The Attacker in Ubiquitous Computing
Environments: Formalising the Threat Model*

Sadie Creese', Michael Goldsmith®#, Bill Roscoe??, and Irfan Zakiuddin'

! QinetiQ Trusted Information Management, Malvern, UK.
{S.Creese,I.Zakiuddin}@eris.QinetiQ.com
2 Oxford University Computing Laboratory
Bill.Roscoe@comlab.ox.ac.uk
3 Formal Systems (Europe) Ltd
michael@fsel.com
WWW home page: http://www.fsel.com
4 Worcester College, University of Oxford.

Abstract. The ubiquitous computing paradigm will involve both the
storage of increased amounts of valuable or sensitive digital data, and an
increase in potential interfaces to networks and devices where such data is
stored. Such information systems will be relied upon to provide adequate
data security. It is imperative that techniques be developed to assure the
trustworthiness of the technologies from which they are built. Formal
verification provides the tools and techniques to assess whether systems
are indeed trustworthy, and is an established approach for security assur-
ance. When using formal verification for security assessment one of the
most important concerns should be to be precise about the threat model.
In the now extensive field of the formal analysis of crypto-protocols, the
Dolev-Yao threat model is the de facto standard. This paper discusses
how and when this threat model may be inappropriate for use in the
ubiquitous computing environment and that it may be appropriate to
assume the existence of multiple channels exposed to different threat
models. We then present a selection of crypto-protocols for ubiquitous
computing scenarios that require this heterogeneous approach.

1 Introduction

1.1 Ubiquitous computing environments

Future ubiquitous computing environments will consist of computational devices
embedded in and pervading all parts of our environment. These devices will be
capable of transmitting and receiving data, and providing varying degrees of
computational processing power. Such huge numbers of communicating devices
will provide and enable multiple dynamic networks at any one location. The

* This research is being conducted as part of the FORWARD project which is sup-
ported by the U.K. Department of Trade and Industry via the Next Wave Technolo-
gies and Markets programme. www.forward-project.org.uk

83

types of these networks will range from standard client-server architectures to
dynamic ad-hoc peer-to-peer networks, including a spectrum of hybrids in be-
tween. In order to utilise future services users will be surrounded by intelligent
and intuitive interfaces, some consciously controlled and others operating more-
or-less autonomously, capable of providing information and communication fa-
cilities efficiently and effectively. These bespoke interfaces will be accessible from
diverse geographic locations much like the Internet of today. The interaction of
such bespoke interfaces with local dynamic networks will enable sophisticated
ambient intelligence systems.

As ubiquitous computing technologies become common-place in our societies,
companies, organisations and individuals will increasingly depend on them. It
will be challenging to navigate through the copious amounts of information and
services on offer. Various research initiatives such as the EU Framework 5 PAM-
PAS project [10] and research funded by the U.K’s Department of Trade and
Industry T-SAS project [14], predict that autonomous computing agents will act
and negotiate on users’ behalf. This would further increase the range of critical
and sensitive transactions.

The unobtrusive nature we expect from this new generation of computing,
and its very ubiquity (almost unavoidable presence in every part of life), will
make it easy for users to forget security requirements yet make these especially
essential. This imposes an obligation on the engineers who create these systems
to produce and satisfy appropriate security specifications, and to argue this
persuasively to users and, hopefully, to standards authorities.

Whereas in some circumstances ubiquitous computing applications may be-
have like traditional ones and have readily available links to trusted third parties
and a usable PKI, we believe that this will often not be the case. This might be
through the use of these systems in isolated circumstances or simply because of
problems with scalability, lack of resources, interoperability or lack of trust. In
this paper we therefore concentrate on the more difficult case and see what can
be achieved without a traditional PKI.

1.2 Security assurance and formalisation

The difficulty of building secure, trustworthy systems in this world of vastly more
complex information relationships will be greater than ever. This highlights an
increased need to be able to verify (or at least validate) that proposed designs
and implementations are indeed sound. However, the increased complexity of
ubiquitous computing environments will exacerbate the difficulty of achieving
bolt-on information assurance. See [11] for a discussion on the difficulties of
bolting security onto a system implementing certain fault-tolerance techniques.

Basic security properties such as authentication and secrecy are frequently
achieved via key agreement protocols; these protocols are traditionally designed
for an environment which differs from what we expect in ubiquitous computing
in two vital respects:

1. Processes identify each other by long-term names, either because they have
a priori knowledge of the partners they wish to do business with, or per-

84

haps in some cases because there is no better way to identify them. In a
ubiquitous environment we are most unlikely to know the name of a pro-
cess we encounter (the latter probably being a consequence of locality), and
mass-produced processes may well not have names or unique public-key cer-
tificates. Even if we did discover a process’s name, this would not in many
cases be a basis for trust: see [6] for a discussion of attribute versus identity
authentication.

2. Protocols often rely on the presence of trusted third parties, for example to
judge the validity of partners in some public key infrastructure. This may
not always be a realistic prospect as argued above.

Formal methods and formal assurance techniques provide the proven capability
to verify systems, in order to support high assurance design, implementation
or accreditation. A fundamental component of any formal analysis of security
properties is to construct an appropriate threat model for the environment in
which the system is designed to be working. If the threat model represents too
weak an attacker then it may be that security can be proven in the formal
model, but does not hold in the real implementation. Conversely, it may be
that a stronger attacker than necessary is modelled, which could then place
constraints on the implementation which could have been avoided.

In this paper the security service that we study is authenticated key agree-
ment. Currently, the de facto standard threat model for analysing key agreement
protocols is the Dolev-Yao model.

1.3 Is the Dolev-Yao threat model appropriate?

The bulk of classic crypto-protocol analysis is predicated upon an almost om-
nipotent attacker, limited only by (more-or-less perfect) cryptography. The Dolev-
Yao model [7] supposes an intruder who effectively controls the communications
network, and is therefore capable of overhearing messages between legitimate
principals; of intercepting messages and preventing their delivery to their in-
tended recipient; and — within the limitations of the cryptographic mechanisms
involved of synthesising messages from data initially known to him together
with fragments of any previous messages and delivering them, apparently origi-
nating either from an identity under his control or indeed from any other prin-
cipal.

This is clearly a worst-case scenario for a protocol to cope with, although
it may unfortunately be realistic for the interned and similar environments. In
any case, it is arguably best to err on the safe side: a protocol which exhibits
no flaws under these assumptions will a fortiori be secure against a less potent
attacker. But it is undoubtedly easier to come up with protocols which achieve
their goals of confidentiality or authentication if one is reasonably able to assume
a more restricted threat model: Broadfoot and Lowe [4], for example, have shown
the security of transaction protocols relative to assumed properties of a secure
transport layer. Equally, there may be intrinsic properties of the network under
consideration which justify cutting back the Dolev-Yao capabilities.

85

The main thrust of this paper is to develop a more flexible threat model
which allows us to handle ubiquitous applications better. We will demonstrate
this with a number of examples and show that it helps to explain some existing
literature.

1.4 Paper outline

In the rest of this paper we first provide a brief overview of the threat models
assumed by some of the extant literature on ubiquitous computing security?.
Then in Section 3 we present a range of restricted threat models and describe
example use scenarios. In Section 4 we discuss how these revised threats may
formally be modelled for automated verification. Finally, in Section 5 we present
our conclusions and some ideas for future work.

2 A Brief Overview of Threat Models

A superficial survey of the rapidly growing literature in this area reveals that,
from a formal perspective, the threat model is not well- specified. One reason
for this might be that the extant work is dominated by approaches to devising
security mechanisms and policies, while the problems of verification have, as yet,
received little attention. Our brief look is based on three items:

1. Balfanz et al.’s work on authentication in ad-hoc networks, [2].
2. Bootstrapping security in mesh networks [1].
3. Proxy based security protocols [5].

The first two also provide added context for the presentation of our protocols;
the three together provide a cursory sample of the subject. A commonality of
all three is that it is difficult to distinguish the capabilities of the attacker (in
other words what the attacker is able to do to attempt to compromise their
mechanisms) from the constraints on the attacker (which are in effect the se-
curity properties achieved by their mechanism, against an attacker of uncertain
capability). Below we attempt to outline the threat model utilised by each.

2.1 The Threat Model when Trusting Strangers

The problem addressed by Balfanz et al. in [2] is of a user wishing to print a
confidential document, residing on a PDA, on a public printer — the printer may,
for instance, be in an airport. Communication between the the printer and the
user’s PDA is via a wireless connection of some type (the exact communications
protocol is not relevant here). The user requires some assurance that the printer

!In fact much of the work that we examine describes itself as security for ad-hoc
networks, but, in essence, this is a part of the ubiquitous computing security field.

86

they are sending the document to is indeed the one they are looking at, as
opposed to some other device elsewhere within communications range.?

Balfanz et al. eschew dependency on any trusted infrastructure; instead their
proposal to secure the PDA to printer wireless link is based on the concept of a
“location-limited channel”, as found in ‘The Resurrecting Duckling’ of Stajano,
[13]. Essentially, public key information is exchanged on physical contact be-
tween the PDA and the printer and then standard authenticated key exchange
protocols secure the wireless printer to PDA link. No pre-existent authentication
mechanisms, such as certificates, are needed, thus they are establishing trust be-
tween strangers. However, the location-limited channel requires users to touch
their chosen printer with their PDA, on an appropriate physical interface (this
being the location-limited channel).

They describe their solution as “secure against passive attacks on the priv-
ileged side-channel and all attacks on the wireless link”. The emphasis is ours
and we assume “the privileged side-channel” is the same as the location-limited
channel. In summary:

— Attackers should not be able to transmit on location-limited channels, though
this constraint is a little equivocal since they add “or at least to transmit
without being detected”.

— Attackers should not be able to eavesdrop on a location-limited channel, but
it appears as if this is the security property achieved, against an apparently
unspecified attacker.

— They further clarify that active attacks are where the attacker transmits, and
they imply that passive attacks mean eavesdropping. Other types of attack,
such as blocking communications, appear not to be considered.

The location-limited channels are the cornerstone of Balfanz et al.’s solution, but
they are only the means to an end, namely a secure wireless link between the
PDA and the printer. The paper’s abstract makes the rather sweeping statement
that this second secure channel will be secure against “all attacks”, but it is not
clear the domain over which all ranges.

2.2 The Threat Model when Bootstrapping Group Keys

For our second example imagine a set of people meeting in some place and
wanting to work together securely. Of course, they will have their PDAs (laptops,
or whatever) and so they will want these PDAs to form a ‘secure’ network®. Here

2 One may not be entirely convinced of the plausibility of this scenario, or that there
may not be more commercially attractive solutions, such as establishing a key by
swiping the credit card to be charged. However, it is illustrative of a class of authen-
tication and key-negotiation problems which is likely to become more important as
ubiquity strikes.

3 This is an example of promotion of human trust, to extend it to cover their electronic
representatives.

87

secure may be taken to mean that a group key exists and is known only to the
PDAs owned by the people holding the meeting.

This problem is discussed by Asokan and Ginzboorg [1]; their solution is
inspired by the EKE protocol of Bellovin and Merritt [3], which uses weak
password-based encryption to agree a strong encryption key. Asokan and Ginz-
boorg’s work also extends this concept from point-to-point key agreement to
group key agreement. The basic idea is that the users agree a password and
then they type that password into their PDAs. This password makes the weak
encryption key, which is, nevertheless, sufficient for the legitimate PDAs to agree
a strong key - using the protocols that they present. Thus they provide a so-
lution for bootstrapping security that requires no pre-existent electronic trust.
In effect they have manual initialisation of trust, since the users are (implicitly)
responsible for controlling the exposure of the password.

The well-known “Alice-Bob” notation of the crypto-protocol community is
utilised, which usually implies the standard Dolev-Yao threat model, however,
this appears not to be the case. The threat model is implicitly included in their
discussion security requirements. The security properties the protocols are re-
quired to uphold include:

— Contributory key agreement.
— Tolerance to disruption attempts.

Contributory key agreement means that malicious principals cannot limit the
size of the key space and so enable cryptanalysis attacks. As such it implies a
cryptanalysis enabled attacker, which differs from a pure Dolev-Yao attacker.

The meaning of “tolerance” in “Tolerance to disruption attempts” is not
clear, we assume it means that “disruption attempts” cannot violate the other
security properties. In explaining what “disruption attempts” mean the authors
state that:

The strongest attacker can disrupt any protocol by jamming the radio
channel or modifying communication among legitimate participants. How-
ever, a slightly weaker attacker who can insert messages but cannot mod-
ify or delete messages sent by others is also of interest in this scenario.
We will consider disruption tolerance against this type of disruption at-
tacks only.

The strongest attacker sounds similar to a Dolev-Yao attacker, but the weaker
attacker is more limited. Thus the proposed attacker appears to be a hybrid of
something weaker than Dolev-Yao, but with cryptanalysis capabilities.

2.3 The Threat Model in Proxy-Based Security Protocols

In the ubiquitous computing future many devices will have relatively limited
computing resources. To overcome this limitation it is often touted that compu-
tationally limited devices should be endowed with virtual proxies. These virtual

88

proxies will have access to high-bandwidth communications and plentiful com-
puting resources. In [5] Burnside et al. propose a security architecture for virtual
proxies®. Security concerns in systems of this sort will of course be very many
and very complex, their paper concentrates on presenting two security protocols:

— A protocol for device-to-proxy secure communication.
— A protocol for proxy-to-proxy secure communication.

We assume (though it is not stated explicitly) that “security” means that the
communication is protected by confidential and authenticated key agreement®.
Unfortunately, the paper does not discuss the device-to-proxy protocol. Rather
the assumption is stated that “the proxy and device share 128-bit keys”. The
protocol for initialising such shared keys would perhaps have been of most in-
terest to us. For this protocol the paper only discusses the messaging hashing
and encryption techniques used, which imply that only a cryptanalysis attacker
is being considered, though this is not stated.

The proxy-to-proxy protocol, is described as a “typical challenge-response
protocol”, which, to a formalist, might imply a Dolev-Yao attacker. However,
the only explicit discussion of “the adversary” is as part of a brief discussion
of how time-stamps are used to protect against replays. The state- of-affairs is
made a little more confusing when the authors make clear that the protocol
does mot provide a range of security services or defences against attacks “from
the network”. The authors then discuss how security services can be layered,
and indicate that added security may be achieved by layering their services on
protocols such as SSL/TLS. Thus, if formal verification were to be applied to
their architecture, then an approach such as that developed in [4] might apply.

2.4 The dual-interface assumption

The threat models presented in Sections 2.1 and 2.2 above utilise properties
of a dual interface to provide security. For example, both require a channel
involving physical contact or human interaction for part of their protocols (while
“bootstrapping” a relationship, for instance). Such a dual interface seems to be
a key to this genre of problem®.

In the ubiquitous arena, where most communications are through the essen-
tially broadcast medium of wireless, it may sometimes be sensible to restrict
the powers of the attacker: in particular, while a hostile agent can undoubtedly
overhear any message or perhaps, by some form of jamming, prevent its delivery,
it is arguably unreasonable to suppose that it can do both at the same time.
(This is only reasonable when we know the intended recipient is active and is

4 In fact their work concerns using proxies for resources discovery.

® Interestingly, by authentication they implicitly mean attribute authentication, much
as espoused by [6].

6 Unfortunately a lack of information in [5] means that we are unable to tell whether
the same dual interface would be required or not.

89

within range.) Thus we gain the advantages of some kind of atomicity in trans-
mission: if anyone receives a given message, then the intended recipient (also)
does. Note that this argument holds good only for direct, unmediated, radio
communications: if the message is relayed by a router node, for instance, then it
would be open to a nearby attacker to overhear the first leg of its journey and
to interfere with its second. In this case it might be possible to design acknowl-
edgement schemes which effectively restore atomicity, but these in turn would
require careful verification.

Another variant might be appropriate to the airport-printer problem [2, 6],
discussed in Section 2.1 : with suitable tamper-proof hardware (and a flashing
light to show “secure” printing) a printer might be able to achieve a one-way
channel that was secure against messages being faked on it (and, perhaps less
crucially, against overhearing, in the absence of cameras focused on its output
tray). It is probable that in many cases additional security may be obtained at
higher cost: be that in monetary terms, lower bandwidth, or reduced ease of use.

The reliance on a duality of channels, where one can be relied upon more
than the other to provide certain security charateristics, does not appear to be
unreasonable. However, it goes without saying that where a weaker threat model
is assumed, careful examination of an implementation is required to ensure the
model accurately captures the danger. What follows is a formalisation of three
different variants of such systems.

3 Variant Threat Models

3.1 Twin-Channel Threat-Model Variants

In our examples below we presume the existence of two communications chan-
nels: N and E. The first channel, N, is the high bandwidth bidirectional medium
with low or unreliable security. This represents the network wireless communi-
cations medium, such as wireless LAN, Bluetooth, or IrDA. The second channel,
E, represents the more costly channel with higher security, which may according
to the details of the scenario be either uni-directional or bi-directional. E typi-
cally represents an empirical channel, such as reading a message on the printer
display panel, physically inputing a code via the printer control panel, or check-
ing that the flashing light is present as in the example above. We will generally
want to minimise the use of channel E and seek to delay it until relatively late
in a protocol since it is likely to involve the human user in some effort.

By varying how the attacker can manipulate these two channels (the at-
tacker’s capabilities on E being the most limited), a variety of hybrid threat
models can be created. We will express threat model variants using the follow-
ing notation, each specifying a restriction placed on the powers of the Dolev-Yao
attacker:

- AOTC : the attacker cannot both block and hear messages at the same time
on channel C, where AOT stands for Atomicity of Transmission.

90

— NS, : the attacker cannot spoof messages on channel C', where NS stands
for No Spoofing.

— NOH , : the attacker cannot overhear messages over channel C', where NOH
stands for No OverHearing.

Combined restrictions can be represented with a hyphen, such as: AOTC1'NSC2’
which means the attacker cannot both block and hear messages at the same time
on channel C1 nor can it spoof messages on channel C2. The channels will of
course be either IV or E. If no restriction is specified for a channel, then that
means the standard Dolev-Yao model applies.

The following two scenarios will be used to demonstrate the usefulness of
these variant threat models. We have considered the complete matrix indexed
by the assumed properties of each channel and the direction of E, and we have
found credible protocols for the majority of the different configurations. Due to
space limitations, however, we present only three distinct models here; a further
paper will set out our exploration of the broader space.

3.2 Scenario 1 - The wireless printer

We begin by returning to the airport-printer problem of 2.1. We will assume
that all suitable printers are manufactured with a generic public/secret key pair.
In addition we will consider the case where the printer possesses its own unique
public/secret key pair. What is required is an authentication protocol which
identifies the desired device as being the one on the receiving end of the commu-
nication channel, and the only one which can read the sent data. In addition one
might want to verify some behavioural attributes of the device, but we will not
consider that question here beyond checking the possession of the key belonging
to the appropriate genus of printer.

NS -AOT ,, Here we make the assumption that the user A has a unique key
certificate, kc(A); and that the printer is manufactured with knowledge only of
the generic key pair associated with the class of printers to which it belongs, P.
Moreover we assume that it is fitted (in a reasonably tamper-proof way) with
a light which flashes while (and only while) it is printing data that it itself is
communicating as part of a protocol run. This effectively gives a no-spoofing
assurance that the printer expelling the paper is the one generating the contents
of the paper. An alternative mechanism might be to use the LCD panel on the
printer as a reliable medium between the printer and its user. Without some
such facility, it would be hard to avoid the possibility of a suborned device-in-
the-middle engaging in the protocol and simply using the intended printer as a
slave to reprint what the protocol requires.

A wants to check that the printer she is communicating with over the N
channel is indeed the printer she can see, as in Figure 1.
More specifically, the security goal is to establish a shared secret known only
to the user and that specific printer (which may then be used as a symmetric-
encryption key for the document, for instance).

91

Fig. 1. A unspoofable channel E exists between the printer and the user; the network
N gives a bidirectional, atomic link.

Our first protocol uses the fact that the attacker cannot both block and re-
ceive network messages at the same time, thus AOTN. It also depends on the
channel E, running from the printer to the user, being impervious to spoof-
ing, NS . The protocol proceeds as described below (the N or E subscript on
the arrow denotes the channel over which the communication event occurs). If,
however, at any stage before the protocol has completed either the user or the
printer receives additional messages 1 to 4 directed to them then the protocol
will abort.

1. A —N P(B) : {A, kC(A), NA}pk(P)
2.B—p A sprint A, N4
3.B—-n A :{k,NA,NB}pk(A)
4.A—)NB :{NB7N,,4}k
5.B—p A : print N/

In Message 1 A sends the printer a message containing her name, her key certifi-
cate and a random nonce, all encrypted with the generic printer public key. The
printer then prints both A’s name and the nonce, which A verifies empirically
over channel E. At this stage, given that an attacker cannot spoof messages on
channel E, A knows that the printer she is looking at has received Message 1
and is a printer, but she cannot exclude a corrupt printer-in-the-middle hav-
ing overheard and understood Message 1. We can, however, guarantee that the
printer heard Message 1 as sent by A, thanks to AOT ; and that an attacker
has not sent another Message 1 because of our assumption about B aborting.
Therefore, the kc(A) which B holds was indeed just sent by A.

In Message 3 the printer sends A a message containing a session key, k, the
previous nonce N4 from Message 1, and a new nonce Np, all encrypted using
A’s public key, extracted from the kc(A) received in Message 1. A then sends
a message to the printer which contains the second nonce Np and a new nonce
N!,, encrypted using the key sent in Message 3. Since only A can have read the
contents of Message 3 (it was encoded using her unique public key), it follows
that only A and the device which sent Message 3 know the key k. However since

92

an intruder knows N4 and may have blocked Message 3 from B and sent his
own, A does not know that the Message 3 that she heard was from B.

The printer then prints the new nonce N';, which A verifies over channel E.
Since this new nonce was sent in Message 4 and was encrypted using the key k
in a message containing Ng, the printer would not print Ny unless the Message
3 that A received really was from B. It follows that at this point A is certainly
connected to B (the desired printer).

Note that the first printed output also serves to guard against spoofing on
channel N, since if an attacker were to force B to abort after this point in the
run, then the attacker could not get beyond this point without a further Message
2 being spotted, which A could see. This observation is somewhat application
specific, since it may not always be the case that the E channel that B would use
with an intruder would be observed by A. For this reason we additionally require
that a “printer” aborting a run after Message 2 should send an E-message to A
saying so.

If we were to assume a conventional Dolev-Yao model for the high bandwidth
medium then the above protocol would not be so secure since a printer-in-the-
middle could act as an intermediary, sending A’s values for N4 and N} on to
the real B for printing. The point where he might have problems doing this is
in understanding Message 3 if it really was A’s real public key certificate that
was sent to B in message 1. However in the absence of a usable PKI this may
not be true, and it may be possible to send B a public key “for A” that he has
made up.”

We do have protocols which we believe work with the same model for E
but with full Dolev-Yao on the high bandwidth channel. They differ in having
B print out hashes rather than literal values sent by A. The latter might be
a disadvantage where a human is expected to check equality. These will be
discussed in a later paper.

NOH ,, As a variant of this scenario, illustrated by Figure 2, let us now assume
that the printer has its own unique public/secret key pair, and that the E channel
communicates from the user to the printer (in the opposite direction to the first
example), perhaps by discreetly pressing buttons on a front panel. If we consider
a different threat model, namely that of no overhearing on channel E, we can
achieve the same goal by means of a different protocol.

1. A =N P(B) : {A kc(A), Na}pr(p)
2.B=y A {B,kc¢(B), Na}pr(a)
4. B—-n A :hash(N,pk(A),ke(B),Nj)

In Message 1 A sends a copy of her key certificate and identity, and a nonce,
encoded with the generic printer key, to the printer. The printer then replies in

7 In this case the concept of sending a public key certificate as opposed to just sending
a public key may have limited value.

93

Fig. 2. Channel E now runs from user to printer, unobservable by the attacker. Channel
N is bi-directional with the standard Dolev-Yao vulnerabilities.

Message 2 with a copy of its own unique key certificate and identity, and a copy
of the nonce it received from A in Message 1, all encoded with A’s public key.
At this stage A knows that someone has received the original message, but she
cannot be sure that it is printer B.

In Message 3 A inputs a nonce N; into the printer directly, over the E chan-
nel. In this threat model we are assuming that this input cannot be overheard,
and therefore only the printer physically interacted with can know N’;. So in
Message 4 the printer sends a hash of the nonce N, A’s public key, the printer’s
key certificate sent earlier in Message 2 and the first nonce, N4, sent by A. As
a result, A knows that the printer she is communicating with over N is also the
printer being communicated with on E. This message certainly originated at the
physically present hardware, since only one printer can know N'y; the inclusion
of evidence of the identities of both A and B in the hash is necessary to prevent
an intruder acting as a man-in-the-middle for Messages 1 and 2, and persuad-
ing each that they are engaged in the protocol with a different principal. If, for
example, we were to have encrypted message 4 under pk(A), this would have
opened up a man-in-the-middle attack. Of course, it is essential in this protocol
that E cannot be overheard, as otherwise an imposter who had been taking part
in the rest of the protocol could forge Message 4.

Since N4 is a shared secret here, it can be used as a session key; alternatively
the protocol leaves each of A and B with knowledge of each others’ public keys
so they can use these.

3.3 Scenario 2 - The PDA Mesh

In this example we use our hybrid threat model approach revisits the problem
from Section 2.2, where a group of people want to agree a key across their
electronic representatives (PDAs, or whatever). In our solution the E channel is
used to agree a hash value, which will appear on the users’ screens and which
they can compare.

94

NS, Here we again restrict the attacker on the £ channel to NS, no spoofing.
We will consider the example where each user possesses a unique key certificate
pair, and a generic manufacturer PDA certificate. Each message is described as
being sent from each user A to all other users: the first can be broadcast to Every
B, but the rest are sent in turn to Fach B that a Message 1 was received from:

1.EachA A —y Every B : {A,kc(A), Na}prppa)

2.Each A A —y Each B : {all Messages 1, N); },1(B)

3a.Each A A displays : hash({all Messages 2}), number of processes present
3b.Each A A — g Each B : Users compare hashes and numbers on screens

4 Each A A —y Each B : hash'({all Messages 2})

We assume that the boundary between Message 1 and Message 2 is determined
by some time-out. Tit is not necessary to include this in the security analysis
since any failure to synchronise properly will only have the effect of causing the
eventual hash values to differ, meaning that no node believes the protocol has
completed successfully.

In Message 2 a given A knows that it has just sent nonce N; to a given set of
identities, using the keys it received in Message 1. One purpose of Message 2 is
to allow disagreements about the Messages 1’s, in the most part, to be caught by
the PDA’s without troubling their users. When all the users agree on the hash of
the values transmitted in Message 2, which they check on channel £ in Message
3, and the number of participants displayed corresponds to their expectations,
they know that there cannot be any additional devices that they are unaware
of involved in the protocol. The number shows each of them that they are in a
network of the right size, and the hash shows them they are in the same network.
It follows that there can be no unwelcome participants. The nonces are present to
ensure freshness and prevent replays of messages in previous sessions. Message 4
acts as a final message to close the protocol and confirm possession of the shared
secret; this value may also be used as a session key. We have to use a different
hash function because the previous value has been displayed, and in any case it
reduces the probability of hash collisions.

4 Verification in the Presence of Restricted Attackers

One of the main challenges to using process-algebraic and model-checking ap-
proaches to verify (or, more strictly, to look for counterexamples to) the security
of crypto-protocols was to find an effective way of modelling the attacker and his
ability to recombine elements of the network traffic to date in decrypting incom-
ing messages and synthesising messages to trick his targets. The solution devised
for FDR and incorporated in Casper [9,12] proved to be an enabling technology,
and similar schemes have been used in many subsequent model-checking and
related approaches, such as strand spaces [8].

Casper exploits the fact that the intruder intercepting a message and then
“faking” it (unchanged) to its intended recipient as if from the sender amounts to
much the same as eavesdropping on its uninterrupted transmission. This means

95

that all messages are in fact mediated by the intruder [12]. This simplifies some
specification idioms, but makes it harder to implement the weaker attackers we
are considering.

In the original concept [9], however, there were separate channels: comm to
represent direct communication, and take and fake to represent interception
and introduction by the intruder, respectively. Renaming is used in the CSP
model so that sending on comm and take, and receiving on comm and fake,
are indistinguishable to the principals. In this context it is straightforward to
modify the definition of the intruder to reflect restricted powers:

— leaving the intruder’s knowledge unchanged after a take gives the AOT se-
mantics;

— barring communications on a subset of the message space on fake can model
a reliable one-way NS channel;

— disconnecting both take and the tap on comm on a subset of the message
space captures the confidentially of NOH transmission.

Thus there is no difficulty to the mechanical checking of these weakened attack-
ers, at least in the CSP/FDR/Casper paradigm. (Proponents of other technolo-
gies must answer for themselves! It would be interesting to learn whether the
encoding of the attacker in alternative approaches is sufficiently flexible to cope
with this kind of variation in its powers.)

5 Conclusions and Further Work

The problem of formalising the threat model is fundamental to the formal anal-
ysis of security. But a superficial look at the literature on security for perva-
sive computing shows that it appears to be informally (and perhaps a little
loosely) specified. In our own examination of the problem, for authenticated
key-agreement protocols, we found that the standard Dolev-Yao model was ar-
guably unrealistic, and yielded a dearth of protocols which are simultaneously
both secure and useful, in the absence of the assumptions and support infrastruc-
ture postulated for more traditional environments. This is consistent with the
need that other researchers have felt to invent mechanisms outside the normal
communications structure, to bootstrap trust in some way.

Among the redeeming features of the ubiquitous world are that there will
often be physical proximity, which can sometimes be exploited to allow contact-
based communication, and that the unique data-processing capabilities of human
agents can also be brought into the equation as a last resort. The properties that
such mechanisms win for us appear to be reasonably straightforward to capture
and model. We believe that developing an understanding of the power of the
full range of variants (and intuition as to how they may be implemented) and of
their interactions will help in designing techniques for bootstrapping security in
a world where no backbone infrastructure is required (or available).

Further work is needed in crystallising the notions introduced in this paper,
and a subsequent paper is planned that will populate the matrix of attacker ca-
pabilities with appropriate countermeasures, and explore the ideas in this paper

96

more deeply. A number of interesting technical issues regarding the desirability
of including the various potential component data in messages or hashes have
arisen in the course of our initial investigations, and these aspects, too, merit
further exploration.

6

Acknowledgements

The authors would like to thank give special thanks to Gavin Lowe for stimu-
lating discussions.

References

1.

2.

10.
11.

12.

13.

14.

N. Asokan and Philip Ginzboorg. Key-agreement in ad-hoc networks. Computer
Communications, 23(17):1627-1637, 2000.

D. Balfanz, D. Smetters, P. Stewart, and H. Wong. Talking to strangers: Authen-
tication in ad-hoc wireless networks, Feburary 2002. In Symposium on Network
and Distributed Systems Security (NDSS ’02), San Diego, California.

Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 72-84. IEEE Press, May 1992.

Philippa Broadfoot and Gavin Lowe. On Distributed Security Transactions that
use Secure Transport Protocols. In Proceedings of 16" IEEE Computer Security
Foundations Workshop, Monterey, CA, June—-July 2003.

M. Burnside, D. Clarke, T. Mills, A. Maywah, S. Devadas, and R. Rivest. Proxy-
based security protocols in networked mobile devices, 2002.

S. Creese, M. H. Goldsmith, Bill Roscoe, and Irfan Zakiuddin. Authentication in
pervasive computing. In D. Hutter and M. Ullman, editors, First International
Conference on Security in Pervasive Computing, Boppard, March 2003. Springer
LNCS.

D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2), 1983.

F. Javier Thayer Fabrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: Proving security protocols correct. Journal of Computer Security, 7:191—
230, 1999.

Michael Goldsmith and Bill Roscoe. The perfect ‘spy’ for model-checking crypto-
protocols. In Proceedings of DIMACS Workshop on Design and Formal Verification
of Cryptographic Protocols, Rutgers, 1997.

http://www.pampas.eu.org/.

Jan Peleska. Formal Methods and the Development of Dependable Sys-
tems. Technical Report 9601, University of Bremen, 1996. Project UniForM,
www.informatik.uni-bremen.de/agbs/jp/papers/depend.html.

P.Y.A. Ryan, S.A.Schneider with M.H. Goldsmith, G. Lowe, and A.W. Roscoe. The
Modelling and Analysis of Security Protocols: the CSP Approach. Addison-Wesley,
2001.

Frank Stajano and Ross Anderson. The resurrecting duckling: Security issues for
ad-hoc wireless networks. In B. Christianson, B. Crispo, and M. Roe, editors, Se-
curity Protocols, Tth International Workshop Proceedings, pages 172—-194. Springer
LNCS, 1999.

http://www.gpc.ecs.soton.ac.uk/research/TSAS. html.

97

98

