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Abstract. This paper investigates the issue of responsiveness of interoperating components: one not causing the
other to deadlock. This is obviously related to the question of whether the two deadlock when put in parallel.
However, it is different in that we require that a specific process P is not itself blocked by a plugin Q when it could
otherwise have progressed, instead of asking that either process can always proceed (deadlock freedom). The
issue becomes yet more subtle when dealing with processes which can nondeterministically block, either through
graceful termination or unfortunate deadlock. The relational predicate, that is, binary relation on processes, which
we provide is refinement-closed. This is significant as it allows components to be developed independently. In
addition, it can be mechanically verified. The contribution of this paper is to identify the issue of responsiveness;
to define appropriate properties; to demonstrate the suitability of these properties and consider how they can be
mechanically verified. The notation used is CSP with automatic model-checking provided by the FDR tool.
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1. Introduction

Distributed component-based systems are gaining increasing practical acceptance, as testified in a special sec-
tion of Communications of the ACM [Ars02] on enterprise components and services. A component is a unit of
composition, which can be composed with other components and integrated into systems in a predictable way. A
component communicates with its environment through interfaces. Separation of interface from implementation
allows integration and deployment to be independent from life-cycle development. This calls for different types of
interfaces. Unfortunately, the current component-based technologies manage only the specification of functional
properties, with such properties limited to syntactic lists of operations and attributes, as assessed by Crnkovic
et al. [CHJK02].

In a distributed component-based system it can be the case that a transaction or service involves the interoper-
ation of a chain of components and services collectively required to achieve a desired result. Various components
may be selected as off-the-shelf products to plug-in to a particular application. The correct operation of the main
application depends not only on the integrity of its own functions, but also on its interactions with separately
developed components.

Many methodologies and tools are currently used in industry to support a modular approach to system
design. The MasterCraft environment [Int] for example, supports the notion of taking different “views” in the
development of medium sized systems (typically 5–20 million lines of code). Components may be provided from
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any source or implemented in any way, as long as they satisfy their interface requirements. Such environments
can be of great practical advantage, although there is often no formally defined notion of consistency to ensure
compatibility between the different views. Component-based approaches such as CORBA or COM regard a
system as a collection of interoperating constituents requiring middleware management for consolidation and
integration. Middleware addresses the integration of components by defining interface syntactic-based standards
that allow diverse components to interoperate, but in itself does not address the problem of achieving reliable
and secure interoperation.

In this paper, we specifically deal with the issue of responsiveness of components: one not causing the other
to deadlock. This issue becomes subtle when dealing with processes which may nondeterministically block. For
example, consider a secure database server which supplies information to authorised clients. A specification for
the top-level components should be able to state basic requirements to be satisfied by suitable plug-in components.
This strategy is particularly applicable to security functions such as user authentication or data encryption. The
top level specification for the client simply needs to know that a task will be accomplished (such as successful
distribution of a common session key to both database and client, or a report of failure due to lack of author-
isation), with no need to specify the details of any particular protocol. An essential concern at the top level is
that the plug-in components charged with the subtasks will respond, that is, a plug-in to the client should not
cause it to deadlock. Clients should be able to terminate at will (that is, nondeterministically), after calling on the
database services an arbitrary number of times. Note that the same database may be plugged-in simultaneously
to several clients, and it should not block any of them.

We address this notion of responsiveness of one component to another by taking a relational view of com-
ponents. We consider one component Q to be a responsive plug-in to another P provided that Q never refuses to
communicate with P when P wants to communicate with it. Our formulation is given in the CSP failures/diver-
gences model.

The most common form of CSP specifications are the so-called behavioural specifications which can be written
in the form SPEC � P, which states that all behaviours and refinements of a process P conform to a constant
specification SPEC. Every behavioural specification is both refinement closed (if a process P satisfies this refine-
ment, then so do all P’s refinements) and distributive (if SPEC � P and SPEC � Q then SPEC � P � Q).
Our formulations of responsiveness turn out not to be behavioural specifications, since our first attempt will not
be refinement closed and our final one is not distributive. Indeed it is the fact that the first one is not refinement
closed which necessitates the derivation of the second, since this failure in a functional specification of P and Q
is paradoxical and would mean that P and Q could not be further developed, or implementation decisions made,
without perhaps negating our specification.

Just because our specifications are not behavioural does not mean they cannot be checked by refinement
(which is what FDR does): there have been several previous examples of this such as determinism [Laz99] and
fault tolerance [Ros98]. The third author has recently [Ros03] (inspired by his early work on the present paper)
demonstrated some general techniques for translating more-or-less arbitrary predicates of a single process into
refinement checks of the form F (P) � G(P).

Section 2 contains an overview of CSP. In Sect. 3 we give intuitive motivation and requirements for the notion
that one component behaves as a responsive plug-in to another. We also illustrate that desirable relational prop-
erties are not in general preserved by refinement. In Sects. 4 and 5, we formalise two relationships: one which is
desirable but not preserved by refinement, and a second which is the weakest refinement-preserving strengthen-
ing of the first. It is this second relationship which we regard as characterising responsiveness of one component
to another. Section 6 considers methods for automatically checking these relationships. Section 7 provides a
summary of the technical results. Section 8 presents relations to other work and conclusions.

Authors Reed and Sinclair [RS01b] are responsible for the main concepts of this paper including the defi-
nitions of the specifications we study. Roscoe [Ros03] contributed some of the technical results and derived the
methods for automated checking.

2. An Introduction to CSP

CSP [Hoa85, Ros98] models a system as a process which interacts with its environment by means of atomic
events. Communication is synchronous: an event takes place precisely when both process and environment agree
on its occurrence. This, rather than assignments to shared variables, is the fundamental means of interaction
between agents. The CSP process algebra can be used to specify and more generally model networks, protocols,
and distributed systems.
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A related series of semantic models capture different aspects of observable behaviours of processes. The sim-
plest semantic model is the traces model which characterises a process as a set of all its finite traces, traces(P),
representing observable sequences of events it can perform. These events are drawn from a set �, containing
all possible communications for processes in the universe of consideration. The traces model is sufficient for
reasoning about safety properties, but not liveness properties. In this paper, we use the failures/divergences model
in which a process P is modelled as a set of failures and divergences. A failure consists of a pair (s, X ) with s a finite
trace of events drawn from � and X a subset of events of ��. Here, �� denotes the set of all communication
events together with a special event � which signals that a process has cleanly terminated. (In general, if A ⊆ �,
then A� will be used as an abbreviation for A ∪ {�}). The pair (s, X ) is a failure if P may engage in the sequence
s and then refuse all of the events in X . The set X is called a refusal. The set divergences(P) is the set of traces on
which P can diverge, meaning perform an infinite unbroken sequence of internal events. In this paper we assume
all processes are divergence-free, a sensible convention since divergence-freedom is a desirable property which
can be mechanically checked.

A process P is a refinement of process S (S � P) if any possible behaviour of P is also a possible behaviour
of S:

failures(P) ⊆ failures(S)

which tells us that any trace of P is a trace of S, and P can refuse a set of events X after engaging in trace s,
only if S can refuse X after engaging in s. Intuitively, suppose S (for “specification”) is a process for which all
behaviours it permits are in some sense acceptable. If P refines S, then any behaviour of P is as acceptable as any
behaviour of S. S can represent an idealised model of a system’s behaviour, or an abstract property correspond-
ing to a correctness constraint, such as deadlock or livelock freedom. A wide range of correctness conditions
can be encoded as refinement checks between processes. Mechanical refinement checking is provided by the
model-checker, FDR [For].

Appendix A contains an overview of the syntax of CSP, together with semantics for the failures/divergences
model.

3. Intuitive Requirements of Responsive Plug-in Relationships

We are studying top-level system specifications structured as sets of interoperable components which act in par-
allel. In particular, we are interested in auxiliary plug-in services, possibly separately developed, such as one
supplied by a local module performing a cryptographic protocol. We also wish to allow these plug-in subtasks
to operate remotely, perhaps provided by a remote server.

Arbitrary components may be combined using the CSP parallel operator, but care must be taken to achieve
desirable behaviour. A process P, which is itself deadlock-free can be placed in parallel with another process
which does not behave in a desirable manner, causing P to block.

Example 1. Suppose process P makes a request on channel request to a server, after which P expects to receive a
reply on channel reply:

P � request → reply → P

Any other events in the system are ignored for the moment. Process Q is a server which is happy to interact with
P, by taking in a request, and sending back a reply:

Q � request → reply → Q

We can run P and Q in parallel using the process P ‖ Q, which indicates that P and Q must synchronise on the
events in � � {request, reply}. We regard Q as a responsive plug-in to P, since their parallel behaviour conforms
to that desired by P. Clearly not every process which accepts requests should be considered as a responsive plug-in
to P. For example, consider Z, which takes in requests, but does not reply to them:

Z � request → Z

This time from P’s perspective, Z does not respond to P in a desirable way, that is, Z blocks P. Since Z does not
have a cooperating pattern of interaction, P ‖ Z makes no further progress after the first step. The combination
is said to deadlock. �	
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In general, we regard Q to be a responsive plug-in to P if Q is prepared to co-operate with the pattern set out
by P for their shared interface. If P allows an (external) choice then Q may resolve it. If P’s actions are nonde-
terministic, Q must be prepared to deal with each possibility. This can be characterised in terms of deadlock: Q
must not block P on the set of their synchronised events when they are run in parallel. We formalise this notion
after examining some other examples.

Example 2. Suppose process P makes a request to a server, after which P expects either a reply or a differentreply:

P � request → (reply → P � differentreply → P)

The box operator here represents an external (deterministic) choice. Process Q has only one way of responding:

Q � request → reply → Q

Here, P is prepared to accept different responses and will be happy with Q since it can supply one of the
possible acceptable patterns. P ‖ Q runs successfully (that is makes progress) without deadlocking on
� � {request, reply, differentreply}, and we regard Q as responsive to P. �	

For deadlock-free processes, testing that P ‖ Q is also deadlock-free is all that is required. But the assumption
is too restrictive. Let us imagine that we want P to trigger Q, possibly handing over some parameters which Q
processes, subsequently replying back to P. P is in control, and may invoke Q arbitrarily, including never; Q is
always required to be ready whenever P is. It is this relationship which we wish to formalise, bearing in mind
that individual processes may block on their own. In the following examples, we examine processes which (non-
deterministically) block by refusing all events (deadlock with STOP), but having them block in a more graceful
fashion (clean termination with SKIP) would serve our purposes as well.

Example 3. Suppose P and Q are defined as follows:

P � (x → P) � STOP
Q � (x → Q)

Here, P is defined using internal (nondeterministic) choice and so may or may not choose to engage in x. We
regard Q as exhibiting responsive behaviour, because it is always willing to engage in x with P. However, P is
obviously not deadlock-free and neither is P ‖ Q. This example also shows that responsiveness is not symmetric.
P can choose not to engage in x when required by Q, and so should not be regarded as responsive to Q. �	

Not only is P allowed to block, but there may be legitimate reasons for a specification of a plug-in Q to
block in certain situations. For example, Q may be a set-up process which needs only to respond to a one-time
invocation from P. P ‖ Q would properly block on their common set of events after Q finishes its work, after
which P carries on with other events not requiring any participation from Q. Q needs only to be available when
required by P, and it is of no concern to P whether Q blocks afterwards.

As we want the combined system to block only when P does, one property to consider might be the relational
requirement that the parallel composition should be a refinement of P:

P � P ‖ Q (∗)
since it would follow that if P ‖ Q can block at any point, then P itself must have been able to. However, this
property is overly restrictive. It is not satisfied by the processes in Example 2 because the right-hand side has a
larger number of failures than the left-hand side. Still, property (∗) is worth examining because it illustrates that
relational constraints are not necessarily preserved by refinement, as demonstrated in the next example.

Example 4. This time, P and Q are defined as:

P � (x → P) � STOP
Q � (x → Q) � STOP

Here, both P and Q may decide to engage in x but can each, nondeterministically, also choose not to. This P and
Q would satisfy (∗) since P ‖ Q � P � Q. But if refinements P′ of P and Q′ of Q are defined:

P′ � x → P′ Q′ � STOP

it is clear that P′ and Q′ do not satisfy (∗), for example, (〈〉, {x}) is a failure of P′ ‖ Q′ but not of P′. This example
also shows the rather dramatic effect of internal choice and non-determinism in Q. Q is not responsive to P since
Q may refuse to engage in x precisely when P wishes to, causing deadlock. �	
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As in the previous example, a given relationship may hold between interacting processes and yet it may not
follow that component-wise refinements are compatible according to the same criteria. It is an important require-
ment for our definition of responsiveness that individual component specifications should admit independent
refinement and that the implementations should still be responsive in the same way.

We will refer to a relationship between cooperating specifications P and Q as refinement-closed if it is
preserved through independent refinement of the component specifications.

Definition 1. If φ is a relation on specifications P and Q then φ is refinement-closed if and only if, for all P′, Q′
such that P � P′ and Q � Q′, it is the case that:

P φ Q �⇒ P′ φ Q′

A relationship which is not refinement-closed for general P and Q may be made refinement-closed by adding
further constraints. For example, the (∗) property along with the requirement that P is deterministic is refinement-
closed. (Of course a relationship with no deterministic pairs of processes satisfying it can only be strengthened
to false.)

The previous examples provide an intuitive idea of the property we wish to capture. The next step is to
formalise its features. In what follows, we identify two relationships. The first one, given in Sect. 4, uses fail-
ures-based properties to define the ideas of blocking and hence of non-blocking behaviour. This property follows
the intuition of the preceding examples by attempting a natural encapsulation of the requirement that one pro-
cess does not block another. However, we will see that though this desirable property would appear necessary,
it is not sufficient, resulting in “false positives” corresponding to lack of refinement-closure. We identify some
constraints which for some special cases ensure the relationship holds and is refinement-closed. These still do
not fully characterise component responsiveness. In Sect. 5 we present a second less intuitive relational property
which characterises the general notion of responsiveness. We also establish that this second property is precisely
the weakest refinement-preserving strengthening of the first one.

4. Formalisation of Blocking and Non-blocking Plug-in Relationships

Terminology. In the following definitions, P and Q represent processes, P′ and Q′ represent respective refinements,
and J represents the set of shared events of P and Q, that is, the events requiring participation of both processes.

J� � J ∪ {�}, the set J of shared events with the special termination event � added since CSP parallel
operators all effectively synchronise on � (see [Ros98] for extensive discussion of termination). For simplicity in
most of our examples, we take J � �.

A general formulation of responsiveness is required which both ensures refinement-closure and does not
unnecessarily constrain processes from blocking.

4.1. Failures-based Definitions of Blocking

Our first attempt to formalise component responsiveness is via a direct definition of blocking using a failures-
based property. We say that Q blocks an “otherwise live” P whenever P and Q operating in parallel can block
though P on its own would not. If A is some set of events for which P ‖J Q could reach a point where the whole
of A is refused and yet would not be refused at this point by P alone, then clearly Q blocks P from making any
further progress on events from A.

Definition 2. Q BlocksLive P on A for non-empty A ⊆ J� means that there exists trace s such that

(s, A) ∈ failures(P ‖J Q) ∧ (s, A) /∈ failures(P)

Clearly Q causing P to deadlock on all of J would make Q an undesirable plug-in to P, and requiring any
potential plug-in to P to fail to satisfy the above relationship for A � J would seem reasonable. That is, we want
to ensure that processes P and Q operating in parallel do not block on J when it is the case that P on its own
would not block on J . We say that Q RespondsToLive P on A if and only if ¬ (PBlocksLive Q on A). That is,

Definition 3. Q RespondsToLive P on A for A ⊆ J� means that for every trace s

(s, A) ∈ failures(P ‖J Q) �⇒ (s, A) ∈ failures(P)

We say that Q RespondsToLive P to mean Q RespondsToLive P on J�.
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Referring to the processes of Example 2, there is no trace of P ‖ Q after which the whole of the joint alphabet
is refused, so in this case Q is obviously not blocking and Q RespondsToLive P. In Example 3, any deadlock of
P ‖ Q would be caused by P, so in this case also, Q RespondsToLive P.

These two definitions have much in common with those of an ungranted request and thus absence of ungranted
requests from earlier work on deadlock (e.g. [BR85, RD87, Ros98]). The differences are that the two definitions
have different sets of parameters and that (as will be evident in this paper) we here include reasoning about clean
termination � which was previously avoided. Since ungranted requests have long been known to be the building
blocks of deadlock, it is only natural that here we specify the absence of something very similar.

The property is distributive in each argument separately, for example Q RespondsToLive Pi for i ∈ {1, 2}
implies Q RespondsToLive (P1 � P2). This is straightforward to prove, and also follows easily from the represen-
tation in Appendix B given for automated checking.

Example 5.

P � (x → P) � (y → P)
Q � (x → Q) � (y → Q)

These processes both display internal choice. Here, (〈〉, {x, y}) is a failure of P ‖ Q since P and Q could demand
to engage in different events resulting in deadlock, but P itself is always willing to make progress on one of x or
y. Hence it is not the case that Q RespondsToLive P. �	
Example 6. Consider the following processes P and Q. P outputs a request t ∈ T of its own choice on channel
request, and expects some arbitrary response r ∈ R on channel reply from Q.

P � �t:T
request!t → reply?r → STOP

Q � request?t → �r:R
reply!r → Q

Immediately after a request, all of request � {request.t | t ∈ T } may be refused by P ‖ Q. But all of request may
be refused by P then as well, and at all other times when request is refused by P ‖ Q. Thus Q RespondsToLive P
on request. That is,

(s, request) ∈ failures(P ‖ Q) �⇒ (s, request) ∈ failures(P)

Hence immediately after a request it is acceptable for all of request to be refused by Q, since Q alone would not be
the sole source of blocking on request. It is also true that Q RespondsToLive P on reply, since whenever P ‖J Q
refuses all of reply, P can refuse all of reply. Likewise, Q RespondsToLive P on J�. However, with:

Z � request?r → Z

P could issue a particular request t on request, and wait forever for a reply not forthcoming from Z. That is, we
have (〈request.t〉, reply) as a failure of P ‖J Z but not a failure of P. So Z is the sole cause of the deadlock with
P on reply, and Z BlocksLive P. �	

The enormous value of this concept to system development is underlined by the following result.

Theorem 1. Suppose N � {(Pi, Ai) | i ∈ {1, . . . , N}} is a network of alphabetised CSP processes (in which the
alphabet of Pi is Ai). Suppose that Q is a plug-in process whose alphabet J is disjoint from Ai ∩ Aj for each i �� j
(i.e. the Pi each communicate with Q individually, not as part of some multi-way synchronisation). Then if

1. J ∩ Aj �� ∅ for at least one j,
2. N is deadlock free, and
3. Q RespondsT oLive Pi for each i with Ai ∩ J �� ∅ (using this set as their synchronisation set),

then N ′ � N ∪ {(Q, J )} is itself deadlock free.

Thus adding responsive plug-ins, even in complex situations, can never introduce deadlock.

Proof. If N ′ can deadlock then there is some trace s after which it can refuse ��. The subnetwork N itself has
a failure (s′, X ) contributing to this, where s′ � s |\ ⋃

A(� {Ai | i ∈ {1, . . . , N}}) and where X is maximal. We
can further decompose this into failures (si, Xi) of the Pi where again the Xi are maximal. Similarly Q has failure
(s′′, Y ) with Y maximal, and (X ∩ A�) ∪ (Y ∩ J�) � (A ∪ J )�.
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A consequence of the maximality of the failures we have chosen is that each of them is either � or contains
� (F41 and F3). We know that N is deadlock free, so X �� ��. So either X � � and no Pi can refuse �, or
∅ �� A� − X ⊆ J . Let’s consider these two cases separately.

In the first case we know that Q RespondsToLive Pj where Aj ∩ J �� ∅. If Y contained � we would
have (s′

j, X �
j ) ∈ f ailures(Pj ‖Aj

Q) but not (s′
j, X �

j ) ∈ f ailures(Pj) contradicting the assumption that Q
RespondsToLive Pj . So this case is impossible.

In the second case we know that there must be some i with (Ai − Xi) ∩ J �� ∅, and hence (following our
observation above) we know that � ∈ Xi . The facts (a) that we are looking at a deadlock state of N′ and
(b) that Ai ∩ Ak ∩ J � ∅ for all k �� i means that Ai − Xi ⊆ Y (i.e., Q must be refusing all events in these
two processes’ interface that Pi is not). Hence (Ai ∩ J )� ⊆ Xi ∪ Y , which contradicts our assumption that Q
RespondsToLive Pi . �	

4.2. False Positives with the Definition

The RespondsToLive definition captures the required behaviour in many cases, but closer inspection reveals
that there are some situations in which it does not. Note that if Q RespondsToLive P on A, either (1) (s, A) /∈
failures(P ‖ Q), which means P and Q do not block when operating together, or (2) (s, A) ∈ failures(P), which
means that any blocking might have been due to P. So, if a deadlock could have been caused by P, Q is not
considered as blocking. This becomes apparent in the following example where P may nondeterministically
stop.

Example 7.

P � (x → P) � STOP
Q � STOP

For any trace s, (s, {x}) is a failure of P since P may choose to stop at any point. Thus P and Q satisfy the
RespondsToLive definition. However, intuition tells us that Q would really be blocking P if P wished to engage
in x. Furthermore, the refinements:

P′ � x → P′

Q′ � STOP

show that RespondsToLive is not refinement-closed. Here, P � P′, Q � Q′ and P, Q satisfy Q RespondsToLive
P. But it is not true that Q′ RespondsToLive P′, and indeed, Q′ does not behave as a responsive plug-in
to P′. �	

In fact, it is exactly these processes with badly-behaved refinements which characterise the “false positives” of
the RespondsToLive definition. Adding the requirement of refinement-closure captures exactly the notion that Q,
no matter what its behaviour, can never block P, no matter what its behaviour. This requires that neither Q nor
any of its refinements be the sole cause of deadlock of P or any of its refinements. Thus, we want to characterise
processes for which the RespondsToLive relationship is preserved by refinement.

Upon examination, the presence of nondeterminism reveals further difficulties. It would be useful if a process
which was responsive on several channels independently could be taken to be responsive on the union of these
channels. However, if Q RespondsToLive P on each of channels T and R, it is not necessarily the case that Q
RespondsToLive P on T ∪ R. Consider Example 5. Q RespondsToLive P on both {x} and {y} independently since
for any s ∈ traces(P), (s, {x}) ∈ failures(P) and (s, {y}) ∈ failures(P), we have

(s, {x}) ∈ failures(P ‖J Q) �⇒ (s, {x}) ∈ failures(P)
(s, {y}) ∈ failures(P ‖J Q) �⇒ (s, {y}) ∈ failures(P)

However, (s, {x, y}) ∈ failures(P ‖J Q) but (s, {x, y}) /∈ failures(P), so Q BlocksLive P rather than Q
RespondsToLive P on {x, y}.

1 Here F3 and F4 are two of the axioms from the failures-divergences model, which are set out in Appendix A.
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4.3. Low-deterministic Processes

The previous examples illustrate that there is a tension among internal choice, non-determinism and refine-
ment-closure for RespondsToLive. Clearly, eliminating non-deterministic behaviours is not the solution, since
this would impoverish the modelling capabilities of the language. In Sect. 5 a more general definition is proposed,
but first we note that there are certain types of process with limited nondeterminism for which RespondsToLive is
adequate. As an example, we give some results showing the rather dramatic effects of reducing non-determinism
via low-determinism [Ros98], which guarantees that processes are deterministic on a certain subsets of events.

Definition 4. A process is low-deterministic on L if it is divergence free, and after any trace s, cannot both accept
and refuse any event a in L.

For instance, in Example 6, P is low-deterministic on reply.

Theorem 2. Let processes P and Q synchronise on set J , P � P′, and Q � Q′. If Q RespondsToLive P on A for
A ⊆ J� and P is low-deterministic on A, then Q′ RespondsToLive P′ on A.

Proof. We use proof by contradiction. Assume the hypothesis and the negation of the conclusion:

(s, A) ∈ failures(P′ ‖J Q′) ∧ (s, A) /∈ failures(P′)
�⇒ [defn of �]

(s, A) ∈ failures(P ‖J Q) ∧ (s, A) /∈ failures(P′)
�⇒ [defn of RespondsToLive ]

(s, A) ∈ failures(P) ∧ (s, A) /∈ failures(P′)
�⇒ [F1, F2, F3]

∃ x ∈ A • (s, {x}) ∈ failures(P) ∧ (s � 〈x〉) ∈ traces(P)
�⇒ [defn of low-determinism]

P is not low-deterministic on A

which contradicts the hypothesis. �	
Using Theorem 2, we can deduce for example that in Example 6 RespondsToLive is refinement-closed on

reply. The following result shows another effect of reducing non-determinism: if a process Q RespondsToLive P
on each of a pair of channels, and P is low-deterministic on either one of them, then Q RespondsToLive P on
their union.

Theorem 3. Let P and Q be processes which synchronise on set J of events. If Q RespondsToLive P on T ⊆ J�,
Q RespondsToLive P on R ⊆ J�, and P is low-deterministic on R, then Q RespondsToLive P on T ∪ R.

Proof. Assume the hypothesis:

(s, T ∪ R) ∈ failures(P ‖J Q)
�⇒ [F2]

(s, T ) ∈ failures(P ‖J Q) ∧ (s, R) ∈ failures(P ‖J Q)
�⇒ [defn of RespondsToLive ]

(s, T ) ∈ failures(P) ∧ (s, R) ∈ failures(P)
∧ [defn of low determinism]
∀ r ∈ R • s � 〈r〉 /∈ traces(P)

�⇒ [F3]
(s, T ∪ R) ∈ failures(P)

�	
For the processes of Example 5, P is low-deterministic on reply and Q RespondsToLive P on each of reply

and request, so Theorem 3 confirms the result that Q RespondsToLive P on reply ∪ request. Analogous results to
Theorems 2 and 3 in which Q is taken to be low-deterministic instead of P do not hold.

5. Refinement-closed Responsive Plug-ins

Although the RespondsToLive definition is adequate in certain restricted situations, such as with low-
deterministic processes, as discussed in Sect. 4.2, it is not what we want in general. The difficulty with the
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RespondsToLive definition is that, in situations such as that of Example 7, if P might have been the cause of
deadlock then Q is regarded as responsive even if Q itself could also have been the cause. RespondsToLive cannot
distinguish between P stopping and Q stopping in this case. Adding constraints to the definition to achieve full
generality may be possible but becomes less straightforward, so here we present a property arrived at by a slightly
different route.

5.1. Definition of Responsiveness

For Q to be responsive to P, if at any point in their execution P can require that Q participate in any one event
from some set, s, then Q must be willing to engage in at least one of these events. Some examples:

• if P � (x → P) � (y → P) then, after any trace, P can demand cooperation in at least one event from {x, y};
• if P � (x → P) � (y → P) then at any point P might demand cooperation in an event from {x}, or it might

demand cooperation in an event from {y};
• if P � (x → P) � (y → P) � STOP then P can make the same demands as in the previous case.

To formulate this we introduce some more CSP notation. An initials set refers to the set of all possible first events
for a particular process. That is, initials(P) � {a | 〈a〉 ∈ traces(P)}. To refer to the set of possible next events for
P after trace s has occurred we write initials(P/s) where P/s = {t ∈ P | s � t} (read “P after s”: the set of all
traces which extend s). The set of all initial events of P which are also in some set A is denoted initialsInA(P) and
defined as initials(P) ∩ A.

If (s, X ) is a failure of P, then initialsInA�(P/s) − X contains all events outside of the refusal set X which
are both possible next events for P/s and are in A�. These sets for each failure (s, X ), are the ones for which P
may demand Q’s participation. Therefore, after s, Q should not refuse the whole of this corresponding set. Sets
which are (1) the complement of some refusal, and (2) contained in initials(P) have been termed acceptance sets
(see [Ros98]) though the same term is sometimes used for subtly different concepts.

Definition 5. For processes Q and P with joint alphabet J , Q RespondsTo P means that for all s, X :

((s, X ) ∈ failures(P) ∧ initialsInJ�(P/s) − X �� {}) �⇒ (s, initialsInJ�(P/s) − X ) /∈ failures(Q)

We regard Q to be a responsive plug-in to P if and only if QRespondsTo P.

Example 8.

P � (request1 → reply → P) � (request2 → reply → P)

Q � (request1 → reply → Q) � (request2 → reply → Q)

After 〈〉 (or any even length trace) possible refusal sets and corresponding acceptance sets of P are:

Refusal Acceptance

{request1, reply} {request2}
{request2, reply} {request1}

{request1} {request2}
{request2} {request1}

{reply} {request1, request2}
{} {request1, request2}

P may require Q’s cooperation in an event from any of these acceptance sets. Since Q does not refuse any of these
sets at this point in the execution, Q is responding to P’s requirements.

Similarly, after any odd length trace, possible refusal sets for P are: {request1, request2}, {request1}, {request2},
{}. The corresponding acceptance set for each of these is {reply} which is not refused at this point by Q. Hence Q
RespondsTo P. �	
Example 9. Revisiting the process of Example 7 which illustrated the weakness of the previous definition:

P � (x → P) � STOP
Q � STOP
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(〈〉, {}) is a failure of P with acceptance set {x}, and indeed, P may demand Q’s participation in event x. However,
(〈〉, {x}) is a failure of Q, and so Q is not responsive to P. �	

5.2. The Relationship between the Definitions

We now have two definitions: RespondsToLive, which did not fully capture the properties we required but was
useful when restricted to certain classes of process; and RespondsTo which appears to be both necessary and suffi-
cient in itself. The theorems in this section confirm the relationship between the properties, that is: Q RespondsTo
P exactly when the relation Q′ RespondsToLive P′ holds for all P′ � P and Q′ � Q.

Theorem 4. For any processes P and Q, the following are equivalent:

• Q RespondsTo P,

• for any refinements P′ of P and Q′ of Q, Q′ RespondsToLive P′.

Proof. This follows from Lemmas 1 and 2 below. �	

Lemma 1 establishes that RespondsTo implies refinement-closed RespondsToLive.

Lemma 1. For processes, P, P′, Q and Q′, if Q RespondsTo P, Q � Q′, and P � P′, then

Q′ RespondsToLive P′.

Proof. Proof by contradiction. Assume the hypothesis and negation of the conclusion.

(s, J�) ∈ failures(P′ ‖J Q′) ∧ (s, J�) /∈ failures(P′) (1)
�⇒ [ defn of ‖ ]

∃ X , Y ⊆ ��•
J� � X ∪ Y ∧ (s, X ) ∈ failures(P′) ∧ (s, Y ) ∈ failures(Q′) (2)

∧ [ defn of � ]
(s, X ) ∈ failures(P) ∧ (s, Y ) ∈ failures(Q)

∧ [ (1), F3 ]
initialsInJ�(P′/s) − X �� {}

∧ [ defn of � ]
initialsInJ�(P/s) − X �� {}

Also, since Q RespondsTo P on J�,

(s, initialsInJ�(P/s) − X ) /∈ failures(Q)
�⇒ [ defn of � ]

(s, initialsInJ�(P/s) − X ) /∈ failures(Q′)
�⇒ [(2), F2 ]

initialsInJ�(P/s) − X � Y
∧ [ set theory ]

∃ z ∈ initialsInJ�(P/s) − X • z /∈ Y
∧ [ set theory ]

z ∈ J� ∧ z /∈ X ∧ z /∈ Y

which contradicts (2). �	

Lemma 2 states that refinement-closed RespondsToLive implies RespondsTo .

Lemma 2. If Q RespondsToLive P, and for any refinements P′ of P and Q′ of Q, Q′ RespondsToLive P′, then Q
RespondsTo P.
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Proof. Proof by contradiction. Assume the hypothesis and negation of the conclusion.

For some s, X :
(s, X ) ∈ failures(P) and initialsInJ�(P/s) − X �� {} (1)

∧ (s, initialsInJ�(P/s) − X ) ∈ failures(Q) (2)
�⇒ [(1), Lemma 3]

there exists a refinement P′ such that
Also, (s, J�) /∈ failures(P′) ∧ (s, X ) ∈ failures(P′) (3)

∧ [F2]
(s, X ∩ J�) ∈ failures(P′)

Also (s, initialsInJ�(P/s)) ∈ failures(P′ ‖J Q) (4) [(1), (2), (3), defn ‖]

And, initialsInJ�(P′/s) ⊆ initialsInJ�(P/s)
�⇒ [(4), F2]

(s, initialsInJ�(P′/s)) ∈ failures(P′ ‖J Q)
�⇒ [F3]

(s, J�) ∈ failures(P′ ‖J Q)

By hypothesis Q RespondsToLive P′
�⇒ [defn RespondsToLive ]

(s, J�) ∈ failures(P′)

which contradicts (3). �	
Lemma 3. Assume (s, X ) ∈ failures(P) and initialsInJ�(P/s) − X �� {}. Then there is a refinement P′ of P such
that (s, J�) /∈ failures(P′) and (s, X ) ∈ failures(P′).

Proof. Assume the hypothesis. We will construct a set T of traces and a set F of failures for a process P′ which
form a refinement of P. The construction depends on whether or not the special termination event � belongs to
initialsInJ�(P/s) − X .

Case 1. � ∈ initialsInJ�(P/s) − X . Choose

T � traces(P) and F � failures(P) − {(s, R) | � ∈ R}
Axioms F1–F4 follow straightforwardly, and hence T and F define a refinement P′ of P. We use the hypothesis

of the case to establish that P′ can refuse X : since � ∈ initialsInJ�(P/s) − X , clearly

� /∈ X and hence, (s, X ) ∈ failures(P′)

By construction,

(s, {�}) /∈ failures(P′), and hence (s, J�) /∈ failures(P′).

thereby establishing Case 1.

Case 2. � /∈ initialsInJ�(P/s) − X . Choose

T � traces(P) − {t | ∃ x : X • s � 〈x〉 � t}
F � ({(t, H) ∈ failures(P) | t ∈ T } − {(s, H) | H ∩ initialsInJ�(P/s) − X �� {}}

Notice that these traces and failures satisfy:

1. the traces of T and failures of F coincide with those of P except after s;
2. there are no extensions of s from X appearing as a trace in T ;
3. no refusal of F contains any element of initialsInJ�(P/s) − X .

Let us first observe that if T and F form a valid set of traces and failures for a refinement P′, then by (2) and
(3) above,

(s, X ) ∈ failures(P′) ∧ (s, J�) /∈ failures(P′)

thereby establishing the required properties for P′.
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We must establish that T and F satisfy axioms F1–F4. F1 and F2 follow straightforwardly. Let us now establish
F3:

(t, R) ∈ F ∧ ∀ y : Y • t � 〈y〉 /∈ T �⇒ (t, R ∪ Y ) ∈ F

Case 2.F3. 1. t �� s. Follows straightforwardly from 1. and F3 for P.

Case 2.F3. 2. t � s. Assume

(s, R) ∈ F ∧ ∀ y : Y • s � 〈y〉 /∈ T

and let

R1 � R ∩ X and R2 � R − initialsInJ�(P/s)
Y 1 � Y ∩ X and Y 2 � Y − initialsInJ�(P/s)

which implies

R � R1 ∪ R2 Earlier assumptions about F
Y � Y 1 ∪ Y 2 Definition of T
(s, R1 ∪ Y 1) ∈ failures(P) [F2]
(s, (R1 ∪ Y 1) ∪ (R2 ∪ Y 2)) ∈ failures(P) [F3]
(s, R ∪ Y ) ∈ F [set theory]

thereby establishing Case 2.F3.2, and F3.
To establish F4, we must show that t � 〈�〉 ∈ T �⇒ (t, �) ∈ F .
Assume t � 〈�〉 ∈ T . We again take cases.

Case 2.F4. 1. t �� s. Since t � 〈�〉 ∈ traces(P), it follows (t, �) ∈ failures(P) and (t, �) ∈ F .

Case 2.F4. 2. t � s. Here we use the hypothesis of Case 2. Either � /∈ initialsInJ�(P/s), or

� ∈ initialsInJ�(P/s) and � ∈ X . In either case, t � 〈�〉 /∈ T , establishing Case 2.F4.2, F4, Case 2 and the
lemma. �	

5.3. A Further Property of the RespondsTo Definition

Theorem 4 establishes that Q RespondsTo P exactly when Q RespondsToLive P holds and is refinement-closed.
We can also derive from this result the fact that the RespondsTo relation is itself always refinement-closed. This
is captured in the following theorem.

Theorem 5. RespondsTo is refinement-closed.

Proof. Assume Q RespondsTo P. Theorem 4 ensures that for refinements: P � P′, Q � Q′, P′ � P′′, and
Q′ � Q′′, we have Q′′ RespondsToLive P′′. Hence by the same theorem, Q′ RespondsTo P′. �	

6. Mechanical Verification of Responsiveness

The properties described above provide a way of checking whether one component will respond to another in
a suitable way. Refinement-closure of RespondsTo ensures that any further refinements will also work correctly
together. This allows a service to be selected by considering a top-level specification, without worrying about
the details of its implementation. A mechanised check would allow selection of services to take place without
human intervention, for example by an agent which needs to make autonomous decisions to guide its choices.
Both properties are semantically formulated, and hence, not directly mechanically verifiable.

[Ros03] establishes that any closed and refinement-closed predicate can be formulated as a machine-checkable
predicate of the form SPEC � G(P) in the stable-failures model. He also establishes that any distributive pred-
icate can be formulated as a machine-checkable predicate of the form F (P) � G(P), where G is a distributive;
recalling that a distributive predicate is defined as: if P and P∗ satisfy it then P � P∗ does.

Since RespondsTo is refinement-closed in both its variables, it follows that there are machine-checkable
assertions of the form SPEC1 � G1(P) and SPEC2 � G2(Q), for predicates R1Q(P) and R2P(Q) where
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R1Q(P) � R2P(Q) � PRespondsTo Q. The significance of the refinement closure of RespondsTo is apparent in
that any refinements of the right-hand sides of the assertions given above provably satisfy the left-hand specifi-
cations since left-hand sides of these assertions are constant. This construction is not necessarily mechanically
efficient due to its generality. Appendix B contains a more efficient version for RespondsTo .

Since RespondsToLive is not refinement-closed though it is distributive in each of its variables, it follows that it
cannot be represented as SPEC � G(P), with SPEC constant, though it can be represented with the more general
F (P) � G(P). Appendix B also contains a more efficient machine-checkable formulation for RespondsToLive .

The checks given in Appendix B are designed to work with the FDR model-checker [For]. FDR (failures-
divergences refinement) verifies statements of the form SPEC � P by checking that all behaviours of P are
acceptable behaviours of SPEC. The conditions in Appendix B are all of this form.

7. Summary

We have investigated two relations of interest: RespondsToLive and RespondsTo.

• RespondsToLive states that one component Q cannot cause another component P to deadlock whenever P
itself is deadlock-free. This relationship is desirable for plug-in components but it is not in general refinement-
closed. Interestingly, it is distributive and hence, mechanically verifiable.

• RespondsTo is the weakest refinement-closed strengthening of RespondsToLive . That is, if Q RespondsTo P,
then for any refinements P′ and Q′, it follows that Q′ RespondsToLive P′. Since RespondsTo is refinement-
closed, it is mechanically verifiable.

We view the RespondsTo relation as characterising responsiveness for plug-in components: Q is a responsive
plug-in to P if and only if Q does not cause P to deadlock, and furthermore, no refinement of Q causes any
refinement of P to deadlock.

We have used the failures/divergences model for our formulations, though we have assumed divergence-
freedom for all processes under consideration. Since we deal with the interplay between non-determinism and
blocking, including both graceful termination and deadlock, it is appropriate to use a model which distinguishes
these behaviours.

For simplicity, we have assumed that processes synchronise on the entire set of events �, though these relations
could be generalised for processes which do not synchronise on their entire alphabets.

8. Relation to Other Work and Conclusions

In this paper, we have taken an intuitive idea of one component being responsive to another and have shown
how a formal definition of such a property and machine-checkable tests may be defined corresponding to this
intuition. From the beginning, deadlock and termination are concepts which have been dealt with by process
algebraic formalisms. The focus has historically been on analysing behaviour of the combined system resulting
from individual behaviours of its components. In contrast, we wish to reason about the behaviour of an individual
component resulting from its interaction with other components operating in parallel.

It is generally easier to verify system properties at an abstract level rather than at more concrete implementa-
tion ones, but this is useful only if properties verified early on are preserved by refinement. We faced a refinement
situation somewhat similar to that of the so-called “refinement paradox” for security properties, which refers to
the fact that many security properties are not preserved by refinement. The root cause is that nondeterminism,
intended as unbiased specification at the top level, can be refined in an insecure manner. Strong security proper-
ties, such as those proposed in [Ros98], eliminate all possible influence through the resolution of nondeterminism.
In our case, refinement preservation is fundamental not only from a perspective of retaining correctness during
subsequent system development, but also to ensure that a given component operating as part of a component-
based system behaves responsively no matter what its behaviour. These considerations caused us to move on
from the first definition, which can only guarantee the requirements in certain cases, to the RespondsTo definition
which covers the general case.

There is an intriguing parallel between our two definitions of responsiveness and Roscoe’s formulations of
security and fault tolerance properties [Ros98]. Within each pair, the properties have similar but subtly (and impor-
tantly) different meanings; one property is refinement-closed but not distributive (security and RespondsTo) while
the other is distributive but not refinement-closed (fault tolerance and RespondsToLive); similar models of FDR
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checks may be used to verify them. It would be interesting to know whether some wider classification could be
made based on such similar pairs of properties.

In previous work [RS01b, RS01a], we investigated an earlier version of our property RespondsToLive, where
we also gave sufficient (though not necessary) constraints for it to be refinement-closed and mechanically ver-
ifiable. As we described in Sect. 6, existing results dealing with distributive and refinement closure ensure that
the notions of responsiveness described here are mechanically verifiable with FDR. Bolton and Lowe [BL03]
investigate a class of non-standard refinements, each of which may be expressed in the form:

{(tr, X ) ∈ failures(IMPL) | F (X )} ⊆ {(tr, X ) ∈ failures(SPEC)}
where SPEC is the specification and IMPL the implementation. When SPEC is taken as P, IMPL as P ‖Q and
F (X ) is X � J , this is equivalent to our RespondsToLive property and its precursor [RS01b]. Bolton and Lowe’s
[BL03] check removes all non-relevant failures (those not meeting F (X ))) by interleaving, and adds additional
pairs for X satisfying F (X ). They judge their approach to be more efficient than ours for larger X , but less efficient
for smaller X .

Treharne and Schneider [TS99, TS00] have developed an approach to using CSP in parallel with the event-
based B notation [Abr96]. This work is specifically focused on describing control executives which gives it a differ-
ent emphasis to ours, and makes the important step of integrating two notations. The B specification describes
the operations of the system, while the CSP provides a control loop to capture the order of execution for the
operations. The individual components can then be developed separately, exploiting the respective strengths of
each notation. The basic suitability criterion (provided via a weakest precondition [Dij76] correspondence similar
to that of Morgan [Mor90]) is that the loop should not call any B operation outside its precondition.

Another approach for combining different notations based on failures-based semantics is Butler’s [But99] com-
bined use of B and CSP [But99]. This is similar in many respects to that of Treharne and Schneider [TS99, TS00],
but with event information incorporated in the B. An interesting application of this combined approach is verifi-
cation of an implementation (deployment) of a security protocol [But02], which goes beyond the more abstract,
algorithmic analysis of the protocol typically performed using a single formalism. A different route is taken in
the CIRCUS [CSW02] work, where the two specification approaches are combined within a single language.

We note that the work presented here grew out of an earlier initiative to use a combined failures-based for-
malism to specify a secure database intended to serve remote clients. For reasons of economy of expression, we
chose to specify the functional services with a state-based notation, and to specify the security protocol with an
event-based notation. Our approach was to treat one component as distinguished in that it required other com-
ponents to comply with its actions, while at times allowing them some flexibility of provision. Our contribution
here has been to define the property of interaction between the components and to show how it could be verified
automatically solely using FDR model-checking. Our intention is to incorporate this within a mixed formalism
approach, linking our work to existing research on methods integration and theorem proving.

The idea of non-blocking processes arises in a number of other contexts. For example, in extending exist-
ing correctness rules for composition in the assume-guarantee setting, Amla et al. [AENT01] define a process
as a tuple consisting of variables, initial condition, transition relation and fairness relation. In this context, a
rule both sound and complete (for safety and liveness properties) is developed for reasoning about component
decomposition. The idea of nondeterministic blocking is not at issue here, and blocking behaviour can trivially
be removed by adding transitions to a special state with a self loop. In contrast, we treat blocking as fundamental
and undesirable.
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Appendix A. Introduction to CSP

We use the syntax and semantics from [Ros98]. The CSP language describes interacting components of systems:
processes whose external actions are the communication or refusal of instantaneous atomic events. All the partici-
pants in an event must agree on its performance. The following CSP algebraic operators are used for constructing
processes.

STOP is the CSP process which never engages in any event, never terminates (deadlock).
SKIP similarly never performs any action, but instead terminates
a → P performs event a and then behaves as process P. The same notation is used for outputs (c!v → P) and
inputs (c?x → P(x) ) of typed values on named channels, with c.T � {c.x | x ∈ T }.
P �Q is nondeterministic or internal choice. It may behave as P or Q arbitrarily.

P �Q is external or deterministic choice. It first offers the initial events of both P and Q to its environment.
Its subsequent behaviour is like P if the initial action chosen was possible only for P, and similarly for Q. If
P and Q have common initial actions, its subsequent behaviour is nondeterministic (like �).

�x:X
P(x) and �x:X

P(x) represent generalised forms of the choice operators allowing indexing over a finite
set of indices where P(x) is defined for each x in X . c?x → P is shorthand for �x:T

c.x → P.

P ‖X Q is parallel (concurrent) composition. P and Q evolve separately, but events in X occur only when P
and Q agree (i.e. synchronise) to perform them.
P ‖ Q is parallel composition, with P and Q synchronising on all events, that is, on all of �.
P ||| Q represents the interleaved parallel composition. P and Q evolve separately, and do not synchronise on
their events.
P \ A is the CSP abstraction or hiding operator. This process behaves as P except that events in set A are hid-
den from the environment and are solely determined by P; the environment can neither observe nor influence
them.
P[[x :� y]] is the process formed by renaming x to y in P. Whenever P would offer x, this process instead
offers y.
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Failures/Divergences Model. A process P is modelled as a set of failures and divergences. The set � contains all
possible communications events of processes. The set �� = � ∪ {�}, contains a special event � that signals that
a process has terminated cleanly. A failure is a pair (s, X ) for s a finite trace of events of ��, and X a subset
of events of ��. It is understood that whenever � appears in a trace, it is the last event in the trace. The pair
(s, X ) ∈ failures(P) means that P may engage in the sequence s and then refuse all of the events in X . The set X
is called a refusal. The set divergences(P) is the set of traces on which P can diverge, meaning perform an infinite
unbroken sequence of internal events.

Failures and divergences must satisfy certain axioms ensuring well-formedness. The ones for the failures(P)
are given below [Ros98]. It is in general true that traces(P) ∪ divergences(P) � {s | (s, {}) ∈ failures(P)}. Let F =
failures(P).

(F1) The set of traces is non-empty and prefix closed, and

traces(P) � {t | (t, X ) ∈ F }
(F2) If a process can refuse the set X it can refuse any subset of X:

(s, X ) ∈ F ∧ Y ⊆ X �⇒ (s, Y ) ∈ F

(F3) Whenever process P can refuse the set X of events in some state then the same state must also refuse the
set Y of events that the process can never perform after S:

(s, X ) ∈ F ∧ ∀ a ∈ Y • (s � 〈a〉 /∈ traces(P) �⇒ (s, X ∪ Y ) ∈ F

(F4) If a process can terminate, then it can refuse to do anything but terminate:

s � 〈�〉 ∈ traces(P) �⇒ (s, �) ∈ F

The operators appearing in this paper satisfy semantics-defining equations given below. We omit requirements
for divergences.

failures(STOP) � {(〈〉, X | X ⊆ ��}
failures(SKIP) � {(〈〉, X ) | X ⊆ �} ∪ {(〈�〉, X | X ⊆ ��}

failures(a → P) � {(〈〉, X ) | a /∈ X }
∪{(〈a〉 � s, X | (s, X ) ∈ failures(P)}

failures(?x : A → P) � {(〈〉, X ) | X ∩ A � {}}
∪{(〈a〉 � s, X | a ∈ A ∧ (s, X ) ∈ failures(P[a/x])}

failures(P � Q) � failures(P) ∪ failures(Q)
failures(P � Q)∗ � {(〈〉, X ) | (〈〉, X ) ∈ failures(P) ∩ failures(Q)}

∪{(s, X ) | (s, X ) ∈ failures(P) ∧ s �� {}}
∪{(〈〉, X ) | X ⊆ � ∧ 〈�〉 ∈ traces(P) ∪ Traces(Q)}

failures(P ‖X Q)† � {(u, Y ∪ Z) | Y − (X ∪ {�}) � Z − (X ∪ {�})
∧ ∃ s, t.(s, Y ) ∈ failures(P)
∧ (t, Z) ∈ failures(Q)
∧ u ∈ s ‖X t}

failures(P \ X )‡ � {(s \ X , Y ) | (s, Y ∪ X ) ∈ failures(P)}
∗ P � Q may refuse event a only when both may choose to do so. The special event � must be given special

status: if it appears in a trace of P or Q, then everything may be refused.
† P ‖X Q can refuse an event in X when either P or Q can because they both have to participate in it. They

can independently perform events outside of X , these can only be refused when both P and Q do, much as the
empty trace in P � Q. The special event � is treated so that termination is at the behest of either. The notation
s ‖X t for traces s and t represents the set of all interleavings that could arise if P and Q respectively communicate
s and t.

‡ failures(P \ X ) has traces which are formed for P with all elements of X stripped out. The refusals are those
of P, and at any point, all of X may be refused as well.
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Appendix B. Mechanical Verification

Appendix B.1. Mechanically Verifying RespondsTo

Mechanically checking RespondsTo requires comparing the initial events of P and its refusals on the same trace.
Consider

P∼ � (P ||| P∗) ‖H∪H∗ Reg

where H is the alphabet of P, and

H∗ � {a∗ | a ∈ H} disjoint from H , ∗ injective
P∗ � P[[a :� a∗ | a ∈ H ]]

Reg � �a:H
a∗ → (�b:H

b → (a � b&Reg))

This allows P∗ a step and then P, and then only allows them to proceed when they have performed the same
(modulo *) event. That is, P∼ alternates between performing events from a given trace of P and the corresponding
trace of the copy P∗, starting with the latter.

Now consider R � P∼ ‖J L�−J (Q), where L�−J (Q) is the lazy abstraction of Q with respect to � − J see
[Ros98]. We use this operator to remove from consideration events in the alphabet of Q which are not in J . This
abstraction is the process which behaves like Q except that whenever Q can perform an abstracted event the new
process has the choice of either not doing it or making it invisible. outside of J that Q can, but which can also
refuse any of these events. For the purposes of verification we may (see [Ros98]) identify L�−J (Q) with

LQ � (Q ‖�−J CHAOS(� − J )) \ (� − J )

P∼ performs events in twos, the first of which is an event from P∗, and the second of which is from P , synchronised
if in J with the one from LQ. When it deadlocks after an even number of steps this is because P has deadlocked
or because P and P∗ performed different events: neither of these is interesting to us.

But suppose it refuses the whole of J after an odd number of steps where the immediately preceding event
was in J∗ � {a∗ | a ∈ J}. Then after some trace of P ‖J LQ (doubled into appropriate twos in R) we can reach
a state where P∗ can perform some a∗ ∈ J∗ but P can conspire with LQ to refuse the whole of J . This does not
quite characterise the failure of our condition, since for example, P might be able to refuse a while LQ refuses
everything else.

What we need to ensure is that in the case where P∗ has demonstrated that there is something in initialsInJ�(P),
say a, then G(P) only comes up with refusal sets X not containing a so that initialsInJ�(P) − X is nonempty:
these being the one of interest for the condition.

This is impossible since we cannot get inside P. However, we can achieve the same effect by modifying the
Reg process above.

Reg∗ � �a:H
a∗ → ((�b:H

b → (a �� b&Reg
∗
))

� (a ∈ J )&a� → STOP

where a� is a further separate version of a.

P† � ((P ||| P∗) ‖H∪H∗ Reg∗)[[a� :� a | a ∈ J ]]

This process again runs P and P∗ in the delayed lock-step way that P∼ does, only this time the action of Reg, after
an odd length trace s � 〈a∗〉 , when a∗ ∈ J , removes a from the refusal set created by P . Hence if P is refusing X ,
then P† refuses X −{a}. Since a is by construction in initials(P/even(s)), for even(s) being the trace of the second,
fourth, etc, of s, it follows that (even(s), X − {a}) is a failure of P such that

initials(P/even(s)) − (X − {a}) �� ∅
And, every maximal refusal of P/even(s) with this property appears in this way as P and P∗ go through different
behaviours within P†.
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It follows that Q RespondsTo P if and only if P† ‖J LQ has no deadlock after an odd-length trace whose last
member is in J∗, or in other words if and only if it refines

Spec � (�a:J
a∗ → ((�b:J

b → Spec)�(STOP � (�b:H−J
b → Spec)))� (1)

(�a:H−J
a∗ → (STOP � (�a:H

a → Spec)))) (2)

�STOP (3)

The above specification provides three cases: (1) after odd length traces, if the last element is in J , then some-
thing in J (the a from P†) must be offered, and it does not care whether anything outside of J is offered or refused,
(2) after odd length traces, if the last element is not in J , then the specification does not care what events are
offered or refused, and (3) after even length traces, deadlock is acceptable since it means that P has reached a
state for which its set of initial events is empty.

Notice that since the construction of P† from P is (like all other combinations of CSP operators) monotonic,
and Spec is a fixed process, the check Spec � P† is refinement closed.

Appendix B.2. Mechanically Verifying RespondsToLive

The condition we want to check is that whenever P ‖J Q reaches a state in which all of J can be refused, then P
has performed a trace s after which it can refuse all of J .

This condition holds of P and Q precisely when it holds of the lazy abstraction LQ � L�−J (Q) (see Appendix
B.1). Notice that P �T (P ‖J LQ), since LQ restricts P’s traces but never contributes any individual events.
P ResponsT oLive Q is true precisely when there is no trace s such that (s, J ) is a failure of P ‖J LQ but not of
P. For a process R, define

TrefJ (R) � (R[[a :� a, a :� e | a ∈ J ]] ‖�−{e} CHAOS(� − {e})) ‖� Onee

for e an event outside the alphabets of P and Q, and Onee defined:

Onee � e → STOP

� (�x:�−{e} x → Onee

Tref (R) can perform any trace of R with the additional possibility of performing an extra e when R can do
something in J , after which it must stop. It can refuse anything anytime except for e, which it can only refuse
when R can refuse the whole of J . Q RespondsTo P on J if and only if

TrefJ (P) �F TrefJ (P ‖J LQ)

The above predicate asserts that whenever the right-hand side can refuse e (hence exactly when P ‖J Q can refuse
all of J ), then the left-hand side must be able to refuse e (exactly when P can refuse all of J ). Note that P appears
on both sides of the refinement, reflecting the fact that RespondsToLive is not refinement closed.
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