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Abstract

A long-standing complaint about the theory of CSP has been that
all theories which encompass divergence are divergence-strict, meaning
that nothing beyond the first divergence can be seen. In this paper
we show that a congruence previously identified as the weakest one to
predict divergence over LTS’s can be given a new fixed point theory,
which we term reflected fixed points and thereby turned into a full CSP
model which is congruent to the operational semantics.

1 Introduction

This paper was presented at the BCS FACS meeting held in July 2004 in
London to commemorate “25 years of CSP”

The author has long (actually 26 years!) worked on mathematical mod-
els for concurrent systems, in particular Hoare’s CSP [5]. The models he
has used – based on observable behaviours – bear an obvious similarity
to the congruences studied, for example, by Valmari and his co-workers
(for example [13, 14]). The main different has been that those in the CSP
“school” have sought complete semantic theories in which the semantics of
every term – including recursive ones – could be calculated denotationally,
whereas Valmari has concentrated on congruences for sets of operators not
including recursion1

The models themselves have been broadly similar, particularly after one
factors out the differences (more or less irrelevant to this paper) caused by
the difference choice operators used: either the CSP � and � (the latter not
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1The semantic value arises here from applying the observations to the operational

(LTS) semantics of the process under examination.
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being resolved by a τ) and the CCS + (which is resolved by τ , necessitating
knowledge of initial stability). All inhabit the world of finite and infinite
traces, divergence traces, and failures/acceptances. The only difference has
been that the CSP models have been unable to determine what the non-
minimal traces are that a process can diverge on, and what the infinite
traces are beyond potential divergence. (The failures/divergences/infinite
traces model U gives all relevant information up to a minimal divergence,
and the stable failures/traces model F gives all information on finite traces
and stable failures whether beyond potential divergence or not. See [9] for
details of these.)

The main reason for this difficulty is that none of the straightforward
ways of finding fixed points give the correct (i.e. operationally congruent)
answer. We show here how this problem can be solved using the model of
[7] and a more exotic method of calculating fixed points.

For simplicity in this paper we present a model which predicts only
finite and infinite traces and divergences – ignoring failures. The latter can
be calculated independently through F , or alternatively an extra component
can straightforwardly be added to the model we present.

We adopt the full language of CSP from [9], including the interrupt
operator � (which has some interesting properties). We note that since a
model without failures identifies �, � and +, this model will also work for
languages in the style of CCS. The semantics of CSP over U and the other
standard models can be found in [9], as can the operational semantics of the
language. Some of the simpler forms of operational/denotational congruence
result are proved in that book, but not the much harder result for U , which
is proved in [11]. This paper rests heavily both on this latter result and
adaptations of the techniques used in proving it, for example the idea of an
approximating sequence of abstraction functions.

The rest of this paper is organised as follows. In the next section we
recall two congruences without divergence strictness which would, if a fixed
point theory could be developed, solve our problem. However we see that
one of these cannot have a conventional denotational fixed-point theory,
which leads us to concentrate on a single model. In the following section we
see why neither the least nor greatest fixed point gives a sensible semantics
for recursion over it. In Section 4 we demonstrate a fixed-point that does
apparently give the correct answer, and we show that it is the operationally
correct one.

In appendices we give a summary of notation which follows [9], and the
new semantics for CSP.
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2 Congruences and fixed points

The CFFD congruence (see, for example, [12]) records a process’s finite and
infinite traces, its divergence traces and its stable failures (pairs (s,X ) where
X is a set of actions that the process can refuse in some stable, namely τ -
free, state after trace s, where neither s nor X includes the invisible event
τ). Since we are not seeking to model failures in this paper, it makes sense
to simplify CFFD to CFFDT , in which the component of stable failures is
removed. This remains a congruence since in CSP and similar languages
refusal information does not affect traces or divergences through any oper-
ator. (For it to do so would correspond to the operational semantics having
a form of negation in the antecedents to some transitions.)

Since CFFD and CFFDT are attractive congruences (seemingly contain-
ing just the information we are looking for) it is natural to ask whether
we can find a denotational fixed point theory for them. Unfortunately the
answer appears to be no, at least in any conventional sense, if we want that
theory to be operationally congruent.

Theorem 2.1 There are pairs of CSP recursions whose operational seman-
tics yield different values in CFFD and CFFDT , but which generate identical
functions from each of these two models to itself. Therefore there can be no
operationally congruent definition of recursion derived from the function a
recursion represents.

Proof Let Σ = {a}. Consider the process

FA = STOP � (FA � a → (div � STOP))

(Here, div denotes a process that does nothing but diverge.) This may di-
verge immediately since the nondeterministic choice may always resolve to
the right and interrupt may never occur. However it may perform any finite
number of a’s thanks to layers of interrupts occurring, and plainly may di-
verge after any of them. For CFFD, which records failures, it can refuse any
set after any trace. However, crucially, it cannot perform an infinite trace of
as since whenever it performs its first a the number of subsequent ones has
some finite bound. (The bound is the number of recursive unfoldings that
have occurred up to the point that the first a occurs.)

Notice that FA has every possible trace, divergence and failure except
for the infinite trace aω. The same value can be created without interrupt
by using, for example, infinite nondeterministic choice.2

2The particular version given here in terms of � is due to Valmari.
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Now consider the two CSP contexts:

F1(P) = FA � P

F2(P) = FA � a → P

The functions F1 and F2 that these contexts generate are identical: the
nondeterministic choice of FA means that all behaviours other than aω be-
long to both Fi(P) independent of the value of P . In each case it is clear
that this infinite trace is present if and only if P has it. It follows that F1
and F2 are, extensionally, the same function.

However, operationally, the recursions Pi = Fi(Pi ) yield different values.
P1 can perform an arbitrarily large finite number of τs and act like FA, or
may simply diverge without reaching FA. The important thing is that it has
no way of performing the trace aω. On the other hand P2 can obviously per-
form this trace by always picking the right-hand of its two nondeterministic
options.

It follows that the extensional value of a function over CFFD or CFFDT
does not determine the value of the recursion produced by that function.

The above example works by using the FA process to shroud the dif-
ference between what F1 and F2 do to P . The example would not work if
we removed FA’s ability to diverge after any trace since it is clear that P1
would in any case diverge on 〈〉, whereas P2 would not diverge, and if FA
could (for example) diverge on the empty trace then P2 could diverge on all
traces.

It turns out that the type of difficulty we have experienced with F1
and F2 only occurs in cases like this, where the difference between the two
recursions is restricted to infinite traces which belong to divergences(P), the
closure of the set of divergent traces (namely, the infinite traces that have
an infinite chain of divergent prefixes).

The clear lesson to draw from this example is that we either need to
add detail to, or remove detail from, our model in order to get a working
fixed point model of recursion. One possibility, which co-incides with the
abstraction from CFFD made by Puhakka and Valmari for a related reason3

in [8] (see also [7]), is not to care about whether an infinite trace which has
an infinite chain of divergent prefixes is present or not: we may choose either
to omit all such traces or to include them all. The point of interest here is
that the operationally determined values of processes P1 and P2 above are

3The most abstract congruence capable of detecting all divergence traces
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identified by this new equivalence: the trace aω is put into the don’t-care
category by the divergences P1 and P2 share.

If, as is typically the case in CSP, we want to have a simple theory of
refinement, the correct choice is to include, rather than exclude, all traces
that are the limits of chains of divergences. For obviously the process P =
a → P refines P � FA, but this would not appear from the usual reverse
containment relation if we were forced to exclude aω from the representation
of the right-hand process.

We therefore use the model SBD (standing for seeing beyond divergence)
in which each process is represented by a triple (T , I ,D), where T and D
are the finite traces and divergence traces, and I is the union of the infinite
traces and the infinite traces in D . (This model’s elements are obviously in
1-1 correspondence with the members of the Tr−DivTr−Enditr congruence
from [8].) The healthiness conditions on this model (in the style usually used
for CSP models) are

T1 T is nonempty and prefix-closed.

I1 s ∈ Σ∗ ∧ s û ∈ I ⇒ s ∈ T

D1 D ⊆ T

D2 u ∈ Σω ∧ ({s ∈ Σ∗ | s < u} ∩ D)infinite ⇒ u ∈ I

We term the infinite traces covered by D2 ω-divergent traces. Following
[8] we term the set of these DivCl(P) for process P .

The above model differs from Tr −DivTr −Enditr in that it specifically
includes rather than excludes the members of DivCl(P). That does not
affect which processes are considered equivalent, but it gives a smoother
definition of refinement, as discussed above.

By extension from the result of [8], this is the weakest congruence which
predicts all divergences of a CSP process. We will show in the next section
that it is possible to find a working, if complex, fixed point theory that cal-
culates the values of recursive processes. The reasons why it is a congruence
for all CSP operators are, in essence

• If we have two processes that differ only in ω-divergent traces, then
the result of applying any CSP operator to them could only differ in
either a divergence (which can arise because an infinite trace is hidden
in one but not the other) or an infinite trace.

• However if the ω-divergent trace u of P generates, in C [P ], the diver-
gence trace s, then certainly there is a finite prefix t of u such that all
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t ≤ t ′ ≤ u yield the trace s in C [P ]. However we know that infinitely
many of these t ′ are divergence traces of P , meaning that C [P ] gets
the divergence from u’s divergent prefixes as well as u itself. (For once
C [P ] has generated the trace s via t , and has carried on generating
internal actions through subsequent actions of u, then as soon as P ’s
trace reaches divergent t ′ then C [P ] can diverge without any more ac-
tions of u occurring.) Therefore the divergence would still be in C [P ]
even if u were removed from P .

• If an ω-divergent trace u of P yields the infinite trace v in C [P ] then
either a finite prefix of u also generates v or none do. In the former
case the presence of v does not depend on u, so u may be removed
without affecting it. In the latter an infinite chain of divergent prefixes
of u will yield an infinite chain of divergent prefixes of v : this means
that v is ω-divergent in C [P ] and so in the category of traces whose
presence is immaterial thanks to D2.

In any case removing an ω-divergent trace from P will never affect the
presence of any behaviour of C [P ] that is recorded in SBD.

3 Greatest and least fixed points

It is clear that SBD provides a less abstract view of CSP processes than the
finite/infinite traces and divergences model I which is strict after divergence,
in the sense that the value of a process in SBD trivially yields the value in
I. (More details of I and the projection Π which performs the translation
are given below.)

This immediately tells us quite a lot about the value of any recursive
term in SBD: it must be one that projects to the value calculated in I. The
existing theory of CSP models tells us how to compute this as a fixed point.
For details on this and why the result is operationally correct, see [11, 9]. In
order to understand how we might solve the fixed point problem for SBD,
it is a good idea to review how other CSP models solve this problem.

The first model for CSP [4] was the finite traces model T in which each
process is represented by its (nonempty and prefix-closed) set of finite traces
(sequences of visible events). It is straightforward to give a semantics to each
non-recursive CSP operator over T which is operationally congruent. The
fixed-point theory which has always been quoted as standard for that model
is based on least fixed points under subset (corresponding to greatest fixed
points under refinement). There is a clear operational intuition for this: if we
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run the recursive process µ p.F (p) then any actual trace will have occurred
after a finite time, so that the recursion can only have been unwound a
finite number of times. Since µ p.F (p) can only actually do anything once it
has been unwound, it follows that (on the assumption that the operational
and semantic representations of F are congruent), every trace comes from
F n(STOP) for some n. The reverse is also true for similar reasons.

Given that every CSP operator is continuous under the subset order (see
[9], Chapter 8), this informally justifies the use of this fixed point. For a
formal proof that it is correct, see [9], Chapter 9.

The second model for CSP was the failures model of [2] which adopted
the opposite fixed point strategy: it takes the refinement-least. The argu-
ment used then4 was based on a clear rationale: assume the worst and you
will not be disappointed. But of course there was a good pragmatic reason
too: there is no least element of that model under subset. A consequence
of that decision was that ill-defined recursions such as µ p.p were given lots
of traces even though there was no operational reason for doing so. This
was the origin of the intuition that a divergent process should be identi-
fied with the least refined one: however that model did not in fact stand
careful examination when it came to divergent terms. This led to the in-
troduction of the divergences component in [3] leading to the now-standard
failures/divergences model N .

Brief consideration of how the mathematics of fixed points works reveals
that the refinement-least fixed point is necessary in considering divergence.
For example the recursion µ p.p plainly is divergent operationally, if it means
anything at all, so within N we want it to denote the least refined process,
since that is the only one which is immediately divergent. If we were to throw
away the refusal components of failures (giving a finite traces/divergences
model) so that we regained a ⊆-least element (STOP again), the ⊆-least
fixed point would not be operationally correct. The essential point here is
that a divergence is not something that can ever arise in a finite number of
iterations of F (·) from STOP except where F (P) may diverge even though P
does not. So, with this class of exceptions,

⋃{F n(STOP) | n ∈ N} cannot
diverge either: this is not true of operational fixed points. Rather each
particular divergence should be proved absent in some number of iterations
of F (·), which is the essence of the �-least fixed point calculation.5 Unless

4Originally before there was a proper operational semantics for CSP.
5With respect to �, not all operators are continuous, though they are monotone (see

[9] Chapter 8), meaning that fixed point calculations may need to go to higher ordinals
that ω. However this model only turns out to be operationally congruent for finitely
nondeterministic CSP, in which operators are continuous. The essence of the proof that
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it can be proved absent, it is deemed to be there; and indeed this is accurate
since we can again prove congruence with the operational semantics.

An interesting observation that can be made here is that we now know
that both ⊆ greatest and least fixed points are accurate for computing op-
erationally congruent fixed points for any non-divergent process in (finitely
nondeterministic) CSP. It follows that these two are the same, so the fixed
point is actually unique. Another way of demonstrating the uniqueness of
fixed points for divergence-free processes is via a more rigid divergence-based
order as shown in [10]. (The only way P ≤ Q is if Q ’s divergences are a sub-
set of P ’s and P and Q agree precisely on all traces not in divergences(P):
this is called the strong order, but only makes sense for divergence-strict
models.)

Since T and N , a number of other CSP models on similar lines have
been developed. Notable amongst these are the stable failures model F and
infinite traces/failures/divergences model U . The former, representing a
process as (F ,T ) (its sets of stable failures – ones generated in a τ -free state –
and finite traces) contains only finitely observable behaviours and, like T ,
uses subset-least fixed points. The latter represents a process as (F ,D , I ), its
sets of failures, divergences and infinite traces, each closed under divergences
so as to make the divergent process bottom under refinement. This has a
particularly interesting fixed point theory, since the healthiness conditions
relating failures and infinite traces cause the refinement partial order to
be incomplete. Nevertheless, as can be shown by various methods [11, 1],
refinement-least fixed points do exist for all CSP-definable functions and are
operationally congruent. The proof of the congruence between operational
and denotational semantics, which is both difficult and crucial to the present
paper, may be found in [11]. U (introduced in that paper) is in essence
the minimal extension of N that can cope accurately with unboundedly
nondeterministic operators, and treats divergence in the same way.

As mentioned earlier in relation to CFFD, U can be simplified to I
in which failures are replaced by finite traces, so a process is represented as
(T ,D , I ). This at least makes the incompleteness problem go away6, though
it does not significantly affect the congruence proof. Once again the model
has a refinement top (STOP) and since the greatest fixed point of µ p.a → p
has no infinite trace (it can simply perform every finite trace of a’s) we see

that in the finitely nondeterministic case this method predicts the correct divergences is
an application of König’s Lemma.

6Though this is really superficial, since there is still an imperative to demonstrate that
the set of infinite traces calculated is consistent with the set of failures calculated via the
stable failures model.
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that the use of the �-least fixed point is vital not only for divergences
(as discussed above) but also for infinite traces: operationally, this process
obviously does have an infinite trace, which is correctly predicted by the
�-least fixed point.

The conclusion to this survey is that the �-least fixed point is necessary
to handle infinite behaviours (namely infinite traces and divergences) prop-
erly, but that ⊆ is the correct order to use for finitary ones (namely finite
traces and stable failures). The latter is emphasised by the fact that T and
F are accurate for the full language (including unbounded nondeterminism)
and predict the correct behaviours even beyond potential divergence (which
is just as well since the models don’t know when this occurs). We get away
with using �-least fixed points for finite traces and failures prior to diver-
gence simply because these parts of a process are uniquely determined so
any fixed point theory would work. And of course in the failures divergences
model we do not have to worry about what happens after divergence because
everything is mapped to bottom.

In this section we have switched between component-wise subset (⊆) and
refinement (�) – opposites – in discussing fixed points thanks to historical
conventions. However from now on, in discussing the calculation of fixed
points over SBD, we will use only ⊆.

4 Reflected fixed points

Greatest fixed points do not produce the operationally correct values in
SBD: for example the recursion µ p.p is given all finite and infinite traces
rather than just the empty trace, which is the right answer. (It is also given
all divergences rather than the correct {〈〉}.) Nor do least fixed points, since
the same (divergent) recursion is given the non-divergent value STOP , and
the process µ p.a → p is given no infinite trace.

We therefore have to seek a new way of producing a fixed point. In this
section we will do this, as part of an overall exercise in demonstrating that
the CSP semantics over SBD including this fixed point theory is congruent
to the operational semantics. These two things go hand in hand since the
operational justification of the fixed point theory only makes sense in the
context of congruence proof, which we now develop.

As with any congruence proof, we need to be careful in distinguishing
operational terms and semantic values. The proof itself will be by struc-
tural induction over all CSP terms in which all free process identifiers are
instantiated by nodes of an arbitrary LTS (perhaps the closed CSP terms
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themselves), for all such substitutions simultaneously.
Since we need to distinguish between different sorts of semantics, we use

the notation SBD[[P ]]ρ to mean the denotational semantics of the term P in
SBD where the environment ρ : PV → SBD gives the binding of all process
variables that might appear free in P . Similarly I[[P ]]η is the denotational
semantics over I.

Specifically, we will aim for the following result.

Theorem 4.1 For each CSP term P , and each operational environment
σ : PV → Ĉ (C being an arbitrary LTS and Ĉ its set of nodes), we have

Ψ(P [σ]) = SBD[[P ]](Ψ(σ))

where Ψ is the natural map from the nodes of any LTS to SBD, P [σ] is P
with the substitution σ carried out, and Ψ(σ) is the function from PV to
SBD (an environment) produced by applying Ψ to σ(v) for each variable
v7.

Additionally, the function SBD[[P ]] of environments is monotone.

The second part of this result is necessary to justify some of the constructions
and arguments we make below. It is straightforward aside from the case of
a recursive term, which requires a more complex inductive argument which
we will discuss later. (Note that SBD[[µ p.P ]] is not even defined at present
since we don’t yet know how to calculate the value of a recursive term.)

To prove this result we need to consider every possible top-level structure
for P . These split up into three categories:

• The case where the term P is just a process variable is trivial.

• There are many cases in which P is either a process constant (like
STOP) or a non-recursive operator. The semantics of all non-recursive
operators over SBD are given in Appendix B. In every case they are
identical to the semantics over I implied8 in [11] except that the clauses
used to enforce divergence strictness are omitted. In each case it is rea-
sonably straightforward to prove that the denotational and operational
semantics of the operator are congruent using the same techniques as
in [11].

Of course these results simply parallel the result of [8] that SBD is a
congruence.

7This lifting Ψ(σ) of Ψ mapping substitutions to environments actually equals the
functional composition Ψ ◦ σ.

8The semantics in that paper is given over the more complex model U .
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• P might be a recursion µ p.Q . As in [11], we do not explicitly cover
mutual recursion in this proof because of the extra book-keeping, but
there is no doubt that the same techniques used below would work
for any finite mutual recursion; in infinite mutual recursions similar
techniques should work.

The rest of this section is devoted to developing a fixed-point method
which makes the result true for µ p.Q on the assumption that it is true
for Q .

Fix a substitution σ, and let Θ = Ψ((µ p.Q)[σ]) be the operationally
correct value in SBD relating to the recursion evaluated over σ.

The recursion yields functions FSBD : SBD → SBD and FU : I → I
defined by

FI(X ) = I[[Q ]]η[X /p]

FSBD(X ) = SBD[[Q ]]ρ[X /p]

where η = Φ(σ) and ρ = Ψ(σ) are the environments corresponding to σ over
the respective models.

Now let Π be the projection from SBD to I obtained by closing up under
divergence-strictness . (All extensions of divergences are added to all three
components.) And let Φ be the abstraction map (analogous to Ψ) which
maps the nodes of any LTS to I (this is essentially the same as the function
of the same name defined in [11]). By construction we have Φ = Π ◦ Ψ and
since Q is (by our overall inductive assumption in proving Theorem 4.1)
operationally accurate over SBD we get

FI(Π(Ψ(X ))) = Φ(Q [σ[X /p]]) = Π(Ψ(Q [σ[X /p]])) = Π(FSBD(Ψ(X )))

Since we can without loss of generality assume that our transition system
maps onto SBD under Ψ (analogously to the arguments used in [11]) this
tells that for each x ∈ SBD we have

FI(Π(x )) = Π(FSBD(x ))

or in other words we have a commuting diagram.
Let Ω be the greatest (i.e. �-least) fixed point of FI . Thanks to the

known congruence of that semantics with the operational one, we have

Ω = Φ((µ p.Q)[σ]) = Π(Θ)
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Furthermore, if K is any member of Π−1(Ω) we get

Π(FSBD(K)) = FI(Π(K)) = FI(Ω) = Ω

In other words FSBD maps Π−1(Ω) to itself.
If Λ = (T ,D , I ) is any member of I, then Π−1(Λ) is the interval in

SBD between its ⊆-greatest element, Λ itself, and its least, which is Λ̃ =
(T ′,D ′, I ′) where

T ′ = T \ {t ŝ | t ∈ D ∧ s �= 〈〉}
D ′ = D \ {t ŝ | t ∈ D ∧ s �= 〈〉}
I ′ = I \ {t û | t ∈ D ∧ u ∈ Σω}

In other words, all behaviour following a potential divergence has been re-
moved. So

Π−1(Λ) = {K ∈ SBD | Λ̃ ⊆ K ⊆ Λ}

The preceding two paragraphs show (together with an easy demonstra-
tion of the existence of least upper bounds) that Π−1(Ω) is a complete lattice
preserved by the function FSBD. The monotonicity of FSBD then tells us
that it has both greatest and least fixed points within Π−1(Ω).

We know that Θ ∈ Π−1(Ω). It is also a fixed point of FSBD since

Θ = Ψ(µ p.Q [σ])

= Ψ(Q [σ[µ p.Q [σ]/p]]) (1)

= SBD[[Q ]](Ψ(σ[µp.Q [σ]/p])) (2)

= FSBD(Ψ(µ p.Q [σ])) (3)

= FSBD(Θ)

Here (1) follows by the operational semantics of recursion (which is to exe-
cute a τ action and unfold to the term on the right), (2) by our inductive
assumption that the denotational and operational semantics of Q are con-
gruent, and (3) by our definition of FSBD.

It follows that Θ lies between the least and greatest fixed points of FSBD
within Π−1(Ω). If these are the same, we have no more to do, but unfortu-
nately this is not always the case, for example in the recursion µ p.p.

We will prove, however, that the least fixed point in Π−1(Ω) is always
the operationally correct one, and furthermore that it is always given by the
standard formula

⋃∞
n=0 F n

SBD(Ω̃)
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(bearing in mind that Ω̃ is the bottom element of the complete lattice we
are concentrating on). As is common, the proof that the above term, which
we will name Ξ, equals Θ, comes in two parts.

That Ξ ⊆ Θ is easy, since Ω̃ ⊆ Θ and

F n
SBD(Ω̃) ⊆ Θ ⇒ F n+1

SBD(Ω̃) ⊆ FSBD(Θ) = Θ

giving the result for Ξ =
⋃∞

n=0 F n
SBD(Ω̃) by induction.

The intuition behind the argument up to this point can be explained as
follows. We know that Ω is the accurate model of our recursion in I. There-
fore all the behaviours recorded in Ω̃ must actually be present in Θ (for we
know that none of them have been inserted by divergence strictness). Since
all of these behaviours are present and Θ is a fixed point of FSBD it follows
that all the behaviours of F n

SBD(Ω̃) are present for each n, and hence those
of Ξ.

It is unfortunately more difficult to prove Θ ⊆ Ξ. If this were false, then
thanks to the definition of SBD (especially D2), Θ has a behaviour of one
of the following sorts not present in Ξ:

• A finite trace.

• A divergence.

• An infinite trace u such that there is some maximal divergence d with
d < u.

Necessarily the finite trace or divergence s would have to be a proper exten-
sion of some longest divergence, namely there is a divergence t < s which
is maximal subject to this. (Differences cannot appear up to the first di-
vergence since we are operating entirely within Π−1(Ω), a region in which
all processes agree up to that point.) We can assume the infinite trace is
also the extension of a longest divergence t because if there was no maximal
divergence < u then either Θ would have a divergence not in Ξ or Ξ would
have u by axiom D2.

This suggests that, in proving Θ ⊆ Ξ, we might try to work by induction
based on this maximal divergence. One thought is to count how many
divergences there are along a trace, or use the length of trace of the maximal
divergence, but these do not work, at least easily, thanks to the complications
of hiding. What we actually do is to count how many computation steps
(both visible and τ) in the operational semantics of µ p.F (p) are needed
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to reach this maximal divergence (though not to execute it): clearly this is
always a finite number.

We use the technique of an increasing sequence of abstraction functions
which approximate Ψ, similar to that used in the main congruence result of
[11]. However we only need a countable sequence of them here rather than
the arbitrary ordinals in the Φα of that paper. The construction we use is
exactly that of the previous paper except for the Φ0 case, in which we map
a process to the subset-least member of SBD consistent with its value in I.
(In the previous paper it was mapped to bottom.)

Suppose we are given an LTS L and that P ∈ L̂. Define

Ψ0(P) = Φ̃(P)

Ψn+1(P) = ?x : P0 → �{Ψn(Q) | P x−→ Q}
if P is stable

Ψn+1(P) = ?x : P0 → �{Ψn(Q) | P x−→ Q}
� �{Φn(Q) | P τ−→ Q}

if P is not stable

We can view Ψn as Gn(Ψ0) where G : (L̂ → SBD) → (L̂ → SBD) is implied
by the n + 1 case above. (Syntactically it is precisely the same as the G
operator in [11], though the model is different.) Since Ψ0 is the ⊆-minimal
abstraction consistent with Φ, and we know that (over I) G(Φ) = Φ it follows
that Ψ1(P) ⊇ Ψ0(P) and hence inductively that the Ψi are a ⊆-increasing
sequence.

Let Ψ∗(P) =
⋃{Ψn(P) | n ∈ N}, where again

⋃
is component-wise

union followed by closure under D2.
G(Ψ) = Ψ by construction, as the natural abstractions of the members of

an LTS plainly satisfy the defining equations of G. It therefore follows from
induction on the n in Ψn that Ψ∗(P) ⊆ Ψ(P) for all P . In fact, Ψ∗ = Ψ, as
demonstrated by the following argument.

If b is any behaviour of Ψ(P) \ Ψ∗(P), then (as argued for Θ \ Ξ above)
by D2 we can assume that b is not an infinite trace with an infinite number
of divergent prefixes in Ψ(P). Therefore any sequence Q of states in P ’s
operational behaviour which witnesses b must have a final state Q with the
properties that the trace of b is not complete and which is itself divergent.
(There must be some non-final divergence of this form in the sequence of
states because Π(Ψ(P)) = Π(Ψ∗(P) by construction.) Let Q ′ be the state
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which appears in Q immediately after Q . Let t be the trace up to Q ′ and
let b′ be the residue of b, so that b = t b̂′.

By construction b′ is in Ψ0(Q ′), and inducting backwards along the
sequence of states on our path from P to Q ′ would easily show that b ∈
Ψn(P) (for n the length of the path). This contradicts our assumption that
b is not in Ψ∗(P), and we can conclude that indeed Ψ = Ψ∗.

The claim that Θ ⊆ Ξ will be proved if we can show that, for every n,

F n
SBD(Ω̃)) ⊇ Ψn(µ p.Q [σ]) (†)

since in the limit this proves Ξ ⊇ Θ, which is what remained to be proved.
This claim is proved by induction: the n = 0 case is trivial since both

sides equal Ω̃.
The n + 1 case is a corollary to the following result.

Lemma 4.2 For all terms Q ′ and substitutions σ,

Ψn(Q ′[σ]) ⊆ SBD[[Q ′]](Ψn(σ))

Note that if Q ′ = Q (Q as in the term µ p.Q we are addressing in main
inductive step) and X is an arbitrary member of the underlying transition
system, this result implies

Ψn(Q [σ[X /p]]) ⊆ SBD[[Q ]](Ψn(σ[X /p]))

and the right hand side of this inequality is trivially a subset of FSBD(Ψn(X )).
(It may be a proper subset since Ψn is applied to all components of σ[X /p],
not just the p one.)

That the step case of the proof of (†) is a corollary follows thanks to the
τ which is generated on unfolding µ p.Q , which implies:

Ψn+1((µ p.Q)[σ]) = Ψn(Q [σ[(µ .p.Q)[σ]/p]]) ⊆ FSBD(Ψn((µ p.Q)[σ]))

The proof of Lemma 4.2 is by adding it to the structural induction of
the main theorem: they are actually proved together. Note that this is the
approach used in [11] for a very similar result involving the functions Φα.

Before we look at any technical details of the proof it is helpful to realise
that this seemingly very technical result actually has a simple intuition. If
we accept that Theorem 4.1 holds for our given Q , then what this lemma
says is that the behaviours of Ψ(Q [σ]) for which any non-final divergence
occurs before the nth state cannot depend on any behaviour of any σ[q ]
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which can only happen beyond a non-final divergence later than n. This
can be argued at least semi formally thanks to of two properties of the
operational semantics:

1. When any context C [P ] runs, the first n steps of its behaviour depend
on at most n steps of P . This is because no operational semantic clause
ever lets an operand perform an action (visible or invisible) without
the overall process doing so as well. (For example, though P \ X hides
visible actions of P , in the operational semantics these are turned into
τ actions, which still count for our purposes.)

Therefore once Q [σ] has performed n operational steps, none of the
components σ[[q ]] can have performed more than n.

2. If the first step of C [P ] depends on what actions P has available,
and P can immediately diverge, then so can C [P ]. This is because
the operational semantics of every CSP operator (P ⊕ Q say) whose
immediate actions depend on one of its operands (P say) also has a
clause which promotes a τ action of P (P τ−→ P ′) to one of P ⊕ Q ,
namely (P ⊕ Q) τ−→ (P ′ ⊕ Q).

Let Q be any sequence of states that Q ′[σ] can go through executing a
behaviour in which there is no divergent state between step n and any final
divergence (namely one reflected in ΨnQ ′[σ]. Necessarily, once a component
σ[p] has been driven (in Q) to a point where it diverges beyond its own step n
(which because of 1. above is beyond step n overall), then either the overall
behaviour does not depend on it at all or is within its own divergent tail.
For the component of Q which contains this state of σ[p] is itself divergent
by 2.

We can infer that no behaviour in any Ψ(σ[p]) \Ψn(σ[p]) is necessary to
deduce a behaviour of Ψn(Q ′[σ]).

To give a fully formal proof of the Lemma 4.2 part of our main induction
requires separate lemmas for each CSP operator very much in the style of
those given in [11] for the corresponding result. For recursion it is neces-
sary to perform inductions which follow the derivation of the fixed point: a
transfinite one for the fixed point in I followed by an ordinary one for the
fixed point within Π−1(Ω) we are now justifying. We omit these here for
brevity.

The overall fixed point calculation is summarised in Figure 1. The left-
hand side of the picture shows the entire model SBD, and the small dia-
monds in it are the regions Π−1(X ) for each value X in the ⊆-greatest or
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Ω

∼
Ω

Ω

Θ

nF
∼

(Ω)

SBD

Figure 1: Illustration of the fixed point calculation

�-least fixed point iteration within I, whose ultimate fixed point is Ω. Note
that since these diamonds are the preimages of the members of I, they are
necessarily disjoint; of course the preimage of a divergence-free member of
I is a singleton set. The right-hand side is an expanded view of Π−1(Ω),
showing the iteration from its top towards the operationally correct value Θ.
The left-hand side is not a very accurate picture of I, since the latter has a
top element. Our argument nowhere uses this however, and would work just
as well for an expanded model that replaced finite traces by failures. This
has no top (and indeed, like the model U which it extends is incomplete).

It is mainly because of this potential generalisation that the picture is
drawn the way up it is, with refinement from bottom to top (i.e. upside
down with respect to ⊆).

The remaining part of Theorem 4.1 is the monotonicity of SBD[[µ p.Q ]]η
as a function of the environment η. To prove this we show that each part
of the construction illustrated in Figure 1 is monotone in η. If η ⊆ η′ then
Π(η) ⊆ Π(η′), and the monotonicity of the semantics over I implies Ω ⊆ Ω′.
(We use the obvious convention that primed terms are derived from η′ in the
same way that unprimed ones are derived from η.) This immediately implies
Ω̃ ⊆ Ω̃′. The fact that SBD[[Q ]] is monotonic by (structural) induction then
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shows by induction (on n) that

F n
SBD(Ω̃) ⊆ (F ′

SBD)n(Ω̃′)

for all n.
This concludes our demonstration that Theorem 4.1 and Lemma 4.2

hold.
The shape of the process illustrated in Figure 1 leads us to term the new

fixed point method the reflected fixed point. Clearly it is highly specialised
to this application but we hope it might find uses elsewhere.

Obviously it only produces interesting answers in cases where the value
of a recursion is (not necessarily immediately) divergent, since otherwise
Π−1(Ω̃) has exactly one point.

The simplest example to check is the recursion Q1 = µ p.p. In this case
Ω is the refinement-least element of I and SBD, and Ω̃ = ({〈〉}, {〈〉}, ∅), the
process which diverges immediately and has no other trace. Since the the
function of this recursion is the identity function, it follows that Ω̃ is the
value of the reflected fixed point, which is of course operationally accurate.

As a second example consider

Q2 = ((a → Q2; b → SKIP) � SKIP) \ {a}

Like P1, this can diverge immediately, and so has the same Ω and Ω̃ as
the first example. This time, however, the first iteration from Ω̃ brings in
an extra trace 〈�〉, and each subsequent one brings longer and longer ones
of the forms 〈b〉n and 〈b〉n 〈̂�〉, but no further divergence and no infinite
trace. Therefore the reflected fixed point has the single divergence 〈〉, all
these finite traces and no infinite trace. This is operationally correct since
the behaviour of Q2 is rather like that of FA earlier in the sense that once a
b is performed there is already a limit on how many more are allowed.

Finally, consider the recursions for the processes P1 and P2 defined using
FA earlier. Once again we get the same Ω and Ω̃, but this time every iterate
from Ω̃ in both recursions after the zeroth equals FA, and therefore so do
both limits. But of course the model axioms tell us that FA has the infinite
trace aω thanks to D2, meaning that within the understanding of SBD this
value is operationally accurate for both.

5 Conclusions

It is fascinating to contemplate the iteration towards a reflected fixed point.
The first stage, potentially requiring any ordinal length, manages to char-
acterise accurately all the operational behaviour up to and including the
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first divergence. Observing what behaviours this proves (under any finite
number of iterations) must be present in the fixed point then gives us the
correct value in SBD. Nothing can then distinguish the one remaining thing
one might want, namely which ω-divergent infinite traces are operationally
present.

In a real sense the second stage of our fixed point process is lifting the
calculation done in the first to the post-divergence world, and our (forced)
decision to ignore ω-divergent traces means that this can happen relatively
simply.

Obviously this fixed point process is too complex to use regularly to find
the semantics of particular processes. Generally speaking this is best done
in any case by abstraction from operational semantics. What it does is show
how CSP with its SBD congruence can be viewed as a self-contained theory
that can exist without the corresponding operational semantics, and give
considerable understanding of the nature of recursions. It will also allow us
to derive mathematical properties of fixed points (such as their monotonicity,
and forms of recursion induction).

Other two-stage fixed point techniques have been proposed, such as that
of Yifeng Chen in [15]. Others, such as the optimal fixed point [6], have been
proposed which yield an answer which is in general between greatest and
least.

It seems likely that the reflected fixed point will also apply to other
fixed point calculations based around potentially diverging finite and infinite
sequences. It may also apply in other forms of programming languages
semantics where one wishes to liberalise a strict interpretation of divergence
or undefinedness.

Appendix 1: Notation

This paper follows the notation of [9], from which most of the following is
taken.
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N natural numbers ({0, 1, 2, . . .})
Σ (Sigma): alphabet of all communications
τ (tau): the invisible action
Στ Σ ∪ {τ}
A∗ set of all finite sequences over A
Aω set of all infinite sequences over A

〈〉 the empty sequence
〈a1, . . . , an〉 the sequence containing a1,. . . , an in that order
aω the infinite trace 〈a, a, a, . . .〉
s t̂ concatenation of two sequences
s \ X hiding: all members of X deleted from s
s ‖

X
t the set of traces composed from subsequences s and t

which share members of X and are disjoint elsewhere.
s ≤ t (≡ ∃ u.s û = t) prefix order
S closure of S (= S ∪ {u ∈ Σω | {s ∈ S | s < u} is infinite})

Processes:
µ p.P recursion
a → P prefixing
?x : A → P prefix choice
P � Q external choice
P � Q , �S nondeterministic choice
P ‖

X
Q generalised parallel

P \ X hiding
P [[R]] renaming (relational)
P � Q ‘time-out’ operator (sliding choice)
P � Q interrupt

P [x/y ] substitution (for a free identifier x )

Transition Systems:
Ĉ The set of nodes in transition system C .
P a−→ Q (a ∈ Σ ∪ {τ}) single action transition
P s=⇒ Q (s ∈ Σ∗) multiple action transition with τ ’s removed
P t�−→ Q (t ∈ (Στ ))∗) multiple action transition with τ ’s retained
P ref B P refuses B
P div P diverges

Models:
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T traces model
N failures/divergences model (divergence strict)
F stable failures model
I finite and infinite traces/divergences model with

divergence strictness
U failures/divergences/infinite traces model

with divergence strictness

CFFD failures/divergences/infinite traces
congruence/model without divergence strictness

CFFDT finite and infinite traces/divergences congruence/model
without divergence strictness

SBD finite and infinite traces/divergences model strict
under ω-divergent infinite traces

SBD stable failures/divergences/infinite traces
model strict under ω-divergent infinite traces

⊥N (etc.) bottom elements of models
�F (etc.) top elements of models
� refinement over whatever model is clear from the context
P ≤ Q strong order (over divergence-strict models)
I[[P ]]η denotational semantics of P in I
SBD[[P ]]ρ denotational semantics of P in SBD

Appendix B: CSP semantics over the new model

The semantics of recursion has been discussed extensively in the main body
of the paper. What remains to be done, therefore, is to provide a recipe
for calculating the semantic result of applying any one of the non-recursive
operators to the right number of members of SBD. As usual we factor this
into recipes for the three components separately.

In general discussions of operators we will refer to a typical binary one
P ⊕ Q. However there is nothing specific to binary operators there and
appropriate modifications of the statements hold for all.

In each case the recipe for traces(P ⊕ Q) is precisely the same for the
traces model T , and depends only on the traces component of the arguments
to the relevant operator. This is, of course, not surprising, but it is pleasing
since it has not been true of any previous CSP model supporting divergence.
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traces(STOP) = ∅
traces(SKIP) = ∅

traces(a → P) = {〈a 〉̂ s | s ∈ traces(P)}
traces(?x : A → P) = {〈a 〉̂ s | a ∈ A ∧ s ∈ traces(P [a/x ])}

traces(P � Q) = traces(P) ∪ traces(Q)

traces(P ‖
X

Q) =
⋃{s ‖

X
t | s ∈ traces(P) ∧ t ∈ traces(Q)}

traces(P ; Q) = traces(P) ∪
{s t̂ | s 〈̂�〉 ∈ traces(P) ∧ t ∈ traces(Q)}

traces(P [[R]]) = {s ′ | ∃ s ∈ traces(P) | s R s ′}
traces(P \ X ) = {s \ X | s ∈ traces(P)}
traces(P � Q) = {s t̂ | s ∈ traces(P) ∧ t ∈ traces(Q)}

The recipes for divergences involve, in different cases, all three compo-
nents. They are the same as previous CSP models, but without the closure
constructions used to enforce divergence strictness.

divergences(STOP) = ∅
divergences(SKIP) = ∅

divergences(a → P) = {〈a 〉̂ s | s ∈ divergences(P)}
divergences(?x : A → P) = {〈a 〉̂ s | a ∈ A ∧ s ∈ divergences(P [a/x ])}

divergences(P � Q) = divergences(P) ∪ divergences(Q)

divergences(P ‖
X

Q) =
⋃{s ‖

X
t | s ∈ divergences(P) ∧ t ∈ traces(Q)}

∪ ⋃{s ‖
X

t | s ∈ traces(P) ∧ t ∈ divergences(Q)}
divergences(P ; Q) = divergences(P) ∪

{s t̂ | s 〈̂�〉 ∈ traces(P) ∧ t ∈ divergences(Q)}
divergences(P [[R]]) = {s ′ | ∃ s ∈ divergences(P) | s R s ′}

divergences(P \ X ) = {u \ X | u ∈ infinites(P) ∧ u \ X is finite}
∪ {s \ X | s ∈ divergences(P) ∩ Σ∗ ∧ t ∈ Σ∗�}

divergences(P � Q) = divergences(P)∪
{s t̂ | s ∈ traces(P) ∧ t ∈ divergences(Q)}

In each case the basic recipe for infinites(P⊕Q) depends only on the sets
Traces(P) and Traces(Q) of all finite and infinite traces of the arguments.
However in some cases a clause adding the ω-divergent infinite traces is need
to make D2 true.
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infinites(STOP) = ∅
infinites(SKIP) = ∅

infinites(a → P) = {〈a 〉̂ u | u ∈ infinites(P)}
infinites(?x : A → P) = {〈a 〉̂ u | a ∈ A ∧ u ∈ infinites(P [a/x ])}

infinites(P � Q) = infinites(P) ∪ infinites(Q)

infinites(P � Q) = infinites(P) ∪ infinites(Q)

infinites(P ‖
X

Q) = {u ∈ Σω | ∃ s ∈ Traces(P),

t ∈ Traces(Q).u ∈ s ‖
X

t}

∪ (Σω ∩ divergences(P ‖
X

Q))

infinites(P ; Q) = infinites(P)
∪ {s û | s 〈̂�〉 ∈ traces(P) ∧ u ∈ infinites(Q)}
∪ (Σω ∩ divergences(P ; Q))

infinites(P [[R]]) = {u ′ | ∃ u ∈ infinites(P).u R u ′}
∪ (Σω ∩ divergences(P [[R]]))

infinites(P \ X ) = {u ′ ∈ Σω | ∃ u ∈ infinites(P).u \ X = u ′}
∪ (Σω ∩ divergences(P \ X ))

infinites(P � Q) = infinites(P) ∪ {s û | s ∈ traces(P) ∧ u ∈ infinites(Q)}
∪ (Σω ∩ divergences(P � Q))
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