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1 Oxford University Computing Laboratory,
Oxford OX1 3QD, UK. {xu.wang,bill.roscoe}@comlab.ox.ac.uk

2 Department of Computer Science, University of Warwick,
Coventry CV4 7AL, UK. ranko.lazic@dcs.warwick.ac.uk

Abstract. This paper shows how to translate the problem of deciding
trace refinement between two data independent (DI) CSP processes
to an unreachability problem in a DI Unity program. We cover here
the straightforward but practically useful case when the specification
satisfies a normality condition, Norm, meaning that we do not have
to worry about hidden or unrecorded1 data variables. This allows us to
transfer results about the decidability of verification problems involving
programs with data independent arrays from UNITY to CSP.
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1 Introduction

Algorithmic formal verification of hardware and software systems is an important
way of establishing system correctness or to debugging (whichever case applies!).
State exploration of various types is commonly employed. Whereas state explo-
ration of control structures is usually effective and efficient, handling data is
more challenging. Often the only way of including data into correctness checks
is to branch it into control structure, so that two instances of a control state
with different data become, in effect, different control states. This often creates
enormous state explosions and thus limits the techniques’ applicability. We seek
to improve our understanding of the special properties of data in algorithmic
verification to reduce this problem.

The problem of algorithmic verification of data-bearing systems in general
is hard. But an important subclass of data-bearing systems where useful results
are available is the data independent ones. Intuitively, data independence means
that data is opaque: although it can be communicated (input and output) and
stored, the only way to probe the information inside is by equality testing with
1 Roughly speaking, unrecorded variables are DI variables assuming values internally

generated (e.g., by DI replicated choice as in Section 4.1), rather than inputted from
environment.
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another of its kind. Thus a data independent type X is nothing more than an
abstract “set”. As sets of equal size are substitutable via bijection, only the size
of X matters.2

Typical examples of data independence are: types of data stored in buffers or
transmitted by protocols, and types of addresses/pointers in a cache or memory
(equality testing is used to check if two pointers point to the same location).

Data independence has been studied in the past from the process algebra [2]
and temporal logic [3] perspectives. Our research has explored both of these [4,
5] and we have formulated a unifying semantic framework to capture data inde-
pendence [6,7].

While some past work on data independence assumes the infinity of DI
types[2,3], no such requirement is present in our work. Actually, our work can
handle infinite families of parameterised systems, where the type X can be of
arbitrary nonempty finite size or infinite. The verification problem we face is
more than just the uniform verification of parameterised systems [8].

Data independence is also related to another important technique in
analysing data-bearing systems: symbolic labelled transition systems [9,10]. A
symbolic LTS tries to represent, in a finite graph, a system which is potentially
infinite thanks to data-bearing. Variables are left as symbols instead of being
instantiated by concrete values. Symbols and their properties (described in a
boolean expression) are used in the system so that a set of concrete value in-
stantiations is treated in one go instead of each concrete value instantiation in
a separate go.

Other forms of symbolism (e.g., those based on binary decision diagram,
regular language, regions, etc.) also flourish in model/refinement checking for
overcoming problems like the tractability of large state spaces, abstraction of
unbounded structures (like queues, stacks, linear integer, and parameterised lin-
ear topology), and abstraction of real time and hybrid systems. The relationship
between these works and data independence has yet to be fully explored.

The overall aim of the present paper is to relate the DI work that we have
done more recently on a Unity-like language to that we did previously in CSP.
Besides the obvious benefits of connecting and unifying different data indepen-
dence theories, there are some other very important practical ones, since it means
that results obtained in the Unity style may now apply to CSP. One particu-
lar class of result we want to borrow are our recent decidability results on DI
arrays[11,5,12].

Secondly, in practical applications, both approaches have relative merits and
drawbacks. The benefits of our3 process algebraic framework are: unified lan-
guage, compositionality, and stepwise refinement, while the benefits of a tem-
poral logic approach are: abstract property and liveness/fairness friendliness. So
it would often be very instructive if some light could be shed on how the same
case study could be differently encoded and processed in different approaches.
2 It is sometimes possible to weaken the definition of data independence in carefully

controlled ways, such as allowing symbols representing functions from the DI type
to a known finite type such as the booleans[1].

3 Some of these are specific to CSP.
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And the most direct way to show that is by a translation between the checking
problems of the two frameworks.

Thus, the rest of this paper will aim to give a two-step translation procedure
that can, through an intermediate SLTS, automatically convert a CSP DI re-
finement checking problem to an equivalent Unity DI model checking problem,
namely unreachability.

Spec �X Impl translate=⇒ Prog |=X Unreachability

The reasons why we restrict the property to reachability/unreachability are

– Reachability is a powerful concept. Both trace refinement and (we believe)
stable-failure refinement can be encoded into it. However it cannot be true for
failure-divergence refinement because of the infinitary nature of divergence:
an effective translation would imply solubility of the halting problem.

– By restricting ourselves to reachability, decidability results on more powerful
classes of programs with DI arrays [11] are achievable. This extension to our
reasoning power with arrays contains a large proportion of likely practical
applications.

– Reachability is a natural target for our translation problem, and corresponds
to the intuition that both trace properties and unreachability correspond
naturally to safety specifications.

2 The Norm Condition and This Paper

Translating from the CSP language to a Unity fragment language is not easy,
especially since there is a mismatch in the expressive power of the two languages.

The Unity fragment used in [11,5] is a much simpler language than CSP.
In essence, its programs consist of a finite set of variables, an initialisation
of the variables, and a finite set of guarded multiple assignments of the form,
boolean expression −→ {assignment}.

Simplicity buys unreachability checking on Unity DI programs a useful prop-
erty: monotonicity.

Prog |=T1 Unreachability ∧ |T2| ≤ |T1| ⇒ Prog |=T2 Unreachability

Similar properties, however, are not enjoyed by CSP refinement checking in any
of its three major models. In CSP we even can construct (Spec, Impl) pair that re-
fines (in all three models) iff the size of T is an odd number (c.f. Chapter 5 in [4]).
So some Spec � Impl are inherently untranslatable to Prog |= Unreachability .

Another symptom of the language power mismatch is found in the handling
of arrays.

Some CSP processes can use DI variables to simulate a limited form of DI
arrays.

A good example of that is the specification of a nondeterministic register.
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SpecNR ≡ let NR(x ) = out !x → NR(x )
�

in?y0 → NR(x ) � NR(y0)
within in?x0 → NR(x0)

When considering the effect of this process as the left-hand side of a refinement
check, the parameter variable x above actually encodes a boolean DI array (i.e.,
a DI set); a more intuitive equivalent representation using explicit array variables
is4,

Spec′
NR ≡ let NR(arr) = out$x : arr [x ] → NR({x})

�

in?y0 → NR(arr ∪ {y0})
within in?x0 → NR({x0})

The root of the problem with SpecNR is that many nondeterministic choices may
be made before their effects are shown by output. In Spec′

NR above, in order to
delay the choice until its effect is seen, we need to introduce an explicit array. So
SpecNR effectively enjoys the power of arrays even without introducing them.5

But this cannot be true in Unity, where it can be shown to be impos-
sible to simulate DI arrays using simple DI variables. Actually, to translate
SpecNR �X ImplNR to Unity for some ImplNR, SpecNR need be first transformed
to something like Spec′

NR in order to bring out the hidden arrays in it. This is
called normalisation; that is, transforming a specification to a form satisfying
the Norm condition below.

Norm
A process satisfies this if and only if

(i) there is no replicated choice over DI types (except for input ? and nonde-
terministic selection $);

(ii) no hiding or renaming;
(iii) only alphabetised parallel;
(iv) each branch of a multi-path choice6 is disjoint with the others in the set of

channels it will use for the next communication.

Norm is essentially what appears in [13], which extends the definition in [4] by
allowing alphabetised parallel.

Norm and normalisation are closely related to the traditional notion of de-
terminisation, the algebraic normal form of CSP in Chapter 11 of [13], and the
4 The syntax used for the example is mainly taken from CSPdi−SPEC in Section 4.1.

The only addition is the use of selective nondeterministic selection (out$x : arr [x ]),
which is a dual of selective input (i.e., in?x : b) in CSPdi−SPEC .

5 We note that this implies that in order to translate refinement questions like that of
SpecNR to Unity, it is likely that arrays would be required in the Unity even if not
in the CSP.

6 Multi-path choices are the choices of form �{P1, ...,Pn} and �{P1, ...,Pn}; binary
choices are their special cases.
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normal form computed by FDR [14]. To understand it fully, some explanation
of nondeterminism in CSP is in order.

Nondeterminism in CSP usually means extensional nondeterminism7, which
is defined in the extensional semantics of processes. The semantics must be fine-
grained enough though, like the stable failures and failures divergences models, to
be able to record that nondeterminism. It means nondeterminism in externally
observable behaviour, rather than nondeterminism in the graph structure of
transition systems (i.e., the nondeterminism from invisible actions and multiple
actions with the same labels). We call this second sort graph nondeterminism.

In checking CSP processes, tools do not usually calculate their extensional
semantics directly. Instead, various kinds of transition graphs are used, like plain
LTSs, symbolic LTSs, or GLTSs (i.e., LTSs annotated with minimal acceptances
and divergence [15]). These graphs, of course, often exhibit graph nondeter-
minism, and it is important that we understand this and how it relates to the
extensional variety.

Extensional nondeterminism usually implies graph nondeterminism; for
instance, an extensionally nondeterministic process must have a graph-
nondeterministic plain LTS. But it is not absolutely so for other graphs, since
the same process may have a graph-deterministic GLTS.

For the purpose of this paper, we only need to consider graph nondeter-
minism, since the trace model is too coarse-grained to record any extensional
nondeterminism. In the rest of this paper, whenever nondeterminism, determin-
ism, or determinisation is mentioned, it means the graphical sort. Moreover,
sometimes the special CSP terminology for graph determinism, like Norm and
normalisation8, are also used.

Many of these ideas are illustrated well by the SpecNR and Spec′
NR examples

above. The first gets its nondeterminism from the branching (implemented using
internal actions) of the choice operator �. The second, extensionally equivalent
process, gets its from the selection $. The first fails Norm because it has the
same channel on either side of the �, whereas the second passes it. It would
be possible to eliminate all graph nondeterminism from the second by suitable
labelling of the nodes where $ appears; this is not possible for the first. There is
a clear sense in which Spec′

NR is the normal form of SpecNR.
Going back to the language mismatch discussion above, it is now clear that

normalisation and monotonicity above are the two major barriers to translat-
ing CSP refinement checks to Unity. As a matter of fact, in [16] most of the
attention has been devoted to the study of the two problems. It is shown that
monotonicity and normalisation are inherently related; any CSP specification
that is normalisable in a defined sense will automatically possess a monotonicity
property in its refinement by any implementation.

7 For example, when we say Spec is more nondeterministic than Impl , we mean it
extensionally.

8 Strictly speaking, graph-deterministic graphs only correspond to pre-normal form
graphs as they may contain semantically equivalent nodes and so not be complete
normal forms yet [13].
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We therefore think it is important to set out the results for this case, all
the more so because most natural specification processes either satisfy Norm
already or can be altered easily to do so. By assuming that all specifications
do satisfy Norm, this paper shows that the translation procedure (esp., that of
specifications) can be presented in a much simpler way than in [16].

The paper is organised as follows. Section 3 illustrates the general idea of
the translation, while Section 4 introduces the basic formalisms and definitions
used. Section 5 develops details of the translation, where Section 5.1 translates
Impl to a Unity generator, Section 5.2 translates Spec to a Unity acceptor, and
section 5.3 connects the two to form the whole Prog for unreachability checking.
Section 6 concludes the paper with pointers to some promising future work.

3 The General Ideas

3.1 Generators and Acceptors

The key point of the translation from CSP refinement to Unity unreachability
lies in the construction of a Unity program, Prog , and the identification of the
states in Prog that are required to be unreachable.

Our initial idea about a possible solution came from the refinement checking
procedure used in FDR. Later, as only the trace model is treated as a first step,
we realised that it can be simplified and presented in an automata-theoretical
approach following [17], which is what we now present.

The idea is to construct Prog to implement refinement checking on
(Spec, Impl) by exploiting nondeterminism in Unity: the refinement will fail if
and only if Prog will, for some set of nondeterministic choices, reach a designated
control state.

– Impl is implemented in Unity as a nondeterministic behaviour generator,
Gen, which generates through nondeterminism all possible traces of Impl
and only them. (Note that the prefix-closedness of traces means all states of
the automaton are accepting.)

– Spec is implemented in Unity as a deterministic behaviour acceptor, Acp,
which accepts exactly the traces of Spec. The responsibility of an acceptor
is to identify errors in the behaviour of generators.
Basically, the idea of acceptor, like the ideas of tester process [18] and monitor
automaton [19], is just another reformulation of a well-known algorithm in
deciding language containment between two finite automata. The algorithm
consists of two steps:

• The first step is to determinise Spec and calculate its complement, Spec.
• The second step is to check the emptyness of the intersected language,

Spec ∩ Impl
Normalisation and the translation to an acceptor correspond to the first
step, while unreachability checking corresponds to the second. Normalisation
makes sure that all acceptors will be deterministic; that is, it never refuses
a correct behaviour, and always refuses any erroneous behaviour.
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– Run Gen and Acp in parallel. Gen outputs an event and waits. Acp in-
puts it and sees if it is acceptable. If accepted, Acp signals Gen to continue.
Otherwise, an error occurs. (Note the two automata perform the check in-
teractively, rather than on a word-by-word basis, as they do in Section 2.5
of [20]).

|-------cont-----------|
| |
V |
Gen--test c.x1.x2..--->Acp--->error

Thus Prog = Gen ‖ Acp.
– Model checking to verify unreachability of error on Prog

Spec �X Impl translate=⇒ Prog |=X Unreachability(error)

3.2 The Procedure

Unity is a state-based language; states are defined by value assignments on a
finite set of variables. In its pure form, even control states are encoded into
variables. The semantics of Unity programs (esp., DI programs) can be naturally
captured by a SSTS (Symbolic State Transition System).

On the other hand, CSP is an action-based formalism. Its classic operational
semantics is based on plain labelled transition systems; though for data-bearing
CSP, symbolic LTSs may be more convenient from the point of view of algorith-
mic verification.

But the difference between SSTSs and SLTSs is not great. They can easily
be translated to-and-fro just as can plain STSs and LTSs [18]. In the rest of
this paper, therefore, only SLTSs will be used explicitly. Based on SLTSs, our
translation procedure for implementations and specifications can be formulated
as below.

Impl =⇒ SLTS =⇒ Gen
NSpec =⇒ SLTSN =⇒ Acp

NSpec is a specification satisfying Norm, while SLTSN is a deterministic
SLTS. Acp not only accepts the behaviours defined in SLTSN but also monitors
the behaviours outside it. Gen only generates the behaviours defined in SLTS ,
i.e., with the help of nondeterminism.

4 The Basics of Our Formalism

4.1 CSP

A thorough treatment of CSP can be found in [13]. Here we give only a brief
introduction to the dialects of the CSP language used in this paper. To help with
the intuition of acceptors/generators and to make explicit (at least partially) the
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fact that specifications are constrained by Norm, we use two different dialects:
CSPdi−IMPL for implementations and CSPdi−SPEC for specifications.

Syntax of CSPdi−IMPL

LLP ::= l(e1, ... , en)
| � x : X • LLP | � {LLP1, ... ,LLPn}
| c!x1...!xn → LLP | b & LLP
| let l(z1, ... , zn) = LLP ′ within LLP

P ::= LLP | P |[ chans ]| P ′ | P \ chans

Syntax of CSPdi−SPEC

LLQ ::= l(e1, ... , en)
| � {LLQ1, ... ,LLQn}
| c?x1...?xn : b → LLQ | b & LLQ
| let l(z1, ... , zn) = LLQ ′ within LLQ

Q ::= LLQ | Q |[ chans1 | chans2 ]| Q ′

where chans is a set of channel names, e.g., {c1, ... , cn}, and

b ::= true | false | x = x ′ | arr [x ] | ¬ b | b ∧ b′ | b ∨ b′

e ::= x | are
are ::= arr | {} | {x} | X | are ∪ are ′ | are ∩ are ′ | are \ are ′

In the above, a data independent type X is assumed, and x , y , xi and yi range
over the set (i.e., χ) of variables of type X . arr and arri range over the set (i.e.,
ARR) of variables of boolean DI array type. z and zi range over the set of variables
of both types, i.e., range over Z = χ ∪ ARR. A value expression (e) can either
be a DI variable (x ) or a DI array value expression (are). Value expressions can
only be used in a function call (l(e1, ... , en)) as actual parameters. A function (l)
is defined using the let construct. In general, it is assumed that each variable’s
binding occurrence must be unique in a process expression.

CSPdi−IMPL is designed to capture the intuition of pro-active and “talkative”
generators; all the choice is made internally and processes only output. As there
is no Norm requirement on implementations, CSPdi−IMPL can enjoy the full
power of interface parallel and hiding operators. CSPdi−SPEC is designed to
capture the intuition of passive and receptive acceptors, so multipath choice
(� {LLP1, ... ,LLPn} or � {LLQ1, ... ,LLQn}) is made externally and it only
inputs. Its higher level operators are confined by Norm to alphabetised paral-
lel. (This can be expressed in terms of the interface parallel operator used in
CSPdi−IMPL, but unlike interface parallel cannot introduce graph nondetermin-
ism.) Other features of the languages are:
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– The languages implement the intuition of “communicating sequential pro-
cess”, where a system (i.e., P or Q) consists of a network of sequential
processes (i.e., LLPs or LLQs) running in parallel. Only low-level opera-
tors [15] can be used in LLP and LLQ definition. High-level operators like
parallel and hiding are used only in composing the network. It will ensure
the finite-control (i.e., finite control states) of any process in the language.

– Replicated internal choice in CSPdi−IMPL is used to capture the intuition
of internal or unrecorded variables, which cause (sometimes insuperable)
problems to the process of translation to an acceptor if they appear on the
left hand side of a refinement check. In the current paper, however, this
possibility is banned by (i) of Norm.

– Selective input in CSPdi−SPEC helps introduce external variables, or recorded
variables, explicitly; that is, variables with values assigned by the environ-
ment and therefore “recorded” in its behaviours.

– Boolean guard (b &LLP or b &LLQ) and multipath choice are used in place
of conditionals for the sake of expressiveness and simplicity.

– The condition b in boolean guards is the conjunction, disjunction and nega-
tion of two most basic forms of testing: equality testing (x = x ′) and array
testing (arr [x ]).

Syntactically, the two languages look very restricted and very different from
each other. But (trace-)semantically they are, actually, quite expressive and very
close to each other.

– Output can be simulated by selective input in CSPdi−SPEC . Input can be
simulated by output and replicated internal choice (given that we use the
trace model) in CSPdi−IMPL.

– Any fixed-finite data types and their operations can be reduced by branching
and instantiation into control structure (c.f. [21] for an actual procedure,
where case analysis and mutual recursion are used to reduce value-passing
CCS to pure CCS). Although this is not recommended for doing real model
checking, it is absolutely legitimate and simplifying when developing the
theory of data independence and what is formally decidable.

– A finite collection of DI arrays with contents of fixed-finite types and map
operations (i.e. mapping a n-nary fixed-finite operation onto a set of n-tuples
which collect their n fixed-finite elements from the same location of n DI
arrays [11]) can be reduced to a number of sets (i.e. boolean arrays) and
combinations of the 3 basic set operations (∪, ∩ and complementation).

4.2 Unity

As explained earlier, a Unity program consists of a finite set of variables, their
initialisation, and a finite set of guarded commands.

Unity variables are typed. For programs in this paper, besides the DI type
and the boolean DI array type of the CSP languages, some fixed-finite types are
also allowed to encode the control structures and synchronous communications
in CSP, since Unity language itself supports neither.
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For control structures, a control variable, CS , encodes the control states of a
CSP process, which will correspond one-to-one to each node in SLTSs/SLTSN s.
For communication, a channel variable, CN , is used to record the channel name
on which the communication occurs, and a binary flag variable f is used to
implement the synchronisation between processes. The report of error by an
acceptor after encountering an illegal traces is made through a binary variable,
r .

The set of assignments in each guarded command are simultaneous. That is,
the RHS expressions of the assignments are evaluated first; then the evaluated
values are assigned to the LHS variables all at once. If we temporarily ignore
the fixed finite types and their operations9, the formal definition of guarded
commands can be given below,

cmd ::= b −→ as10

where b is a boolean guard as in CSP and as ::= arr := are | x := x ′ | x :=?.
The only construct we need to pay attention to is nondeterministic selection,
x :=?. It means to pick nondeterministically a value from X and assign it to x .
It is a form of data nondeterminism. With it we can generate DI values implicitly.

After instantiating X with a concrete type T , a Unity DI program becomes an
ordinary Unity program, whose semantics is modelled by a concrete state-based
system. Each concrete state of the system is identified by a value assignment on
the set of program variables. Initialisation is the value assignments identifying
the initial (concrete) states {s1

0 , s2
0 , ..., sk

0 , ...}. The dynamics of a Unity program
can be understood through the notion of runs.

A run is a finite sequence of (concrete) state transitions starting with a initial
state s0,

s0
cmd1−−−→ s1

cmd2−−−→ s2 ...
cmdn−−−→ sn

That is, for any state si−1 (1 ≤ i ≤ n), if the guard of cmdi is true, and cmdi is
fired, it will transit to state si . (n can be 0, in which case a run degenerates to
a single initial state.)

A Unity program is a closed system; it is graph-deterministic iff it has only
one run. That is quite simple, but not very useful. More commonly, we will study
the deterministic subsystems of a Unity program.

Definition 1. A subprogram A of a Unity program S is deterministic iff at any
point of any run of S , the subset of commands belonging to A has at most one
member enabled, and the member must not use nondeterministic selection in its
assignments.

So caution should be taken on what determinism it means when we mention a
deterministic Unity program.
9 Fixed-finite types and their predicates/operations are theoretically trivial, although

their treatment can clutter our presentation non-trivially.
10 Note in this context we use vectors interchangeably with sets.
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One important property of Unity DI programs is the monotonicity of un-
reachability with respect to the size of X . It is quite obvious: by increasing the
size of X , nondeterministic selection can pick more values, so it can simulate
all the runs of the program with a smaller X instantiation, in particular ones
reaching designated control states.

More interestingly, that also implies the monotonicity of determinism in
Unity. So we need only to check the determinism of a Unity (sub)program when
X is infinite to make sure it will be uniformly deterministic over all possible
instantiations of X . Generally, when we mention a Unity DI (sub)program is
deterministic, we mean it uniformly.

4.3 The Symbolic LTS

A SLTS is a data-bearing LTS11. For DI systems, it adds to a LTS the following,

– Each node is associated with a set of data variables of DI type or boolean
DI array type. vars(n) denotes the set of variables for node n.

– Each transition is labelled by a triple of guard, symbolic event, and assign-
ments: ts ::= (gu, se, as). Below is a transition from m to n.

m
gu,se,as−−−−−→ n

– Free and bound variables in the label of a transition must satisfy the following
constraint to make the overall SLTS well-formed:

fv(se) ∪ fv(as) ⊆ vars(m) ∧ fv(gu) ⊆ vars(m) ∪ bv(se)
∧ vars(n) ⊆ vars(m) ∪ bv(se) ∪ bv(as)

The possible symbolic events (se), guards (gu), and assignments (as) are:

se ::= c tt | τ ( tt ::= ε | ?x tt | !x tt )
gu ::= true | false | x = x ′ | arr [x ] | ¬ gu | gu ∧ gu | gu ∨ gu
as ::= arr := are | x := x ′ | x :=?

The x in ?x of se, and the x (or arr) in x := x ′ (or arr := are) of as are binding
occurrences. All other occurrences of DI or array variables in a label are free
occurrences.

The intuitive meaning of a transition m
gu,se,as−−−−−→ n is,

If the values of variables in node m and the values of input variables (bound
variables) in se satisfy gu, the transition is able to fire, after which the
evaluated RHSs of as are simultaneously assigned to the (old or new) LHS
variables.

11 For each process, it is assumed that its LTS or SLTS has a unique root node.
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Note that as input variables in se can be constrained in gu, SLTS transitions
can easily encode the selective input of CSP. One complication it might bring us,
however, is: there might be name conflicts in gu, since it is possible that vars(m)
and bv(se) might intersect. We need to adopt a convention that whenever a name
conflict arises, e.g., on variable x , the primed variable x ′ will be used to refer to
the x in bv(se). More details on this will be in Section 5.2.1.

An SLTS after instantiating X with a concrete type T becomes a concrete
SLTS. Concrete states of such SLTSs consist of two parts: a node name, e.g., m,
identifying the control state, and a value assignment on vars(m), identifying the
data state. A sequence of concrete states connected by concrete transition labels
form a run of these SLTSs, where a concrete transition label is a transition label
(ts) with its symbolic event (se) replaced by a concrete event.

A concrete SLTS is a concrete communicating system; its determinism is
based on traces, which is a sequence of concrete events implied by a run. Each
run implies a trace, which is just the sequence of concrete events in the (concrete)
transition labels of the run. Whenever a run implies a trace, we say the run
conforms to the trace.

Definition 2. A concrete SLTS is deterministic iff, for any trace tr of the
SLTS, the run conforming to it must be unique and does not use any nonde-
terministic selection in the transition labels.

Based on a similar argument as in DI Unity, the monotonicity of determinism
in SLTSs can also be shown to be true. So when we say a SLTS is deterministic,
we mean it uniformly.

In general, it is difficult to devise a complete algorithm to decide the deter-
minism of SLTSs (or Unity DI (sub)programs). But an easy-to-check sufficient
condition can satisfy most of our needs.

Lemma 1. A SLTS is deterministic, if the transition labels in the graph use no
τ event or nondeterministic selection, and the sibling transitions either share no
channel or are disjoint on their guards.

A SLTS satisfying the condition is also called normalised, or a SLTSN .

5 The Translation

In CSP, a process consists of a network of sequential LLPs running in parallel.
To translate it from CSP to Unity, we adopt a compositional approach.

Firstly, each component LLP is translated to a basic automaton in Unity.
Then, these basic automata are composed up by a Unity simulation of CSP
parallel and hiding operators. This allows us to create the generator and acceptor
we needed.



Relating Data Independent Trace Checks in CSP 259

5.1 Impl to Gen

Translating the implementation to a generator is relatively straightforward. We
simply follow the procedure outlined below.

For each component LLP in Impl , do the following.

Step 1: LLP =⇒ SLTS

Symbolic Labelled Transition Rules

c!x → LLP
true,c!x ,{}−−−−−−−→ LLP

l(e)
true,τ,z :=e−−−−−−−→ LLP where l(z ) = LLP

� x : X • LLP
true,τ,{x :=?}−−−−−−−−−→ LLP

� {LLP1, ... ,LLPn} true,τ,{}−−−−−→ LLPi

b & LLP
b,τ,{}−−−−→ LLP

Each node n is identified by a process expression LLP . The set of variables
associated with n is, vars(n) = fv(LLP).

Step 2: SLTS =⇒ Gen

* Interface with the environment

To implement the SLTS in Unity, first thing to do is to model communica-
tion by shared variables, so Gen uses a set of interface variables to communicate
with the environment. Specifically, the following interface variables need be de-
fined, CN : {c1, ..., cn} for the channel name, DC : seqX for the vector of data
components, and f : {cont , test} for a synchronisation flag.

* Encode control and data

The control structure of the SLTS needs to be encoded by a control state
variable, CS : {root ,m,n, ...}, ranging over the node names of the SLTS. Data
variables associated with nodes in the SLTS should accordingly be implemented
as Unity data variables of the same type. All the control and data variables are
private variables of Gen.

________
|f|CN|DCs|
|---------------------
| |
| Private variables |
|_____________________|

* Implement transitions

m
gu,τ,as−−−−→ n by CS = m ∧ gu −→ {CS := n} ∪ as
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m
gu,c!x ,as−−−−−→ n by

CS = m ∧ gu ∧ f = cont −→ {CS := n,CN := c,DC := x , f := test} ∪ as

* Initial states

f := cont CS := root

The implemented Gen will be able to generate all the possible traces of the
SLTS nondeterministically, in the sense that the value of each communication
appears in CN and DC , and separate events are identified by changes in f . A
new event is recorded when f ’s value is changed by the process from cont to test
(it being the duty of the observer to change it the other way once the event has
been observed).

Hence, LLPs can be translated into basic sequential Gens. Based on these
results, we can continue to translate Impl , which is a network of LLPs, into a
composite Gen.

Case 1: Parallel operator

P |[ chans ]| P ′, where P and P ′ have been implemented as Gen(P) and
Gen(P ′).

________
|f|CN|DCs|
|---------------------------
| Gen(P|[chans]|P’) |
|________ ________ |
|f|CN|DCs| |f|CN|DCs| |
|----------| |----------| |
| Gen(P) | | Gen(P’) | |
|__________|__|__________|_|

* Commands
The following three guarded commands observe the external variables of the two
subprocesses and combine/transmit these to appear in the external variables of
the combination.

f = cont ∧ fP = test ∧ CNP /∈ chans
−→ {CN := CNP ,DC := DCP , fP := cont , f := test}

f = cont ∧ fP′ = test ∧ CNP′ /∈ chans
−→ {CN := CNP′ ,DC := DCP′ , fP′ := cont , f := test}

f = cont ∧ fP = test ∧ fP′ = test ∧ CNP = CNP′ ∧ CNP ∈ chans ∧ DCP = DCP′

−→ {CN := CNP ,DC := DCP , fP := cont , fP′ := cont , f := test}
* Initial states

f := cont

Case 2: Hiding operator
P \ chans, where P has been implemented as Gen(P).
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________
|f|CN|DCs|
|--------------------------|
| Gen(P\chans) |
|________ |
|f|CN|DCs| |
|----------| |
| Gen(P) | |
|__________|_______________|

* Commands
The following either transmit or conceal each action of Gen(P) as appropriate.

fP = test ∧ CNP ∈ chans −→ {fP := cont}
f = cont ∧ fP = test ∧ CNP /∈ chans

−→ {CN := CNP ,DC := DCP , fP := cont , f := test}

* Initial states

f := cont

5.2 Spec to Acceptor

This is similar to the translation from Impl to a generator. The various cases
are given below.

For each component LLQ in NSpec, do the following.

Step 1: LLQ =⇒ SLTSN

Due to the determinism requirement on SLTSN s, the symbolic labelled tran-
sition rules for specifications need to have one important difference from those
of implementations; that is, no τ event can be generated by the rules. Therefore,
the specification rules will be designed to merge all possible τ transitions with
their subsequent visible ones.

Symbolic Labelled Transition Rules

c?x : b → LLQ
b[x ′/x ],c?x ′,{}−−−−−−−−−→ LLQ

LLQi
gu,se,as−−−−−→ LLQ′

i

�{LLQ1,...,LLQn} gu,se,as−−−−−→ LLQ′
i

LLQ
gu,se,as−−−−−→ LLQ′

b &LLQ
gu∧b,se,as−−−−−−−→ LLQ′

LLQ
gu,se,as−−−−−→ LLQ′

l(e)
gu[e/z ],se[e/z ],as[e/z ]∪z′:=e−−−−−−−−−−−−−−−−−−−→ LLQ′

where l(z ) = LLQ

The middle two rules of symbolic labelled transitions are quite obvious. The
first and last rules need to assume a set χ′ of primed variables for χ and a set
ARR′ of primed variables for ARR so that for any x ∈ χ, there is a corresponding
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x ′ ∈ χ′, and similarly for any arr . In the context of a transition
gu,se,as−−−−−→ , all

occurrences of new variables introduced by binders in se and as are renamed to
their primed counterparts to avoid name conflicts. Note that due to the unique
binding occurrence condition on a process expression, only the variables going
out of scope through a (direct or indirect) recursive function call may conflict
with new variables. The proper working of this mechanism also depends on
Norm of LLQ , which guarantees that all recursive function calls are either
action-guarded or are calling on (recursive) functions that behave like STOP or
DIV .

Each node n in the resulting SLTSN is identified by a process expression
LLQ . The set of variables associated with n is, vars(n) = fv(LLQ). No sibling
transitions in the SLTSN share any communication channel.

Step 2: SLTSN =⇒ Acp

* Interface with the environment

As in Gen, the interface includes CN : {c1, ..., cn} for the channel name, DC :
seqX for the vector of data components, and f : {cont , test} for synchronisation.
Moreover, Acp needs an additional variable to report error in accepting, r :
{normal , error}.

* Encode control and data

Also like Gen, we need a control state variable, CS : {root ,m,n, ..., stop},
bookkeeping the current node in execution or simply stop, and a set of data
variables implementing variables associated with each node in the SLTSN . They
are all private variables of Acp.

* Implement transitions

Transition m
gu,c?x ′,as−−−−−−→ n is translated to two commands:

CS = m ∧ f = test ∧ CN = c ∧ gu[DC/x ′] −→ {CS := n, x := DC , f := cont} ∪ as
CS = m ∧ f = test ∧ CN = c ∧ (¬ gu[DC/x ′]) −→ {r := error ,CS := stop}

The above raises an error flag if illegal data arrives along a channel that state
m can perform. (We note that the conditions of Norm ensure that there is at
most one transition of m labelled by each channel c.) The following does the
same if a communication along a channel appears with no transitions in m.
CS = m ∧ f = test ∧ CN /∈ Chans(m) −→ {r := error ,CS := stop}

* Initial states

f := cont r := normal CS := root

After we translate LLQs to Acps, only one step is needed to translate Spec,
that is, translating alphabetised parallel operator.
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__________
|r|f|CN|DCs|
|--------------------------|
| Acp(Q[alp1||alp2]Q’) |
|__________ __________ |
|r|f|CN|DCs| |r|f|CN|DCs| |
|----------| |----------| |
| Acp(Q) | | Acp(Q’) | |
|__________|__|__________|_|

* A new private variable ST : {testing , resting , stop} and six commands in Unity

f = test ∧ ST = resting ∧ fQ = cont ∧ fQ′ = cont ∧ CN ∈ (alp1 ∩ alp2) −→
{CNQ .DCQ := CN .DC ,CNQ′ .DCQ′ := CN .DC , fQ := test , fQ′ := test ,ST :=
testing} f = test ∧ ST = resting ∧ fQ = cont ∧ fQ′ = cont ∧ CN ∈ (alp1 \ alp2) −→
{CNQ .DCQ := CN .DC , fQ := test ,ST := testing}
f = test ∧ ST = resting ∧ fQ = cont ∧ fQ′ = cont ∧ CN ∈ (alp2 \ alp1) −→
{CNQ′ .DCQ′ := CN .DC , fQ′ := test ,ST := testing}
f = test ∧ ST = resting ∧ fQ = cont ∧ fQ′ = cont ∧ CN /∈ (alp2 ∪ alp1) −→
{r := error ,ST := stop}
f = test ∧ ST = testing ∧ fQ = cont ∧ fQ′ = cont ∧ rQ = normal ∧ rQ′ = normal −→
{f := cont ,ST := resting}
f = test ∧ ST = testing ∧ (rQ = error ∨ rQ′ = error) −→ {r := error ,ST := stop}

* Initial states:

f := cont ST := resting r := normal

5.3 Connecting the Generator to the Acceptor

Finally, by letting Gen and Acp sharing the common variables in their inter-
faces, we connect them up and obtain the Prog needed for unreachability check.
Variable r is left open to report error.

________________________
| |
| Acp |
|________________________|
|r|f|CN|DCs|
-|--------------------------
| |
| Gen |
|__________________________|

This completes our translation of the problem, NSpec �X Impl , to another
problem, Prog |=X Unreachability(error). Based on the translation, Theorem 4
in [11] can be transferred to the setting of CSP with arrays.



264 X. Wang, A.W. Roscoe, and R.S. Lazić

Theorem 1. For any specification of CSPdi−SPEC satisfying Norm, the prob-
lem of its trace refinement checking by any implementations in CSPdi−IMPL is
decidable.

6 Conclusion and Future Work

We have shown how to translate certain forms of CSP trace refinement check
in a syntax that allows DI array operations into Unity unreachability. With the
exception of the renaming operator, which we have excluded for simplicity, it
is possible to convert any CSP process description of the type usually run on
FDR (i.e., parallel/hiding/renaming combinations of sequential processes) to a
generator, after noting the trace equivalence of internal and external choice. As a
substantial majority of specifications used with FDR either satisfy Norm or can
be trivially modified to do so – for Norm essentially corresponds to clarity of a
specification- this means we can confidently expect that our decidability results
will cover many practically important cases of CSP checks involving arrays.

Nevertheless, understanding which non-normalised specification processes are
capable of being transformed to a finite SLTSN is important because it will
determine the extent to which more general problems of trace refinement can
be decided by our methods. The main problem in doing this is understanding
the role of unrecorded variables and their relationship to monotonicity. We have
investigated this in [16] and introduced the concept of DI-explicitness as a way
of understanding this. More work is required here.

In general, we believe that the methods described in this paper can be used
to extend our results to stable-failures equivalence. Likewise, the work could
also be extended to cover the cases of DI arrays that are indexed by one DI
type (e.g., X ) and containing contents of another (e.g., Y ), or even the cases of
multi-dimensional arrays.

The decidability results in this paper are theoretical and sometimes rely
on the decision procedures arising from well-structured transition systems [22].
Finding cases where simpler ideas such as threshold calculation [4] will work is
important, as is a general investigation of how to translate the decision problems
from being theoretically soluble to having access to practical tools that solve
them.
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