
Communicating Process Architectures � 2004
Jeremy Martin et al (Eds.)
IOS Press, 2004

1

Finitary refinement checks for infinitary
specifications

A.W. Roscoe
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract. We see how refinement against a variety of infinite-state CSP specifications
can be translated into finitary refinement checks. Methods used include turning a
process into its own specification inductively, and we recall Wolper’s discovery that
data independence can be used for this purpose.

1 Introduction

Thanks to the refinement checker FDR1 [1], the question of what predicates on CSP models
are decidable via a refinement check is practically as well as intellectually important. By this
I mean: what predicates of a processP are equivalent to the question

F(P) v G(P) (†)

for CSP-definable functionsF andG? In [7] I gave fairly complete characterisations of the
unexpectedly wide range of predicates that can be represented like this. In particular, for the
failures/divergences model over a finite alphabet, the metric/topological closed subsets are
precisely the predicates that can be represented by metric-continuousF andG.

However, as observed in [7] this answer is of little practical use since the CSP contexts
F andG it generates are, in general, infinitary – indeed, usually, they are in a strong sense
infinitely large pieces of syntax. Nevertheless, experience and recent work [5] has shown that
many useful and subtle properties can be expressed in practical ways.

In the present paper I will begin to study what can be done within the terms of what is
practically possible on FDR. Namely, we will restrict ourselves toF andG which, when ap-
plied to a finite-state processP, haveF(P) andG(P) finite state also. Note that this definition
of afinitary function is grounded in the operational semantics of CSP, since that is where the
notion of a ‘finite state process’ naturally rests.

By and large I will concentrate more on providing a range of useful recipes for represent-
ing predicates rather than full characterisations, simply because at present I have more of the
former than the latter! Also the majority of this initial study will be devoted to discovering
how to replace infinite-state fixed specification processesSpecfor simple checksSpecv P
by finitary checks.

We will find that data independence plays an unexpected large role in this work.
In the next section we will study how to characterise a counter process, and in the fol-

lowing one we will extend this to the related specifications of bag, buffer and stack. We then
discuss the potential for moving from our examples to general results.

1The references in this paper to FDR’s capabilities are based on the tool in May 2004.

2 A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations

2 Counter processes

Anyone who has studied CSP will have encountered infinite-state counter processes with
eventsup, downand perhapsiszero, such asCount0, Count′0, ZeroandZERO, where

Count0 = up→ Count1

Countn+1 = up→ Countn+2

2 down→ Countn

Count′0 = up→ Count′1
2 iszero→ Count′0

Count′n+1 = up→ Count′n+2

2 down→ Count′n

Zero = up→ Pos; Zero
2 iszero→ Zero

Pos = up→ Pos; Pos
2 down→ SKIP

ZERO = up→ (ZERO||| down→ STOP)

By analogy with the usual CSP specification of a buffer ([6], for example) we might
reasonably specify a counter (of the first sort) to be a process which must acceptup when it
has value0 anddownwhen non-zero, and which never accepts moredowns andups. If (t, X)
is a typical failure, this formalises to

(i) t ∈ {up, down∗} ∧ t ↓ down≤ t ↓ up

(ii) t ↓ up = t ↓ down=⇒ up 6∈ X

(iii) t ↓ up > t ↓ down=⇒ down 6∈ X

A counter of the second sort must acceptiszerowhen zero and never when non-zero. (The
value of a counter is defined to be the number ofups minus the number ofdowns.) This can
be formalised by easy modifications to the above.

Satisfying this specification is equivalent to the process concerned refiningCOUNT0 or
COUNT′0 as appropriate, where

COUNT0 = up→ COUNT1

COUNTn+1 = (STOPu up→ COUNTn+2)
2 down→ COUNTn

COUNT′0 = up→ COUNT′1
2 iszero→ COUNT′0

COUNT′n+1 = (STOPu up→ COUNT′n+2)
2 down→ COUNT′n

We therefore have a simple refinement check for both these predicates, but it is not finitary
since the process on the left-hand side of the refinement is infinite state.2 Note that there

2We note that, while the standard functionality of FDR is not able to deal with checks where the left-hand
side is infinite state and the right-hand finite-state, it has long been known that this could be achieved by
appropriate use of lazy normalisation, but it is suspected this would have a significant overhead in terms of
running time.

A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations 3

are many finite-state processes that meet these specifications. For the time being we will
concentrate on the first sort of counter (withoutiszero).

Approach 1: two-sided approximation

One solution to deciding whether a finite-state process is a counter using finite-state refine-
ment checking is easily adapted from the approach set out in Chapter 5 of [6] for buffers.
Define two series of processes:

• COUNTn is the most nondeterministic counter whose value never gets bigger thann.
It behaves identically toCOUNT when its value is less thann, but whenn it cannot
accept anup.

• WCOUNTn is the most nondeterministicweakcounter of sizen: it may accept an
up that takes its value overn but if so it becomes equal to the most chaotic process
(div u Chaosworks in all standard models).

These specifications are in the relationship

. . . v WCOUNTn v WCOUNTn+1 . . . v COUNTv . . . COUNTn+1 v COUNTn . . .

It is then true that every finite state process which is a counter will refine one of theCOUNTn

and every finite-state process which is not a counter will fail to refine one of theWCOUNTn.
Comparing a proposed counter against the specificationsWCOUNTn andCOUNTn for

increasing values ofn in turn therefore gives a decision procedure.
For obvious reasons, however, it would be nice to be able to resolve the issue in a small

fixed number of checks.

Approach 2: constructive contexts

Recall that a CSP contextF(·) is said to beconstructive, or sometimesguarded, if for all
processesP, Q and natural numbersn we have

P ↓ n = Q ↓ n =⇒ F(P) ↓ (n + 1) = F(Q) ↓ (n + 1)

whereP ↓ n is the standard restriction ton steps of behaviour (see [6], for example). Re-
call also that every context built without hiding, where the process variable(s) only appear
indirectly or directly guarded by some communication, is constructive.

Now supposeF is a constructive context which maps counters to counters, and thatP is
a process such that

F(P) v P

If P were not itself a counter then there would be some shortest-length behaviourb which
demonstrated this. Let the length ofb ben in the sense thatn is minimal such thatb ∈ Q ↓ n
if and only if b ∈ Q. n cannot be0 since the only length0 behaviour is the empty trace –
which does not contradict being a counter – as both refusals and divergences on a trace of
lengthk actually have lengthk+1. It follows straightforwardly that there is a processC such
thatC is a counter and

C ↓ (n− 1) = P ↓ (n− 1)

(To constructC simply build a process which behaves identically toP for the firstn− 1 steps
and then behaves likeCountr where the value ofr is the excess ofups overdowns in the

4 A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations

preceding trace.) But thenF(C) is a counter with the property thatF(C) ↓ n = F(P) ↓ n.
SinceP has behaviourb andP w F(P) it follows thatF(P) has it too. Sinceb ∈ R ↓ n ⇔
b ∈ R, it follows thatb ∈ F(C) which contradicts the fact thatF(C) is a counter.3

HenceP is a counter. Obviously this argument applies to any specification, not just
counters. We will see another example later.

CTA(P) = up→ (P ‖
{up}

D)

D = down→ RUN({up})
2 (STOPu up→ D)

is a good simple context for proving counters. For exampleCTA(P) v P holds wheneverP is
one of theCOUNTn bounded nondeterministic counters, or the deterministic processes with
the same traces which can always be taken up to valuen.

There are, however, counter processes which do not satisfy this refinement relation, mean-
ing thatCTA gives a sound but not complete rule for proving counters. As an example con-
sider

ExpC= up→ down→ COUNT2

This has the trace〈up, down, up, up〉 but CTA(ExpC) does not, since the first pair of events
must have come from the context itself, andExpCcannot initially perform a pair ofups.

Of course we can find a context that provesExpC by giving it the ability to handle a
secondup itself, but it seems very unlikely to the author that any single constructive context
can handle all counters. The grounds for this are that in general a counter can suddenly
develop the ability to accept an arbitrary extra number ofups after any particular trace, but
when P has done this trace theP(s) in CT(P) has/have done a strictly shorter trace. He
conjectures that this argument can be formalised into a proof of impossibility.

If we had adopted the second sort of counter specification (namely withiszero) then the
context above can easily be adapted. Let

CTB(P) = up→ (P ‖
{up,iszero}

D′)

2 iszero→ CTB(P)

D′ = down→ RUN({up,izsero})
2 (STOPu up→ D′)

Then this has the same properties with respect to the new specification. Note thatD′ prevents
P from communicatingiszerountil its owndownhas occurred.

Pseudo-constructive contexts

It is nevertheless possible to contract every nontrivial trace of a counter in a general and
useful way. Ift is a nonempty trace of a counterP then we can guarantee that it is also a trace
of the processP ||| UD, whereUD = up→ down→ STOP, in such a way that only a tracet′

of P that is strictly shorter thant is used in the interleaving. To see this note that the lastup in
the trace followed by adownif there is one following it might have come fromUD however
P has behaved.

3An alternative proof: asF is constructive it has a unique fixed point, which is the limit of the sequences
Fk(Q) for all processesQ in the standard metric space. IfC is an arbitrary counter then so are all members of
the sequenceFk(C), and hence the limit. The limit of the sequenceFk(P) is refined byP sinceF(P) v P and
F is monotone. Since the two limits are the same it follows thatP refines a counter, and so is a counter itself.

A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations 5

For the time being we will consider just the the traces of a possible counter process. There
is of course a natural traces specification arising from the failures-divergences one:

t ↓ up≥ t ↓ down

and t ∈ {up, down}∗ for all tracest of the process we are considering. Call any process
satisfying this atrace counter. However, while any counter satisfies this, failures-divergences
counters actually satisfy stronger conditions on their sets of traces. For technical reasons that
will soon be apparent, we will define astrong trace counterto be a process satisfying the
above and which in addition, ift is a trace in which there arek lessdowns thanups, then
t̂ 〈down〉k is also a trace. (This is not a behavioural specification since it relates behaviours
to each other, however every counter is a strong trace counter.)

Before turning to the failures aspects of counters we will try to capture the property of
being a trace counter via a finitary refinement check.

If we could prove that

(P |||C UD) vT P (‡)

whereP |||C UD consists of the empty trace together with all interleavings involving a non-
empty trace ofUD, thenP is necessarily a trace-counter, as can easily be proved by induction
on the length of trace. (We will see a similar induction in more detail below.)

Unfortunately|||C does not make sense as a CSP operator, and it is not implementable. In
any implementation the first thingP |||C Q does has to come fromQ, but it may need to have
traces on whichP performed the first action andQ didn’t start till later!

We might termP ||| UD apseudo-constructivecontext: it is not constructive but in some
way has to play the role of one for us.

It is in fact possible to achieve the desired effect by applying suitable transformations to
both sides of (‡). Specifically, we can identify theup that comes fromUD by replacingUD
on the left-hand side with

UD′ = up′ → down→ STOP

Let Counter′L(P) = P ||| UD′.
On the right-hand side of the refinement we can use a fairly standard double renaming

trick to rename the lastup to up′:

CounterR(P) = P[[up, up′
/ up, up]] ‖

{up,up′}
Reg

Reg = up→ Reg
2 up′ → STOP

The renamedup becomes the last one because all subsequent ones are banned. Note that the
last one may not be renamed, but if any it is the last one, and for all traces ofP with anup
there is a corresponding one ofCounterR(P) where the last one is renamed.

Now consider the refinementCounter′L(P) vT CounterR(P). SinceP’s traces are all in
Counter′L(P) the refinement can only fail if one of the traces ofCounterR(P) with its final
up renamed is not inCounter′L(P). If P is a strong trace counter then this cannot happen
thanks to the argument above. The “strong” here is necessary because of examples like

up→ up→ down→ down→ STOP

(a trace counter but not a strong one) can fail to satisfy it because of varying patterns of
downs: here,〈up, up′, down, down〉 6∈ traces(Counter′L(P)) because〈up, down〉 6∈ traces(P).

6 A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations

It even turns out that the refinement might hold ifP is not a trace counter: it holds for
example whenP = down→ STOP. This latter example is one which needs to be dealt with.

To deal with this problem we replaceCounter′L(P) by CounterL(P) where

CounterL(P) = Counter′L(P) ‖
Σ

UpFirst

UpFirst = ?x : {up, up′} → RUN({up, up′, down})

Now, if the refinement

CounterL(P) v CounterR(P)

holds it follows that the first event ofP is up. All traces ofP of length 0 and 1 are legitimate
counter traces. Suppose the same is true of all traces of lengthk or less and thatt has length
k + 1. Necessarilyt has a lastup, and the tracet′ in which this is replaced byup′ is a trace of
CounterR(P). t′ is therefore the interleaving of a tracet′′ of P and either〈up′〉 or 〈up′, down〉.
By inductiont′′ ↓ down≤ t′′ ↓ up. It follows that the same is true oft.

It follows thatCounterL(P) vT CounterR(P) impliesP is a trace-counter, and is implied
by it being a strong trace counter.

If we move from the traces model to failures-divergences there is an obvious pathological
case that passes the above refinement, namelydiv, the chaotic divergent process for which
both CounterL andCounterR are strict. We can of course eliminate this possibility by a
refinement check and it therefore makes sense to assume thatP is known to be divergence-
free.

In this case it is easier to create a refinement which establishes the correct failures speci-
fication if, noting that each counter is deadlock-free, we boost the divergence-freedom check
to encompass deadlock-freedom (another one-state standard specification). Since the traces
specification establishes that a trace counter with value 0 can only communicateup it follows
that a deadlock-free trace counter cannot refuseupwhen 0. This is half of what we need, the
other half being that it cannot refusedownwhen non-zero.

If we were simply to checkCounterL(P) v CounterR(P) in the failures or failures-
divergences model, this would make assertions about whatP has to do in bothups anddowns.
The former would, as it turns out, be too strong. If, however, we define

CounterNL (P) = CounterL(P) ‖
{up}

Chaos{up}

we get exactly what is required (in addition to the deadlock and livelock freedom check). The
proof just extends the trace version above, once we note that ifP can refusedownafter a trace
t with moreups thandowns thenCounterR(P) can do the same ont′ where the lastup has
been replaced byup′. This is not permitted by the left-hand side since either theUD process
offersdownor the traces which the left-handP has performed is shorter and has moreups
thandowns.

It is possible to deal with the failures requirement onups in a similar case-specific way
by allowingUD to refuseup′ if and only if P has performed an earlierup. Regneeds to be
altered also. The details are left to the reader.

Since of course any trace counter which satisfies the failures requirements of a counter
is also a strong trace counter, instead of the not-quite characterisation of trace buffers we
achieved earlier, we now have a precise characterisation: a processP is a counter if and only
if it is deadlock and divergence free, and satisfies

CounterNL (P) v CounterR(P)

A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations 7

Thus we have reduced the decision procedure about whether a general process is a counter
to two finitary refinement checks. These can, if desired, by combined into a single one using
the representation of conjunctions introduced in [7].

Notice how the interplay between traces and refusals in this natural specification allowed
us to achieve a tighter result than we could with traces alone.

It is interesting to note that if theCounterL/R refinement were to fail on FDR, then the way
that the refinement works inductively coupled with FDR finding the shortest counterexample
will generally mean that the example behaviour it produces will be a direct counterexample to
P being a counter. (The shorter behaviour against which it is judged will, one would expect,
behave correctly.) This may not be true, however, since the shortest route to an offending
behaviour on the RHS may have a longer trace than others thanks to the way FDR handles
τs. The way to solve this difficulty, should one encounter it, is to apply someτ -eliminating
compression such asdiamond[9] to CounterR(P) before the refinement check. If this is
done it is guaranteed that the counterexample behaviour will directly contradict the counter
specification.

The method developed in this section relied on us being able to find a systematic way to
transform every tracet of a process satisfying a specification into a shorter onet′ which can
be lifted back tot by the constructive action of an operator (even though the operator itself
might not be constructive) which preserves the specification. What we are doing is using
a process as its own specification inductively, so that each finite state process has its own
custom-made finite state specification.

Approach 4: watchdogs

In [2], we demonstrate how CSP behavioural specifications can be transformed to operate
in parallel with the process being tested in such a way that if the specification fails then the
parallel combination fails to refine a standard process which is independent of the problem.
This form of specification is called awatchdogbecause it sits alongside the target process
and ‘woofs’ when a mis-behaviour occurs. A typical watchdog for the counter specification
is:

WatchC0 = (STOPu down→ woof→ STOP)
2 up→ WatchC1

WatchCn+1 = (STOPu up→ WatchCn+2)
2 down→ WatchCn

Note how these are very similar to theCOUNTn processes.
If WatchC0 ‖

{up,down}
P is run for a counterP, notice that the values of the two processes

will always coincide, and that the combination will neverwoof or deadlock. On the other
hand hand any process with alphabet{up,down} which fails the buffer specification will do
one of these two things: an excess ofdowns will lead to awoof, and an illegal refusal ofup
(when 0) ordown(when non-zero) will lead to deadlock.

One reason for our discussing watchdogs here is that, even thoughWatchC0 is of course
infinite state, ifP is a finite-state counter thenWatchC0 ‖

{up,down}
P is finite state (and can be

run on FDR if care is taken to ensure the parallel combination is compiled at low level4: see

4For example, anyX-free processP is compiled at low level if accessed aslow(P) = P; low(P). This is
equivalent toP but contains a never-accessed recursion which forces low-level compilation. Since low-level
compilation is slower and less space efficient than FDR’s normal mode of running, it may be impractical to
apply low to processes with large state spaces.

8 A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations

Appendix C of [6]). Notice however that ifP is a finite-state process which is not a counter
(such asP = up → P, which is a trace counter) the parallel combination may be infinite
state. Therefore this gives only a semi-decision procedure, and there are simple specifications
where even this is not true.

Exactly the same applies to a counter withiszero. We quote the watchdog for this variant
below. Note the way that, when one wants to test that a set of more than one elements are all
available, each element has to be tested separately.

WatchC′0 = (STOPu down→ woof→ STOP)
2 (up→ WatchC′1
u iszero→ WatchC′0)

WatchC′n+1 = (STOPu up→ WatchCn+2)
2 down→ WatchCn

2 (STOPu iszero→ woof→ STOP)

SupposeC is a counter of this second sort. It is very easy to convert it into one if the first
sort byP ‖

{iszero}
STOP. It is not nearly as easy to go the other way: if we have a contextC(P)

which is operating on a counter of the first sort, the only clue thatC(P) has – by observing
P – thatP is in state0 is that it refuses the eventdown. But there are no CSP operators
which can introduce an extra event likeiszeroon the refusal of another: this would contradict
monotonicity in trace sets. We conclude that the only way the context can know that it has
to be able to sayiszerois if it keeps a tally itself. The best way I can think of doing this is to
put P in parallel withCount′0: if P is a counter of the first sort thenP ‖

{up,down}
Count′0 is the

corresponding counter of the second.
This method does, of course, have the same limitation as the watchdog, that it can only

be guaranteed to produce a finite-state process ifP is indeed a finite-state counter. (And
is a failures/divergences counter, not just a trace counter.) Fortunately, of course, we have
demonstrated in the previous section that it is possible to decide that question using finitary
checks. So, as long as one is careful, infinite processes can be avoided for any finite-stateP.

3 Processes with data

Suppose that instead of having eventsup, downand perhapsiszero, we now have the channels
in, out, and perhaps the eventisempty. The channels communicate values in some typeT that
we want to store inside our process. In this section we will study three related specifications:

• A bag is a process which holds data it has input onin, outputting each item exactly
once onout. It never refuses input when empty and is always willing to output when
nonempty. If it has theisemptythen this only happens when the bag is empty (the
items output are a permutation of those input) and cannot then be refused. A bag is not
constrained as to which value to output if it has more than one.

• A stackis a bag which outputs on a strictly last-in first-out (LIFO) discipline. Of course
the conventional names for the input and output channels of stacks arepushandpop.

• A buffer is a bag which outputs on a strictly first-in first-out (FIFO) principle. Buffers
have been extensively studied in CSP literature (generally without anisemptyevent).

A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations 9

Thus every stack and buffer is a bag, and the only process that is all three isCOPYwhich can
only hold a single item. Like counters, I will refer to first and second sort for ones that do and
don’t haveisempty, and a trace bag (etc) will be one that just satisfies the trace constraints.

It is straightforward to adapt the counter failures divergences specification seen earlier
into ones for each of these types of process. The buffer one can be found, for example, in
chapter 5 of [6].

It is obvious that these three specifications are all close to that of a counter, and indeed
the renaming

P[[up, down, iszero/ in.x, down.x, iszero| x ∈ T]] ([)

converts any bag into a counter. Of course my reason for using these specifications is that
since we already know how to check if a finite-state process is a counter, then we can check
the above transformation of any proposed bag is a counter as a large step on the way to
verifying it. So all we have to do is concentrate on the data values that are passed around.

The most surprising discovery, however, is that under common conditions this transfor-
mation back to a counter is not necessary, because the introduction of data actually makes
things easier as we shall see in the following section!

Data independence

A process is said to be data independent in the typeT when it makes sense for any typeT.
It can input and output members ofT, and store them. For different purposes we can allow
further operations, such as implicit and explicit equality tests, constants, relational and func-
tional symbols, and arrays indexed byT. See for example [3]. Note that data independence is
usually considered as a syntactic restriction on programs rather than a semantic one, though
[4] gives a semantic characterisation. While there is no guarantee that a process that is in-
tended to be a bag, stack or buffer is data independent, there is every reason to believe that
such programs will often be so.

The first mention of data independence in the literature, Pierre Wolper’s paper [10], took
a version of data independence at its purest without any of the add-ons such as equality tests.
One of the main examples in that paper includes a way of testing whether a data independent
process is a buffer (though the concept of a buffer is not exactly the same as ours as it does
not place the same failures obligations on the process). Wolper’s method is finitary, and can
readily be adapted into a finitary way of deciding whether a finite-state data independent
process5 is a buffer in our sense, which is conceptually simpler than the way we already have
of testing a counter.

The idea underlying this is that, since data independentP’s behaviour does not depend on
which values have been input into it (except in exactly which values are output), we can put
special ‘marker’ values into the input stream and by ensuring that these come out at exactly
the right points be sure that the buffer is correct.

If a divergence-free data independent process failed to be a buffer, it would be for one of
the following reasons:

(a) It loses an inputx, meaning either thaty input afterx comes out beforex, or it fails to
perform any further output at some time even though non-empty.

(b) It re-orders two inputs: this will manifest itself in the same way as the first version of
(a).

(c) It duplicates a valuex: x is output twice when it has only been input once.

5This means finite state when the typeT is finite.

10 A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations

(d) It refuses to input when empty: this will mean it is possible either to refuse an input
initially, or after it has just output the last valuex that it has input.

(e) It refuses to output when it has input some valuex but not output it yet. (Note that,
thanks to divergence-freedom, this includes the second aspect of (a).

We can always input specific values once only amongst a background of constant values to
representx andy in all these clauses. The crucial thing about data independence is that doing
so will not change the control flow of the process: it would do the same on any other stream
of inputs. Suppose all values input are0 except for one1 followed an arbitrary time later by
one2: the inputs are prefixes of members of the regular language0∗10∗20∗ (as used also by
Wolper). Then the above clauses reduce to:

(b) 2 is never output before 1 (for if any two values were treated as in (a) above then we
could arrange that the 1 and 2 are input at the same points in the input stream asx and
y respectively).

(c) At most one 1 appears in the outputs.

(d) The process can refuse any input either initially or when the last input and output were
both 1.

(e) The process can refuse to output when it has input the 1 but not yet output it. (Note
that the output it must give is either a 0 or

(a) Is covered by the combination of (b) and (e) as discussed above.

All of these things reduce to a single failures-divergences refinement check of the process
P ‖

{|in|}
Reg, where

Reg = in.0 → Reg
2 in.1 → Reg′

Reg′ = in.0 → Reg′

2 in.2 → Reg′′

Reg′ = in.0 → Reg′′

against the specificationDIBspec0, defined in Figure 1.
There,DIBspec0 is the initial state (which must accept inputs);DIBspec1 is the state

where only0’s have been transacted so far;DIBspec2 is the state where the last input was
1 and there have been no other inputs since;DIBspec3 is the state where a 1 has been input
followed by some0’s; DIBspec4 is the state where the buffer is meant to be empty as the 1
from stateDIBspec2 (i.e., the most recent input) has just been output;DIBspec5 is a more
general state where the 1 has come out but the 2 not yet gone in, and we are not sure whether
the buffer is empty or not;DIBspec6 is a state where both 1 and 2 are in the buffer;DIBspec7
is a state where 2 is in the buffer;DIBspec8 represents the states where both 1 and 2 have
been and gone.

At the expense of makingDIBspecyet more elaborate (specifically, including a lot of
extra events leading todiv – for “don’t care” – representing all the behaviours when the
process does not follow the0∗10∗20∗ input pattern) this can be re-cast in the formSPECv P.

So data independence has removed the need for the self-referential refinement checking
we encountered with counters in the last section. This is a rather remarkable fact. In essence

A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations 11

DIBspec0 = in.0 → DIBspec1
2 in.1 → DIBspec2

DIBspec1 = STOPu
(in.0 → DIBspec1
2 in.1 → DIBspec2
2 out.0 → DIBspec1)

DIBspec2 = (STOPu
(in.0 → DIBspec3
2 in.2 → DIBspec6))
2

(out.0 → DIBspec2
u out.1 → DIBspec4)

DIBspec3 = (STOPu
(in.0 → DIBspec3
2 in.2 → DIBspec6))
2

(out.0 → DIBspec3
u out.1 → DIBspec5)

DIBspec4 = (in.0 → DIBspec5 2 in.2 → DIBspec7)

DIBspec5 = STOP
u (in.0 → DIBspec5 2 in.2 → DIBspec7)
u out.0 → DIBspec5

DIBspec6 = (out.0 → DIBspec6 u out.1 → DIBspec7)
2 (STOPu in.0 → DIBspec6)

DIBspec7 = (out.0 → DIBspec7 u out.2 → DIBspec8)
2 (STOPu in.0 → DIBspec7)

DISspec8 = Chaos{in.0,out.0}

Figure 1: Specification for data independent buffer check

12 A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations

this is because we are able to get more of a handle on the number of pending outputs thanks
to tagging them.

Those experienced in data independence will recognise that under the strong conditions
we have assumed on our implementation, it is normally sufficient to check withT of size 2,
whereas the above check uses one of size 3. The only property for which we have relied on
2 is establishing the absence of re-ordering. It is in fact possible to detect errors of this and
the other forms by using the language0∗(1 + 11)0∗, thereby cutting the type to{0, 1}.

Subject to the remark in the next paragraph, it is easy to modifyDIBspecto testP ‖
{|in|}

Reg

(with P data independent) for being a stack. Bags are easy because all one needs to do is to
put a single 1 in amongst a stream of zeros and ensure (a) that 1 comes out no more than once
and (b) that the bag cannot refuse to output while it contains the 1. Notice that 1 only coming
out once implies (since all the output values were previously input somewhere) that the total
number of outputs never exceeds that of inputs.

Neither the bag nor stack specifications described here address the question of forcing the
processes to input when empty. This is because it is not possible for the specification to detect
when the process is empty in a finite-state way, so it specially forces input. There is, however,
a simple solution to this (also possible for buffers), namely modifying each specification state
so it does not accept any deadlock.

Bags and stacks without data independence

In this section we see what can be done without the assumption of data independence. The
failures-divergences bag and stack specifications can be established with relatively minor
modifications to the techniques used for counters. The first thing to remark is that there will
be no problems with the refusal parts of the failure specification of a bag: for theout.xevents
the requirements are the same as fordownevents in counters. And for the requirement that
a bag will input anything when empty all one has to do (in conjunction with proving it is
trace-correct) is to show it refines:

IODF = (in?x → IODF) u (u
x∈T

out!x → IODF)

In other words it can always either output, or accept all inputs.
Since a trace stack or trace buffer is respectively a stack or buffer if and only if it is a bag,

we can therefore restrict ourselves to deciding whether a process is a bag, and whether it is a
trace stack or buffer.

A little thought reveals that a bag is precisely a processP satisfying the strengthened
deadlock freedom check above (also proving divergence freedom, of course), for which (a)
the renaming given as([) above satisfies the counter check

CounterNL (P[) v CounterR(P[) (])

and (b) such that for each memberx of T the process

(Cx(P) = P \ {in.y, out.y| y 6= x})[[up,down/ in.x, out.x]]

is a trace counter. Since any process satisfying this also has all theCx(P) strong trace coun-
ters, (b) is equivalent tou{Cx(P) | x ∈ T} satisfying the trace refinement version of(]).

The above check is less efficient than I would have liked since in essence it involves
examiningP’s state spacen + 1 times, wheren is the size ofT. To see why something like
this seems to be necessary, and also to help our understanding of what can and cannot be

A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations 13

done with pseudo-constructive contexts, I will now go over an earlier attempt at specifying
bags that did not quite work.

It is reasonably obvious (and readily proved) that ifB is a bag then so isB ||| IO, where
IO = in?x → out!x → STOP. Clearly every nonempty trace of a bag starts with an event
of the form in.x. It is tempting to believe that nonempty traces ofB are also, analogously
to counters, traces ofB ||| IO in which the last input ofs is performed byIO (so that the
interleaved copy ofB performs a strictly shorter trace).

To see that this is not in general true letB?
K be a bag that uses a strict stack regime to

output its pending values until its contents grow to sizeK for the first time, after which it for
ever after outputs as though it were a buffer (including the outputs pending at the time). If
K = 3 it will have the trace

〈in.1, in.2, in.3, out.1, out.2, out.3〉

but 〈in.1, in.2, out.1, out.2〉 is not a trace, which it would have to be for the desired property
to hold.

Let’s define astablebag to be one where, ift̂ 〈in.y, out.x1, . . . , out.xn〉 is a trace, then so
is t̂ 〈out.y1, . . . , out.ym〉 wherem∈ {n− 1, n} and theyi are a subsequence of thexi obtained
by deleting (at most)out.x. (In the case where severalxi are equal tox all that is necessary is
that there is one subsequence with this property.) In other words the order our process outputs
values it had in it at the point where it performs the inputin.x was also possible before that
input. Note thatB?

3 is not stable.
The following construction straightforwardly implies that any nonempty trace ofB is one

of B ||| IO in which the last input was performed byIO.
So if we define

IO′ = in′?x → out!x → STOP

InFirst = in?x → RUN{|in,in′,out|}
2 in′?x → RUN{|in,in′,out|}

BagL(P) = (P ||| IO′) ‖
{in,in′,out}

InFirst

Reg = in?x → Reg
2 in′?x → STOP

BagR(P) = P[[in, in′
/ in, in]] ‖

{|in,in′|}
Reg

ThenBagL(P) vT BagR(P) if P is a stable strong traces bag and implies it is a stable traces
bag. The proof of this is essentially the same as for counters.

The need for a condition such as stability in arises here because pseudo-constructive
specifications, by their nature, have to reduce every nonempty trace of a process to a shorter
one, so there cannot be any new sorts of behaviour suddenly appearing after a long trace. Note
that, like our strong trace conditions, the stable bag condition is not a behavioural predicate.

It is easy to adapt the stable bag construction to characterise stacks. (Note that a stack is
a stable bag.) What we know there is that as soon as the last input of a trace has gone in, the
next input if any is tied to this input. So, whereas inBagL(P) the output fromIO′ can occur
any time after the input, we will now have to require that it is the next output. The easiest
way to achieve this is to prime the output fromIO, replacing it by

SIO= (in′?x → out′x → RUN{|out|}) 2 (out?x → SIO)

14 A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations

and defining

StackL(P) = ((P ‖
{|out|}

SIO)[[out/ out′]]) ‖
{in,in′,out}

InFirst

We can then setStackR(P) = BagR(P), and have the expected result.

Buffers

I have been unable to find a similar and satisfactory construction to the above for buffers. The
difficulty comes from the following:

• In looking for a pseudo-constructive context to characterise any of the sorts of spec-
ifications we have looked at, it is necessary to have the constructive action (i.e. the
insertion of extra event(s)) towards the end of the trace. This is because the insertion
towards the beginning of the trace (as was done in the section on constructive con-
structs above and which works equally well for buffers: see below) might change the
LHS behaviour in a way that the pre- and post-insertion behaviours do not line up well
enough for comparison.

• Given that we are inserting an input and perhaps output towards the end of a buffer
trace, there seems (unlike with stacks) to be no straightforward way of placing the
extra output in the right place.

So the best I have been able to do on previous models was to give a sound and incomplete
rule, namely thatP is a buffer if it satisfies

PB(P) v P

where

PB(P) = in?x → (P ‖
{in,out}

Z(x))[[out/ out′]]

Z(x) = (STOPu in?y→ Z(x))
2 out′!x → RUN{in,out}

This is not a complete rule because it cannot handle buffers which expand on the first output,
for example

ExpB= in?x → out!x → B2

whereB2 is a two-place buffer. Clearly this is essentially the same problem we found with
counters when using the contextCTA.

Note the similarity of thePB-based rule to the rather more complex buffer lawsBL5 and
BL5′ from chapter 5 of [6] (originally proved in [8]) which apply to piped combinations rather
than single processes.

The only way I have found to solve the problem of placing the last (rather than first) input
into the correct place in the input stream borrows from the idea described earlier for turning
a counter of the first sort into one of the second.

The first thing one has to do (to ensure that this exercise does not fail to terminate) is to
check either that when renamed as in([) it is a counter. The left-hand side process is then
constructed by runningP in parallel with IO and the most nondeterministic bufferBUFF′

〈〉
of the second sort. All the inputs of this process prior toIO’s input are fed intoBUFF′, but
not that input or any subsequent one. Outputs ofP prior to IO’s output are synchronised with

A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations 15

BUFF′. IO’s output is permitted onceBUFF′ has become empty (which we can see thanks
to the isemptyevent, which is synchronised with this output). Once this extra output has
appeared thenP is allowed to output freely again.

This generates a finite-state process which (with the extra input suitably renamed as usual)
can be used to check the same right-hand side process we used for bags and stacks.

I feel, however, that this approach is clumsy and inelegant, and that it is less than appeal-
ing because of the way it uses an infinite state process in its definition. Fortunately, however,
a different approach does give an elegant formulation.

Stacks and buffers share an interesting property that general bags do not have, namely,
after any trace where an output is available, that output is completely determined by the trace.
We can define a bag with this property to beoutput deterministic, noting that this certainly
does not imply that the process itself is deterministic.

Lazić [3] developed a technique, reworked in [7], for establishing the determinism of a
process via a finitary refinement check. LetP′ be a copy ofP renamed so that each eventa
in its alphabetA becomesa′ ∈ A′, where this renaming is a bijection andA∩ A′ = ∅, and let
Test=?a : A→ a′ → Test. ThenP is deterministic if and only if

(P ||| P′) ‖
A∪A′

Test

can never deadlock after an odd-length trace. This idea can be modified to produce a test for
output determinism: let

TestOD = out?x → out′?y→ (TestOD<I x = y>I error → STOP)
2 in?x → TestOD

and consider

(P ‖
{|in|}

P[[out′/ out]]) ‖
{|in,out,out′|}

TestOD

This makes sure that the two copies ofP have always done the same sequence of inputs and
outputs, but if they do give different outputs at any time the eventerror appears. Evidently
the combination refinesChaos{|in,out,out′|} precisely whenP is output deterministic. So we can
check if a process is an output deterministic bag via a few finitary refinement checks.

Recall that the CSP operatorP>>Q connects the outputs ofP to the inputs ofQ and hides
these internal communications. IfP is a buffer then so isCP = COPY>> P, where

COPY= in?x → out!x → COPY

is the simple one-place buffer (this is a consequence ofBL1 in chapter 5 of [6]). CP is
therefore output deterministic.

On the other hand, ifP (known to be a bag) is not a buffer, then the only way this can
happen is if it has a traceŝ 〈out.x〉 wherex is the wrong value to be output (i.e. is not the next
pending one). We can assume that this is a shortest such trace. Necessarily, afters (which is
a buffer trace), there are at least two values pending since if there were only one the bagP
would have to output the buffer-correct one. Nows is also a trace ofCP, and this can happen
in two ways:

• Either COPYtransmits all its inputs directly toP so that in the final stateP has per-
formed the traces;

• or COPYhas retained the very last inputin.y in s and not yet transmitted it toP. P
can perform the traces′ which isswith its last input deleted since all outputs after this
input are pending before that input occurs, and there is no shorter counterexample than
s〈out.x〉 to buffer behaviour. Note that, thanks to what we observed above,P is then
(i.e., afters′) in a state where it has a pending output.

16 A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations

In the first of these statesCPcan evidently outputout.x becauseP then can. In the second of
the states it can, sinceP has performed a trace strictly shorter thans, output the correctout.z
based on FIFO ins. It follows thatCP is not output deterministic.

An elegant decision procedure forP being a buffer is then to test if it is a stable bag (since
all buffers are stable) and then to check thatCP is output deterministic.

It is similarly possible to find out if a bagP is a stack by testing if a different context
aroundP is output deterministic. This is left as an exercise to the reader.

4 The problem of generalisation

It is interesting to see what lessons we can learn from these examples and attempt to get some
general results. For simplicity I will mainly consider trace specifications.

Any simple trace refinement is equivalent to the question of whether a given regular
language (the traces of a finite-state process) is a subset of some setS of traces. Clearly
the case in which the specification is also a finite-state process reduces to the question of
whether one regular language is contained in another. However none of the cases we have
been studying in this paper haveSregular.

The traces of counters and stacks are prefix-closed context-free grammars, whereas the
languages of buffers and bags are not. It seems very unlikely that prefix-closed subsets of any
context-free language can be decided by a pseudo-constructive trace refinement (which is all
we ought to be using to decide languages of traces, of course). We already had difficulties
with, for example, weak counters (arbitrary prefix-closed subsets of the set of all counter
traces), and consider for example the context-free language

a∗b∗ ∪ {anbnc | n ∈ N}

It seems very unlikely to me that a process’s traces being contained within this is capturable
by a finitary refinement using a pseudo-constructive context, bearing in mind that a trace of
the formanbnc (which may, for arbitrarily largen, be the only such trace in our process) can
be reduced meaningfully to another one of the same process. It can, however, be decided by a
watchdog using the trick seen earlier which allows the inclusion of an infinite-state watchdog
into a finite-state system.

We have already seen that the failures aspects of specifications can have significant ef-
fects: for example we were unable to characterise trace counters but were able to charac-
terise failures-divergences one because of the interplay between refusals and traces. It almost
seemed that the “naturalness” of our failures specifications, particularly the way they force a
process to be reducible to zero/empty, played a big role in making them accessible.

There are obviously many different CSP contexts we could use which could play a
pseudo-constructive role. In order to get any sorts of general characterisation of the spec-
ifications one could create using them we would have to understand the sorts of grammatical
constructors they represent. This is something which needs to be investigated, but I have no
idea if there is any sort of clean result here.

5 Conclusions and future work

We have seen how to characterise a number of related infinitary properties and seen a num-
ber of tricks for expressing them. While all the properties we aimed to characterise were
behavioural specifications, we have found ourselves forced to use non behavioural approxi-
mations to them such as strong trace counters and stable bags.

A.W. Roscoe / Finitary re�nement checks for in�nitary speci�cations 17

While it is not too hard to seewhydata independence gave us extra power, the fact still
seems rather wonderful and is certainly worthy of deeper investigation.

This work has brought extra insights into the nature of things like buffers and bags and
potentially useful concepts such as stable bags and output determinism. I hope that by using
these and the new specification techniques being developed I can shed more light on the
important but difficult topic ofbuffer tolerance(see chapter 5 of [6] for example). It seems
likely that the ideas like output determinism will be useful. Certainly it is a non-behavioural
property which is of huge practical importance.

The ultimate goal is some sort of logical or mathematical characterisation of what proper-
ties are expressible as finitary refinement checks. The expressive power of CSP, coupled with
the self-referential nature of the checks themselves (illustrated by our pseudo-constructive
technique) make this a considerable challenge.

Acknowledgements

I would like to thank Gavin Lowe for his comments on an earlier draft of this paper.

References

[1] Formal Systems (Europe) Ltd.,Failures-Divergence Refinement, User Manual, obtain-
able fromwww.fsel.com/documentation/fdr2/html/

[2] M.H. Goldsmith, N.Moffat, A.W. Roscoe, T. Whitworth and I. Zakiuddin,Watchdog
transformations for property-oriented model checking, Proceedings of FME 2003.

[3] R.S. Lazíc, A semantic study of data-independence with applications to the mechanical
verification of concurrent systems, Oxford University D.Phil thesis, 1998.

[4] R.S. Lazíc and D. Nowak,A unifying approach to data-independence, In Proceedings
of the 11th International Conference on Concurrency Theory (CONCUR 2000), Lecture
Notes in Computer Science. Springer-Verlag, August 2000.

[5] J.N. Reed, J. Sinclair and A.W. Roscoe,Responsiveness of Interoperating Components,
To appear in FAC.

[6] A.W. Roscoe,The theory and practice of concurrency, Prentice Hall, 1998.

[7] A.W. Roscoe,On the expressiveness of CSP refinement checking, To appear in FAC
(special issue related to AVOCS ’03).

[8] A.W. Roscoe,A mathematical theory of communicating processesOxford University
D.Phil thesis, 1982.

[9] A.W. Roscoe, P.H.B. Gardiner, M.H. Goldsmith, J.R. Hulance, D.M. Jackson and J.B.
Scattergood,Hierarchical compression for model-checking CSPor how to check1020

dining philosophers for deadlock, Proceedings of the1st TACAS, BRICS Notes Series
NS-95-2, Department of Computer Science, University of Aarhus, 1995. (Also Springer
LNCS 1019.)

[10] P. Wolper. Expressing interesting properties of programs in propositional temporal
logic. In Proceedings of the 13th PoPL, pages 184–193, 1986.

