). For example, one might
decide to apply a given compression operator at all leaf nodes, and another at
all interior nodes. It is important not to compress too high up in the syntax tree
because the full state space — traversed by FDR’s compression functions — may
become prohibitively large. There is considerable scope to choose the compres-
sion operator (if any) to apply at a node based on the nature of the composition
and the processes that are being composed. We are currently experimenting with
such heuristics.

Our simplest compression strategies are parameterised by a single compres-
sion function, which is applied at each interior node of the transformed syntax
tree.



6 Implementation

Recall that normal form processes have their initials sets explicitly available.
So, the watchdog process transformation can be performed in two parts: first
normalise, then transform the normal-form process. FDR already has an efficient
implementation of normalisation, and we make use of this to obtain the initials
after any trace.

Before performing a refinement check, FDR normalises (the state machine
for) the specification process — it transforms the specification state machine into
a form where there is a unique operational state for each visible trace of the
specification process. This operational normal form corresponds directly to the
algebraic normal forms. Further, using the scripting interface to FDR it is possi-
ble to expose the normal-form of a specification and recurse over it to construct
a state machine for the watchdog process. In this way, we have implemented the
transforms WDTgs and WDFs. Given the watchdog process, it is then straight-
forward to generate the watchdog assertion, and then hide the events of the
original assertion (all at the level of state machines).

We have implemented a framework that interfaces with the FDR compiler
and its normalisation functionality. This framework performs the watchdog trans-
formations described in this paper and allows us to experiment with a range of
compression strategies. The fruits of this experimentation will be reported in
due course.

6.1 Complexity

A disappointing worst-case bound can be deduced for this strategy from Valmari
and Kervinen’s result [15] on the logarithmic complexity of refinement checking
when the specification is a simple composition using alphabetised parallel, com-
pared to when arbitrary parallel operators are allowed. Transforming general
parallel compositions to alphabetised parallel must be EXPSPACE-hard, or be
capable of producing output exponentially larger than its input, as otherwise one
could transform any specification into that form and so reduce an EXPSPACE-
complete problem to an NPSPACE one.

In practice, the pathological worst cases seem to arise infrequently: the nor-
malisation procedure produces a state machine potentially exponentially larger
than its argument, but it usually leaves it roughly the same size. It actually
makes it significantly smaller often enough that it is a popular choice of com-
pression function.

Here, the blow-up appears to arise mainly in the numerous large renamings
that are required to implement nonsynchronising parallels in terms of the alpha-
betised form. One essentially needs to invent a new name for each way in which
an event can arise at the top of the composition, from different combinations of
leaf processes and pre-renaming events. But this cost is already paid once in the
FDR “supercompiler” data structures, where it has rarely proven prohibitive.
So there is hope that a fairly efficient coding of the transformation will perform
satisfactorily in the majority of cases.



7 Related work

The third author originally proposed the general approach in the course of dis-
cussion with Jay Yantchev.

Atanas Parashkevov, a student of Yantchev’s, has recently and independently
developed that original idea in a different direction, with a view to exploiting it
for BDD-based tools. The intention is to hide events to improve the performance
of BDD algorithms (rather than to improve the performance of compression algo-
rithms). To this end, Parashkevov has formulated, though not yet published, an
Observer process for the traces semantics; this is essentially the simple watchdog
process in [2].
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