
Preface

I wrote these notes between about 1984 and 1989. Not too long before I
had been lucky enough to attend Joe Stoy’s lectures on domain theory and
denotational semantics in 1977/8 (my final undergraduate year) and to be
a graduate student in Oxford as Dana Scott developed the notion of an in-
formation system through two later iterations of the first half of the same
course. I vividly remember how the second version, on which the present
notes are fairly closely based, were a blessed relief to one who had taught
people the first version!

I’d like to express my thanks to both Joe and Dana for the education they
gave me.

In my turn I gave the domain theory course in Oxford for many years and I
wrote these notes to accompany that course, and they were used until quite
recently by subsequent lecturers. The version of information systems in these
notes was simplified from Dana’s version by the removal of a null token and
the change from inferences of the form X � Y to ones of the form X � a,
where a is a single token and Y is a set of them.

What appealed to me about information systems was the way they turned
an abstract axiomatisation of how propositions might describe an object into
a fairly concrete representation of domain theory. There is not much cate-
gory theory in these notes, and what there is is largely camouflaged. This
was because category theory did not seem to me to be necessary to achieve
what I wanted, and I did not want to add a further level of abstraction to
what could be taught in an 8-week course at two lectures a week. (Oxford
final-year undergraduates came to the course without any background in cat-
egories.) In that sense at least these notes now seem quite out of date, and it
would be wrong to try to give the impression that they give a reasonable in-
troduction to the subject of domain theory as it is now generally understood.

My course would consist of these notes with the exceptions of Section 2.4
(advanced topics in partial orders), Chapter 6 (powerdomains) and some-
times Section 5.2.

I have wanted to put these notes on line for a number of years, but was
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held back until now by the way my 1980’s LaTeX had grown incompatible
with modern versions and font selections. I’m very grateful to my secretary
Sue Taylor for revising the LaTeX as well as tidying them up in various ways.

Bill Roscoe
November 2007
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Chapter 0

Introduction

I wrote these notes in the 1980s for a course on domain theory that I gave at Oxford.
They were used (by me and others) as the text for that case for many years after.
They were originally intended to form half of a co-authored book on domain theory
and semantics, but my co-author never finished his half.

I had done a course on Scott-Strachey semantics in 1977/8 as a final year
undergraduate. That course was given by Joe Stoy, based on his (then new) book.
The domain theory used there was the Pω model in which domains were sublattices
of the powerset of the natural numbers.

While that theory provided excellent connections with recursion theory, it
had the disadvantage that the codings of domains within the natural numbers were
a bit artificial, and that all domains had tops. By about 1980, Dana Scott was
developing the concept of an “information system” in successors to the course I had
taken and which I now found myself helping with the teaching for. After a couple of
years his development culminated in the paper Domains for denotational semantics
(ICALP 1982).

I slightly reworked the structure of an information system for these notes,
but these remain very close to what Scott had proposed. They were my attempt to
present a course on domain theory appropriate for final-year Oxford undergraduates
based on Scott’s ideas. The undergraduate course never covered the chapter on
powerdomains: essentially this was written for my own entertainment.

Information systems are based on concrete representations of domains: there
is no explicit mention of category theory here at all. Obviously the topic of domain
theory has moved on a great deal since I wrote these notes: they should be thought
of as a product of their era, a kind of valedictory conclusion to Scott’s time in
Oxford.

Bill Roscoe
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Chapter 1

The motivation for domain theory

Computer programs, programming languages and the machines we run them on
are among the most complex creations of mankind. In everyday life we often need
to rely on them working correctly. There are therefore very good reasons why we
should develop methods of understanding these objects, constructing them properly,
and proving them correct. We would like to be able to use mathematics to reason
about computer programs, just as engineers use mathematical methods to reason
about their structures.

We need to develop the right sort of mathematics to do this. A mathematical
model should reflect the detail we are interested in: at each level we should be able to
manipulate the concepts that are important without being cluttered by irrelevant or
misleading information. In other words it should be at the right level of abstraction.
For example, let us consider what is required of a mathematical model for programs
in a language which includes variables and assignment.

• The model should almost certainly keep some record of the final values of
a program’s free variables. This is because we are likely to be able to use
these values outside the program, for example by sequentially composing our
program with another one that uses its variables.

• On the other hand we are very unlikely at this level to want to know about
the electrical impulses which make up the computation. Not only would
such details clutter up the model but they are inappropriate: provided the
language implementation we are using is correct we should not have to worry
about precisely how the implementation works, or even what sort of machine
it is running on.

• Many things are not so clear cut. Consider the intermediate values of a
program’s free variables. In most languages there is no reason to want to
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know about these, because there is no way of inspecting a program’s variables
while it is running. However, imagine a language where it is possible to
compose two subprograms in parallel, so that they run simultaneously. Now,
if one parallel program has the power to inspect the other’s variables at any
time, it is obviously necessary to keep track of all the values of the latter’s
variables, not only the final ones. In such a language, if we run y := x in
parallel with x := 3 then the final value of y is either 3 or the initial value
of x . If, on the other hand, we run y := x in parallel with x := 1; x := 3
then we have the additional possibility that y might have final value 1. Thus
the programs x := 3 and x := 1; x := 3 are not equivalent in this language,
though they would be in most.

It seems likely that we will need a good deal of flexibility in our theory: for any
particular system or language we must have the ability to choose the features that
are important there, and build a model for them.

Indeed, it seems only natural that once we have developed a reasonable math-
ematical theory of programming languages, we should use it to provide a standard,
or specification, by which to judge particular implementations. Therefore it is im-
portant that we should develop a theory which allows us to capture the ‘essence’ of
languages and the programs written in them.

There are several approaches to the mathematics of programming languages:
some are based on associating logical formulae with programs; others are based on
developing an algebra of programs. The approach described in this book is that of
Scott and Strachey: given a language L we will attempt to construct an appropriate
mathematical model M and an abstraction or semantic function S : L →M. For
each program P ∈ L, SSP should represent the ‘meaning’ of P . This is known as
denotational semantics; for a summary of other approaches see Chapter ??.

Our aim will be to construct models and semantic functions in such a way
that the aims set out above are achieved. The function S should be such that
SSP = SSQ if and only if P is naturally equivalent to Q . We will also hope to be
able to prove the correctness of a program by inspecting the value it is mapped to
in M.

In Sections 1.1 and 1.2 we look at two very different programming languages.
On the one hand this serves to introduce the notation and basic ideas of program-
ming language semantics. On the other, we quickly meet the problem which much
of this book is devoted to solving: the fact that it is by no means obvious that the
mathematical models we need even exist.
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1.1 Some languages are easy

Whenever we are presenting a language we will need to describe its syntax. We
will do this by describing a number of syntactic domains. These will be the various
classes of syntactic objects from which programs are constructed.

Consider a very simple language in which there are variables, expressions
that can be assigned to them, and in which the only way of building large programs
is by running two smaller ones in sequence. The expressions include numerals
representing the natural numbers, variables and the sum and product of all pairs of
expressions. We will use the following syntactic domains to represent this language.

syntactic domains

I ∈ Var variables
N ∈ Num numerals
E ∈ Exp expressions
Γ ∈ Cmd commands

Here we are giving names to a number of classes of syntactic objects, and giving a
notation for the typical element of each one. Thus, while we are considering this
language, x will always represent a variable, E , E ′ will be expressions, and so on.
Of course, giving names to the syntactic classes does not determine the form of the
objects they contain. Let us assume that we already know the syntax of Var and
Num. The syntax of expressions can be described by the formula:

E ::= N | I | E1 + E2 | E1 ∗ E2 .

This simply says that an expression is always either a numeral, or a variable, or
the sum of two smaller expressions, or the product of two smaller expressions. We
formally define the set of all expressions to be the smallest set satisfying the above
‘equation’: in other words the smallest set which, whenever it contains E1, E2 and
E , also contains all the objects on the right hand side above. This very convenient
way of describing syntax is known as Backus-Naur Form or BNF for short1. The

1The above actually varies a little from standard BNF, because we have labelled the subcompo-

nents: for example E1 and E2, imagining these to stand for particular expressions. The standard

method would use the unlabelled name E , with no implication that different uses of it represent the

same expression. Provided one keeps to the rule that no label is used more than once in any term

(and we will keep to it), ours is equivalent to the standard form, and perhaps a little clearer. By

using a label more than once – with the obvious meaning that expressions with the same label are

the same – one can describe syntaxes not obtainable from standard BNF (and harder to parse and

store). A good example is palindromes (sequences that read the same backwards and forwards),

which are generated by PI ::= B | B1.B1 | B1.PI .B1, where B ranges (say) over the letters of the

alphabet.
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syntax of commands can be similarly described:

Γ ::= I := E | Γ1; Γ2 .

An important assumption in describing a BNF syntax is that the various
clauses contained in it are disjoint: for example no object can both be of the form
E1 + E2 and of the form E1 ∗ E2. In other words, given an object in one of these
syntaxes, we know exactly how it is put together, or parsed. They can be termed
objects in an abstract syntax, and in some ways it is more accurate to think of
them as parse trees than as strings of symbols, which may be termed concrete
syntax. (Consider, for example, the expression 1 + 2 ∗ 3, which can either be read
as 1 + (2 ∗ 3) or as (1 + 2) ∗ 3.) It is the duty of anyone writing down syntactic
objects as strings of symbols to introduce enough bracketing (even when this is not
a formal part of the syntax) or parsing conventions to make their abstract syntax
unambiguous.

Having completed the description of our language’s syntax, we can now start
thinking about its semantics. To do this we must decide on appropriate mathemat-
ical models for the various syntactic classes.

We will assume the existence of a semantic function N : Num → N, where N
is the set of natural numbers (non-negative integers). For each N ∈ Num, N [[N ]] is
the number that N denotes. We will always use the ‘semantic brackets’ [[ · ]] around
a piece of syntax to which we are applying a semantic function.

The syntactic domain Var is, so far as we are concerned, just a set of distinct
names. Any sensible semantic model for it would also just be a set of one distinct
object for each – so it is simplest to use Var ‘as its own model’ – in other words
to use variables directly in the semantics. We do, however, need a mechanism for
recording the values stored in the variables: recalling that all expressions are to
take values in N, we define S , the set of states to be Var → N, the set of functions
from variables to their possible values. Given the variable2 x and state σ, σ[[x ]] is
the value of x in σ.

Clearly the value of a general expression can depend on the values of any
variables it contains. Therefore the semantic function for expressions has the form

E : Exp → (S → N) .

In other words E [[E ]] is a function from states to natural numbers; E [[E ]]σ is the

2Notice that we are using ‘x ’ as a typical variable rather than I . The distinction between these

two ways of writing down the same thing is that one, I , is a syntactic metavariable representing

any variable, whereas x is one specific variable, whose identity is the name ‘x ’. Thus, I1 and I2
are sometimes equal and sometimes not (depending on whether the variables they denote are the

same; while x and y are always different. The reason why this is a little confusing is that the set

Var contains only one class of objects: names. In fact x is to I what x := 3; y := x is to Γ .
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value of the expression E in the state σ.
The value of E [[E ]] can be defined for every expression E by giving one clause

for each case in the BNF syntax of Exp. In each case, the value of the expression
will be computed from those of the simpler ones from which it is built, a principle
which we will discuss shortly, and thus:

E [[N ]]σ = N [[N ]]

E [[I ]]σ = σ[[I ]]

E [[E1 + E2]]σ = E [[E1]]σ + E [[E2]]σ

E [[E1 ∗ E2]]σ = E [[E1]]σ × E [[E2]]σ

Note that in each case we have defined the function E [[E ]] by giving its value at
every element σ of its domain S . This style of definition depends on the principle
of extensionality which states that two functions on a given domain X are equal if
and only if they give the same result for every element of X . We will appeal to this
principle many times in this book.

The definitions for E1 + E2 and E1 ∗ E2 may appear trivial or circular, but
it is important to remember that the ‘operators’ on the left hand side above are
simply symbols, or syntactic objects, whereas + and × on the right hand side are
just the usual operators over N.

It is intuitively clear that, by giving the four clauses above, we have defined
the function E for all E ∈ Exp. For example we can work out the value of E =
(1 + 1) ∗ x in the state σ by first working out E [[1]]σ = N [[1]] (= 1, presumably).
(Numerals, such as 1, are underlined to distinguish them from numbers, such as
1.) We can then deduce that E [[1 + 1]]σ = E [[1]]σ + E [[1]]σ = 1 + 1 = 2, and finally
obtain E [[E ]]σ = 2 × E [[x ]]σ = 2 × σ[[x ]]. Shortly we will see a proof that E is indeed
defined on all E .

We can give a semantics for the commands in our language into the model
S → S : a command represents a function which maps initial to final states. The
semantic function thus has the form

C : Cmd → (S → S ) .

It is defined by the following clauses:

C[[I := E ]]σ = σ[E [[E ]]σ/I ]

C[[Γ1; Γ2]]σ = C[[Γ2]](C[[Γ1]]σ) .

σ[n/x ] represents the state which is the same as σ except that it maps x to n:

σ[n/x ][[x ′]] =
{

n if x = x ′

σ[[x ′]] if x 6= x ′ .
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The effect of the command I := E is simply to evaluate the expression E and store
the resulting natural number in I . The effect of the command Γ1; Γ2 on the state
σ is the same as that of the command Γ2 on the final state produced when Γ1 is
given σ as its initial state.

Now that we have defined the semantics of our language it is possible to
prove theorems about it. For example, for all commands Γ1, Γ2 and Γ3 we have
C[[Γ1; (Γ2; Γ3)]] = C[[(Γ1; Γ2); Γ3]] because, for all σ ∈ S ,

C[[Γ1; (Γ2; Γ3)]]σ = C[[Γ2; Γ3]](C[[Γ1]]σ)
= C[[Γ3]](C[[Γ2]](C[[Γ1]]σ))
= C[[Γ3]](C[[Γ1; Γ2]]σ)
= C[[(Γ1; Γ2); Γ3]]σ

Each line of this derivation is justified by the semantics of sequential composition,
in one direction or the other.

The functions C[[Γ1; (Γ2; Γ3)]] and C[[(Γ1; Γ2); Γ3]] are thus equal, because
they are equal on all arguments. (There is another rather more elegant proof of this
result: since sequential composition simply has the effect of composing the values
of its arguments as functions from S to S (i.e., C[[Γ1; Γ2]] = C[[Γ2]] ◦ C[[Γ1]]), the
result follows from the associativity of functional composition. However the proof
given above illustrates a methodical style that is widely applicable in denotational
semantics.) Other properties of this language are included as exercises at the end
of the section.

The above semantics is adequate for our language because it tells us every-
thing we want to know about the effects of the programs we can write in it (assuming
that we are not interested in, for example, the intermediate values of variables). It
also has the important property that the value of a compound program (such as
Γ1; Γ2) or expression can be determined from the values of its immediate syntactic
subcomponents. Suppose that the only initial state that we will ever want to give
a program is σ1, which maps all variables to 1. We might then attempt to define
a simpler semantic function than C (which apparently is now too general): C′[[P ]]
gives the final state of P when started in state σ1. Even though C′ tells us every-
thing we want to know about programs, it is not a reasonable semantic function: in
general it is impossible to tell the value of Γ1; Γ2 from those of Γ1 and Γ2, because
Γ1 is likely not to have σ1 as its final state.

The term denotational semantics is usually reserved for situations where, in
addition to the fact that programs are mapped to values in mathematical models,
the value of a compound semantic object can be deduced from the those of its parts
in the manner discussed above.

Let us now turn to the subject of proving things about syntactic objects.
We asserted above that semantic functions such as E are defined on the whole of
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their domain if one gives a clause for each case of the syntax, defining the value of
that case in terms of its subcomponents. The following principle is very useful in
proving this and other, less trivial, properties of objects in a BNF syntax.

principle of structural induction

Suppose the property R is such that it can be proved for every object in a syntax on
the assumption that it holds of all of that object’s subcomponents. Then R holds of
every object in the syntax.

The validity of this principle in BNF syntaxes is proved by the observation
that, under its assumptions, the set of all objects in the syntax satisfying property
R must satisfy the ‘defining equation’ of the syntax (because whenever all of an
object’s subcomponents are in the set, so is the object). But the syntactic domain
is defined to be the smallest set satisfying its defining equation3.

Our assertion about the definedness of semantic functions follows easily from
this principle: R becomes, for example, ‘E is defined’. We already have, by construc-
tion, that E is defined on E ∈ Exp whenever it is defined on E ’s subcomponents.

Readers familiar with mathematical logic will probably recognise structural
induction as a technique they have used there. We will see it used to prove a wide
variety of results about programs. The exercises at the end of this section include
several applications.

The notation of functions

The reader will no doubt already have noticed that, in denotational semantics, we
make frequent use of functions and function spaces. It is useful to develop a few
conventions to make our mathematics easier to read.

Firstly we will usually Curry our functions. A Curried function is a function
of several arguments which is modified to take its various arguments one at a time.
This technique is named after H.B. Curry, one of the architects of the λ-calculus
(see Chapter 7). For example, we can Curry the binary function ‘+’ to obtain
plus : N → (N → N); so that (plus(3))(4) = 7, and plus(3) is the function that adds
3 to any natural number. Notice that E was of type Exp → (S → N) rather than
(Exp × S ) → N. Thus instead of E demanding both an expression and a state at
the same time, if we wish we can feed it only an expression. Our reason for doing
this is that ‘intermediate’ results (such as E [[E ]]) are often interesting and/or useful.
Note that in Currying functions we are taking advantage of the following general

3This demonstration of the validity of structural induction is highly reminiscent of the justi-

fication of ordinary mathematical induction from Peano’s axioms. The last of these states that

the natural numbers is the smallest set satisfying the preceding ones, and it is this which justifies

induction.
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isomorphism4 between function spaces.

(A1 ×A2 × · · · ×An) → B ∼= A1 → (A2 → · · · (An → B) . . .)

Notice that we can Curry a function of 2 arguments in two ways depending
on which argument is taken first: for example the arithmetic subtraction operator
− could be Curried as

fromn m = n −m or taken m = m − n .

So from(10) is the function that subtracts its argument from 10, while take(10)
takes 10 from its argument. For a function of k arguments there are, similarly,
k ! ways of Currying. If you are going to be interested in intermediate results it
is vitally important to choose the correct order. For example it would have been
wrong to Curry the semantic function C above as Cσ[[Γ ]], since this would not allow
us conveniently to write down the semantic value of a command.

There are two notational consequences of the habit of Currying functions.
We often have to define iterated function spaces such as the one on the right above,
and we often have to supply a function with several arguments, one at a time, as
in (((f (a))(b))(c))(d). To avoid cluttering up expressions with brackets, we adopt
two conventions. The function space constructor will always associate to the right,
so that the space on the right hand above can be rewritten:

A1 → A2 → · · ·An → B .

Functional application will associate to the left. We will also generally omit meaning-
less brackets around the arguments to functions. Thus we can rewrite (((f (a))(b))(c))(d)
as f a b c d . We can, of course, override these conventions by the use of brackets, as
in

A → (B → C ) → D = A → ((B → C ) → D)
f (g x )y = (f (g(x )))(y) .

Notice that in writing such things as E [[E ]]σ we have already implicitly followed the
convention concerning application.

Exercises

4Readers might be more familiar with one of the consequences of this isomorphism, which is

that ab.c = (ab)c for natural numbers a, b and c. For these are respectively the sizes of the sets

(B × C ) → A and C → (B → A) respectively, where A has size a and so on.
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1.1.1 The syntax of binary numerals is as follows:

N ∈ Num the set of binary numerals

N ::= 0 | 1 | N 0 | N 1

Typical binary numerals are 001, 1, 100 and 00.
Define the semantic function N : Num→ N that maps each binary numeral
to the expected natural number. (Your definition should be by recursion on
syntax, in the style illustrated in the definitions of E and C above.)

1.1.2 A ‘non-standard’ semantic function for Num is given by Z : Num→ Z. (Z
is the set of all integers: positive, negative and zero.)

Z[[0]] = 0

Z[[1]] = 1

Z[[N 0]] = −2×Z[[N ]]

Z[[N 1]] = 1− (2×Z[[N ]])

(a) Prove by structural induction on Num that, if N = bnbn−1 . . . b1b0 is
any numeral (where each bi is 0 or 1), then

Z[[N ]] =
∑n

i=0(−2)i b̂i

where 0̂ = 0 and 1̂ = 1.
(b) Show that the function Z is onto.

[Hint: show by induction that the numerals of length n or less are
mapped onto a contiguous set of exactly 2n integers.]

(c) Show that Z[[N ]] = Z[[N ′]] if and only if either N can be obtained from
N ′ by adding leading zeros or vice-versa.

1.1.3 Use the principle of extensionality to prove the following results about sub-
stitution in states σ ∈ S :

(a) If x 6= y then σ[a/x ][b/y ] = σ[b/y ][a/x ], for all a, b ∈ N.
(b) For all a, b ∈ N, σ[a/x ][b/x ] = σ[b/x ].

1.1.4 Recall the definition of, and semantics for, the set Exp of expressions on
pages 7 and 9. Prove, by structural induction, that, if the expression E
contains no occurrence of the variable x , then E [[E ]]σ = E [[E ]](σ[n/x ]) for all
n ∈ N. Deduce
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(a) that if Γ is a program in our first example language which does not
contain x , then for all n ∈ N,

(C[[Γ ]]σ)[n/x ] = C[[Γ ]](σ[n/x ]) and

(b) if E2 does not contain x then

C[[x := E1; x := E2]] = C[[x := E2]] .

1.2 Some languages cause problems

The simple language treated above caused us very few difficulties. Its main function
was as vehicle to introduce the notation of denotational semantics. In particular
there was no problem in devising and constructing the appropriate semantic model.

Consider the following simple functional language.

syntactic domains

N ∈ Nml numerals
B ∈ Bas basic constants
I ∈ Ide identifiers
E ∈ Exp expressions
∆ ∈ Dec declarations

syntax5

B ::= N | ∗ | + | − | div | . . . | true | false . . .
E ::= B | I | if E0 then E1 else E2 | E0E1 | ∆in E

∆ ::= define I = E | define (I I1 I2 . . . In) = E |
rec I = E | rec (I I1 I2 . . . In) = E

The syntax of this language looks like that of a small purely functional subset
of a dialect of Lisp. It bears some resemblance to the language described by Abelson

5The BNF clause for declarations here is non-standard because it contains, in the two clauses

defining functions, an n which ranges over N in such a way that the syntactic construction varies.

In fact, each of these ‘clauses’ really consists of an infinite family of very similar ones. If one

wanted to define the same thing without infinitely many clauses, one could introduce an extra

syntactic domain of parameter lists: defined using BNF to be any nonempty list of identifiers.

The way we have described the syntax here is probably clearer, to the human eye, at least.



The motivation for domain theory 15

and Sussman in their text [] and also to Peter Henderson’s Lispkit language [].
Our interpretation of the language will be similar to theirs, but the language has
deliberately been chosen not to coincide with either (or any other language we
know of), so that we are not bound to place exactly the same interpretation on
its constructs as was done before. An informal description of the meaning of the
language constructs is given below. There are a number of example programs on
the following pages that illustrate all of these.

In this language the terms ‘program’ and ‘expression’ are interchangeable,
for the only way to compute anything is by evaluating an expression. Programs
are made up from constants and identifiers with three constructs: a conditional
expression if E0 then E1 else E2 takes value E1 or E2 depending on whether E0

takes value true or false. E0E1 is the result of applying the function E0 to E1,
and ∆in E evaluates E using the definitions created by the declaration ∆. Decla-
rations can be of a form which defines an identifier to be the same as an expression
define I = E or rec I = E , or which define it to be a (Curried) function
define (I I1 I2 . . . In) = E or rec (I I1 I2 . . . In) = E of any number of argu-
ments which returns the value of the expression E with the names of the arguments
replaced by the arguments themselves. The difference between the define and the
rec forms is that the first is non-recursive (the meaning of any occurrence of I in the
expression E has the same meaning as outside the scope of the declaration, namely
the value ‘before’ the declaration) while the second is recursive (any occurrence of
I within E has the meaning which is currently being defined).

Bas, the domain of basic constants, contains all the numerals, truth values,
and also basic operators. Identifiers are used to denote objects within programs.
They are not variables, because there is no assignment which can ever vary their
values. All usual basic operators such as +, < and etc. are treated as functions like
any other and are thus used in prefix rather than the more usual infix form. Thus
we write (+ 5 4) and (< 3 4) rather than 5 + 4 and 3 < 4.

In case the reader has not met a language like this one before, the following
are a few simple examples. The declaration ∆1 defines a function that returns the
greater of its two arguments:

∆1 ≡ define (maxn m) = if (> n m) then n else m

Thus, ∆1in max(max 3 4) 5 would have value 5 and

define (nonneg x ) = (∆1in max x 0)

defines a function which returns its argument, unless that was negative, in which
case it returns 0.

A recursive definition can be used where looping constructs would be used



16

in a more traditional language. For example,

rec (fibn) = if ≤ n 2 then 1
else (+ (fib(−n 1))(fib(−n 2)))

defines a function which computes the nth Fibonacci number, where each is calcu-
lated as the sum of the previous two (after setting fib 1 = 1 and fib 2 = 1).

One of the most useful features is the way in which one can use higher-order
functions, namely functions which are applied to other functions. For example,
∆2 defines a function, iterate, that takes a function f , a natural number n and a
starting value x and computes the result of applying f to x n times (i.e., f n(x )).

∆2 ≡ rec (iterate f n x ) = if (= n 0) then x
else (iterate f (−n 1) (f x ))

Higher order functions such as this one can have a wide variety of uses. For example,

define (poweroftwon) = (∆2in iterate (∗ 2)n 1)

defines a function for computing 2n – notice how we have made use of the Curried
function ∗ 2. And we could also use iterate in, for example, iterative numerical
algorithms.

We will soon find that higher-order functions are a major difficulty when we
tackle the semantics of this language. For it is, of course, our objective to define
a suitable semantics for it. To do this we need suitable mathematical models. We
will now spend some time discovering what properties these models must have.

Let us postulate a mathematical model M for all closures (programs without
free identifiers). Clearly we can design such programs to compute basic things such
as natural numbers and truth values, so all of these must belong to M . We will
soon see that it needs to be much bigger.

Clearly the value of an expression with free identifiers (that is, identifiers
used at points where no declaration binds them) will depend on the values of those
identifiers. For example, the value of the expression I1 I2 can only be determined
once we know what I1 and I2 denote. We need something to play the rôle that
states did in our first language. We therefore introduce the space Env of environ-
ments: each element ρ of Env will be a function from Ide to M , mapping each
identifier to the object which it denotes. We use the name ‘environment’ rather
than ‘state’ because there is no assignment in the functional language: the value of
each identifier is determined purely by its declaration. (The term ‘state’ is usually
reserved in semantics for something that can change dynamically during the execu-
tion of a program; ‘environment’ is used when the bindings are not changed except
by declarations.)
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Environments are created by declarations. The scope of a declaration is the
part of the program in which it applies. In the programs

define I = E1in E2 and

rec I = E1in E2

E2 is evaluated in the external environment modified to map I to the value of
E1. Which environment is chosen for the evaluation of E1 depends on whether
‘define . . .’ or ‘rec . . .’ is used. (In other words, on whether an occurrence of I
within E1 has the value presently being defined, or whatever value I might have in
the outside world.) The semantic value of each declaration will be a function from
Env to Env , because a declaration determines its ‘internal’ environment from the
one in force ‘outside’.

Let us return to the task of deciding what shape our main semantic domain,
M , must have. There will be a domain B of basic values, such as 42, true, or error ,
that a closure might have as its value. Each of these values is complete in itself: it is
not a function. Unfortunately we will need M to be rather larger than B . We want
to be able to discover the values of compound programs from the values of their
parts, and it is certainly possible for parts of reasonable programs to be functions.
It is thus inevitable that M must contain some functions.

Some of these functions can be thought of as mappings from B to itself, for
example

Fact ≡ rec (factn) = if (= n 0) then 1
else (×n (fact(−n 1)))

in fact

We would intuitively expect Fact to represent a function from N to itself so that,
for example, the expression Fact 4 has value 24. Consider next the expression Loop,
which an inexperienced programmer might write in an attempt to produce a shorter
factorial program than Fact:

Loop ≡ rec (sfact n) = (div (sfact(+ n 1)) (+ n 1))

in sfact .

He would expect this expression to have a value in N → N, but we might suspect
that LoopE will, provided E represents a natural number, always loop infinitely
and so not produce a value. Our domain will therefore need to be able to cope with
functions which, on some arguments, give a completely undefined result. As dis-
cussed above, we will want to deal with higher-order functions, which take functions
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as arguments. Consider, for example, the expression

H ≡ define (double f n) = (∗ 2 (f n))

in double .

Given a function f that maps some domain X to N, we would expect H f to be
the function from X to N that always returns twice what f does. For example,
H Fact will be the function that maps each natural number to twice its factorial:
H Fact 3 = 12. If this is not bad enough, consider the extremely simple expression

Id ≡ define (identity x ) = x

in identity .

Given any expression E , we would expect IdE to have exactly the same value as E .
Thus the ‘type’ of the function Id is M → M . Actually, all the functions we have
defined are more properly thought of as elements of M → M , because nowhere in
their definitions was there any restriction on the type of their argument or result
other than that which have we assumed is imposed by the basic constants of the
language. It is better to think of them as elements of M → M that map some
arguments to error (assumed to be an element of M ).

Thus we now expect that the model M will look like B + (M → M ) (at
least), where ‘+’ is an operator on domains rather like disjoint union. In fact, as
we will see below, any set satisfying

M ∼= B + (M → M )

can be used as a model for our language. Unfortunately, if B 6= ∅, this congruence
seems impossible to solve! We know by Cantor’s theorem that there can never be
a 1-1 correspondence (bijection) between M and the function space M → M when
M has more than one element.

This example shows that it is not always obvious how to construct the math-
ematical models needed for denotational semantics. The problems arise particularly
acutely here, but in truth we are at the moment ill-equipped to construct any do-
main D which, like M , is defined to satisfy some domain equation D ∼= F (D).
Before we can do this, we need to have a much clearer idea of what a ‘domain’ is.
Chapter 3 introduces a mathematical theory of domains, in which an element of a
domain is identified with the set of all propositions (from some set) that are true of
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it. This will allow us to define such terms as ‘convergence’ and ‘continuity’ in the
world of domains. We will then find that it is possible to solve the above equation
with M → M re-interpreted to mean the continuous functions from M to itself. (It
will turn out that all the functions definable in our languages are continuous in a
sense which we will define later.) This restriction to continuous functions removes
the cardinality problems alluded to above. We will only be able to see this when we
have defined the terms involved, but observe that the continuous functions from the
real numbers to themselves can be put into 1-1 correspondence with the set R of
real numbers, because a continuous function is completely determined by its values
on the rationals (see Exercise 1.2.3 below).

As remarked above, given a solution to the ‘domain equation’

M ∼= B + (M → M )

it is not hard to give a semantics to the functional language (at least without
rec . . .). Recalling that Env = Ide → M is the space of environments, we require
the following semantic functions.

B : Bas → M
D : Dec → Env → Env
E : Exp → Env → M

We assume that we are given the function B, which tells us the value of each of
our basic constants (including all the numerals). The target of B is M rather than
B because some of these constants (for example +, =, and) are functions. The
definitions of E and D are given below. Note that their definitions, like those of
their syntactic domains Exp and Dec, are mutually recursive.

E [[B ]]ρ = B[[B ]]

E [[I ]]ρ = ρ[[I ]]

E [[if E0 then E1 else E2]]ρ = E [[E1]]ρ if E [[E0]]ρ = true

= E [[E2]]ρ if E [[E0]]ρ = false

= error otherwise

E [[E0 E1]]ρ = E [[E0]]ρ(E [[E1]]ρ) if E [[E0]]ρ is in M → M
= error otherwise

E [[∆in E ]]ρ = E [[E ]](D[[∆]]ρ)

Some of these definitions are not completely satisfactory, because we do not yet have
a full understanding of all that is required. In particular, it would be better to pay
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more attention to the possibilities of non-termination (such as that of the incorrect
factorial function Loop above – if it were applied to a number we would expect to
get an infinite loop, not the defined value error). For example, if the evaluation of
E0 in either the conditional or the application clause fails to terminate, it would
be better if the whole clause failed to terminate also. Note that in the clause for
declarations we are evaluating E in the environment created by the declaration ∆.

Remembering that we are considering only non-recursive declarations, the
effect of a simple (non-functional) declaration is easy to calculate:

D[[define I = E ]]ρ = ρ[E [[E ]]ρ/I ] .

To calculate the result of a function of one variable, we work out the value of the
body in the environment in which the argument to function has been substituted
for the identifier which is the function’s formal parameter.

D[[define (I I0) = E ]]ρ = ρ[ψ/I ],

where ψ ∈ M → M is such that

ψα = E [[E ]]ρ[α/I0] for each α ∈ M .

A function which takes n +1 arguments produces a function from M to itself whose
result is a function that takes n arguments.

D[[define (I I0 . . . In) = E ]]ρ = ρ[ψ/I ],

where ψ ∈ M → M is such that

ψα = (D[[define (I I1 . . . In) = E ]]ρ[α/I0])[[I ]] for each α ∈ M .

Notice that the recursion involved in the definition of D is slightly nonstandard,
in that the definition for a function of n + 1 arguments depends on the values of
declarations which, though shorter, are not syntactically simpler in the usual sense.
It is clear that this causes no problems, however. (An equivalent definition obeying
the usual conventions can be given, but it is more cumbersome.)

Let us consider what would be required for the semantics of rec . . . decla-
rations. In the case of the non-functional style, we would require

D[[rec I = E ]]ρ = ρ[ε/I ] .
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where ε = E [[E ]]ρ[ε/I ]. Thus the value needed to substitute for the identifier I is
not defined directly but is the solution to an equation. At the moment we have
no reason to believe that this equation has any solution, and if it had several we
would not know which one to pick. Exactly the same problem appears in the case
of a functional rec . . . declaration. In later chapters we will discover how to find
the required solutions to equations of this type, and will thus be able to deal with
semantic definitions like this one.

One surprising fact is that the introduction of recursive declarations, which
as we observed above adds significantly to our difficulty in defining semantics, adds
nothing to the expressive power of the language. Consider the recursive definition
of the factorial function fact above. It may be replaced by the following.

define fact = (define (G f n) = if (= n 0) then 1
else (×n (f f (−n 1)))

in (G G)

To understand this definition, consider the expression fact 3 which reduces to G G 3.
Since 3 is not equal to 0 this reduces to × 3 (G G 2) – note that G copies itself as it
is applied to itself. Repeating this process twice reduces the expression further to
× 3 (× 2 (× 1 (G G 0))). But G G 0 reduces to 1, so the expression evaluates to 6 as
hoped.

The idea of self-application used here is so powerful that it can be used to
replace all recursive definitions non-recursively. But note how closely it depends
on the structure of our domain M ∼= B + (M → M ), for if the domain M did not
contain a component of the form M → N for some N then it could not make any
sense to apply an object to itself. In fact what we have found is that a solution
to our domain equation is powerful enough to construct directly solutions to the
sorts of equations we came up against when attempting to give the semantics of
rec . More than anything else this perhaps illustrates the power and paradoxical
qualities of the domains we are trying to create.

We could have defined the semantics of rec . . . by this sort of trick, but
this would neither have been elegant nor standard. Also, it would simply have
cancelled the need for one thing we do not yet know how to do (solve equations
such as ε = E [[E ]]ρ[ε/I ]) by reference to another (solve the domain equation M ∼=
B + (M → M )). In fact the second of these will turn out to be the more difficult.

Exercises

1.2.1 What is the meaning (semantic value) of the following program fragments
in the above language. If replacing define by rec would have made any
difference, give both meanings.
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(i) define (f x ) = (if (= x 0) then 0 else (+ (f (− x 1)) x )

in (f 3)

(ii) define x = 0 in (+ (define x = 1in x ) x )

(iii) define (f x ) = (x x ) in (f 3)

(iv) define (f x ) = (x x ) in (f f )

(v) define (f x ) = (x x ) in (define (g x ) = 3 in (f g))

1.2.2 Formulate non-recursive declarations that are equivalent to the following
recursive ones:

(i) rec (iter f x ) = if (< abs(−(f x ) x ) tolerance) then x

else (iter f (f x ))

where abs computes the absolute value (modulus) of a number. (This
is a function which finds approximate solutions of the equation f x = x
for suitable functions f and starting values x0 for the iteration iter f x0.
Notice how this function varies slightly from the function iterate de-
fined in the text earlier: it iterates until a condition holds (which might
be never) rather than a fixed number of times.)

(ii) The declaration of fib on page 16.

M 1.2.3 Show that the set of all sequences 〈xi | i ∈ N〉 of real numbers has the same
cardinal as R (i.e., 2ℵ0 = c, the continuum). Deduce that the set of con-
tinuous functions from R to R also has the same cardinal as R. (Two sets
X and Y are said to have the same cardinal when they can be put in 1-1
correspondence; but it is provably sufficient to produce 1-1 maps f : X → Y
and g : Y → X .)



Chapter 2

Partial orders

The rest of this book will depend heavily on partial orders. For not only will
the ‘domains’ we create be partial orders (see Chapter 3) but also we will make
use of an order between domains themselves (see Chapter 4). This chapter covers
all of the material on partial orders needed later on, and more generally gives an
introduction to essentials of partial order theory as used commonly in computer
science. It is divided into four sections: the first three are elementary and cover all
that is required later, while the final section contains some slightly more advanced
material that will only be accessible to readers with a mathematical background.
We would expect the final section to be omitted from most introductory courses.

2.1 Basics

A partial order is just a relation between objects of some sort indicating when one
is smaller than another in some way. Thus, formally, it is a set X together with a
binary relation such as ≤ or < which satisfies certain axioms. The first symbol (or
variants of it) usually means a less-than-or-equal-to type order which satisfies the
following:

1. x ≤ y ∧ y ≤ z ⇒ x ≤ z

2. x ≤ y ∧ y ≤ x ⇔ x = y .

In other words it is transitive (Axiom 1), reflexive (namely, x ≤ x for all
x ) and otherwise asymmetric (Axiom 2). The second symbol is used for strict
partial orders where no element is less than itself. They are characterised by being
transitive (Axiom 1) and by a different asymmetry axiom:

2′. x < y ⇒ ¬(y < x )
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In mathematical literature the term ‘partial order’ refers to either of these.
In this book we will usually use the ≤ type – but it should always be clear from
the notation used whether we are using one or the other. Indeed we will often use
them for the same order depending on whether we mean ‘less than or equal to’ or
‘strictly less than’. See Exercise 2.1.2 for a demonstration that there is a natural
correspondence between the two sorts of order. We will also use reversed order
symbols in the natural way: for example x ≥ y means the same as y ≤ x .

We should remark at this point that any partial order can be turned upside-
down: if we define x � y ⇔ y ≤ x for some partial order ≤, then � is a partial
order too.

There are a large number of partial orders which should be known to anyone
familiar with basic mathematics, for example the following.

examples

(a) The real numbers, rationals, integers or natural numbers with their usual less-
than-or-equal-to order.

(b) The powerset (set of all subsets) of a given set ordered by inclusion (⊆).

(c) The finite sequences of letters ordered lexicographically (i.e., as in a dictionary),
where the first letter is most significant. Thus, for example,

〈〉 ≤ 〈a〉 ≤ 〈aa〉 ≤ 〈b〉 ≤ 〈bazzzzzz 〉 ≤ 〈bb〉 .

(d) The finite sequences of letters ordered by prefix: s ≤ t if and only if there is
a sequence r such that ŝ r = t , where ŝ r is the concatenation of s and r (so
s ≤ t if and only if s is an initial subsequence of t).

We can notice several things from these examples. From (a) it should be
apparent that any subset of a partial order inherits an order, just as the order on
the natural numbers can be thought of as restriction to the natural numbers of the
usual order on the reals. From (c) and (d) it is clear that the same set can be given
a number of different orders. Note that in (b) and (d) there are pairs of elements
x , y such that neither x ≤ y nor y ≤ x . However this situation nevers occurs in (a)
or (c), which both turn out to be total (or equivalently linear) orders, satisfying an
additional axiom:

3. x ≤ y ∨ y ≤ x .

Often we will wish to draw pictures of partial orders to illustrate various
points. Figure 2.1 is an example of the style of illustration: it shows Example (b)
above in the case where the underlying set is {a, b, c}. The partial order relation
is shown by the lines: objects which have a line between them are related with
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Figure 2.1 A simple partial order.

the higher one in the picture being greater. Not all such relations are shown – the
partial order which such a picture determines is the smallest one which orders all
the pairs shown ordered, and which is reflexive and transitive in the senses discussed
above: almost invariably we will only draw the lines between different objects x and
y with no other between them. Such illustrations are often called Hasse diagrams
in the literature.

In many parts of pure mathematics one defines two objects to be isomorphic
if they are essentially the same (at least in the terms which they are being studied).

Definitions
If (X ,≤) and (Y ,�) are two partial orders, then we say that the function f : X → Y
is an order isomorphism if and only if

(a) f is 1-1 (or injective), namely, f (x ) = f (x ′) ⇒ x = x ′.

(b) f is onto (or surjective), namely, for every y ∈ Y there is x ∈ X such that
f (x ) = y .

(c) f and f −1 are order-preserving, namely, x ≤ x ′ ⇔ f (x ) � f (x ′).
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(X ,≤) and (Y ,�) are said to be order isomorphic if there is an order iso-
morphism between them. (Note that any order isomorphism has an inverse which
is also an order isomorphism.)

From the point of view of partial order theory, two isomorphic partial orders
are essentially the same and have all the same properties. The order type of a given
partial order is the class of all partial orders to which it is isomorphic. Thus, though
there are clearly infinitely many different partial orders with any given number of
elements, there are only finitely many order types for orders with any fixed finite
number (see Exercise 2.1.1).

We will come back to the study of functions between partial orders in the
next section.

Given a subset X of a partial order P , we say that x ∈ P is an upper bound
for X if y ≤ x for all y ∈ X . Similarly x is a lower bound if y ≥ x for all y ∈ X . In
Figure 2.1 note that {a, b} and {a, b, c} are the only upper bounds for {{a}, {b}}
and that the only lower bound of {{a, b}, {b, c}, {a, c}} is ∅. Notice that if X = ∅
then every element of the partial order is both an upper and a lower bound for X .
Sometimes a set may have no upper (or lower) bound. In Example (d) above (finite
sequences of letters ordered by prefix) it is clear that the set {〈a〉, 〈c〉} has no upper
bound since no sequence begins both with an a and a c. In Example (a), notice
that none of the sets of all reals, rationals or integers has either an upper or lower
bound.

We will find at frequent points in the following chapters that we need some
idea of ‘convergence’ within partial orders – for we will often want to construct
objects as limits. This will be done by giving better and better approximations
to the desired object – where ‘better’ means greater in the partial order. It is
thus helpful if increasing sequences of points determine some unique limit. The
appropriate ‘limit’ of such a sequence turns out to be its least upper bound, if it
has one.

X ⊆ P has least upper bound x if x is both an upper bound for X and
whenever y is another upper bound for X then x ≤ y . Similarly x is the greatest
lower bound of X if it is both a lower bound and greater than all others. Notice
that least upper bounds and greatest lower bounds are, when they exist, necessarily
unique. (For example, if X had least upper bounds x and y , then necessarily x ≤ y
and y ≤ x proving that x = y by one of the axioms of partial orders.)

All subsets X of the order in Figure 2.1 have a least upper bound given by⋃
X and a greatest lower bound given by

⋂
X (where

⋂
∅ is defined to be the

‘universal set’ {a, b, c}). In a general order it is usual to modify these symbols a
little and denote the greatest lower bound and least upper bound of a set by X
and

⊔
X respectively. Just because a set has an upper bound (or lower bound)

does not mean that it has a least (or greatest) one. One example of this is shown in
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Figure 2.2 Least upper bounds need not exist.

Figure 2.2, where the elements a and b have two upper bounds c and d but no least
one. We have given this domain a least element – given its conventional name of ⊥
(pronounced ‘bottom’) – though it is not necessary here, because this will be useful
later. A second example is given by the rational numbers (Example (a) above),
where, if we set X = {q | q <

√
2} then X has no least upper bound since there are

rationals arbitrarily close on either side to
√

2, even though
√

2 is not itself rational.
A partial order where, for every nonempty finite X , both X and

⊔
X exist, is

called a lattice (note that the rationals and every other linear order form a lattice).
If X and

⊔
X exist for every X , then the order is called a complete lattice. But

every complete lattice contains a greatest (‘top’) element (the least upper bound of
the whole order) and many of the partial orders we need to study later will have no
top, so we need to study sorts of partial order where we guarantee the existence of
least upper bounds (i.e., limits) for more restricted classes of subsets.

Least upper bounds will play the rôle of the limits of converging sequences
described above. For technical reasons which need not concern us here1 it is better
to generalise the obvious notion of increasing sequence discussed earlier when we
look at convergence in partial orders.

Definition
Suppose that (P ,≤) is a partial order. We say that ∆ ⊆ P is directed if

(a) ∆ is nonempty, and

1But see Section 2.4.
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(b) if x , y ∈ ∆, then there is some z ∈ ∆ such that x ≤ z and y ≤ z .

Any linearly ordered nonempty subset of a partial order P is directed, as is
any set which contains a greatest element. But not all directed sets are linearly
ordered – consider the set of finite subsets of any set, ordered by ⊆.

The vital property of directed sets is that, given any F ⊆fin ∆, with ∆
directed, there is some upper bound for F in ∆; in other words some x ∈ ∆ such
that y ≤ x for every y ∈ F . (This is easily proved by induction on the size of F ,
(a) and (b) above providing respectively the base case and inductive step.) We will
use this fact repeatedly in proofs.

Definition
The partial order (P ,≤) is said to be complete if it has a least element (also called
a bottom or minimum element) and every directed ∆ ⊆ P has a least upper bound.

We will usually abbreviate ‘complete partial order’ by ‘cpo’.
If ∆ is a directed set and F ⊆fin ∆, the set

∆F = {a ∈ ∆ | ∀ b ∈ F . b ≤ a}

is directed, for we have already observed it is nonempty and it clearly inherits
property (b) from ∆. We might think of ∆F as consisting of the ‘sufficiently large’
elements of ∆ or as those elements which are sufficiently converged. If a ∈ ∆,
there exists a ′ ∈ ∆F with a ≤ a ′, for we know ∆ contains an upper bound for
F ∪ {a}. Thus for every finite collection of ‘information’ that appears among the
elements of a directed set ∆, every sufficiently large element of ∆ contains all of
that information. Indeed it is easy to see that if one of the sets ∆ and ∆F has a
least upper bound z , then z is also the least upper bound of the other. Hence it is
plausible to think of a directed set as being an analogy of a Cauchy sequence in real
analysis (informally, a Cauchy sequence2 is one that looks as though it ought to be
convergent). Thus a complete partial order is one in which each ‘Cauchy sequence’
∆ converges to a limit

⊔
∆.

Notice that the least element of a cpo is equal to
⊔
∅.

Of the examples given earlier the only cpo is the powerset (Example (b)).
For the set {0, 1, 2, 3, . . .} is directed in each case of Example (a), but with no upper
bound. And in Examples (c) and (d) the set {〈z 〉, 〈zz 〉, 〈zzz 〉, . . .} is directed with no

2Formally a Cauchy sequence 〈xi | i ∈ N〉 is a sequence of real numbers such that for all ε > 0

we can find N ∈ N so that n,m ≥ N implies | xn−xm |< ε; this definition can be adapted easily to

any metric space. They have the property that any infinite subsequence is also a Cauchy sequence,

with the same limit as the original, if any. A complete metric space is one where every Cauchy

sequence converges, giving a very similar definition to that of a cpo.
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upper bound. It is worth noting, however, that any finite partial order with a least
element is complete, since any finite directed set contains its least upper bound (see
Exercise 2.1.3).

Complete partial orders are widely used in computer science, for as we shall
see in the next section of this chapter, a large class of functions over them have a
property that allows us to give meaning to recursive programs. For the rest of this
chapter we will concentrate mainly on cpos.

Definition
Suppose (P ,≤) is a partial order and S ⊆ P . We say that S is po-consistent if each
of its finite subsets has an upper bound in P . (Thus, a po-consistent finite set S
must have an upper bound in P , but this need not hold in general for infinite S .
For example, in the partial order of finite subsets of N, any set is po-consistent, but
only finite sets have upper bounds.)

We have called it ‘po-consistency’ (with ‘po’ standing for ‘partial order’),
rather than ‘consistency’, which is its more usual name, to avoid confusion with
other definitions which will appear later and which are more important in the con-
text of this book.

Definition3

A complete partial order (P ,≤) is said to be consistently complete if every po-
consistent S ⊆ P has a least upper bound.

We have already seen an example of a cpo that is not consistently complete –
namely the one in Figure 2.2. However many cpos one meets do have this property
and it is a useful one to have, as is illustrated by the following result.

2.1.1 lemma

Any nonempty subset X of a consistently complete cpo P has a greatest lower
bound.

proof

3The definitions of po-consistency and consistent completeness vary a little in the literature.

For example, some authorities only allow that a set is po-consistent if it has an upper bound.

In noncomplete partial orders this different definition would change the meaning of consistent

completeness. However all the definitions of consistent completeness mean the same thing when

applied to cpos. Since we only need to discuss consistent completeness in the context of cpos,

we have therefore restricted our definition to this case. Indeed, the reader might notice that our

definition of consistently complete implies completeness (in nonempty partial orders). This is

because any directed set is po-consistent, and so also is the empty set, whose least upper bound

is the least element.
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The set Y of all lower bounds for X is po-consistent (for each x ∈ X is greater
than all y ∈ Y ). Hence

⊔
Y exists. But each element x of X is an upper bound

for Y and
⊔

Y is the least upper bound – it follows that
⊔

Y ≤ x and hence that⊔
Y ∈ Y . Clearly

⊔
Y is the greatest lower bound for X .

For the dual of this result see Exercise 2.1.6. Perhaps because of this property,
which is nearly as strong being a complete lattice, consistently complete cpos are
sometimes termed complete semilattices. But we shall not generally do so.

Definition
An element x of the complete partial order (P ,≤) is said to be po-finite if, whenever
∆ ⊆ P is directed with

⊔
∆ ≥ x , there is some y ∈ ∆ such that y ≥ x .

Once again we have added the prefix ‘po’ in order to avoid confusion later
on. The po-finite elements of a cpo are in some sense those elements x which can
be characterised by a finite amount of information. Because no directed set ∆ can
have limit above x without containing each piece of information, and every finite
subset of ∆ has an upper bound within ∆, there is some element of ∆ that contains
all the information required to characterise x . A po-finite element can be thought
of as being ‘isolated’ from the others, because it is impossible to converge to it in
any interesting way.

It is easy to see that the po-finite elements of the cpo in Example (b) above
are precisely the finite sets – so here, at least, po-finite really does mean finite!

2.1.2 lemma

(a) If P is a cpo and E is a finite set of po-finite elements of P , then if
⊔

E exists,
it is po-finite.

(b) Suppose that P is a consistently complete cpo and that x ∈ P , then the set
{e ∈ P | e ≤ x and e is po-finite} is directed.

proof

(a) Suppose ∆ is a directed set such that
⊔

∆ ≥
⊔

E , and that E = {e1, e2, . . . , en}.
Then for each i we have

⊔
∆ ≥ ei , so there is some xi ∈ ∆ such that xi ≥ ei .

By directedness of ∆ there is then some x∗ ∈ ∆ which is an upper bound for
{x1, x2, . . . , xn}. Clearly x∗ ≥

⊔
E as required.

(b) Observe that the least element of every cpo is po-finite. Thus the set {e ∈ P |
e ≤ x and e is po-finite} is nonempty. Every subset of it must have a least upper
bound because it is po-consistent by construction (x is an upper bound) and P is
consistently complete. Thus each two-element subset {e, f } has a least upper bound
which is po-finite by (a), and obviously

⊔
{e, f } ≤ x .
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The cpos used in computer science tend to have the following property.

Definition
The complete partial order P is said to be algebraic if, for every x ∈ P , the set
{e ∈ P | e ≤ x and e is po-finite} is directed with limit x .

This says that each element is determined by the po-finite ones less than it.
Thus even though the po-finite elements can never themselves be the limits of di-
rected sets not containing them, combinations of them converge to every point in the
space. An important strengthening of this condition is where the set of all po-finite
elements is countable – such domains are said to be ω−algebraic. It is often natu-
ral to assume one’s domains to be ω-algebraic because computers themselves (even
idealised) are usually countable in extent. However it is not an assumption that
would gain us much in the rest of the book so we will not usually make it. Because
ω-algebraic cpos give identifications of po-finite elements with natural numbers and
of general elements with sets of natural numbers, there has been a substantial body
of work on links between these, and subclasses (for example, po-consistent ones
where the least upper bound function on po-finite elements is computable) and the
formal theory of computability (recursive function theory.)

The partial order of Example (b) above (the powerset) is easily seen to be
algebraic (and ω-algebraic if the underlying set is countable). However there are
consistently complete cpos that are not algebraic – for example, the closed interval
[0, 1] = {x ∈ R | 0 ≤ x ≤ 1}, where the only po-finite element is 0 – and algebraic
cpos that are not consistently complete (Figure 2.2 again).

The partial orders used by computer science often have the property that the
po-finite elements are in some sense objects which are observable in a finite time,
while infinite (i.e., non-po-finite ones) are ones which either have infinitely much
to observe or are even the results of computations which take infinitely long. For
a cpo to be algebraic in this context is rather like saying that any computation is
determined by all of the finite observations which can be made of it.

Exercises

2.1.1 How many different partial orders are there, up to isomorphism, with n
elements when n = 1, 2, 3, 4?

2.1.2 Show that if (P , <) is a strict partial order then the relation x ≤ y ⇔ x <

y ∨ x = y is a non-strict partial order, that different < yield different ≤ and
that every ≤ is obtained from some <. This shows that there is a natural
correspondence between strict and non-strict partial orders.

2.1.3 Prove that every finite directed set contains its least upper bound and hence
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that every finite partial order with a bottom element is complete.

2.1.4 Suppose that in the partial order P all of the sets {ψ(x , y) | y ∈ B} (as x
varies over A) and {ψ(x , y) | x ∈ A∧ y ∈ B} have least upper bounds. Show
that

⊔
{ψ(x , y) | x ∈ A∧y ∈ B} is the least upper bound of {

⊔
{ψ(x , y) | y ∈

B} | x ∈ A}. (This is a fact that we will frequently make use of in proofs.)

2.1.5 (a) Show how Example (d) above becomes a cpo if we extend the domains
to include infinite sequences 〈ai | i ∈ N〉 of letters with natural exten-
sions to the partial order.

∗(b) Show that the same is true of Example (c).
[Hint: Since this is a linear order you must show that any subset has a
least upper bound. One approach to this is to compute the upper bound
of a set S one element at a time. Another is to identify the extended
order with a certain subset of the real numbers – think what you could
do if there were only eight letters in the alphabet.]

Determine whether the extended orders are algebraic.

2.1.6 Prove the reverse of Lemma 2.1.1, namely that, in a cpo where every nonempty
set has a greatest lower bound, every po-consistent set has a least upper
bound.
[Hint: Prove that finite po-consistent sets have least upper bounds, and gen-
eralise.]

2.1.7 Suppose (P ,≤) is a consistently complete cpo. Show that it becomes a
complete lattice when we add a new element > (pronounced ‘top’) and define
x ≤ > for all x ∈ P ∪ {>}. Show that > is po-finite in this order.

2.1.8 Suppose that a and b are two po-finite elements of the complete partial
order P , and that {a, b}, the greatest lower bound of a and b, exists. Need
{a, b} be po-finite? (Give a proof or a counter-example.)

2.1.9 Classify the following partial orders. (In other words, which of the properties
discussed in this section does each of them have?)

(a) Given any set X and a special element ⊥ 6∈ X , define the flat order on
X ∪ {⊥} by setting ⊥ ≤ x for all x , and if y ∈ X then y ≤ x ⇔ y = x .

(b) Define an order � on pairs of natural numbers by

(n,m) � (n ′,m ′) ⇔ m + n < m ′ + n ′ ∨ (n = n ′ ∧m = m ′) .

Now extend this order by a single top element >.
(c) The natural numbers N with the order n � m if and only if n divides

m. (Note that all numbers divide 0.)
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2.2 Functions and fixed points

We have already met one form of function between partial orders: the order iso-
morphism. The following is a generalisation of that class – retaining only part of
the third property.

Definition
If P and Q are partial orders and f : P → Q then f is said to be monotonic or
order preserving if, whenever x , y ∈ P are such that x ≤ y , then f (x ) ≤ f (y).

Informally, a monotonic function can be thought of one where, the more one
puts in, the more one gets out.

Recall the example partial orders on page 24. In Example (a) the function
x 7→ x +1 is monotone, whereas x 7→ −x (not defined over N) is not. Over Examples
(c) and (d) the function s 7→ 〈c〉̂ s is monotone, but the function s 7→ ŝ 〈c〉 is not.
(The reader might like to consider why not, and also to show that the function
s 7→ ŝ 〈a〉 is monotone in (c) but not (d).)

We shall find that almost all of the functions that arise naturally from our
work later on will be monotonic – a most useful property as we shall see later. One
obvious property that they have is to map directed sets to directed sets, since if
x , y ∈ ∆ then there is z ∈ ∆ such that x ≤ z and y ≤ z – it follows that f (x ) ≤ f (z )
and f (y) ≤ f (z ).

The following simple result is one that we will use frequently.

2.2.1 lemma

If P and Q are partial orders, f : P → Q is monotone, X ⊆ P , and
⊔

X ,
⊔
{f (x ) |

x ∈ X } both exist then⊔
{f (x ) | x ∈ X } ≤ f (

⊔
X ) .

proof

Note that x ≤
⊔

X whenever x ∈ X , and so f (x ) ≤ f (
⊔

X ). This means that
f (

⊔
X ) is an upper bound for the set {f (x ) | x ∈ X } and so is greater than the

least upper bound.

The concept of a function whose value at a limit point can be determined
from its values on a sequence converging to that point is familiar to students of real
analysis and topology: it is said to be continuous. Recalling that we are thinking
of a directed set in a cpo as being a generalised convergent sequence, we can extend
the idea of continuity to partial orders.
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Definition
If P and Q are two cpos and f : P → Q , then f is said to be continuous if, whenever
∆ ⊆ P is directed,

⊔
{f (x ) | x ∈ ∆} exists and equals f (

⊔
∆).

The following lemma shows that continuity implies monotonicity. This is no
accident: indeed, if the following lemma did not hold, we would have incorporated
monotonicity into the definition of continuity.

2.2.2 lemma

Suppose P ,Q are cpos and f : P → Q is continuous. Then f is monotonic.

proof

Suppose x , y ∈ P and x ≤ y . Then {x , y} is clearly a directed set and
⊔
{x , y} = y .

Hence, by continuity of f we have f (y) =
⊔
{f (x ), f (y)}. This trivially means that

f (x ) ≤ f (y).

Because we already know that monotone functions preserve directedness, this
lemma shows that continuous functions map ‘convergent sequences’ to ‘convergent
sequences’, and by definition map the limit of one to the limit of the other4. Not all
monotonic functions need be continuous: consider the partial order P = (P(N),⊆)
(subsets of the natural numbers under set inclusion), and the function f : P → P
defined

f (x ) =
{
∅ if x is finite
N if x is infinite.

Continuity fails for this function whenever ∆ is an infinite directed set of finite sets,
for example ∆ = ℘(N).

Figure 2.3 illustrates the definitions of monotonicity and continuity by three
more simple examples. The partial orders with ‘and so on’ dots (ellipsis) all consist
of an infinite increasing sequence below a single limit point.

The following lemma is very easy to prove.

2.2.3 lemma

Suppose P , Q and R are partial orders and f : P → Q , g : Q → R. Then the
composition f ◦ g of these functions is monotone (respectively continuous) if both
f and g are monotone (continuous).

In algebraic cpos where the po-finite elements represent the finitely com-
putable objects, it is reasonable to argue that all functions resulting from real
processes are continuous. For what is observable in a finite time about the result
of applying the function can only have arisen from what the function has itself

4These properties define what it means to be continuous in real analysis or over metric spaces.
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Figure 2.3 Montonicity and continuity.

‘observed’ of the argument in a finite time. We will return to this idea in later
chapters when dealing with rather more concrete partial orders where it will be
more tangible.

The next result shows the extent to which continuous functions on such
domains are determined by their restriction to po-finite elements. It shows that
every monotone function on the po-finite elements of an algebraic cpo has a unique
continuous extension.

2.2.4 lemma

Suppose P and Q are cpos and P is algebraic with set E of po-finite elements.
Then the continuous functions from P to Q are in 1-1 correspondence with the

monotone functions from E to Q ; the correspondence being given by f 7→ f \E
(i.e., the restriction of f to the smaller domain).

proof

If f is continuous then Lemma 2.2.2 tells us it is monotone and hence f \E is
monotone. But x ∈ P implies x =

⊔
{e | e ≤ x ∧ e ∈ E} – a directed set (Lemma

2.1.2) – and hence f (x ) =
⊔
{f (e) | e ≤ x∧e ∈ E}. This proves that f is determined
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by f \E .
Now, if g : E → Q is monotone, define fg : P → Q by

fg(x ) =
⊔
{g(e) | e ≤ x ∧ e ∈ E} .

(Note that this is well defined since the set on the right hand side is directed.)

fg
\E = g , for plainly if e ∈ E then g(e) is the greatest element (and hence the least

upper bound) of {g(e ′) | e ′ ≤ e ∧ e ′ ∈ E}.
fg is trivially monotone, which means that

⊔
{fg(x ) | x ∈ ∆} exists and by

Lemma 2.2.1 is less-than-or-equal-to fg(
⊔

∆). But if e ∈ E is such that e ≤
⊔

∆
then (by definition of po-finite) there is x ∈ ∆ with e ≤ x . Hence fg(e) ≤ fg(x ),
and so⊔

{fg(e) | e ≤
⊔

∆ ∧ e ∈ E} ≤
⊔
{fg(x ) | x ∈ ∆} ,

and by what we already know (fg
\E = g) the left hand side here is just fg(

⊔
∆).

This proves that fg is continuous.
This proves the result since we have shown that the correspondence between

the two function spaces is 1-1 and onto.
This has much in common with the result alluded to in Exercise 1.2.3 that

a continuous function from the rational Q to the reals R has a unique continuous
extension to a function from R to R. It is, perhaps, a more interesting result since
we did not have to assume continuity of the function on E , only monotonicity.

The main pragmatic reason why cpos with monotonic/continuous functions
are used so frequently in theoretical computer science is that they yield fixed point
theorems. A fixed point of a function f : X → X is x ∈ X such that f (x ) = x . It
is very easy to construct sets X and functions f : X → X that have no fixed point,
for example x 7→ x +1 over the natural numbers. Fixed points are needed to define
the semantics of recursive programs – see, for example the case of rec at the end of
Chapter 1.

There is essentially one theorem here in different guises depending on the
context. It is usually known as Tarski’s theorem though Tarski was by no means
the first to discover a version of the result, one having been used by Dedekind in the
1890’s to give a proof of the Schröder-Bernstein theorem5. And the most general
version: every monotone function f : P → P on a cpo P has a least fixed point is
due, we believe, to David Park. The proof of this last version requires advanced
mathematics and so is delayed to Section 2.4.

Here we give two slightly weaker versions which have elementary (and quite
different) proofs.

5The Schröder-Bernstein theorem states that if X and Y are sets such that there exist 1-1

functions f : X → Y and g : Y → X then there is a bijection (1-1 and onto) from X to Y .
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2.2.5 theorem

If P is a cpo and f : P → P is continuous then f has a least fixed point (i.e., x ∈ P
such that f (x ) = x and, if f (y) = y , then x ≤ y).

proof

P has a least element ⊥. Since ⊥ is the least element we have ⊥ ≤ f (⊥). Now
suppose f n(⊥) ≤ f n+1(⊥). It follows immediately from the fact that f is monotone
that f n+1(⊥) ≤ f n+2(⊥). We have thus proved by induction that 〈f n(⊥) | n ∈ N〉
is an increasing sequence in P .

But f is continuous, so

f (
⊔
{f n(⊥) | n ∈ N}) =

⊔
{f n+1(⊥) | n ∈ N} .

It is obvious that if ∆ is any directed set then
⊔

∆ =
⊔

(∆ ∪ {⊥}). (Clearly any
upper bound of one set is an upper bound of the other!) Therefore

⊔
{f n+1(⊥) |

n ∈ N} =
⊔
{f n(⊥) | n ∈ N}, and it follows that x =

⊔
{f n(⊥) | n ∈ N} is a fixed

point of f .
Now, if y is any other fixed point then clearly ⊥ ≤ y . Suppose f n(⊥) ≤ y .

Then

f n+1(⊥) ≤ f (y) = y

as f is monotone and y is a fixed point. It follows that f n(⊥) ≤ y for all n and
hence that y is an upper bound for {f n(⊥) | n ∈ N}. But x is the least upper
bound, so x ≤ y .

2.2.6 theorem

If P is a complete lattice and f : P → P is monotonic then f has a least fixed point.

proof

Let x = S , where S = {y ∈ P | f (y) ≤ y}. This exists as all subsets of a complete
lattice have greatest lower bounds. Now, whenever y ∈ S we have x ≤ y and thus
f (x ) ≤ f (y) ≤ y , proving that f (x ) is a lower bound for S and hence f (x ) ≤ x . Of
course this just says x ∈ S ; but also note that f (x ) ≤ x ⇒ f (f (x )) ≤ f (x ) as f is
monotone, which implies f (x ) ∈ S . But x ≤ y for all y ∈ S which proves f (x ) ≥ x .
So we may conclude f (x ) = x . And since y ∈ S for any fixed point y , it is clear
that x is the least fixed point.

The least fixed point of a function f is often denoted µ f .

example: loops

We illustrate the use of this type of result by developing a semantics for a language
akin to that of Section 1.1, but including loops and conditionals. The syntax is as
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follows.

syntactic domains

x ∈ Var variables
N ∈ Num numerals
E ∈ Exp expressions
Γ ∈ Cmd commands

E ::= x | N | E1 + E2 | E1 − E2 | . . . | true | E1 = E2 | E1 < E2 | . . .

Γ ::= skip | x := E | Γ1; Γ2 | if E then Γ1 else Γ2 | while E do Γ .

skip is a command whose execution has no effect.
Expressions now take values in the set V = {error} ∪ T ∪ Z , where T =

{true, false} and
∫

is the set of all integers. The most obvious extension of the
semantic domain used in Section 1.1, namely S → S , where S = V ar → V does not
work, because we will require a partial order to take fixed points and this domain
has no obvious order at all. The solution is to use the extended function space
S → (S ∪ {⊥}), where ⊥ 6∈ S . The order on this space is simple:

φ ≤ ψ ≡ ∀σ ∈ S .φ(σ) 6= ⊥ ⇒ φ(σ) = ψ(σ) .

In other words, ψ extends φ if it agrees with φ whenever φ produces a ‘proper’ state,
but may turn some of φ’s ⊥s into proper states. The least element of this space is
the one (⊥∗, say) that sends every state to ⊥. And if ∆ is a directed set then its
least upper bound is φ, where

φ(σ) =
{
⊥ if ψ(σ) = ⊥ for all ψ ∈ ∆
σ′ if there is some ψ ∈ ∆ with ψ(σ) = σ′ 6= ⊥.

This definition is never ambiguous, since if ψ,ψ′ ∈ ∆ have ψ(σ) 6= ⊥ and ψ′(σ) 6= ⊥
then we know (as ∆ is directed) that there is ψ′′ ∈ ∆ with ψ,ψ′ ≤ ψ′′. But the
definition of ≤ then means that ψ(σ) = ψ′′(σ) = ψ′(σ).

In fact the new value ⊥ has a very real interpretation: φ(σ) = ⊥ means that
the program does not terminate normally when started in state σ. Notice that this
sort of behaviour can and does arise in programs with while loops, and that we have
no way of modelling it in the old model S → S . (All programs in the language of
Section 1.1 terminate.) Thus the needs of our fixed point theorems actually match
well with reality!
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If we were to extend our language so that it became possible that an expres-
sion evaluation did not terminate then we would have to include a ⊥ value in V .
In general the shape of a domain needs to be designed very carefully so that it is
sufficiently powerful to capture the essence of a language without introducing any
unwanted values that get in the way. These are issues which we will be returning
to study in detail later on, particularly in Chapters 9 and 10.

The semantic function E : Exp→ S → V is very similar to those seen in the
last chapter and its definition is omitted. The semantic function for commands is
now

C : Cmd→ S → (S ∪ {⊥}) .

With the exception of the clause for loops, the semantic clauses are straightforward
extensions of those already seen in Chapter 1. Perhaps the main points to note
are that the evaluation of an expression to an error value (possible both because of
division by 0 and because one might find a number where a boolean was expected, or
vice versa) now produces the undefined ‘state’ ⊥6, and that sequential composition
now has to take account of the fact that the first command may go wrong.

C[[skip]]σ = σ

C[[x := E ]]σ = σ[E [[E ]]σ/x ] if E [[E ]]σ 6= error

= ⊥ if E [[E ]]σ = error

C[[Γ1; Γ2]]σ = C[[Γ2]](C[[Γ1]]σ) if C[[Γ1]]σ ∈ S
= ⊥ if C[[Γ1]]σ = ⊥

C[[if E then Γ1 else Γ2]]σ = C[[Γ1]]σ if E [[E ]]σ = true

= C[[Γ2]]σ if E [[E ]]σ = false

= ⊥ otherwise

Of course the interesting case is that of loops. Intuitively one would expect
that if Γ = while E do Γ1 then the two programs

Γ and if E then Γ1; Γ else skip (∗)

would be equivalent (i.e., have the same semantic value). Assuming that this holds,
we can deduce from the clauses above that φ = C[[Γ]] is a fixed point of the functional

6This is a fairly harsh, though elegant, treatment of error handling. For less severe ones see

Chapters 9 and 10.
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F : (S → (S ∪ {⊥})) → (S → (S ∪ {⊥})) defined

F (φ)σ =


⊥ if E [[E ]]σ 6∈ {true, false} or

E [[E ]]σ = true and C[[Γ1]]σ = ⊥
φ(C[[Γ1]]σ) if E [[E ]]σ = true and C[[Γ1]]σ 6= ⊥
σ if E [[E ]]σ = false

(This is simply the function which calculates the semantics of the program if E then Γ1; Γ else skip

in terms of those of Γ.)

The crucial fact to observe about F is that, for a given σ, either F (φ)σ is
independent of φ or there is a fixed σ′ (= C[[Γ1]]σ) such that F (φ)σ = φ(σ′) for all
φ. Having observed this it is easy to see that F is monotone; for if φ ≤ ψ then if
F (φ)σ 6= ⊥ then in either case we get F (φ)σ = F (ψ)σ.

We need to show that F is continuous; in other words that if ∆ ⊆ (S →
(S ∪ {⊥})) is directed then F (

⊔
∆) =

⊔
{F (φ) | φ ∈ ∆}. By the principle of

extensionality (discussed in the last chapter) it is sufficient to prove

F (
⊔

∆)σ = (
⊔
{F (φ) | φ ∈ ∆})σ for all σ ∈ S .

As F is monotone we know that the right hand side exists and that (by Lemma
2.2.1) if the right hand side is not ⊥ then the two are equal. So suppose the left
hand side is not ⊥. Then if the first case above holds and F (φ)σ is independent of
φ the result is trivial. And if the second case holds (and σ′ is as above) then we
know that the left hand side is (

⊔
∆)σ′. But the definition of

⊔
∆ then means that

there is some φ ∈ ∆ with φ(σ′) equal to (
⊔

∆)(σ′) – which gives us exactly what
we want.

We can conclude that F has a least fixed point given by
⊔
{Fn(⊥∗) | n ∈ N}.

And of course we define C[[while E do Γ1]] to be this fixed point.

This definition seems very abstract and unconnected with the reality of the
execution of while loops. But in fact it is not. If we think again about how we
constructed F out of the equivalence (∗) it should be clear that Fn(⊥∗) is the
semantic value of a program which behaves correctly if the loop terminates after up
to n − 1 executions of Γ1 before giving up and returning ⊥. And the limit allows
any number of executions, but produces ⊥ if the loop does not terminate – precisely
the answer we would expect.

If we consider the loop while x 6= 0 do x := x − 1 then

Fn(⊥∗)σ =
{
σ[0/x ] if 0 ≤ σ[[x ]] < n
⊥ otherwise
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and the least fixed point φ =
⊔
{Fn(⊥∗) | n ∈ N} is the function one might expect

φ(σ) =
{
σ[0/x ] if 0 ≤ σ[[x ]]
⊥ otherwise.

In other words, this loop sets x to 0 if it was initially non-negative, and does not
terminate otherwise.

Note that any loop that never terminates on any initial state, such as

while true do skip

is mapped by the semantic function to the bottom element ⊥∗ of its target.

The way partial orders were used in the above example is fairly typical of
their use in programming language semantics. The bottom element ⊥∗ represents
an undefined or nonterminating program, and increasing in the partial order means
that the program becomes more defined or more likely to terminate. Notice also
that the order we used has no top element; philosophically this perhaps means that
there is no perfect program.

Since fixed points play such an important rôle in programming language
semantics, it is often necessary to prove things about them. Frequently we can use
the cpo structure of the underlying mathematical model to help us. One obvious
but useful trick applies when we have a function F with a unique fixed point (i.e.,
only one): if x is any value for which it can be shown x = F (x ), then x = µF . And
any function whose least fixed point can be shown to be maximal in its cpo – which
in the example above is equivalent to mapping every state to a proper (non-⊥)
result – obviously has only one.

There are a number of related proof techniques grouped under the term fixed
point induction. We give one in this section, which requires the following definition.

Definition
A property R of a cpo P is said to be inclusive if, whenever, ∆ is a directed set
with R(x ) true for all x ∈ ∆, then R is true of

⊔
∆.

Thus, for example, R(x ) ≡ x ≤ y is always an inclusive property, while
R′(x ) ≡ x 6≥ y is inclusive precisely when y is po-finite.

If we think of the truth values as being ordered, with true < false, then
a property R is inclusive if, and only if, R(

⊔
∆) ≤

⊔
{R(x ) | x ∈ ∆} for all

directed ∆ ⊆ P . (Over this two point order there is no problem about the existence
of the least upper bounds!) For a monotonic R (which, in this context, means
R(x ) ∧ y ≤ x ⇒ R(y)) it is equivalent to continuity.
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fixed point induction

If P is a cpo, R an inclusive property of P and f : P → P is continuous, then if
R(⊥) holds and

∀ x .R(x ) ⇒ R(f (x ))

we may infer R(µ f ).
The validity of this principle is obvious, given the proof of Theorem 2.2.5,

since the chain constructed there is clearly a directed set all of whose elements have
R true. It can sometimes be inconvenient that the property we are proving must
be true at ⊥ – for ⊥ is often (as in the example above) rather a badly-behaved
element of a semantic model. Some methods for getting round this are described in
Exercises 2.2.6 and 2.4.8.

2.2.1 Other conditions on functions

Aside from monotonicity and continuity, there are several other conditions on func-
tions that are frequently encountered in computer science. We conclude this section
by describing some.

Definition
If the partial orders P and Q have least elements (⊥P and ⊥Q respectively), a
function f : P → Q is said to be strict if f (⊥P ) = ⊥Q .

Essentially, a strict function is one that cannot ‘recover’ from an argument
which is ‘broken’. We will see later, in chapters on denotational semantics, how use-
ful this idea can be. Strictness, and analysis of strictness, are extremely important
subjects in functional programming.

Notice that the least fixed point of a strict function f : P → P is always
⊥ – so that strict functions are not suitable for defining the semantics of recursive
constructs like while above.

Definition
If the partial orders P and Q both have pairwise greatest lower bounds x u y for
all x and y , a function f : P → Q is said to be distributive if, for all x and y ,

f (x u y) = f (x ) u f (y) .

Any distributive function is monotone for, if x ≤ y , then

f (x ) = f (x u y) = f (x ) u f (y) .

And if P is a linear order then any monotone f : P → Q is distributive. There are,
however, monotone functions that are not distributive.
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Where arbitrary nonempty sets have greatest lower bounds (for example
consistently complete cpos) this can be extended to infinite distributivity in the
obvious way.

Distributive functions are useful for a number of technical reasons and also
when proving programs meet certain sorts of specifications. If, in an order P with
arbitrary nonempty greatest lower bounds, we can find a set X such that every
x ∈ P equals {y ∈ X | y ≥ x}, then an infinitely distributive function of P
is determined by its restriction to X . You should notice the analogy with the
way continuous functions on algebraic cpos are determined by their values on the
po-finite elements.

Exercises

2.2.1 Classify the following functions from the complete lattice [0, 1] (the closed
interval with its usual order) to itself. (In other words, which are monotone
and which are continuous, both in the partial order sense?)

(a) The identity function x 7→ x .

(b) x < 1
2 ⇒ x 7→ 0, x ≥ 1

2 ⇒ x 7→ 1.

(c) x ≤ 1
2 ⇒ x 7→ 0, x > 1

2 ⇒ x 7→ 1.

(d) x 7→ 1− x

2.2.2 Prove that every monotonic function from Q to P (P and Q being cpos) is
continuous if Q is finite. Find a non-finite Q of which this is true (for all
possible P).

∗2.2.3 Let X be any set and R be the set of relations on X (i.e., subsets of X ×X )
ordered by reverse inclusion (R ≤ S ⇔ R ⊇ S ). Show this is a complete
lattice. Let S be any element of R. Define a function F from R to R by
defining F (R) to be R′; where

x R′ x ′ ⇔ (∀ y .x S y ⇒ ∃ y ′.x ′ S y ′ ∧ y R y ′) ∧
(∀ y ′.x ′ S y ′ ⇒ ∃ y .x S y ∧ y R y ′)

Show that F is monotone, and is continuous if {y | x S y} is finite for all x .
We may deduce that F has a least fixed point µF .
Use fixed point induction to show that µF is symmetric (i.e., x µF y ⇔
y µF x ). (The existence of fixed points of this type – known as bisimulations
– underpins much of the theory of concurrency, in particular that of CCS [].)

2.2.4 Suppose f , g are both continuous functions from the complete partial order
P to itself, and that f ◦ g = g ◦ f . Prove that µ(f ◦ g) is a fixed point of both
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f and g , and is the least point which is the fixed point of both. Show by
means of example that in general two continuous functions with a common
fixed point need not have a least common fixed point.

2.2.5 Prove that the following programs are all equivalent in the example language
given above (for any E and Γ).

(a) while E do Γ
(b) while E do (if E then Γ else skip)
(c) while E do (Γ; (if E then Γ else skip)).

) [Hint: Prove (a) and (b) equal by demonstrating that the functions of which
you are taking least fixed points are the same. Prove (a) and (c) equal by
showing that, if F and G are respectively the functions whose fixed points we
want in (a) and (c) respectively, then F 2 and G have the same set of fixed
points. (If you compare F 2 and G carefully you will find that they are not
identical.)]

2.2.6 Suppose that, for all n, Rn is an inclusive predicate on the cpo P , that
∀ x .Rn+1(x ) ⇒ Rn(x ) and that R0(⊥) holds. Suppose that

∀ x ∀n.Rn(x ) ⇒ Rn+1(f (x )) ,

where f : P → P is continuous. Show that ∀n.Rn(µ f ).
Construct appropriate Rn to prove in the example semantics above that the
program

while x < 0 do x := x + 1

always terminates successfully when x is initialised with an integer.

2.3 Product spaces

A product space is one where objects have a number of components, each from
some smaller space. The simplest product space is the cartesian product P ×Q of
the sets P and Q – consisting of all pairs 〈x , y〉 where x ∈ P and y ∈ Q . If P and
Q are both partially ordered then P ×Q can be given an order in several different
ways. The standard order (which we shall always use except in a few exercises) is
defined

〈x , y〉 ≤ 〈x ′, y ′〉 ⇔ x ≤ x ′ ∧ y ≤ y ′ .

It is sometimes called the componentwise order because one pair is less than another
if and only if each of its components is less than the corresponding component of
the other pair.
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We will frequently want to use product spaces where there are many or even
infinitely many components. The elements of such a space can be thought of as
vectors or tuples with the appropriate number of components, or alternatively as
functions from an indexing set to the union of the sets from which the components
are taken. Thus for ordered pairs in P × Q we would choose an indexing set with
two elements (say {1, 2}) and think of pairs as being functions from {1, 2} to P ∪Q ,
where the image of 1 is in P , and the image of 2 is in Q .

In fact we have already used a product space in the example semantics seen
in the last section. S → (S ∪ {⊥}) is the product of S copies of the flat domain on
S (see Exercise 2.1.9 (a)) – notice that the order we defined earlier is exactly this
one.

A typical example of an infinite product space is Pω, the infinite sequences
of elements of P ; this is identified with the functions from N to P . Another is the
{0, 1}X for any set X – this is naturally isomorphic to the powerset P(X ) (Example
(b) of Section 2.1) since we can identify a tuple with the set of all components with
value 1, and the product order becomes the usual subset order ⊆.

Note that we have used the ‘to-the-power-of’ notation XY to denote the
function space Y → X where this means the product of Y copies of X . This is
justified by the observation that if X has n elements and Y has m elements, then
the product space XY has nm elements. A more general notation is∏

λ∈Λ Pλ

which denotes the product space with indexing set Λ whose λth component is picked
from Pλ.

It is often convenient to use vector notation for product spaces (especially
large ones): a typical element of PΛ will be underlined, x and its λ component is
xλ. In ‘tuple’ notation we then have x = 〈xλ | λ ∈ Λ〉.

The partial order on an arbitrary product space is a straightforward extension
of the one above:

〈xλ | λ ∈ Λ〉 ≤ 〈yλ | λ ∈ Λ〉 ⇔ ∀λ .xλ ≤ yλ .

With the exception of linear ordering, which is not preserved, almost all of
the properties identified in the first section are preserved by product. This is shown
by the following result.

2.3.1 theorem

If each of Pλ has (the same) one of the following properties, then
∏

λ∈Λ Pλ also has
that property.

(a) complete
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(b) lattice

(c) complete lattice

(d) consistently complete cpo

(e) algebraic cpo

Additionally, if each Pλ is an ω-algebraic and Λ is countable (i.e., finite or
countably infinite) then

∏
λ∈Λ Pλ is ω-algebraic.

proof

Suppose that X ⊆
∏

λ∈Λ Pλ and that, for each λ ∈ Λ, the set Xλ = {xλ | x ∈ X }
has a least upper bound yλ. Then y = 〈yλ | λ ∈ Λ〉 is an upper bound for X – since
if x ∈ X we know xλ ≤ yλ for all λ – and if z is any other upper bound then zλ is
an upper bound for Xλ for all λ, and so y ≤ z . In other words y is the least upper
bound of X .

The same componentwise construction clearly works for greatest lower bounds
as well.

These observations prove (a), (b), (c) and (d) since if X ⊆
∏

λ∈Λ Pλ is (a)
directed, (b) finite or (d) po-consistent then it is clear that all Xλ also have the
corresponding property.

To establish (e) we claim that if Eλ is the set of po-finite elements of Pλ and
⊥λ is the least element of Pλ then

E = {x ∈
∏

λ∈Λ Eλ | {λ | xλ 6= ⊥λ} is finite}

is the set of po-finite elements of the product space. For if x is po-finite then
clearly each component must be po-finite (or we could approximate it keeping all
other components fixed), and the number of non-⊥ components is finite since the
directed set

{x \F | F ⊆fin Λ}

has limit x , where

(x \F )λ =
{

xλ if λ ∈ F
⊥λ if λ 6∈ F

And if x ∈ E with set F of non-bottom components, and ∆ is directed with
⊔

∆ ≥ x ,
then for all λ ∈ F we can find y ∈ ∆ with yλ ≥ xλ. Since F is finite and ∆ directed
there is y∗ ∈ ∆ which is greater than all these y . Clearly y∗ ≥ x . This establishes
our claim.
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Now if x ∈
∏

λ∈Λ Pλ and each Pλ is algebraic then, from the formula for
upper bounds computed above, it is clear that⊔

{e ∈ E | e ≤ x} = x ,

establishing (e). The final part comes from the fact that E is countable if all Eλ

are and Λ is countable – there are then countably many finite subsets of Λ and
countably many finite elements for each.

Clearly a function that has more than one argument drawn from partial
orders can be thought of as a function with a single argument drawn from some
product space. This identification defines what it means for such a function to be
monotone or continuous. The following result shows that where there are two (and
hence, inductively, any finite number of) arguments, there is a straightforward test
for these properties.

lemma 2.3.2

Suppose P ,Q ,R are partial orders and f : P × Q → R. Then we may define two
functions f ′x : Q → R and f ′′y : P → R for any x ∈ P and y ∈ Q by

f ′x (y) = f ′′y (x ) = f (x , y) .

The continuity and monotonicity of f is related to that of f ′x and f ′′y as follows.

(a) f is monotone if and only if all f ′x and f ′′y are (i.e., if f is monotone in each
argument separately).

(b) f is continuous if and only if all f ′x and f ′′y are (i.e., if f is continuous in each
argument separately).

proof

The fact that f being monotone implies all f ′x and f ′′y are is trivial, so suppose that
all f ′x and f ′′y are monotone and that (x , y) ≤ (x ′, y ′). Then x ≤ x ′ and y ≤ y ′, so

f (x , y) = f ′x (y)
≤ f ′x (y ′) as f ′x monotone
= f ′′y′(x )
≤ f ′′y′(x ′) as f ′′y′ monotone
= f (x ′, y ′)

This proves part (a).
If ∆1, ∆2 are directed subsets of P and Q respectively then {(x , y) | x ∈ ∆1}

and {(x , y) | y ∈ ∆2} are directed in P × Q with respective limits (
⊔

∆1, y) and



48

(x ,
⊔

∆2). It follows immediately that if f is continuous then all f ′x and f ′y are. So
suppose all f ′x and f ′′y are continuous and that ∆ ⊆ P × Q is directed. Since f is
monotone (by part (a)) we know by Lemma 2.2.1 that⊔

{f (x , y) | (x , y) ∈ ∆} ≤ f (
⊔

∆)

so to prove continuity it will be sufficient to prove the reverse. Define

∆1 = {x | (x , y) ∈ ∆} and ∆2 = {y | (x , y) ∈ ∆} .

We know already from Theorem 2.3.1 that
⊔

∆ = (
⊔

∆1,
⊔

∆2). It is clear that
∆∗ = ∆1×∆2 is directed with the same limit as ∆, and that ∆ ⊆ ∆∗. If (x , y) ∈ ∆∗

then there are x ′, y ′ such that (x , y ′) and (x ′, y) are in ∆ and hence by directedness,
there is (x ′′, y ′′) ∈ ∆ with (x , y) ≤ (x ′′, y ′′) and so by monotonicity of f :⊔

{f (x , y) | (x , y) ∈ ∆∗} ≤
⊔
{f (x , y) | (x , y) ∈ ∆}

and it is easy to see that reverse inequality holds, so that in fact the terms are equal.
But we then have⊔

{f (x , y) | (x , y) ∈ ∆} =
⊔
{f (x , y) | (x , y) ∈ ∆∗}

=
⊔
{f (x , y) | y ∈ ∆2 ∧ x ∈ ∆1}

=
⊔
{
⊔
{f (x , y) | y ∈ ∆2} | x ∈ ∆1} (1)

=
⊔
{f (x ,

⊔
∆2)} | x ∈ ∆1} (2)

= f (
⊔

∆1,
⊔

∆2) (3)
= f (

⊔
∆∗)

Line (1) is an application of the result established in Exercise 2.1.4. Lines (2) and
(3) follow respectively from the continuity of f ′x and f ′′t∆2

. This completes the proof.

This result does not generalise to the case of infinite product spaces (see
Exercise 2.3.5). However the corresponding result for functions to product spaces
is not restricted in this way. All parts of the following result are easy to prove.

lemma 2.3.3

The function f : P →
∏

λ∈Λ Qλ is (a) monotone or (b) continuous if and only if all
of the component functions fλ : P → Qλ are (a) monotone or (b) continuous, where
fλ(x ) = f (x )λ.

2.3.1 Function Spaces

We have already seen how product spaces can be thought of as the sets of functions
from some indexing set to a partial order (or several partial orders). These spaces
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pay no attention to any partial order structure that may be present in the indexing
set, but we have already met two classes of functions that do, namely the monotonic
ones and the continuous ones. In this subsection we will examine the partial orders
these restricted function spaces inherit from the full product space. Notice that the
partial order can be written

f ≤ g ⇔ ∀ x .f (x ) ≤ g(x ) .

Definitions
If P and Q are two cpos, define P m→ Q and P c→ Q respectively to be the sets of

all monotone and continuous functions from P to Q .

These constructs are not quite as good at preserving the various partial order
properties as the full product described earlier, but one does have the following result
(among others).

lemma 2.3.4

Both of the spaces P m→ Q and P c→ Q are cpos if P and Q are.

proof

The least upper bound of a directed set Φ is, in both cases, the same as that in the
full product space, or in other words

(
⊔

Φ)(x ) =
⊔
{f (x ) | f ∈ Φ} .

To prove the result we must simply prove that if all elements of Φ are respectively
monotone or continuous then so is

⊔
Φ.

The monotone case is very straightforward since if x ≤ y then f (x ) ≤ f (y)
for all f ∈ Φ so certainly⊔

{f (x ) | f ∈ Φ} ≤
⊔
{f (y) | f ∈ Φ} .

For the continuous case, suppose ∆ ⊆ P is directed. Then we have

(
⊔

Φ)(
⊔

∆) =
⊔
{f (

⊔
∆) | f ∈ Φ}

=
⊔
{
⊔
{f (x ) | x ∈ ∆} | f ∈ Φ} (1)

=
⊔
{
⊔
{f (x ) | f ∈ Φ} | x ∈ ∆} (2)

=
⊔
{(

⊔
Φ)(x ) | x ∈ ∆} (3)

where line (1) is by continuity of the f s, line (2) is a general property of partial
orders (see Exercise 2.1.4) and line (3) is by definition of

⊔
Φ.
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For more similar results and counterexamples to other properties see the
exercises at the end of this section.

The final result of this chapter is important in many cases of denotational
semantics. It shows that the least fixed point operator is continuous on the space
of continuous functions.

lemma 2.3.5

If P is a cpo then the least fixed point operator µ : (P c→ P) → P (see Theorem
2.2.5) is continuous.

proof

Suppose Φ ⊆ P c→ P is directed. We know from the proof of Theorem 2.2.5 that,
for any continuous f ,

µ f =
⊔
{f n(⊥) | n ∈ N} .

Claim that for all n we have

(
⊔

Φ)n(⊥) =
⊔
{f n(⊥) | f ∈ Φ} .

This is certainly true when n = 0 (both sides are ⊥), so suppose it holds for n.
Then by induction, the definition of

⊔
Φ and the continuity of all g ∈ Φ we have

(
⊔

Φ)n+1(⊥) =
⊔
{g(f n(⊥)) | g , f ∈ Φ} .

But since all f , g ∈ Φ have k ∈ Φ with k ≥ f , g this is in turn equal to⊔
{kn+1(⊥) | k ∈ Φ}

as claimed.
Given this, we have

µ(
⊔

Φ) =
⊔
{(

⊔
Φ)n(⊥) | n ∈ N}

=
⊔
{
⊔
{f n(⊥) | f ∈ Φ} | n ∈ N}

=
⊔
{
⊔
{f n(⊥) | n ∈ N} | f ∈ Φ}

=
⊔
{µ f | f ∈ Φ}

which proves the Lemma.

Exercises



Partial orders 51

2.3.1 Suppose P , Q and R are cpos. Prove that the following pair of partial orders
are order isomorphic when → is interpreted as (i) the full function space
(equivalently product space) operator (ii) m→ and (iii) c→.

(P ×Q) → R and P → (Q → R)

This is the identity underlying Currying (see Chapter 1); to prove these
isomorphisms you should show that the maps

curry : ((P ×Q) → R) → (P → (Q → R)) and
uncurry : (P → (Q → R)) → ((P ×Q) → R)

are (well-defined) order isomorphisms in each of the three cases.

2.3.2 If X is any partial order, show that X ω and (X ω)ω are order isomorphic.

2.3.3 Suppose P and Q are cpos. Show that if Q is consistently complete then so
are P m→ Q and P c→ Q .

2.3.4 Let P be the unit interval [0, 1] and Q be the two point cpo {⊥,>}. Show
that P m→ Q is algebraic but that P c→ Q is not.

2.3.5 Let X be the two point linear order. Find functions f , g : X ω → X which
are constant in each argument separately (i.e, changing one component of the
infinite tuple of arguments has no effect) but such that (i) f is not monotone
and (ii) g is monotone but not continuous. This shows that Lemma 2.3.2
does not extend to infinite product spaces.

2.4 Advanced topics

Relying on only basic set theory we have already developed all of the partial order
theory necessary for the rest of the book. There are however a number of other
insights which can be gained if we allow ourselves to assume more advanced mathe-
matical knowledge (in particular ordinal numbers and topology). This final section
is included so that readers with a suitable background can appreciate just a few of
these.

Recall that we introduced directed sets as our generalised convergent se-
quences rather than using increasing ω-sequences. The canonical example of an
order which is ω-complete (i.e., all such sequences have limits) but not complete is
ω1, the set of all countable ordinals. This set is not complete since it has no great-
est element even though it is linearly ordered, but is ω-complete since the union of
any countable set of countable ordinals is a countable ordinal. A more elementary
example is given by the set of all finite and countably infinite subsets of R (under
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the subset order). It is ω-complete since the union of a countable set of countable
sets is countable.

Very often ω-completeness is all we actually need (witness the proof of The-
orem 2.2.5), but full completeness combines much better with the other properties
we have introduced. And one can plausibly argue that the reason ω-completeness is
the definition used in real analysis and metric spaces is simply that it is all that is
needed there: beefing it up with something like directed sets would add complexity
without changing the meaning of the definition at all.

A related question that is interesting is whether completeness is the same
as chain completeness (i.e., every linearly ordered subset has a least upper bound).
Completeness clearly implies chain completeness, but the reverse is by no means
obvious. In fact they are the same, as is demonstrated by a sequence of exercises
at the end of this section.

We stated in Section 2.2 that every monotone function on a cpo has a least
fixed point. Recall that we proved two subcases there. The proof of this result is a
straightforward use of ordinals extending the proof of 2.2.5.

theorem 2.4.1

Every monotone function f from a complete partial order P to itself has a least
fixed point.

proof

We will define f α(⊥) for all ordinals α. f 0(⊥) = ⊥, and if f α(⊥) is defined set
f α+1(⊥) = f (f α(⊥)). Assuming f α(⊥) exist for all α < λ (λ a limit ordinal),
satisfying f α(⊥) ≤ f β(⊥) when α ≤ β, we know {f α(⊥) | α < λ} is directed and so
may set

f λ(⊥) =
⊔
{f α(⊥) | α < λ} .

This definition can only go wrong if some f α(⊥) is not greater than all preceding
ones. We show this by induction. We know the following

(a) f 0(⊥) = ⊥ ≤ f 1(⊥) as ⊥ is less than all x ∈ P .

(b) If f α(⊥) ≤ f α+1(⊥) then f α+1(⊥) ≤ f α+2(⊥) by monotonicity.

(c) If f λ(⊥) is defined (λ a limit ordinal) then it is greater than all preceding f α(⊥)
by definition.

These deal easily with all cases other than f λ(⊥) ≤ f λ +1(⊥), which is proved
as follows. We know f α(⊥) ≤ f λ(⊥) for all α < λ, and so by induction and
monotonicity

f α(⊥) ≤ f α+1(⊥) ≤ f λ +1(⊥) .
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It follows that f λ +1(⊥) is an upper bound for {f α(⊥) | α < λ} and so is greater
than the least upper bound f λ +1(⊥).

Thus the f α(⊥) all exist and form an increasing chain through P . If f has no
fixed point then f α(⊥) < f α+1(⊥) for all α and so they form a strictly increasing
chain. But then all the f α(⊥) would be different, contradicting the well known
result (Hartog’s Theorem) that says that for every set P there is an ordinal so large
that it cannot be mapped injectively into P .

This contradiction shows that for some ordinal γ we have f γ+1(⊥) = f γ(⊥),
and it easy to see that then f β(⊥) = f γ(⊥) for all β ≥ γ.

If x is any other fixed point of f then it is an easy transfinite induction to
prove f β(⊥) ≤ x for all β, and it follows that f γ(⊥) (with γ as above) is the least
fixed point.

The essence of this proof is that, even if a fixed point is not reached after
the ω steps of Theorem 2.2.5, the value reached then is mapped up by f and so the
whole process can begin again; and this process could be carried on for so long that
we would run out of room in P unless there is a fixed point.

The fixed point produced by this theorem can be reached at any ordinal. To
see this let P = α+ 1 (the set of all ordinals less than or equal to α, which is easily
shown to be a cpo) and set

f (β) =
{
β + 1 if β < α

α if α = β.

It should be clear that the iteration produces its fixed point (α) after exactly α

steps.
If x is any element of a cpo such that x ≤ f (x ) for monotone f it is an

easy corollary to the above result that there is a least y ≥ x such that f (y) = y .
(Consider the restriction of f to the cpo {y ∈ P | y ≥ x}.) This observation has a
number of useful consequences, one of which is the following.

theorem 2.4.2

If P is a cpo and f : P → P is monotone then the set F of fixed points of F is itself
a cpo. If, additionally, P is consistently complete or is a complete lattice then F
also has that property.

proof

Since we know P has a least fixed point (the bottom element of F ) it is sufficient
for the first part to show that each directed subset ∆ of F has a least upper bound
in F . Since each element of ∆ is a fixed point and by Lemma 2.2.1 we have⊔

∆ =
⊔
{f (x ) | x ∈ ∆} ≤ f (

⊔
∆)
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(where
⊔

is defined over P). It follows by the argument above that f has a least
fixed point greater than

⊔
∆, which is exactly what we wanted.

In fact this argument shows that if X ⊆ F is such that
⊔

X exists in P then⊔
X exists in F . The final parts of the result follow easily from this.

Notice that if f is continuous and ∆ is a directed set of fixed points of f then
the least upper bound of ∆ in P is also a fixed point (and so is the least upper bound
in the space of fixed points). This does not in general hold if f is only monotone.

It is possible to generalise the usual ideas of convergence and continuity
in mathematics by looking at them topologically. It turns out that if we put an
appropriate topology on cpos then continuity defined in terms of directed sets just
becomes topological continuity. Formally speaking a topology T on a set X is a set
of subsets of X (known as open sets) which contains ∅ and X and which is closed
under arbitrary unions and finite intersections.

Definition
Given a cpo (P ,≤), we can define a topology (P , T ) by saying that U ⊆ P is open
if and only if, for all directed sets ∆, if there is y ∈ U with y ≤

⊔
∆ then there is

x ∈ ∆ such that x ∈ U . This is known as the Scott topology (after Dana Scott,
who invented it).

This definition is very close to one definition of the standard topology on a
metric space which says that a set U is open if and only if any convergent sequence
with limit in U must contain some element of U . The open sets we have defined
here are all upwards closed, in the sense that y ∈ U and x ≥ y implies x ∈ U . To
see this observe that the singleton set {x} is directed with limit x and look at this
case in the definition above. Given this it is easy to show that it is a topology, the
only slightly tricky part being finite intersections. For if U and V are open and ∆
is directed with

⊔
∆ ≥ z with z ∈ U ∩ V , then there exist a, b ∈ ∆ with a ∈ U

and b ∈ V . But because ∆ is directed there is c ≥ a, b in ∆; and c ∈ U ∩ V as
both U and V are upwards closed.

This topology is quite unlike those usually encountered in other parts of
mathematics. For notice that if x < y then there is no open set containing x that
does not contain y . This contrasts with the common Hausdorff property which
states that any two distinct points should be contained in disjoint open sets. The
only standard separation property that the Scott topology has is known as T0:
given two distinct points x and y then either there is an open set containing x but
not y , or there is one containing y but not x . To see that the Scott topology has
this property we observe that the set {y | y 6≤ x} is always open (if a directed set
is contained in {y | y ≤ x} then its limit is, too). And given two distinct points x
and y we can assume without loss of generality that y 6≤ x (i.e., either x < y or the
two points are incomparable). But then y is an element of {z | z 6≤ x} while x is
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not.
At the time of writing T0 spaces and their relations with partial orders are

becoming an important topic of research in computer science. But we will content
ourselves with the following basic result, which justifies our introduction of the Scott
topology.

theorem 2.4.3

If P and Q are cpos then the function f : P → Q is continuous in the partial order
sense if and only if it is continuous with respect to the Scott topology (i.e., if U ⊆ Q
is open then f −1(U ) is open in P).

proof

First suppose f is partial order continuous and U ⊆ Q is open. f −1(U ) is upwards
closed because, if f (x ) ∈ U and y ≥ x , then f (y) ≥ f (x ) which implies f (y) ∈ U .
To complete the proof that f −1 is open, suppose ∆ ⊆ P is directed with limit

⊔
∆

in f −1(U ). Then f (
⊔

∆) ∈ U and, since f is continuous, {f (x ) | x ∈ ∆} is directed
with limit f (

⊔
∆). So there must be some x ∈ ∆ with f (x ) ∈ U . It follows that

x ∈ f −1(U ) which is what was required.
Next suppose f is topologically continuous. It must be monotone since if

x ≤ y but f (x ) 6≤ f (y) then f (x ) ∈ {z ∈ Q | z 6≤ f (y)} = U , say (an open set as
shown above). This means x ∈ f −1(U ) while y 6∈ f −1(U ), contradicting the fact
that open subsets of P are upwards closed.

So suppose ∆ ⊆ P is directed. We know by Lemma 2.2.1 that f (
⊔

∆) ≥⊔
{f (x ) | x ∈ ∆}. If this inequality were strict then f (

⊔
∆) would be an element

of the open set U = {z ∈ Q | z 6≤
⊔
{f (x ) | x ∈ ∆}}. It would follow that⊔

∆ ∈ f −1(U ) so that there is some x ∈ ∆ with f (x ) ∈ U . This would be in clear
contradiction to the definition of U . We may thus conclude that f is partial order
continuous, completing the proof.

Notice that the set {y | y ≥ x} is open if and only if x is po-finite. In
a topology where open sets are upwards closed this is the smallest conceivable
neighbourhood of the point x (in the sense that {y | y ≥ x} is, for any x , the
intersection V (x ) of all open sets containing x ), just as the singleton {x} is in
a more conventional (T1 or Hausdorff) topology. For V (x ) to be open is thus
a reasonable extension to T0 spaces of the usual topological definition of isolated
point (i.e., one such that {x} is open). Thus the po-finite elements are precisely the
isolated points.

Given this observation, it is interesting to see what can be said about alge-
braic cpos where the po-finite elements play a special rôle, since every point is a
limit of them. In topological terms this is just the spirit of saying that the po-finite
points are dense. But once again the usual topological definition of a dense set
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(every nonempty open set contains an element of it) is less satisfactory because we
are in a T0 space. After all, if our order P has a greatest element > then the set
{>} would then be dense! The po-finite elements are indeed dense and in fact they
satisfy the following stronger definition of denseness of a set D (which coincides
with the usual one for T1 spaces).

x ∈ U , U open ⇒ ∃ y ∈ D ∩U .y 6∈ (V (x ) \ {x})

In other words U contains some element of D which is not in U simply because it
is strictly greater than x . To see this all we have to note is that the directed set of
po-finite elements less than or equal to x contains an element of U (as U is open)
and no point strictly greater than x . (Notice that what we have actually proved is
that there is a finite e in U with x ∈ V (e).) Thus an algebraic cpo has the property
that isolated points are dense.

A basis for a topology is a set B of open sets such that, given any x ∈ U
with U open, there is an element V of B with x ∈ V ⊆ U . Thus a set is open if,
and only if, it is the union of some subset of B. For example, in the usual topology
on R, a typical basis is the set of all open intervals with endpoints in Q. There is
an interesting basis for the Scott topology on an algebraic cpo. We have already
noticed that all elements of

B = {V (e) | e is po-finite}

are open. They form a basis since, if x belongs to open U , the directed set {e | e ≤
x ∧ e is po-finite} must contain an element e of U . Clearly x ∈ V (e) ⊆ U .

This is far from being the only topology of interest when studying partial or-
ders. There are others which have far more conventional properties (such as compact
Hausdorff). We will meet another of these when we come to study powerdomains
in Chapter 6.

Having introduced the idea of studying partial orders via topology, we should
perhaps finally mention that some computer scientists prefer to go the whole way
and get their fixed point theorems from topology rather than cpos. Perhaps the best
known fixed point theorem in the whole of mathematics is the contraction mapping
theorem (also known as the Banach fixed point theorem). This states that, in
a complete metric space X (one where every Cauchy sequence converges), every
contraction mapping has a unique fixed point. A contraction mapping is a function
f : X → X such that there is a positive constant κ < 1 with d(f (x ), f (y)) ≤ κd(x , y)
for all x , y ∈ X . A sizable minority of the mathematical structures now being
created to model computation now rely on this fixed point theorem rather than
the ones established earlier in this chapter. Even when one does have a partial
order fixed point theory it can be useful to look at a space as a metric space when
recursions are contractions: see Exercise 2.4.8 below.
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Readers who are interested in pursuing the theory of partial orders in more
depth than we have had space to provide might wish to look at [].

2.4.1 König’s Lemma

König’s Lemma is one of the most frequently used results in theoretical computer
science – and we shall need it in Chapter 6. Although it is frequently used in
connection with partial orders, this is in fact a result about trees. A tree is a
connected graph with no cycles which, in this case, has a designated root node.
Such a tree can be broken up into ‘levels’ according to distance (length of shortest
path) from the root, where all non-root nodes have a unique ‘predecessor’ (the first
node passed through on the path to the route) and every node can have any number
of ‘successors’ (nodes of which it is the predecessor). We prove König’s Lemma here
both because we need it later on, but mainly because it is such an important result
generally.

2.4.4 theorem (könig’s lemma)

Suppose T is an infinite tree (i.e., has infinitely many nodes) which is finitely
branching (each node has only finitely many successors). Then T contains an
infinite path (a sequence of nodes 〈n0,n1, . . .〉 where n0 is the root and ni+1 is
always a successor of ni).

proof

Let S be the set of nodes n in T such that the (direct) paths from the root n0

to infinitely many nodes pass through n. Clearly n0 ∈ S , because T is infinite.
And if, in general, n ∈ S then at least one of n’s successors must be in S . For
otherwise there are only finitely many nodes reachable through each of n’s finitely
many successors, which would contradict the fact that infinitely many are reachable
through n. Thus to construct our infinite path all we have to do is, starting with
the root n0, pick ni+1 to be one of the successors of ni that is in S .

Typically, König’s Lemma is used to show that if, in some suitable branching
structure, some process (involving walking through the structure) can continue to
any finite depth, then it can in fact continue forever.

Exercises

2.4.1 Show that any countable directed set ∆ has a linearly ordered subset C such
that x ∈ ∆ ⇒ ∃ y ∈ C .x ≤ y . Deduce that any countable directed set in a
chain-complete partial order has a least upper bound.

2.4.2 By considering the directed subset ℘(X ) of the partial order P(X ) where X
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is an uncountable set, show that first conclusion of Exercise 2.4.1 does not
hold for uncountable directed sets.

2.4.3 Let ∆ be directed. Construct an operator F : P(∆) → P(∆) with the
following properties

(a) X ⊆ F (X );
(b) F (X ) is directed;
(c) X ⊆ Y ⇒ F (X ) ⊆ F (Y );
(d) F (X ) has the same cardinal as X if X is infinite.

2.4.4 Assuming the result of Exercise 2.4.1 and the existence of an operator as in
Exercise 2.4.3, prove by induction on the cardinality of a directed subset ∆
of a chain-complete partial order that ∆ has a least upper bound.

2.4.5 Recall Lemma 2.3.5, where we showed that the least fixed point operator on
P c→ P is continuous. Show that it is monotone on P m→ P and find an
example where it is not continuous.

2.2.6 Suppose P is a set on which there are two complete partial orders ≤ and �
with the following properties:

(a) The two orders have the same least element ⊥.
(b) x � y ⇒ x ≤ y .
(b) If ∆ is �-directed then its least upper bounds with respect to the two

orders are the same.

Prove (i) that if f is monotone with respect to both orders and continuous
with respect to ≤, then it is continuous with respect to �, and (ii) that if f
is monotone with respect to the two orders then the two least fixed points
are the same. (Notice that this situation applies to the finite and infinite
sequences of letters ordered by prefix and lexicographically. See Exercise
2.1.5.)

2.4.7 Another (usually different) T0 topology can be defined on an arbitrary partial
order by defining U to be open if and only if it is upwards closed. Show that
a function is monotone if and only if it is continuous with respect to this
topology.

2.4.8 Suppose X is a metric space (not necessarily complete) and that the contrac-
tion map f is known to have a fixed point µ f in X . Further suppose C is a
nonempty closed subset of X such that f (C ) ⊆ C (i.e., x ∈ C ⇒ f (x ) ∈ C ).
Prove that µ f ∈ C . (This is a potentially stronger fixed point rule than the
ones established at the end of Section 2.2.)
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2.4.9 One can use the Scott topology to define a topology on the product∏
λ∈Λ Pλ

of cpos in two different ways: either the Scott topology of the product order
or the topological product of the Scott topologies on the components. (The
product topology is defined by the basis consisting of open sets of the form

{x | ∀λ ∈ F .xλ ∈ Uλ}

as F varies over finite subsets of Λ and each Uλ is open in Pλ.) Show that,
if all the Pλ are algebraic, then these two topologies are the same (i) when
Λ is finite and (ii) in general.
[Hint: It is enough to show that all elements of a basis for each topology are
open in the other.]
How would your answer change if instead of using the Scott topology you
used the one defined in Exercise 2.4.7?





Chapter 3

Information systems

3.1 Basics

In Chapter 1 we saw the need for a theory which allows us to build mathematical
models, or domains, that solve domain equations such as

M ∼= B + (M → M ).

The first theory of this type was developed by D.S. Scott circa 1969, and a number
of similar approaches have been developed since by various authors. The theory
presented in this work is essentially due to Scott, though it is not his original one.

Our basic approach is to develop, for each language, a suitable set of propo-
sitions that can be true of programs written in it. The propositions will always be
‘finite’, in the sense that they can be deduced about the program by observing it
for a finite time. We will then identify each program with the set of all propositions
that are true of it. Consider, for example, the above equation in the context of
the language we met at the end of Chapter 1. A typical proposition about such an
expression E might be ‘E = 42’, or ‘E is a function’, or ‘E is a function which,
when its argument equals 12, gives the value 13’. It will turn out that, by develop-
ing suitable spaces of such propositions, we can naturally solve domain equations.
These propositions will usually be called tokens.

For example, if the set of objects we are modelling are the functions from N to
N, one appropriate set of tokens is N×N (〈n,m〉 meaning ‘f (n) = m’). Notice that,
in regarding a function f as the set of all tokens that are true of it, we are identifying
it with {〈n,m〉 | f (n) = m}: this is exactly the way in which set-theorists model
functions.

The central feature of each information system we build will be a set of tokens.
However, the structure of the domain generated by a given set A of tokens will
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depend not so much on the identities of the individual tokens as on the relationships
which exist between them. For example, it is clear that exactly the same set of
tokens we used above for functions will suffice for the relations between N and N
and the monotonic functions from N to N (where n ≤ m implies f (n) ≤ f (m)).
Thus in describing one of these domains, or information systems, we will need to
record the relationships between its tokens.

Given a finite set X of tokens, we should be able to tell whether or not
they are consistent, or in other words, whether or not they can all be true at
once of something. In our function space example, if n 6= n ′, then the tokens
{〈n,m〉, 〈n ′,m ′〉} are consistent, because there is always a function that maps n to
m and n ′ to m ′. However, if m 6= m ′ the tokens {〈n,m〉, 〈n,m ′〉} are not consistent,
because no function can map n both to m and to m ′. Notice that in the space of
relations, any finite set of tokens is consistent, but that in the space of monotonic
functions, if n < n ′, then {〈n,m〉, 〈n ′,m ′〉} is only consistent if m ≤ m ′, and
{〈n,m〉, 〈n,m ′〉} is consistent only when m = m ′. A component of each information
system will be a set Con which consists precisely of those finite sets of tokens that
are consistent.

It is possible that even consistent groups of tokens might not be independent
of one another. When we know all the information represented by some X ∈ Con
about an object, then it might be possible to deduce that some other token a must
also be true about it. In this case we will say that X entails a, and write X ` a. To
know the structure of the domain generated by a given set of propositions one must
know the form of their entailment relation. Therefore each information system will
include `, which will be a relation between Con and A, the set of tokens.

The entailment relation in our function space example is not very interesting,
because any pair of tokens are either inconsistent or completely independent. If X
is a consistent finite subset of N × N and a ∈ N × N, then X ` a if and only if
a ∈ X : any set of tokens can only tell us about a function’s value at n ∈ N if it
contains a token with n as its first component. It becomes less trivial, however, in
the context of monotonic functions. Here we will have such entailments as

{〈n, 0〉} ` 〈m, 0〉 whenever m ≤ n
{〈n, k〉, 〈n ′, k〉} ` 〈m, k〉 whenever n ≤ m ≤ n ′.

If the propositions were drawn from a logic with connectives such as ∧ (and)
and ∨ (or), we would certainly expect entailments like

{a ∧ b} ` a
{a, b} ` a ∧ b
{a} ` a ∨ b

In cases like this where the propositions are drawn from some structured
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logic, it is likely that we will be able to deduce the consistency and entailment
relations from it. What is important, though, is that these relations are exactly
the information we require about any set of propositions. And by making the
relations explicit we are able to abstract completely from the structure of the set of
propositions. Indeed the name ‘token’ we have given them carries the implication
that we do not have to look inside them to see their meaning. Formally then, an
information system is a triple 〈A, Con,`〉, where A is any set, Con is a nonempty
subset of ℘(A) (the set of all finite subsets of A), and ` is a relation between Con and
A. Of course, not all such triples will constitute reasonable information systems.
Specifically, every information system 〈A, Con,`〉 must satisfy the following five
axioms, each of which specifies a different ‘reasonableness’ condition.

1. If X ∈ Con, and Y ⊆ X , then Y ∈ Con.

2. If a ∈ A, then {a} ∈ Con.

3. If X ∈ Con and X ` a, then X ∪ {a} ∈ Con.

4. If X ∈ Con and a ∈ X , then X ` a.

5. If X ,Y ∈ Con and a ∈ A are such that X ` b for each b ∈ Y and Y ` a,
then X ` a.

Axiom 1 observes that if a set X of tokens can be true of some object, then
so can each subset of X (because the same object works). Axiom 2 simply says that
no token is completely redundant: there must be some object of which it is true.
Axiom 3 says that if the set X of tokens can all be true of some object, and if the
truth of all of X entails the truth of a, then X ∪{a} is consistent, because they are
all true of the object that X is. Axiom 4 asserts the trivial fact that if we know
that every token in a set that includes a holds, then we know a. Axiom 5 is the
transitivity law. It says that if, from X , we can deduce enough information (Y ) to
deduce a, then we can deduce a from X .

Of these axioms only Axiom 2 is in any sense less than ‘clearly true’. One
could well imagine a language of propositions in which some were formally unsat-
isfiable by any program – i.e., were equivalent to false. Fortunately it is the only
one that is not really used in an important way: if it were omitted hardly any of
what follows would be invalidated though occasional modifications would be needed.
Essentially, the inclusion of this axiom is a matter of personal taste.

examples

The set A = N × N of tokens can easily be used to set up three information sys-
tems F = 〈A, ConF ,`F 〉 (functions) R = 〈A, ConR,`R〉 (relations) and M =
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〈A, ConM ,`M 〉 (monotonic functions) along the lines described above.

X ∈ ConF ⇔ X ⊆fin A ∧ ({〈n,m〉, 〈n,m ′〉} ⊆ X ⇒ m = m ′)
X `F 〈n,m〉 ⇔ X ∈ ConF ∧ 〈n,m〉 ∈ X

X ∈ ConR ⇔ X ⊆fin A
X `R 〈n,m〉 ⇔ X ∈ ConR ∧ 〈n,m〉 ∈ X

X ∈ ConM ⇔ X ⊆fin A ∧
(n ≤ n ′ ∧ {〈n,m〉, 〈n ′,m ′〉} ⊆ X ⇒ m ≤ m ′)

X `M 〈n,m〉 ⇔ X ∈ ConM ∧
((m = 0 ∧ ∃n ′ ≥ n.〈n ′, 0〉 ∈ X ) ∨
(∃n ′,n ′′. n ′ ≤ n ≤ n ′′ ∧ {〈n ′,m〉, 〈n ′′,m〉} ⊆ X ))

Notice that the definition of ConM implies the condition directly stated in the
definition of ConF that no number has more than one image, for if 〈n,m〉, 〈n,m ′〉 ∈
X ∈ ConM then m ≤ m ′ and m ′ ≤ m. The reader is invited to check that the
triples R and M are indeed information systems. We will illustrate the sort of
calculations required by verifying that F is one.

• Axiom 1 holds since if X ∈ ConF and Y ⊆ X then 〈n,m〉, 〈n,m ′〉 ∈ Y ⇒
〈n,m〉, 〈n,m ′〉 ∈ X .

• Axiom 2 holds since each singleton set {〈n,m〉} is trivially in ConF .

• Axioms 3, 4 and 5 are all easy consequences of the definition that X `F 〈n,m〉
if and only if 〈n,m〉 ∈ X . (These three axioms are trivial in any information
system where X ` a ⇔ a ∈ X .)

When, subsequently, we define the Con and ` components of information
systems, we will not always state explicitly conditions such as ‘X ⊆fin A’ which can
be inferred from the basic structure of information systems.

Remember that the reason for setting up information systems is so that we
have a framework for identifying an object with the set of propositions that are true
of it. An important feature of each information system will therefore be the set of
‘objects’ described by it. Such an object, an element of the information system, will
be any set of tokens which can reasonably be thought to be the set of all propositions
true of something.

Definition
Suppose A = 〈A, Con,`〉 is an information system. x ⊆ A is said to be an element
of A if it is

(a) consistent, in that every X ∈ Con whenever X ⊆fin x , and
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(b) deductively closed, in that, whenever X ⊆fin x and X ` a, then a ∈ x .

The set of all elements of A is written | A |.
Clearly each of these conditions must be true of the set of all tokens describing

any object. What we are doing is, in some sense, postulating the existence of an
object corresponding to every set of tokens satisfying them. The sets of elements
of information systems will be very important to us: they are the ‘domains’ we will
construct and use to model programming languages.

Consider the function space example F. Here, because the entailment relation
is trivial, every subset of N×N is deductively closed. Thus the elements are precisely
those subsets x of N × N that are consistent, or equivalently those satisfying the
condition:

{〈n,m〉, 〈n,m ′〉} ⊆ x ⇒ m = m ′ .

In other words, the elements are not the functions from N to N but the partial
functions. (Observe that ∅, {〈3, 4〉} and {〈2n,n〉 | n ∈ N} are all elements.) In fact,
the total functions are precisely the maximal elements of F, those x ∈| F | which
satisfy

y ∈| F | ∧x ⊆ y ⇒ x = y .

Given a maximal element x , there is no element y of which strictly more
tokens are true (either because there are no more tokens to add or because the
addition of any further token would mean inconsistency). This turns out to be a
common feature of information systems: in defining a system which is intended to
describe some known set of elements, you find that the language of propositions
you have devised adds classes of partial elements. As we shall see shortly every
information system must have a structure where all objects are approximated by
a set of partial ones, so that, if the objects we are trying to describe have no such
structure themselves, then we are bound to add partial elements as above. See the
exercises for more examples of this.

In the information system R of relations, it is clear that every set is deduc-
tively closed and consistent. Thus | R |= P(N × N), which is, of course, the set
of relations between N and N. Thus this time the underlying domain of our infor-
mation system is exactly what we had expected. It is easy, however, to devise an
information system of relations in which the relations correspond to the maximal
elements (i.e., complete objects): one simply invents, for each pair 〈n,m〉 an extra
token ¬〈n,m〉 with the meaning ‘n does not relate to m’. (¬〈n,m〉 will of course
be inconsistent with 〈n,m〉.) Which of these representations one uses will depend
on whether one wants all fully defined relations to be independent, or whether one
wants one relation to be ‘stronger’, or ‘more defined than’ another. When using
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information systems to model computer programs, this decision would probably rest
on whether the n not being related to m was actually observable, or whether we
only actually see when things are related.

The structure of the information system 〈M , ConM ,`M 〉 of monotonic func-
tions is left as an exercise to the reader.

We will now prove a few basic results about information systems. The first
establishes two rather obvious facts: the empty set of tokens is consistent, and, if
a token a is entailed by some set X , then it is entailed by every larger element of
Con.

3.1.1 lemma

Suppose A = 〈A, Con,`〉 is an information system, then

(a) ∅ ∈ Con;

(b) if X ∈ Con, Y ⊆ X and Y ` a, then X ` a.

proof

(a) follows because Con is by assumption nonempty, and by Axiom 1. (b) holds by
Axiom 5 since, by Axiom 4, X ` b for each b ∈ Y .

Suppose 〈A, Con,`〉 is an information system and B ⊆ A. We define B , the
deductive closure of B , by

B = {a ∈ A | ∃X ⊆fin B . X ` a} .

B is the set of all tokens deducible from B . Notice that B ⊆ C ⇒ B ⊆ C . Note
also that Lemma 3.1.1(b) shows that, if X ∈ Con, then X = {a ∈ A | X ` a}.

3.1.2 lemma

Suppose A = 〈A, Con,`〉 is an information system, X ∈ Con and Y ⊆fin A.
Then

(a) if X ` a for every a ∈ Y then Y ∈ Con;

(b) X ∈| A |;

(c) ∅ ⊆ x for every x ∈| A |.

proof

(a) We will prove that X ∪Y ∈ Con by induction on the size of Y ; the result then
follows by Axiom 1. If Y = ∅, this result is trivial, so suppose Y = Y ′ ∪ {a} and
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X ∪Y ′ ∈ Con. Then since, by assumption, X ` a, we have X ∪Y ′ ` a by Lemma
3.1.1(b), so that X ∪Y ∈ Con by Axiom 3.

(b) If Y ⊆fin X then Y ∈ Con by (a); hence X is consistent. If Y ⊆fin X and
Y ` a, then X ` a by definition of X and Axiom 5; hence X is deductively closed.
(c) If a ∈ ∅ and x ∈| A |, then a ∈ x because ∅ ⊆fin x , ∅ ` a and x is deductively
closed.

In the light of (a) above it is convenient informally to allow ‘`’ to be used
as a relation between Con and Con: henceforward ‘X ` Y ’ will mean the same as
‘X ` a for each a ∈ Y ’.

Notice that (c) above tells us that the partial order of | A | under ⊆ has a
minimum element. ∅ is the set of tokens that tell us nothing at all, because they
are true of every object. (In most of the examples we meet ∅ will equal ∅, because
there is generally no reason to include tokens that carry no information.)

example

The above result shows that the set of elements of each information system must
have a least element under ⊆. It is therefore not possible to have an information
system representing a totally ‘flat’ set (of more than one element) where there is
no order between the elements. However we can do the next best thing and define
a domain which has all the elements from a given set, unordered, plus a bottom
element below them all (recall Exercise 2.1.9). Given such a set A, we can form an
information system flat(A) = 〈A, Con,`〉, the flat domain on A, by setting

• Con = {∅} ∪ {{a} | a ∈ A}, and

• X ` a ⇔ a ∈ X .

It is easy to see that | flat(A) |= Con has exactly the required order, with
each member a of A represented by the singleton {a}. The order structure of the
flat domain on N, the natural numbers, is shown in Figure 3.1.

Recall that any set of tokens is said to be consistent if each of its finite subsets
is in Con. The next Lemma justifies this term, for it shows that every consistent
set of tokens is true of some object (i.e., element) in the underlying domain.

3.1.3 lemma

If A = 〈A, Con,`〉 is an information system and U ⊆ A is consistent, then U ∈| A |.

proof

First we show that U is consistent. If Y = {a1, a2, . . . , an} is any finite subset of
U , then for each i ∈ {1, 2, . . . ,n}, there exists Zi ⊆fin U such that Zi ` ai . But
Z = Z1 ∪ . . . ∪ Zn is a finite subset of U , and so is in Con. Now Z ` ai for each i
(by Lemma 3.1.1(b)); Lemma 3.1.2(a) then tells us that Y ∈ Con.
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Figure 3.1 The flat domain on N

To show deductive closure, suppose that Y ⊆fin U and that Y ` b. Exactly
as above we can find Z ⊆fin U such that Z ` Y . But then Z ` b by Axiom 5, so
b ∈ U as required.

Definition
If A = 〈A, ConA,`A〉 and B = 〈B , ConB ,`B 〉 are any two information systems,
the map φ : A → B is said to be an isomorphism between A and B if (a) it is a
bijection and (b) it preserves the consistency and entailment relations in the sense
that

• X ∈ ConA ⇔ {φ(a) | a ∈ X } ∈ ConB

• X `A a ⇔ {φ(a ′) | a ′ ∈ X } `B φ(a) .

In this case we write A ≡ B. Two isomorphic information systems are in a
strong sense essentially the same. In particular it is easy to see that, if φ, A and B
are as above then

| B |= {{φ(a) | a ∈ x} | x ∈| A |} .

It is easy to see that A ≡ B and B ≡ C implies that A ≡ C.
Except for the names of their tokens, two isomorphic information systems

are essentially the same, and will have all of the same properties.

Exercises

3.1.1 Let S be any set. Take S to be the information system 〈S , ConS ,`S 〉, where
ConS = {X | X ⊆fin S} and X `S a iff a ∈ X . Show that | S |= P(S ).
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Now, let F = {X | X ⊆fin S}. Define ConF and `F in such a way that
F = 〈F , ConF ,`F 〉 is an information system and | F | is naturally isomorphic
to | S |.
[Hint: Say that G ∈ F is ‘information towards’ T ⊆ S if G ⊆ T. You
should think of a token G in F as containing the same information as the
conjunction of the finitely many tokens of S it contains.]

3.1.2 Let A be a set with at least two elements. Construct an information system
whose token-set is A and whose elements are those of the flat domain on A
together with a single extra top element which is greater than all others.

3.1.3 Let B be the set of finite nonempty sequences of 0s and 1s whose last element
is a 1 – for example 0 1, 1 1, 1 0 0 1.
We write s ≤ t iff s is an initial subsequence of t ; in other words if t = ŝ u
for some sequence u.
Let ConB = {X ⊆fin B | a, b ∈ X ⇒ a ≤ b or b ≤ a}, and say X `B a iff a ≤
b for some b ∈ X . Show that B = 〈B , ConB ,`B 〉 is an information system,
and that the maximal elements of | B | are in natural 1-1 correspondence
with the interval (0, 1] = {x ∈ R | 0 < x ≤ 1}.
[Hint: notice that every such real number has a unique binary expansion
0.b1b2b3 . . . where infinitely many of the bi are 1.]

3.1.4 Construct an information system whose maximal elements represent the
strictly monotonic functions from N to N (namely, functions f such that
n < m ⇒ f (n) < f (m)).
[Hint: Notice that the set N×N of tokens used for the examples in the text is
no longer correct, since for example no strictly monotone function can map
3 to 1.]

3.1.5 Given sets A and B , construct an information system with token set A× B
which represents the 1-1 functions from A to B (i.e., f (x ) = f (y) ⇒ x = y .
What are the maximal elements of your system in the following cases:

(a) A is larger than B ;
(b) B is larger than A;
(c) A and B are the same finite size
(d) A and B have the same infinite size (i.e., there is a bijection between

them).

∗3.1.6 Let I be the set of all nonempty open intervals in R. Let ConI = {X ⊆fin

I |
⋂

X 6= ∅ }, and define X `I a iff a ⊇
⋂

X . Show that I = 〈I , ConI ,`I 〉
is an information system. Describe the maximal elements of | I |.

3.1.7 Prove that, if A = 〈A, Con,`〉 is an information system then | A | contains
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a maximum element (i.e., an x such that x ⊇ y for all y ∈| A |) if and only
if Con = ℘(A). (In other words, if and only if the consistency relation is
trivial.)

3.1.8 Show that it is possible to determine the triple 〈A, ConA,`A〉 from the cor-
responding set | 〈A, ConA,`A〉 | of elements. (Note that this implies that, in
general, if A 6= B then | A |6=| B |.)

3.2 The partial order structure of information systems

There is a natural partial order on the set of elements | A | of information systems
determined by set inclusion. x ⊆ y if every token that is true of x is also true
of y ; if y is in some sense more defined than x . This partial order will be very
important to us: indeed from one point of view, information systems are little more
than concrete representations of their partial orders of elements. In this section we
will investigate the properties it has.

Recall that two partial orders 〈P ,≤1〉 and 〈Q ,≤2〉 are said to be order iso-
morphic if there is a bijection ψ : P → Q such that x ≤1 y ⇔ ψ(x ) ≤2 ψ(y) for all
x , y in P . If | A | and | B | are order isomorphic then we write A ∼= B. Note that
A ≡ B ⇒ A ∼= B since, if φ : A → B is an isomorphism between A and B, the
map defined ψ(x ) = {φ(a) | a ∈ x} is plainly an order isomorphism from | A | to
| B |.

The reverse is not true in general, since there are many cases of non-isomorphic
information systems giving rise to order-isomorphic domains. A simple example was
given in Exercise 3.1.1. As a further example, given any system A = 〈A, Con,`〉
and a nonempty set B , the system AB , with token set A× B and consistency and
entailment relations defined

• X ∈ Con′ ⇔ {a | ∃ b.〈a, b〉 ∈ X } ∈ Con

• X `′ 〈a, b〉 ⇔ {a ′ | ∃ b′.〈a ′, b′〉 ∈ X } ` a ,

has a set of elements order isomorphic to | A | but only rarely will AB ≡ A. (In
AB we have simply made a copy of each of A’s tokens for each element of B, but
treated all these copies as equivalent pieces of information. One can quickly show
that | AB |= {x × B | x ∈| A |}.)

Recall the definition of a directed set from the last chapter. A directed set
∆ of elements of an information system has the property that, given any finite set
of tokens taken from elements of ∆, there is a single element of ∆ containing all the
tokens. This follows easily from the fact that every finite subset of ∆ has an upper
bound in ∆.
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3.2.1 theorem

Suppose A = 〈A, Con,`〉 is an information system. Then | A | is a cpo. Further-
more

(a) if ∆ is a directed subset of | A |, then the least upper bound of ∆ is given by⋃
∆;

(b) if S is any nonempty subset of | A |, then the greatest lower bound of S exists
and is equal to

⋂
S.

proof

To show that | A | is a cpo it will be enough, by Lemma 3.1.2(c), to prove (a).
Clearly x ⊆

⋃
∆ whenever x ∈ ∆, and if y ∈| A | is any upper bound for ∆ then

clearly
⋃

∆ ⊆ y . Hence to prove (a) it will be enough to prove that
⋃

∆ ∈| A |.
Consistency. If Z = {a1, a2, . . . , an} ⊆

⋃
∆, then there are x1, x2, . . . , xn ∈ ∆

such that ai ∈ xi . By directedness of ∆, there is some x∗ ∈ ∆ such that xi ⊆ x∗ for
each i . But then Z ⊆ x∗, so Z ∈ Con because x∗ is consistent.
Deductive closure. If Z = {a1, a2, . . . , an} ⊆

⋃
∆ and Z ` a then as above we can

find x∗ ∈ ∆ with Z ⊆ x∗. But then a ∈ x∗ by deductive closure of x∗, so a ∈
⋃

∆
as required.

The proof of (b) is even easier. Again, it will obviously suffice to show that⋂
S ∈| A |. Consistency follows from the fact that S is nonempty: each finite

subset of
⋂
S is a subset of every (and so at least one) element of S. Deductive

closure follows because if X ⊆fin
⋂
S and X ` a then, for each x ∈ S, X ⊆fin x so

that a ∈ x by deductive closure of x .

Thus not only is the domain of elements of an information system a cpo,
but the limit of a directed set is simply its union: the set of all tokens contained in
any element of the set. We used the directedness of ∆ crucially in the proof of (a):
that this was needed can be seen from our function space examples F and M. In
both of these domains it is easy to construct subsets that have no upper bound (for
example the set containing two different total functions). In M, because it has a
non-trivial entailment relation, it is possible to find nondirected sets S of elements
such that, even though

⊔
S exists, it is not equal to

⋃
S. (For example the set

{{〈3, 3〉}, {〈23, 3〉}} has least upper bound {〈n, 3〉 | n ∈ {3, 4, . . . , 23}}.)
A direct application of Zorn’s Lemma1 shows that every element of an infor-

mation system A can be extended to a maximal element. As we have already seen,

1Zorn’s Lemma states that, in a partial order P where each linearly ordered subset has an

upper bound, each element x is weaker than some maximal y. Zorn’s Lemma is an equivalent of

the axiom of choice, and in fact the full power of the axiom of choice is required to prove that

information systems have maximal elements: see Exercise 3.2.3.



72

in flat domains and the function space examples, an information system can have
many different maximal elements.

Recall that a subset S of a partial order is said to be po-consistent if all its
finite subsets have an upper bound in P , and that a cpo is said to be consistently
complete if every po-consistent subset has a least upper bound. This notion of con-
sistency is an obvious analogue of our information system definition, for consistency
there is determined from finite subsets as well. The following Lemma shows that it
is easy to determine the po-consistent subsets of an information system.

3.2.2 lemma

Suppose A is an information system, and S is a subset of | A |. Then S is po-
consistent if and only if

⋃
S is consistent as a set of tokens. Furthermore, in this

case,
⊔
S exists and equals

⋃
S.

proof

If
⋃
S is consistent then, by Lemma 3.1.3, x∗ =

⋃
S is an element of | A | and

is obviously an upper bound for S. That it is the least upper bound is an easy
consequence of the deductive closure of elements of | A |.

If S is po-consistent and X = {a1, a2, . . . , an} is any finite subset of
⋃
S,

then we can find x1, x2, . . . , xn ∈ S such that ai ∈ xi . But by po-consistency of S
there must be some upper bound x∗ ∈| A | for {x1, x2, . . . , xn}. But then X ⊆fin x∗,
so X ∈ Con as x∗ is consistent. Hence

⋃
S is consistent. That

⊔
S =

⋃
S then

follows by the above.

The following Lemma is a trivial corollary to Lemma 3.2.2 (and is also a
corollary to the result in Exercise 2.1.6, given Theorem 3.2.1).

3.2.3 lemma

The domain of elements of each information system is consistently complete.

The next theorem completes the sequence of results proving properties about
the partial orders associated with information systems. It establishes that, in ad-
dition to being consistently complete cpos they are also algebraic (every element is
the least upper bound of the po-finite elements below it). It also characterises the
po-finite elements of these partial orders.

3.2.4 theorem

If A = 〈A, Con,`〉 is an information system, then the po-finite elements of | A |
are precisely {X | X ∈ Con}. Furthermore the partial order | A | is algebraic.

proof
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{2, 3, 4, . . .}

{1, 2, 3, . . .}

N

Figure 3.2 N – po-finite elements that are not finite sets.

Suppose first that X = {a1, a2, . . . , an} ∈ Con and ∆ is a directed set with
⋃

∆ ⊇
X . Then for each i we can find xi ∈ ∆ with ai ∈ xi . But then there is some x∗ ∈ ∆
which is an upper bound for the xi , so that X ⊆ x∗. X ⊆ x∗ now follows from the
deductive closure of x∗. Hence X is po-finite.

Now if x is any element of | A | it is clear that {X | X ⊆fin x} is a directed
set with limit x . Thus, if x is po-finite, there must be some X ⊆fin x with X ⊇ x ;
but clearly X ⊆ x so that X = x as desired. Whether x is po-finite or not we know
by the above that each element of {X | X ⊆fin x} is, so we also have that | A | is
algebraic.

Notice that, while the above result implies that any finite (as a set) x ∈| A |
is necessarily po-finite, it does not imply the reverse. (This is why we use the term
po-finite to avoid confusion.) Consider the following example.

example

We define an information system N = 〈N, Con,`〉 whose tokens are the natural
numbers:

• Con = ℘(N)

• X ` n ⇔ ∃m ∈ X .m ≤ n.

The elements of this system are {∅} ∪ {{n | n ≥ m} | m ∈ N}; their partial
order structure is illustrated in Figure 3.2. As is easily verified, all the elements of
| N | are po-finite; but only ∅ is a finite set.

We have now shown that each information system represents an algebraic,
consistently complete cpo. That this is a complete characterisation is shown by
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the final theorem in this section, where we see that every such partial order can be
represented by an information system.

3.2.5 theorem

If 〈P ,≤〉 is an algebraic, consistently complete cpo then P is order isomorphic to
the domain of elements of some information system.

proof

We construct an information system E = 〈E , Con,`〉 as follows:

• E is the set of po-finite elements of P ;

• X ∈ Con if and only if X ⊆fin E and X is po-consistent;

• X ` e if and only if X ∈ Con and e ≤
⊔

X .

It is quite easy to verify that E is an information system. We set up a map
from P to | E | in the natural way:

φ(x ) = {e ∈ E | e ≤ x} .

It is easy to verify that φ is well-defined (i.e., that φ(x ) ∈| E | for all x ∈ P). It
is injective because, since P is algebraic, x =

⊔
φ(x ) for every x ∈ P (i.e., x is

determined by φ(x )). It is clearly order-preserving, because

x ≤ y ⇒ {e ∈ E | e ≤ x} ⊆ {e ∈ E | e ≤ y} .

Thus it only remains to show that φ is surjective. Suppose z ∈| E |; define xz =
⊔

z
(this is a well-defined element of P because z is consistent and hence po-consistent,
and P is consistently complete). Certainly φ(xz ) ⊇ z . Claim z is a directed set
(note that it contains the least element ⊥ of P and so is nonempty). If X ⊆fin z
then

⊔
X is po-finite by Lemma 2.1.2 (a), and thus X `

⊔
X by definition of `.

Deductive closure of z then means
⊔

X ∈ z as required to prove z directed as
claimed.

Now whenever e ∈ φ(xz ) we have e ≤
⊔

z , where z is known to be directed.
Thus (for we have assumed P is algebraic) e ≤ e ′ for some e ′ ∈ z . Trivially
then e ∈ z as z is deductively closed. Therefore we must have φ(xz ) = z , which
demonstrates that φ is surjective. Thus φ is an order isomorphism.

Exercises
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3.2.1 For each of the following partial orders, either construct an information sys-
tem whose set of elements is order isomorphic to it, or explain why no such
information system exists.

(i) The numbers {0, 1, 2, . . . ,n} with their usual order.
(ii) The natural numbers N with their usual order ≤.
(iii) N with the reverse order: n � m ⇔ m ≤ n.
(iv) The closed interval [0, 1](= {x | 0 ≤ x ≤ 1}) with its usual order.
(v) ℘(N) ∪ {N} with the subset order ⊆.
(vi) ℘(N)∪{N} with the superset order ⊇ (i.e., the reverse inclusion order).

3.2.2 The information system R = 〈Q, Con,`〉 (where Q is the set of rational
numbers) is formed by setting

– X ∈ Con⇔ X ⊆fin Q
– X ` a ⇔ ∃ b ∈ X .b ≥ a .

Describe the po-finite elements of | R | and show that the non-po-finite
elements are in natural, order-preserving correspondence with R ∪ {∞}, the
set of all real numbers plus a point at (positive) infinity. (This construction
of the real numbers from the rationals is known as Dedekind cuts.)

M 3.2.3 Let X be any set of nonempty sets and set A = {〈x , a〉 | x ∈ X ∧ a ∈ x}. By
forming a suitable information system 〈A, Con,`〉 prove, from the principle
that information systems have maximal elements, that there is a total choice
function f : X →

⋃
X such that f (x ) ∈ x for all x . (The statement that there

always exists such a function is known as the axiom of choice. This exercise
proves that the principle that information systems have maximal elements is
an equivalent of the axiom of choice.)

M 3.2.4 Let n > 2. Which of the following sets of subsets of Euclidean space Rn is
the set of elements of an information system with token set Rn?

(i) The open sets.
(ii) The closed sets.
(iii) The convex sets. (A subset of Rn is said to be convex if, whenever

x,y ∈ C and 0 ≤ λ ≤ 1,, λx + (1− λ)y ∈ C .)
(iv) The set of proper vector subspaces. (A subset of Rn is a vector sub-

space if it is closed under taking linear combinations of its elements. A
subspace is proper if it is not equal to the whole space Rn .)

(v) The set of all connected sets. (A set C is said to be connected if,
whenever U and V are disjoint open sets such that C ⊆ U ∪ V , then
either C ∩U = ∅ or C ∩V = ∅.)
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3.2.5 Is it always the case that if X ⊂ P(A) is such that
⋃

X = A and X is an
algebraic, consistently complete cpo under ⊆, then there is an information
system with token set A whose elements are X ?
[Hint: Remember that, in an information system, the greatest lower bound
of any nonempty set is its intersection.]

3.3 Mappings between information systems

Many objects in computing can be thought of as mechanisms that take input and
produce output. In this section we meet a class of relations that can reasonably be
claimed to contain all computable mechanisms of this sort: they give information
about the output as a consequence of information about their input.

Definition
Suppose that A = 〈A, ConA,`A〉 and B = 〈B , ConB ,`B 〉 are information systems.
We will say that a relation r ⊆ ConA × B is an approximable mapping from A to
B if it satisfies

(a) X r b1 ∧X r b2 ∧ . . . ∧X r bn ⇒ {b1, b2, . . . bn} ∈ ConB

(b) (X r b1 ∧X r b2 ∧ . . . ∧X r bn) ∧ {b1, b2, . . . bn} `B b ⇒ X r b

(c) X `A X ′ ∧ X ′ r b ⇒ X r b .

If r is an approximable mapping from A to B we will write r : A → B.
An approximable mapping can be regarded as an ‘information respecting’

relation between two information systems. We think of r as being a machine for
giving us information about an element of | B | if we give it information about an
element of | A |: X r b means ‘if r is told X about an element of | A |, then b is
one of the things it tells us about the corresponding element of | B |’. Under this
interpretation the three conditions above are quite natural.

(a) says that if we put consistent information into r , then we get consistent infor-
mation out.

(b) says that if when we give r the information X , we can get enough information
to deduce b, then we can get b itself.

(c) says that anything which can be got from r by giving it information X ′ can
also be got by giving it more information.

Remembering that we are thinking of the tokens of an information system as
the facts that can be observed in a finite time, it is natural to expect any computable
process for computing | B |s from | A |s to correspond to an approximable mapping.
This is discussed further below.
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example

We can define an approximable mapping sum : F → M (respectively the informa-
tion systems of functions and monotonic functions from N to itself seen earlier in
this chapter) to represent a mechanism which, given information about an element
f of | F |, returns information about the function

sumf (n) =
∑n−1

i=0 f (i) .

The approximable mapping is formed by setting X sum 〈n,m〉 if and only if

∃ k0, . . . , kn−1. (∀ i ∈ {0, 1, . . . ,n − 1}. 〈i , ki〉 ∈ X ) ∧
∑n−1

i=0 ki = m .

It is easy to check that sum is indeed an approximable mapping. This example
shows why we have taken an approximable mapping to be a relation between sets of
tokens and tokens: sometimes it is necessary to know many facts about the input to
a machine to deduce some single fact about its output. For example, to be able to
deduce the value of sumf (4), we need to know all of the values {f (0), f (1), f (2), f (3)}.
Notice also that it is sometimes possible to deduce facts about the result without
knowing any facts about the input: we know that sumf (0) = 0 without needing any
information about f .

Each approximable mapping gives rise naturally to a function from the el-
ements of its left hand system to those of its right hand one. One simply collects
together all the information that is deducible about the result from finite subsets
of its argument.

Definition
If r : A → B is an approximable mapping, then we define a function | r |:| A |→| B |
by

| r | (x ) = {b ∈ B | ∃X ⊆fin x .X r b} .

3.3.1 lemma

If r : A → B is an approximable mapping then | r | is a well-defined monotonic
function, in that if x , y ∈| A | then

x ⊆ y ⇒ | r | (x ) ⊆| r | (y) .
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proof

To show that | r | is well-defined we must prove that, for each x ∈| A |, | r | (x ) is
an element of | B |.
Consistency. This follows because if {b1, b2, . . . , bn} ⊆| r | (x ) then for each i we
can find Xi ⊆fin x such that Xi r bi . But then X ∗ =

⋃n
i=1 Xi ⊆fin x , and X ∗ r bi for

each i by Lemma 3.1.1(b) and condition (c) above. Condition (a) above then tells
us that {b1, b2, . . . , bn} ∈ ConB .
Deductive closure. This follows because if Y = {b1, b2, . . . , bn} ⊆| r | (x ) and
Y `B b, then as above we can find X ∗ ⊆fin x such that X ∗ r bi for each i. Condition
(b) above then immediately tells us that X ∗ r b, which implies that b ∈| r | (x ).

That | r | (x ) ⊆| r | (y) when x ⊆ y follows immediately from the definition
of | r |.

The last part of the above Lemma says that the more defined the argument
to | r |, the more defined the result. This is because a more defined argument simply
has more tokens true of it, so r is able to deduce more tokens about the result.

Notice that an approximable mapping r allows us to deduce tokens about
its image only from finite sets of tokens from its argument. Thus | r | (x ) consists
of only those tokens which it is possible to deduce from finite subsets of x . In
particular it is clear that any token b ∈| r | (x ) is in | r | (X ) for some X ⊆fin x ,
so that | r | (x ) is simply the union of the results of applying | r | to the finite
approximations {X | X ⊆fin x}. (See below for a proof of this fact.) This is why
approximable mappings are so called: it is always possible to deduce the result
of applying the associated function to an infinite object by looking at its finite
approximations.

We constructed approximable mappings as mathematical models of ‘realis-
tic’ mechanisms for computing functions: in order to deliver a finite amount of
information they can only consume a finite amount. In modelling the behaviour of
computer programs it will generally be sufficient to restrict ourselves to the type of
function which arises from these mechanisms.

Recall that a function f : P → Q (P ,Q cpos) is said to be continuous if,
whenever D ⊆ P is directed,

⊔
{f (x ) | x ∈ D} exists and equals f (

⊔
D). There

is clearly a close relationship between continuous functions on partial orders and
approximable mappings on information systems. This is confirmed by the following
Theorem, which shows that the continuous functions between the sets of elements
of two information systems are precisely those induced by approximable mappings.

3.3.2 theorem

If A = 〈A, ConA,`A〉 and B = 〈B , ConB ,`B 〉 are two information systems, then a
function f :| A |→| B | is continuous if and only if there is an approximable mapping
rf : A → B such that | rf |= f . Furthermore, this rf is the only approximable
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mapping such that | rf |= f (which means there is a natural 1-1 correspondence
between the spaces of continuous functions and approximable mappings).

proof

Suppose first that r is an approximable mapping and that ∆ ⊆| A | is directed. We
must show that | r | (

⋃
∆) =

⋃
{| r | (x ) | x ∈ ∆}. (Since | r | is monotonic, we

already know that the set {| r | (x ) | x ∈ ∆} is directed and so has the right hand
side as its least upper bound.) We know, by Lemma 2.2.1, that

| r | (
⋃

∆) ⊇
⋃
{| r | (x ) | x ∈ ∆} .

So suppose that b ∈| r | (
⋃

∆). Then there is some finite subset X =
{a1, a2, . . . , an} of

⋃
∆ such that X r b. We can find x1, x2, . . . , xn ∈ ∆ such that

ai ∈ xi and, since ∆ is directed, x∗ ∈ ∆ such that xi ⊆ x∗ for each i . But then
X ⊆ x∗ ∈ ∆ and X r b, so that b ∈

⋃
{| r | (x ) | x ∈ ∆} as required. This

completes the proof that | r | is continuous.
Secondly suppose that f :| A |→| B | is a continuous function. We define an

approximable mapping rf :| A |→| B | as follows:

X rf b ⇔ b ∈ f (X ) .

That rf is an approximable mapping follows easily from the fact that f is a (well-
defined) monotonic function. Observe that, for each X ∈ ConA, we have | rf |
(X ) = f (X ), because Y ⊆fin X implies that Y ⊆ X so that f (Y ) ⊆ f (X ). Hence,
for each x ∈| A | we have

f (x ) = f (
⋃
{X | X ⊆fin x}) by Theorem 3.2.4

=
⋃
{f (X ) | X ⊆fin x} as f is continuous and

{X | X ⊆fin x} directed

=
⋃
{| rf | (X ) | X ⊆fin x} by the above remarks

= | rf | (
⋃
{X | X ⊆fin x}) as | rf | is continuous

= | rf | (x ) .

rf is unique in having this property, since if r and r ′ are different approximable
mappings there must be X ∈ ConA such that

{b ∈ B | X r b} 6= {b ∈ B | X r ′ b} .

But it is easy to verify that the left hand side above is | r | (X ) and the right hand
side is | r ′ | (X ), showing that | r | and | r ′ | are different functions. This completes
the proof of the Theorem.
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This result, together with the results of the last section, shows that whenever
P and Q are algebraic, consistently complete cpos and f : P → Q is continuous then
there is an approximable mapping between any pair of information systems with
domains of elements isomorphic to P and Q which corresponds to f . Just as we can
think of information systems as giving us concrete representations of this class of
partial orders, we can think of the approximable mappings as being representations
of the continuous functions between them. As we will see in the next chapter, this
is most useful.

Exercises

3.3.1 Suppose A is an information system. Do there always exist approximable
mappings from A to itself whose effect, as a function from | A | to | A |, is:

(i) the identity map f (x ) = x ;
(ii) the constant function f (x ) = y ;
(iii) the function

f (x ) =
{
∅ if y 6⊆ x
y if y ⊆ x

(y being some element of | A |; note that the possibility of (ii) and (iii) might
depend on which y is chosen)? In the cases where this is possible, construct
the approximable mapping.

3.3.2 Suppose A ∼= B. Construct an approximable mapping r : A → B such that
| r | is an order isomorphism. Need r be unique?

3.3.3 Consider the set A → B of approximable mappings from A to B as a partial
order under ⊆. Show that, if r and s are any two approximable mappings
then r ⊆ s if and only if | r |≤| s | (the order on functions being as defined
in Chapter 2).
Show that if ∆ is a directed set of approximable mappings then

⋃
∆ is one

and that |
⋃

∆ |=
⊔
{| r || r ∈ ∆}.



Chapter 4

Constructing domains

We now know what an information system is and how it represents the ‘domain’
of its elements. In this chapter we will learn how to construct the information
systems we need for defining the semantics of programming languages. Specifically
we examine what is meant by domain equations such as

D = B + (D → D)

and learn how to solve them.

4.1 Simple domain constructors

Before we can think about solving an equation like the one above we need to know
what symbols like ‘+’ and ‘→’ mean. They will be operators, domain constructors,
on information systems whose effects on the underlying domains of elements are
what we expect of ‘+’, ‘→’ etc. An n to m domain constructor will be an operator
which, given an n-tuple of information systems, returns an m-tuple. Most of the
basic constructors we meet will be 1 to 1 (unary) or 2 to 1 (binary), but combinations
of these sometimes give constructors with more complicated ‘types’. The basic
constructors which it is useful to have in constructing semantic domains include the
following.

↑ Lifting: the elements of | A↑ | should be in natural correspondence with
those of | A | plus a single extra bottom element. We will see many ways in
which this is useful later on.

× Cartesian product: the elements of | A×B | should be in natural correspon-
dence with the pairs of elements from | A | and | B |.



82

•�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A

•

•�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A

| A | | A↑ |

Figure 4.1 Lifting

+ Sum: | A + B | should consist of disjoint copies of | A | and | B |.

→ Function space: | A → B | should consist of the continuous functions from
| A | to | B |.

P Powerset (usually called powerdomain): | P(A) | should essentially consist of
the subsets of | A |. What ‘essentially’ means here will become clearer when
we come to discuss powerdomains in the next chapter.

In this section we will see how a few of the simpler constructors (including
× and +) are defined. We will then develop the theory needed to solve domain
equations before returning to define the function space constructor at the end of
the chapter. Further constructors (including powerdomain) will be covered in later
chapters.

Lifting

A simple but useful example is provided by lifting. If A is any information system,
A↑ should have essentially the same structure as A except that A has been ‘lifted’
on top of a new bottom element (see Figure 4.1).

Remember that each element of an information system is the set of all tokens,
or propositions, that are true of it. To construct A↑ from A we need to have a rich
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enough language of propositions to decide whether an element is in the lifted part
of the domain or not (noting that only the bottom element is not in the lifted part).
The new bottom element must be a strict subset of all elements of the lifted version
of A. The obvious way to construct A↑ is to retain all the structure of A, but to
add an extra token, say a, to the token set with the meaning ‘this element is in the
lifted part’. (The new bottom cannot have any special tokens, since it is a subset
of everything.)

Because every element of A is in the lifted part of A↑, any of A’s tokens
should entail a, and a should be consistent with any consistent set of them. How-
ever, a should not be entailed by the empty set of tokens: this will be the new
bottom of the domain.

We need a way of finding the new token a so that it cannot be confused
with the old tokens. We cannot simply select a fixed object a and, whatever the
structure of A, take the token set of A↑ to be A∪{a}. For example, in any system
of the form (A↑)↑, there would be confusion between the tokens introduced at the
first and second liftings. It would be possible to avoid confusion by always selecting
a in such a way that it is guaranteed not to be in A: for example, we could set
a = A as no set is an element of itself. However this approach is unsatisfactory for
several reasons, not the least of which is that (contrary to the idea that tokens are
propositions) it is then impossible to tell simply by looking at a token whether it
is the ‘new’ token or an ‘old’ one – we would have to know the context (i.e., the
complete set of tokens) in which it arose. A much better solution is obtained by
labelling all the old tokens as such, so that we can introduce a fixed new token
without fear of confusion.

Definitions
If A is any set (of tokens), we define

A↑ = {lifted} ∪ {〈old, a〉 | a ∈ A} .

The obvious injection function ι↑ : A → A↑ is defined

ι↑(a) = 〈old, a〉

and the (partial) projection function π↑ : A↑ → A is defined

π↑(〈old, a〉) = a .

When we look at an element a of A↑ we know immediately if it is the new token
lifted or if it is ‘in A’. If it is ‘in A’ we write a A (pronounced ‘a is squarely in
A’).
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Definition
If A = 〈A, Con,`〉 is an information system then A↑ is defined to be 〈A↑, Con

′,`′〉,
where A↑ is as defined above and

(a) X ∈ Con′ ⇔ π↑(X ) ∈ Con

(b) X `′ a ⇔ X 6= ∅ ∧ (a = lifted ∨ (a A ∧ π↑(X ) ` π↑(a) ))

Here, π↑ has been extended to sets of tokens in the usual way: π↑(X ) =
{π↑(a) | a ∈ X }. This is just what was described informally above:
the new token lifted is a weaker proposition than any of A’s tokens except that it
is exactly as strong as any elements of A’s ∅. Like these, it says nothing more than
that any element of which it is part is not the bottom element of A↑.

4.1.1 proposition

If A is an information system then so is A↑, and furthermore:

| A↑ |= {∅} ∪ {x↑ | x ∈| A |} .

proof

It is easy but tedious to verify that A↑ satisfies the axioms for an information
system. Observe that ∅ 6 `′ a for any a ∈ A↑ so that ∅ = ∅ ∈| A↑ |. If x ∈| A↑ | and
x 6= ∅ then, by (b) above, lifted ∈ x . By (a) and (b), plainly π↑(x ) ∈| A |. Equally,
it is easy to see that if x ∈| A | then x↑ ∈| A↑ |.

Clearly the map lift :| A |→| A↑ | defined

lift(x ) = x↑

is an order isomorphism from | A | to | A↑ | −{∅}.

example

When we lift the one point domain = 〈∅, {∅}, ∅〉 we get an information system
with one token and two elements:

↑ = 〈{lifted}, {∅, {lifted}}, {〈{lifted}, lifted〉}〉

| ↑ | = {∅, {lifted}} .

If we repeat this lifting n times to get n = (. . . ( ↑)↑ . . .)↑, the resulting
information system has the n tokens {a0, . . . , an−1}, where a0 = lifted and am+1 =
〈old, am〉. All sets of these elements are consistent, and

X ` ai ⇔ X contains an aj with j ≥ i .
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| | | ↑ | | 2 | | n |

Figure 4.2 The results of repeated lifting.

Thus the tokens are strictly ordered as propositions, with those that have been
‘lifted’ most often being strongest. n contains n + 1 linearly ordered elements
(see Figure 4.2).

It is interesting how the domain n sits inside m when m ≥ n. We will
soon see that this is important.

Cartesian product

The Cartesian product S × T of two sets S and T consists of all pairs 〈s, t〉 with
s ∈ S and t ∈ T . Recall from Chapter 2 that, if S and T are partially ordered, we
can give an order to S × T by defining

〈s, t〉 ≤ 〈s ′, t ′〉 ⇐⇒ s ≤S s ′ ∧ t ≤T t ′ .

We need a way of combining two information systems so that the elements of the
result are in natural, order preserving correspondence with the Cartesian product
of the domains of elements of the original systems.

The first thing to decide about A × B is the shape of its token set. It is
tempting to use tokens of the form 〈a, b〉, for a ∈ A and b ∈ B . But this does not
work since if A (say) were empty (i.e., A = ), so would be A × B – leaving us
no tokens to describe the second component of the pair. The correct answer is that
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a collection of pieces of information about x and y separately, provided we know
which of x and y each item refers to, will be enough to describe 〈x , y〉 fully. This is
because complete descriptions of x and y fully determine 〈x , y〉. Thus an adequate
set of tokens for A×B will be the union of separate copies of A and B .

Definitions
If A and B are sets (of tokens), we define

A + B = {〈left, a〉 | a ∈ A} ∪ {〈right, b〉 | b ∈ B} .

Injection functions ιleft : A → A + B and ιright : B → A + B are defined

ιleft(a) = 〈left, a〉

ιright(b) = 〈right, b〉

and partial projection functions πleft : A + B → A and πright : A + B → B are
defined

πleft(〈left, a〉) = a

πright(〈right, b〉) = b .

As with lifting, when a ∈ A + B we write a A or a B if a ‘is in’ A or B
respectively (i.e., a ∈ ιleftA or a ∈ ιrightB respectively).

Because the two components of 〈x , y〉 are essentially independent (the fact
that the left-hand component is x tells us nothing about y and vice-versa) the
consistency relationship and entailment relation of A × B are inherited in a very
simple way from A and B.

Definition
If A = 〈A, ConA,`A〉 and B = 〈B , ConB ,`B 〉 are information systems, then A×B
is defined to be 〈A + B , Con,`〉, where

(a) X ∈ Con ⇔ πleft(X ) ∈ ConA ∧ πright(X ) ∈ ConB

(b) X ` a ⇔ a A ∧ πleft(X ) `A πleft(a) or a B ∧ πright(X ) `B πright(a).

4.1.2 proposition

If A and B are information systems then so is A×B, and furthermore:

| A×B |= {x + y | x ∈| A | ∧y ∈| B |} .
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proof

Let A × B = 〈A + B , Con,`〉 as in the definition above. The information system
axioms are all trivial to verify. Consider Axiom 3, for example.

If X ` a then, by symmetry, it is enough to consider the case when a A.
By definition of ` we know that πleft(X ) `A πleft(a) and hence (by Axiom 3 of A)
that πleft(X ∪{a}) ∈ ConA. As πright(X ∪{a}) = πright(X ) ∈ ConB, we thus have
X ∪ {a} ∈ Con by definition of Con.

We now turn to the proof of the second part of the proposition. If z is any
subset of A+B we have z = πleft(z )+πright(z ). If z is an element of | A×B | then
it is easy to see that πleft(z ) and πright(z ) are consistent and deductively closed,
so are elements of | A | and | B | respectively. This proves that the left-hand-side
above is contained in the right-hand-side.

If x ∈| A | and y ∈| B | then, as X ⊆fin x + y implies πleft(X ) ⊆fin x and
πright(X ) ⊆fin y , we know x +y is consistent. It remains to prove deductive closure.
If X ⊆fin x + y and X ` a then, supposing without loss of generality that a A,
πleft(X ) `A πleft(a) and hence πleft(a) ∈ x . This means that a ∈ x + y as required.

Hence x + y ∈| A×B | as required, completing the proof of the proposition.

Clearly the map pair :| A | × | B |→| A×B | defined by

pair〈x , y〉 = x + y

is an order isomorphism. This proposition essentially justifies our construction of
A × B. The way we used a disjoint union of token sets to effect the product of
elements has much in common with the natural set-theoretic isomorphism between
P(A ∪ B) and P(A)× P(B) when A ∩ B = ∅.

examples

It is easy to see that × = , because ∅+∅ = ∅. Indeed, for any information
system A, ×A and A× are trivially isomorphic to A.

↑× ↑ has two tokens {〈left, lifted〉, 〈right, lifted〉} and four elements.
Figure 4.3 shows how these elements are ordered and how they coincide with | ↑ |
× | ↑ |. Notice the way that ‘left’ and ‘right’ tokens respectively tell us about
the left-hand and right-hand components of a pair.

In general, n× m has n+m tokens and (n+1)×(m+1) elements. Note
that it is rather easier to use Proposition 4.1.2 to determine the domain structure
of these systems than work them out directly.

Clearly binary product construction can be iterated to produce the Cartesian
product of any finite list of information systems, for example

A× (B× . . . (Y× Z) . . .) .
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Figure 4.3 The equivalence of the two forms of ‘×’

If, on the other hand, we either wanted to avoid identifying n-tuples with iterated
pairs, or to use potentially infinite product spaces such as (borrowing notation from
Section 2.3)

AX or
∏

λ∈Λ Aλ

the direct binary construction is easily adapted. The first1 of these is X -many
copies of the single system A, while the second is the product of an indexed family
of potentially different ones. The second (which is, of course, more general than
the first) can be defined with token set {〈λ, a〉 | λ ∈ Λ ∧ a ∈ Aλ} (where Aλ is
the token set of Aλ): the finite set X of these tokens is consistent if and only if
πλ(X ) = {a | 〈λ, a〉 ∈ X } ∈ Conλ for all λ, and X ` 〈λ, b〉 if and only if

πλ(X ) `λ b .

One can show without too much difficulty that the set of elements of this system is
order isomorphic to∏

λ∈Λ | Aλ |

(under its standard componentwise order), which is what we might have hoped.

1Depending one the context, it is sometimes better to write AX as X → A, since an X -indexed

tuple of elements of | A | is just a function from X to | A |. However, if one does this it is essential

that one carefully avoids confusion with the information system function-space constructor B → A

which we will meet in Section 4.3. The only difference is that in one case the left hand argument

is a set and in the other an information system.
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Sum

The sum of two domains | A | and | B | should consist of separate copies of | A |
and | B |. We have already seen one context where this construct is needed: in our
second example language every expression denotes either a basic value or a function
from expression values to expression values. We do not expect there will be any
reason to prefer an element of one half of the sum, and indeed would expect that
the two halves would be so distinct that there is no order between elements from
opposite halves. This causes a significant problem when we try to form the sum
as an information system, as the domain of elements of any such sum must have
a least element – and clearly we cannot take one element of either half to be this
bottom unless we change the assumptions made above.

There are two well-known symmetrical ways of summing a pair of domains
so that the result has a minimum element. Inevitably, both involve an element of
compromise. The first approach is to identify the least elements of the summands
(which always exist in information systems), keeping all other elements distinct:
this is known as a coalesced sum and will be written A⊕B. The other is to add a
bottom element that is not ‘in’ either of the summands, which remain completely
separate above the new bottom, as though both were lifted above it: this is known
as a separated sum and will be written A+B.2 The effects of these two methods of
summing are illustrated in Figure 4.4. If we are prepared to put up with asymmetry
in the order treatment of A and B it is possible to get an exact ‘disjoint union’ of
their elements. One solution is A⊕B↑, where the bottom of | B | is placed above
that of | A |. Another, rather more radical, solution may be found in Exercise 4.1.4.

We can expect the token set of either form of sum to contain copies of the
token sets of the systems which are being summed. In order to avoid any confusion,
these should be kept separate. We would expect an element of the | A | part of
| A ⊕ B | or | A + B | to consist only of A-tokens and vice-versa. Thus we can
expect pairs of tokens from opposite sides to be inconsistent.

When constructing the coalesced sum we have to be careful of any tokens
in ∅

A
and ∅

B
because we are identifying these two elements. If we retained these

tokens in A⊕B they would presumably become part of ∅ in the new system, and
hence a subset of every element. Though this would not be incorrect, it would be
inconsistent with the idea that no proposition about an element of A should be true
about an element of B. We therefore choose the cleaner option of discarding all the
(meaningless) propositions in ∅

A
and ∅

B
before constructing A ⊕ B. This means

that the bottom element of A⊕B is always ∅.

2Unfortunately, the literature is not consistent about which of the symbols + and ⊕ mean

which type of sum: sometimes they are interchanged. We have followed what we believe is the

more common notation.
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Figure 4.4 Coalesced and separated sums.

Definition
If A and B are information systems then A⊕B is defined to be 〈A′ + B ′, Con,`〉,
where A′ = A− ∅

A
, B ′ = B − ∅

B
and

(a) X ∈ Con ⇔ πleft(X ) ∈ ConA ∧ πright(X ) = ∅ or
πright(X ) ∈ ConB ∧ πleft(X ) = ∅

(b) X ` a ⇔ a A′ ∧ πleft(X ) `A πleft(a) or
a B ′ ∧ πright(X ) `B πright(a).

The following proposition justifies this construction.

4.1.3 proposition

If A and B are information systems then so is A⊕B. Furthermore:

| A⊕B |= {ιleft(x − ∅
A
) | x ∈| A |} ∪ {ιright(x − ∅

B
) | x ∈| B |}

and the two parts of the right-hand-side have intersection {∅}.

proof

The information system axioms are, as usual, easy but tedious to verify. The last
line of the proposition is trivial. Thus we will prove only the set equality.

Observe first that any element of | A ⊕B | is a subset of either ιleft(A′) or
ιright(B ′), for otherwise it would not be consistent. By symmetry it will thus be
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enough to prove that

{z ∈| A⊕B | | z ⊆ ιleft(A′)} = {ιleft(x − ∅
A
) | x ∈| A |}.

Suppose first that z is in the left-hand-side. Let x = πleft(z ) ∪ ∅
A
; certainly z =

ιleft(x − ∅
A
). Claim x ∈| A |.

If X ⊆fin x then, as ιleft(X−∅
A
) ⊆fin z , we have X−∅

A
∈ ConA by (a) above.

But then X ∈ ConA by the axioms of information systems, since X − ∅
A
`A a for

each a ∈ X ∩ ∅
A
.

Suppose X ⊆fin x and X `A a. If a ∈ ∅
A

then trivially a ∈ x . If a ∈ A′ then,
by the same argument as in the last paragraph, X−∅

A
`A X and hence X−∅

A
`A a

by Axiom 5. But ιleft(X −∅
A
) ⊆fin z and, by (b) above, ιleft(X −∅

A
) ` ιleft(a) and

hence ιleft(a) ∈ z . Hence a ∈ x as desired.
This shows that the left-hand-side is contained in the right-hand-side. The

converse follows in a very similar way.

Note that, since every x ∈| A | has ∅
A
⊆ x and similarly for B, the maps

left :| A |→| A⊕B | and right :| B |→| A⊕B | defined

left(x ) = ιleft(x − ∅
A
)

right(x ) = ιright(x − ∅
B

)

are order preserving injections whose ranges cover | A⊕B | but meet only at ∅.

The separated sum constructor + can be defined from first principles, like
the ones above. However it is easier to define it in terms of ⊕ and lifting.

Definition
The separated sum A + B of two information systems is A↑ ⊕B↑.

This works because the coalesced sum identifies the two new bottom elements
introduced by lifting, leaving the original domains separate. Since the minimal
element of any lifted domain is ∅, no tokens are removed from A↑ and B↑ in this
construction. The following proposition follows easily from Propositions 4.1.1 and
4.1.3. Note that the well-definedness of + follows trivially from that of ⊕ and lifting.

4.1.4 proposition

The elements of the separated sum | A + B | are given by the formula:

| A + B |= {∅} ∪ {ιleft(x↑) | x ∈| A |} ∪ {ιright(x↑) | x ∈| B |}

and the three parts of the right-hand-side are disjoint.
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Figure 4.5 | A overB | – see Exercise 4.1.4.

Exercises

4.1.1 If A is an information system, define the approximable mappings lift : A →
A↑ and push : A↑ → A whose actions on elements are

| lift | (x ) = x↑

| push | (x↑) = x

| push | (∅) = ∅ .

4.1.2 Suppose A, B and C are information systems.

(i) Must (A + B) + C ∼= A + (B + C)?
(ii) Must (A⊕B)⊕C ∼= A⊕ (B⊕C)?

What happens if you replace ∼= by ≡?

4.1.3 Give a direct definition of the separated sum constructor A + B, and show
that your definition makes | A + B | order isomorphic to | A↑ ⊕B↑ |.

4.1.4 Define a domain constructor over so that | A over B | consists (up to iso-
morphism) of copies of | A | and | B |, with every element of | A | above the
whole of | B |. (See Figure 4.5).
[Hint: you may well find it helpful to use the token set A↑ + B; note that all
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sets of B-tokens are consistent since there are elements (those of A) that are
greater than all those of B.]

4.1.5 The Cartesian product of two partial orders P and Q can be given another
order that is rather finer (in that it orders more things) than the one we have
seen so far. This is defined:

〈x , y〉 ≤ 〈x ′, y ′〉 ⇔ (x < x ′) ∨ (x = x ′ ∧ y ≤ y ′)

and is known as the lexicographic order because it is the order used in dic-
tionaries: sorting is done first on the first component, the second only being
used if the first components are equal.

(i) Show that the lexicographic order on the product of two linear orders
is also a linear order. (Note that this is not true of the usual product
order.)

(ii) Show that the lexicographic order is complete if P and Q are.
(iii) Find examples to show that the lexicographic product of two consis-

tently complete cpos need not be consistently complete.

Is it possible to define a domain constructor which yields the Cartesian prod-
uct of two information systems so that the result has the lexicographic order?

4.2 Solving equations

We now know what a domain equation like

A = (A×A)↑

means: it is simply the statement that the information system A is a fixed point of
a (compound) domain constructor. In other words, A is actually equal to the lifted
version of the Cartesian product of two copies of A. Of course any solution to this
equation will have an interesting domain structure: naturally isomorphic to a lifted
copy of its own square. In this section we show that this, and all similar equations,
have solutions.

Definition
Suppose A = 〈A, ConA,`A〉 and B = 〈B , ConB ,`B 〉 are information systems, then
A � B provided

(a) A ⊆ B ,

(b) X ∈ ConA ⇔ X ⊆ A ∧ X ∈ ConB , and

(c) X `A a ⇔ X ∪ {a} ⊆ A ∧ X `B a.
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A � B means that the structure of A is preserved in B. That is, the
relationship between A’s tokens in B is the same as in A. Exactly the same subsets
of A’s tokens are consistent in A and B, and they have the same entailments among
themselves. If A � B, we say that ‘B extends A’ or that ‘A is a subsystem of B’.

Definition
Suppose B = 〈B , ConB ,`B 〉 is an information system and A ⊆ B . Define the

restriction of B to A to be B\A = 〈A, ConA,`A〉, where

(a) X ∈ ConA ⇔ X ⊆ A ∧ X ∈ ConB and

(b) X `A a ⇔ X ⊆ A ∧ a ∈ A ∧ X `B a.

The following proposition lists some elementary but useful facts about the �

relation. They all follow directly from the definitions of � and \.

4.2.1 lemma

(a) If B = 〈B , ConB ,`B 〉 is an information system and A ⊆ B , then B\A is an

information system and B\A � B.

(b) If A = 〈A, ConA,`A〉 and B = 〈B , ConB ,`B 〉 are information systems such

that A � B, then A = B\A.

(c) If A and B are as in (b) and A = B , then A = B.

Parts (a) and (b) here observe that there is exactly one subsystem of B for
each subset of its tokens. Part (c) is a special case of (b).

4.2.2 lemma

Suppose A, B, and C are information systems, then

(a) = 〈∅, {∅}, ∅〉 � A,

(b) A � B ∧ B � A ⇔ A = B, and

(c) A � B ∧ B � C ⇒ A � C.

proof

All three parts follow directly from Lemma 4.2.1. For example, suppose A �

B ∧ B � C. Then necessarily A ⊆ B ⊆ C and, by Lemma 4.2.1(b), A = B\A and
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B = C\B . It follows immediately that A = C\A and hence A � C by Lemma
4.2.1 (a).

Thus � satisfies the axioms for a partial order with minimal element .
The information systems under � are not a partial order, however, because there
are too many of them to be a set (rather, they form a proper class). This fine
distinction is one we will largely be able to ignore. Note that the set of information
systems whose tokens are all taken from a given set forms a partial order.

4.2.3 theorem

If ∆ is a directed set of information systems, then A∗ = 〈A∗, Con∗,`∗〉 is an
information system, where

A∗ =
⋃
{A | 〈A, ConA,`A〉 ∈ ∆}

Con∗ =
⋃
{ConA | 〈A, ConA,`A〉 ∈ ∆}

`∗ =
⋃
{`A | 〈A, ConA,`A〉 ∈ ∆}.

Furthermore, A∗ is the least upper bound of ∆ with respect to �.

proof

To prove that A∗ is an information system, Axioms 1-5 should be verified. The
first four are trivial and do not use the fact that ∆ is directed: consider Axiom 3,
for example.

If X `∗ a then we know, by definition of `∗, that X `A a for some
〈A, ConA,`A〉 in ∆. But then X ∪ {a} ∈ ConA, so that X ∪ {a} ∈ Con∗, by
definition of Con∗, as required.

For Axiom 5, suppose that X ,Y ∈ Con∗, that a ∈ Y ⇒ X `∗ a and that
Y `∗ b. Since there are only finitely many entailments involved here there must be
a finite subset F of ∆ such that each entailment belongs to an element of F . Since
∆ is directed it contains an upper bound 〈A, ConA,`A〉 for F . By definition of �
it follows that X `A b and hence that X `∗ b by definition of 〈A∗, Con∗,`∗〉, as
required.

Suppose that A ∈ ∆. Claim that A � A∗. Trivially A ⊆ A∗, ConA ⊆ Con∗

and X `A a ⇒ X `∗ a. It only remains to prove the reverse implications of the
second and third clauses in the definition of �.

So suppose X ∈ Con∗ and X ⊆ A. The definition of Con∗ means there is
B ∈ ∆ such that X ∈ ConB . Then, as ∆ is directed, there is some C ∈ ∆ such that
A � C and B � C. X ∈ ConC because B � C, but then X ∈ ConA as X ⊆ A
and A � C.

If X `∗ a and X ∪ {a} ⊆ A, then there is some B ∈ ∆ such that X `B a.
The fact that X `A a follows, as in the last paragraph, from the existence of C ∈ ∆
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such that A � C and B � C.
This completes the proof that A � A∗. This means that A∗ is an upper

bound for ∆. If A′ were another then trivially

A′ ⊇
⋃
{A | 〈A, ConA,`A〉 ∈ ∆} = A∗ .

For any finite subset Y of A∗ we can find an element B of ∆ such that Y ⊆ B

and thus A∗\Y = B\Y and A′\Y = B\Y (as B � A∗ and B � A′ respectively).
Thus (respectively choosing Y = X and Y = X ∪ {a}) we have

• X ∈ Con∗ ⇔ X ⊆ A∗ ∧X ∈ Con′, and

• X `∗ a ⇔ X ∪ {a} ⊆ A∗ ∧X `′ a,

which establishes that A∗
� A′. Thus A∗ is, as claimed, the least upper bound of

∆.
This result says that the ‘partial order’ of information systems is complete.
One would expect that, when one system extends another in the strict way

meant by �, there would be a natural relationship between the corresponding do-
mains of elements. This is in fact so, as is shown by the following proposition which
shows there is a natural embedding of | A | into | B |.

4.2.4 lemma

If A � B, then the maps �:| A |→| B | and π :| B |→| A | defined

� (x ) = x (deductive closure in B)

π(x ) = x ∩A

are well-defined and continuous. Furthermore π◦ �= id|A| (the identity map on
| A |) and � ◦π(y) ⊆ y for each y ∈| B |.

proof

That � is well-defined follows from Lemma 3.1.3 and the fact that any element x
of | A | is trivially consistent in B, as the relationships of elements of A are the
same in A as in B.

That π(y) is consistent is trivial. That it is deductively closed follows since,
if a ∈ A, X ⊆fin x ∩ A and X `A a, X `B a by definition of � and hence a ∈ x ,
which trivially implies a ∈ π(x ).

The monotonicity of � and π is trivial, as is the continuity of π. If ∆ ⊆| A |
is directed then � (

⋃
∆) ⊇

⋃
{� (x ) | x ∈ ∆} by monotonicity. If b ∈� (

⋃
∆)

then there is some X ⊆fin
⋃

∆ such that X `B b; but by directedness of ∆ there is
then x ∈ ∆ such that X ⊆fin x and hence b ∈� (x ) ⊆

⋃
{� (x ) | x ∈ ∆}. Thus

� is continuous.
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If x ∈| A |, trivially x ⊆ π(� (x )). If a ∈ π(� (x )) then a ∈ A and there
exists X ⊆fin x such that X `B a. But then X `A a by definition of � so that
a ∈ x . Hence x = π(� (x )) as required. Thus � is an order preserving injection
from | A | to | B |.

If y ∈| B | then � (π(x )) = y ∩A, which is easily seen to be a subset of
y (= y).

The injections and projections described in Lemma 4.2.4 tie in well with the
idea that tokens are propositions about elements. When A � B we know that B
is a richer language of propositions than A, but that the elements of A retain their
‘meaning’ in B . To inject an element from | A | to | B | we simply take all the
propositions in the richer language which are entailed by what we know about the
element from A. (B can easily contain new tokens which are weaker than some
elements of A.) To project an element from | B | to | A | we just retain those
propositions true of it which are in the more restricted language.

These injections and projections are extremely well-behaved and have many
useful properties. The following lemma records a few of these, all of which are easy
to prove.

4.2.5 lemma

If A � B � C then, if �XY and πXY represent the injection and projection
functions from | X | to | Y | for suitable X,Y, the following identities all hold:

�BC ◦ �AB=�AC , πBA ◦ πCB = πCA, πCB◦ �AC=�AB .

Given a directed set ∆ of information systems, we have A �
⊔

∆ for all
A ∈ ∆. Thus there are projection and injection maps between the limit of ∆ and
each of its elements. Also, because ∆ is directed, there is a complex system of
projections and injections between its elements. The following result shows how
the structure of |

⊔
∆ | is determined by these.

4.2.6 theorem

Suppose ∆ is a directed set of information systems under � with limit A∗ =
〈A∗, Con∗,`∗〉 and, for each A ∈ ∆, �∗

A and π∗A are the injection and projec-
tion between | A | and | A∗ |. Then, whenever x ∈| A∗ |,

x =
⋃
{�∗

A (π∗A(x )) | A ∈ ∆} .

The πA realise a natural correspondence between | A∗ | and the set of all cones of
elements from ∆: choices of an xA ∈| A | for each A ∈ ∆ such that πBA(xB ) = xA

whenever A � B. Each cone maps to its union (which is always an element of
| A∗ |) and each x ∈| A∗ | maps to {π∗A(x ) | A ∈ ∆}; these maps being inverses.
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Furthermore, if x , y ∈| A∗ | then x ⊆ y if and only if ∀A ∈ ∆.π∗A(x ) ⊆ π∗A(y).
Thus the order on | A∗ | is determined by the natural order on the cones.

proof

The first part of this result is easy, for we know by Lemma 4.2.4 that �∗
A (π∗A(x )) ⊆

x whenever x ∈| A∗ | and A ∈ ∆. And, since A∗ =
⋃
{A | 〈A, Con,`〉 ∈ ∆},

x =
⋃
{x ∩A | 〈A, Con,`〉 ∈ ∆} ⊆

⋃
{�∗

A (π∗A(x )) | A ∈ ∆},

which completes this part of the proof.
It is an immediate consequence of Lemma 4.2.5 that, if x ∈| A∗ |, then

the vector 〈πA(x ) | A ∈ ∆〉 is a cone, since if A,B ∈ ∆ and A � B then π∗A =
πBA ◦ π∗B . And since the union of this cone is x (by the same argument as in the
last paragraph), the cone uniquely determines x .

Given any cone 〈xA | A ∈ ∆〉, claim that the union x∗ =
⋃
{xA | A ∈ ∆} has

the property that x∗ ∩ A = xA for all A ∈ ∆. That xA ⊆ x∗ ∩ A is trivial; and if
a ∈ x∗ ∩ A then there must be B ∈ ∆ such that a ∈ xB . Since ∆ is directed there
is C ∈ ∆ such that A,B � C. Since πCA(xC ) = xA and πCB (xC ) = xB it follows
that a ∈ xA, completing the proof that xA = x∗ ∩A.

x∗ is consistent in A∗ since, given any X ⊆fin x∗, there is A ∈ ∆ such that
X ⊆ A. By the last paragraph we know that X ⊆fin xA and hence X ∈ ConA ⊆
Con∗. It is deductively closed by a very similar argument. The last paragraph
shows that a cone is determined by its union, so union is a well-defined injective
map from cones to | A∗ |. We have already seen that it is the inverse of the map
from | A∗ | to cones.

Given these maps, the last part of the theorem (that the order on | A∗ | is
determined by the order on the cones) follows immediately.

This result is invaluable in working out the partial order structure of the
limits of directed sets of domains, since it makes it possible to deduce these without
working out the full structure of the limit system itself. We shall see this in the
next chapter when we examine the solutions to some domain equations in detail.

example

It is very easy to see that the systems { n | n ∈ N} of Figure 4.2 (page 85) form
a directed set, with n � m when n ≤ m. The limit of this directed set is

ω = 〈A, Con,`〉, where

(a) A = {a0, a1, a2, . . .} (as defined in the example on page 84),

(b) X ∈ Con for all finite subsets of A and

(c) X ` an ⇔ X contains an am with m ≥ n.
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Figure 4.6 Projection functions

It is easy to see that | ω | is just {x0, x1, x2, . . .} ∪ {xω}, where xn = {ai |
i < n} and xω = A, for any subset of A is consistent, and it will be deductively
closed precisely when the indices of the ai it contains are left-closed. Thus, in this
case, the limit domain consists of all the elements of the limiting domains together
with a single ‘limit’ element.

Denote the injections and projections between these domains by �m,n , πm,n ,
�∗

n and π∗n , each having the obvious meaning. All the injection functions are the
identity (onto a subset of their codomains) because, in this example, the only tokens
in a large domain that are not in a small one are strictly stronger than those of the
small one. Figures 4.6 and 4.7 illustrate the projections and injections respectively.
Notice that the injection maps between | k | and | k+1 | are different from

the ones induced by lifting ( k+1 = ( k )↑). This is because the construction of
πk+1,k and �k ,k+1 does not use the fact that k ’s tokens are lifted in producing

k+1. They see the way the domains look, not how they were put together.
It is easy to see from Figure 4.6 how the elements of | ω | correspond to

cones of elements from the approximating domains: xω corresponds to 〈x0, x1, . . . , xk , . . .〉,
while xk corresponds to the eventually constant sequence 〈x0, x1, . . . , xk−1, xk , xk , xk , . . .〉.

Recall the definitions of monotonic and continuous functions from the Chap-
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Figure 4.7 Injection functions

ter 2. These definitions apply equally to domain constructors. We extend the
relation � to tuples of information systems in the obvious way: 〈A1, . . . ,An〉 �
〈A′

1, . . . ,A
′
n〉 if and only if A1 � A′

1 ∧ A2 � A′
2 ∧ . . . ∧ An � A′

n .

Definition
The n to m domain constructor F is monotonic if, whenever A and A′ are two
n-tuples such that A � A′

F (A) � F (A′) .

Notice that, if ∆ is directed and F is monotonic, then {F (A) | A ∈ ∆} is
directed.

Definition
The n to m domain constructor F is continuous if, whenever ∆ is a directed set of
n-tuples of information systems,

F (
⊔

∆) =
⊔
{F (A) | A ∈ ∆} .

We will see shortly that all the domain constructors given so far are mono-
tonic and continuous.
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All the expected results about composing monotonic and continuous con-
structors hold, the proofs being identical to those for functions over true partial
orders.

4.2.7 lemma

Suppose F and G are respectively n to m and m to k domain constructors.

(a) If F and G are both monotonic then so is G ◦ F .

(b) If F and G are both continuous then so is G ◦ F .

(c) F (X1,X2, . . . ,Xn) is monotonic (continuous) if, and only if, it is monotonic
(continuous) in each component of its argument separately.

(d) F (X ) = 〈F1(X ), . . . ,Fm(X )〉 is monotonic (continuous) if, and only if, each of
its component functions Fi is.

Thus, assuming that all basic domain constructors are continuous, we know
that all compositions of them are.

The following is the crucial result which allows us to solve domain equations.

4.2.8 theorem

If F is a continuous unary domain constructor, then there is an information system
A such that

(a) A = F (A), and

(b) if B is any information system such that B = F (B), then A � B.

proof

The proof of this theorem is essentially the same as that of Theorem 2.2.5, but we
include it here in full because of its great importance3.

Consider the systems , F ( ), F 2( ), . . . ,Fn( ), . . .. Since is
minimal among the information systems, we know that � F ( ). Suppose for
induction that F k ( ) � F k+1( ). Then, applying F to both sides, F k+1( ) �
F k+2( ) by monotonicity, proving this result for all k . Transitivity of � (Lemma
4.2.2 (c)) then shows, for all n,m ∈ N,

n ≤ m ⇒ Fn( ) � Fm( )

3However the stronger result proved in Section 2.4, namely that monotone functions on com-

plete partial orders have least fixed points, does not have an analogue here. This is because the

information systems are a proper class and so the iteration Fα( ) need never reach a fixed point.
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so that {Fn( ) | n ∈ N} is a directed set. Continuity of F gives

F (
⊔
{Fn( ) | n ∈ N}) =

⊔
{F (Fn( )) | n ∈ N}

=
⊔
{Fn+1( ) | n ∈ N)}

=
⊔
{Fn( ) | n ∈ N)}

(Because
⊔

∆ =
⊔

(∆ ∪ { }) for any directed ∆.) This means that A =⊔
{Fn( ) | n ∈ N} is a fixed point of F . If B is another fixed point then

� B by minimality of , and

Fn( ) � B ⇒ Fn+1( ) � F (B) by monotonicity

= B as B is a fixed point.

By induction, then, Fn( ) � B for all n. B is thus an upper bound for {Fn( ) |
n ∈ N}: since A is the least upper bound we know A � B as required.

This proposition is easily generalised to let us solve mutual domain equations
such as

A = A + B

B = (A×B)↑ .

The proof is essentially the same (using n to n constructors rather than 1 to 1).

4.2.9 theorem

If F is a continuous n to n domain constructor, then there is an n-tuple A of
information systems such that

(a) A = F (A), and

(b) if B is any n-tuple such that B = F (B), then A � B.

example

Assuming for the moment that lifting is continuous, the systems n of Figure
4.2 (page 85) are exactly the iterates used by the above proposition in solving the
domain equation A = A↑. Therefore their limit ω is the minimal solution to the
equation A = A↑. This is easy to check.

The token set of ω is {a0, a1, a2, . . .}. Hence the token set of ( ω)↑ is

{lifted} ∪ {〈old, a0〉, 〈old, a1〉, . . .} = {a0} ∪ {a1, a2, . . .} ,
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which is the same. Because any finite subset of ω’s tokens are consistent, the
same is true of ( ω)↑ (so the two systems have the same consistency relation).
Finally, from the definition of lifting, X ` a in ( ω)↑ if and only if

a = a0 ∧X 6= ∅, or

a = 〈old, an〉 (= an+1) ∧
∃m ≥ n.am ∈ π↑(X ) (= {ar | ar+1 ∈ X }) .

This is easily seen to be the same relation as in ω.

There is still one important thing left to do, namely to justify our claim that
the existing constructors are all continuous. This will be made rather easier by the
following definition and lemma, which allow us to avoid some unnecessary work.

Definition
The monotonic, unary domain constructor F is said to be continuous on token sets
if, whenever ∆ is a directed set of information systems, the token set of F (

⊔
∆) is

equal to the union of those of {F (A) | A ∈ ∆}.

4.2.10 lemma

The unary domain constructor F is continuous if and only if it is monotonic and is
continuous on token sets.

proof

Suppose ∆ is directed. Then F (
⊔

∆) �
⊔
{F (A) | A ∈ ∆} by the usual argument

from monotonicity. But now these two information systems are ordered but (by
continuity on token sets) have the same set of tokens. Lemma 4.2.1 (c) implies they
are in fact equal, as required.

4.2.11 proposition

Lifting, ×, ⊕ and + are all continuous.

proof

By virtue of Lemmas 4.2.10 and 4.2.7 it is sufficient to prove that all domain con-
structors are, in each argument separately, monotonic and continuous on token sets.
The proofs of these results are all very alike. We present here only the most inter-
esting one, namely that for coalesced sum. By symmetry it will clearly be sufficient
to consider only the left-hand argument.
Monotonicity. Suppose A is any information system and that B � C. We must
show that D � E, where D = B⊕A and E = C⊕A.

The token set of D is B ′ +A′, where B ′ = B −∅
B

and A′ = A−∅
A
. Now, if
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b ∈ ∅
C
∩B , then ∅ `C b and hence ∅ `B b (as ∅ ∪ {b} ⊆ B) and so b ∈ ∅

B
. Hence,

if C ′ = C − ∅
C

, C ′ ⊇ B ′, and so by definition of + (on sets),

B ′ + A′ ⊆ C ′ + A′

which is the first thing we must prove for monotonicity.
Let Con′A = {X ∈ ConA | X ⊆ A′}, and similarly for Con′B and Con′C . The

definitions of B⊕A and � then give

ConD = {ιleft(X ) | X ∈ Con′B} ∪ {ιright(X ) | X ∈ Con′A}
= {ιleft(X ) | X ∈ Con′C ∧X ⊆ B ′}∪

{ιright(X ) | X ∈ Con′A}
= ({ιleft(X ) | X ∈ Con′C}∩

{Y ⊆ ιleft(C ′) | πleft(Y ) ⊆fin B ′})
∪{ιright(X ) | X ∈ Con′A}

= {X ∈ ConE | X ⊆ D}

which is what is required of ConD and ConE . A similar argument shows that
X `D d ⇔ (X ∪ {d} ⊆ D ∧ X `E d), completing the proof.
Continuity on token sets. It is clear that, whenever A is a set and D a set of sets,
then (

⋃
D) + A =

⋃
{B + A | B ∈ D}. Thus to prove continuity on token sets it

will be enough to show that, whenever ∆ is a directed set of information systems
with limit C =

⊔
∆, ∅

C
=

⋃
{∅

B
| B ∈ ∆}. This itself follows easily from the

construction of the limit in Theorem 4.2.3: the entailment relation of the limit is
just the union of the entailment relations of the approximations and so

{b | ∅ `C b} =
⋃
{{b | ∅ `B b} | B ∈ ∆},

which is exactly what we needed.

We introduced two general Cartesian product constructors earlier:

AX and
∏

λ∈Λ Aλ

which respectively denote X copies of a single information system A and the product
of many, possibly different, Aλ. As we observed earlier, the second is essentially just
a generalisation of the first. But actually, when we come to prove their monotonicity
and continuity, they are rather different. AX is (for any X ) a unary constructor,
while the general product maps vectors indexed by Λ to a single information system.

The case of AX is straightforward, the proof following exactly the same
pattern as before. The general product is a little more interesting, since (as was
observed in Section 2.3) it is not sufficient to prove it monotone and continuous in
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each argument separately. However it is monotone and continuous – see Exercise
2.2.11.

There are some exercises on the solution to domain equations below. The
reader who has difficulty solving them now would do well to return to them after
reading the first section of the next chapter. There we will see some examples of
the solutions to more complex domain equations – this will both let us see how
our theory works out in practice and will develop various techniques that are useful
in understanding the structures of the solutions that our theory gives. This is
necessary both when we want to know how some solution domain looks and when
we want to find the ‘right’ domain equation to give us some particular result when
we solve it.

Exercises

4.2.1 If A = 〈A, ConA,`A〉 is an information system, show that A\(A− ∅) ∼= A.

4.2.2 Prove that the product constructor × on information systems is monotonic
and continuous.

4.2.3 Describe the partial order structures of the minimal solutions of the following
domain equations:

(i) D = ⊕ D
(ii) D = + D
(iii) D = × D
(iv) D = A + D
(v) D = ↑ ×D

(A being any fixed information system.)

4.2.4 Suppose that F and G are continuous unary domain constructors and that
A and B are respectively the least solutions of the domain equations

A = F (G(A)) and B = G(F (B)).

Prove that A = F (B).

4.2.5 Say that two tokens a, b of the information system A are equivalent if a ∈
x ⇔ b ∈ x for all x ∈| A |.

(i) Prove that a and b are equivalent if and only if {a} = {b}.
(ii) Show that there is an information system A′ such that A′

� A, A′ ∼= A
and A′ has no pairs of equivalent tokens.
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4.2.6 Suppose A � B � C and A ∼= C. Need A ∼= B? What would the answer
have been if ∼= had been replaced by ≡?

4.2.7 Suppose that A � B and that B′ is a system isomorphic to B via the

bijection θ : B ′ → B . If A′ ⊆ B ′ and A′ is isomorphic to A via θ\A′, prove
that A′

� B′.

4.2.8 If A is an arbitrary information system, determine the partial order structure
of the least solution of the domain equation

D = A⊕D .

Hence or otherwise find a domain equation whose least solution has the form
of (countably) infinitely many disjoint and incomparable copies of | A | above
a single bottom element.

4.2.9 Define a continuous domain constructor Â whose effect is to place an extra
top (maximum) element above the elements of | A |. (It is thus the opposite
of lifting in some sense.) Determine the structures of the least solutions to
the domain equations

D = D̂ and E = (Ê)↑ .

4.2.10 Recall the constructor over defined in Exercise 4.1.?. Consider the domain
equation

C = C over C .

If C0 = and Cn+1 = CnoverCn , show that | Cn | has exactly 2n elements
and that, the projection πn+1,n maps exactly two elements of | Cn+1 | to
each element of | Cn |. Hence prove that | C | is order-isomorphic to the
Cantor set. [The Cantor set consists of all real numbers in [0, 1] with a
ternary (base 3) expansion consisting only of 0s and 2s. It is what is left if
the open middle third of [0, 1] is removed, then the middle thirds of the two
remaining intervals, and so on for ever.]

4.2.11 Recall the definition of the general Cartesian product on page 88. Show that
it is monotone, in other words, if A and B are two Λ-vectors of information
systems such that ∀λ ∈ Λ.Aλ � Bλ, then∏

λ∈Λ Aλ �
∏

λ∈Λ Bλ .

Show also that it is continuous on token sets and hence continuous (being
careful to justify this last step, since it is not explicitly covered by Lemma
4.1.10).
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4.3 The function space constructor

Cantor’s theorem4 tells us we will have to compromise in our choice of function
space constructor: there can be no hope of our finding a continuous constructor
such that | A → B | consists (up to isomorphism) of all the functions from | A | to
| B | for, by the theory above,

A = + (A → A)

would have a solution! Our compromise is only to represent those functions which
it is reasonable to represent as computable: ones where every piece of information
about f (x ) is deducible from a finite amount of information about x .

Thus the functions we want are the continuous ones and the tokens we use
are, for A → B, ConA × B . Fortunately we already know a great deal about how
continuous functions are represented by this sort of token: we can expect an element
of | A → B | to be an approximable mapping from A to B. We must devise a
suitable consistency relationship and entailment relation to make this happen. This
is done as follows.

Definition
If A and B are information systems, then A → B = 〈ConA × B , Con,`〉, where

• {〈Xi , bi〉 | 1 ≤ i ≤ n} ∈ Con⇔ ∀F ⊆ {1, . . . ,n}.
⋃
{Xi | i ∈ F} ∈ ConA

⇒ {bi | i ∈ F} ∈ ConB

• {〈Xi , bi〉 | 1 ≤ i ≤ n} ` 〈X , b〉 ⇔ {bi | X `A Xi} `B b .

The first clause here says that a finite set of tokens is consistent if, whenever
a subset have consistent left-hand sides (and so can be telling us information about
the application of the function to a single argument), the information they tell
us about the result (their right-hand sides) must be consistent as well. The next
proposition tells us that the elements of | A → B | are familiar under another name.

4.3.1 proposition

If A and B are information systems then so is A → B, → is a continuous do-
main constructor and furthermore | A → B | is precisely the set of approximable
mappings from A to B.

4Cantor’s theorem states that there cannot be a surjective map from any set to its powerset.

Since, if B is a set with at least two elements (b, b′, say), there is a surjective map from the full

function space A → B to P(A) given by ψ(f ) = {a | f (a) = b}, there can be no surjective map

from A to A → B .



108

proof

Axioms 1, 2 and 4 are trivial.
For Axiom 3 we must show that if {〈X1, b1〉, . . . , 〈Xn , bn〉} ` 〈X, b〉, then

necessarily {〈X1, b1〉, . . . , 〈Xn , bn〉, 〈X, b〉} ∈ Con.
Suppose then that X ∪

⋃
{Xi | i ∈ F} ∈ ConA. Then, by Lemma 3.1.2 and

Axiom 1 of A,
⋃
{Xi | X `A Xi} ∪

⋃
{Xi | i ∈ F} ∈ ConA. Hence {bi | X `A

Xi}∪ {bi | i ∈ F} ∈ ConB , by definition of Con. Thus {b}∪ {bi | i ∈ F} ∈ ConB

by the definition of ` and Lemma 3.1.2 applied to B. This is what was required.
For Axiom 5 we must show that if {〈X1, b1〉, . . . , 〈Xn , bn〉} ` 〈Yi , ci〉 for 1 ≤

i ≤ m, and {〈Y1, c1〉, . . . , 〈Ym , cm〉} ` 〈Z , d〉 then necessarily {〈X1, b1〉, . . . , 〈Xn , bn〉} `
〈Z , d〉.

So suppose the premises hold. Then, by definition of `, {ci | Z `A Yi} `B d .
If Z `A Yi then {bj | Yi `A Xj} ⊆ {bj | Z `A Xj} and hence {bj | Z `A Xj } `B ci
(since {bj | Yi `A Xj} `B ci by the first premise). Hence

{bj | Z `A Xj } `B {ci | Z `A Yi} `B d

so that {bj | Z `A Xj } `B d (by Axiom 5 of B) as required.
This completes the proof that → is well-defined.
As before, to prove continuity it will suffice to prove monotonicity and token-

set continuity of each argument separately. We will concentrate on the left-hand
argument (which has the harder proofs). So suppose A, B and C are any informa-
tion systems such that A � B. Let D = A → C and E = B → C. We must prove
D � E.

Since trivially ConA ⊆ ConB , we have D = ConA×C ⊆ ConB ×C = E .
If Z = {〈X1, c1〉, . . . , 〈Xn , cn〉} ∈ ConD then trivially Z ⊆ D , and⋃
{Xi | i ∈ F} ∈ ConB ⇒

⋃
{Xi | i ∈ F} ∈ ConA as A � B

⇒ {ci | i ∈ F} ∈ ConC as Z ∈ ConD

so Z ∈ ConE . The converse is very similar.
If Z `E 〈X, c〉, where Z ∪ {〈X, c〉} ⊆ D and Z = {〈X1, c1〉, . . . , 〈Xn , cn〉},

then we have, for each 1 ≤ i ≤ n,

X `B Xi ⇔ X `A Xi

as A � B and X ∪Xi ⊆ A. Thus, as c ∈ C we have

{ci | X `B Xi} `C c ⇔ {ci | X `A Xi} `C c

so Z `D 〈X, c〉 as required. The above argument also essentially establishes the
converse.
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This completes the proof that → is monotonic in its first argument. (The
proof for the second argument is essentially the same but slightly easier.)

That it is continuous on token sets is an easy consequence of the fact that if
∆ is a directed set of information systems then the Con set of

⊔
∆ is just the union

of those of the members of ∆. The proof for the second argument is the same.
To prove the final part of the proposition we will first show that every ap-

proximable mapping is in | A → B |, and then that the reverse holds.
So suppose r : A → B is an approximable mapping. r is consistent as a

subset of ConA × B because, if {〈X1, b1〉, . . . , 〈Xn , bn〉} ⊆ r and X =
⋃n

i=1 Xi ∈
ConA (it is clearly enough to consider this case), X `A Xi for each i and so Xrbi
by the third axiom of approximable mappings. {b1, . . . , bn} ∈ ConB then follows
by the first axiom.

r is deductively closed as if Z = {〈X1, b1〉, . . . , 〈Xn , bn〉} ⊆fin r and Z `
〈X, b〉, then

⋃
{bi | X `A Xi} `B b. Thus Xrbi whenever X `A Xi (by the third

axiom of approximable mappings) and so Xrb by the second axiom.
If r is an element of | A → B | then it satisfies the first axiom of approximable

mappings trivially by consistency. If {〈X , b1〉, . . . , 〈X , bn〉} ⊆ r and {b1, . . . , bn} `B

b, then 〈X, b〉 ∈ r is a trivial consequence of deductive closure. Thus the second
axiom holds. The third similarly follows trivially from deductive closure.

Since we know that the approximable mappings from A to B are naturally
order-isomorphic to the continuous functions from | A | to | B |, (see Theorem
3.3.2) we can thus justifiedly claim that → is indeed a domain constructor yielding
the domain of continuous functions. We will of necessity study this constructor in
depth in later chapters, since it is the central one for producing the domains we
require to give semantics to most of the languages treated there.

Note that, as was the case with the other constructors given earlier in this
chapter, the existence of the domain constructor→ (as justified by Proposition 4.3.1
and the above remarks), together with the results of Chapter 3, provides a proof
that the space of continuous functions from one algebraic, consistently complete
cpo to another also has those properties.

There will be further discussion of the function space constructor in Section
5.2, and we will also gain more insight into it when we use it to define semantic
domains in Chapter 7 and after.

Exercises

4.3.1 Prove that, for any information systems A, B and C, the information systems
(A × B) → C and A → (B → C) are isomorphic (i.e., that (A × B) →
C ≡ A → (B → C)). What does this tell you about A → (B → C) and
B → (A → C)?
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4.3.2 Use the above constructor and the results of Chapter 3 to identify the po-
finite elements of the partial order of continuous functions from one algebraic,
consistently complete cpo to another.

4.3.3 Devise a continuous domain constructor ⇀ such that | A ⇀ B | essentially
consists of all strict continuous functions from | A | to | B | (i.e., functions f
such that f (∅A) = ∅B .
Show that the domains of elements of (A+B) ⇀ C and (A → C)×(A → C)
are always order isomorphic. Under your definition, are the information
systems isomorphic too?

4.3.4 Recall our definition of general product spaces on page 88. Given an infor-
mation system A and a set X , show that AX (which we remarked might be
written X → A) is isomorphic to a subsystem of flat(X ) → A.
What can you say about AX and flat(X ) ⇀ A, where⇀ is the strict function
space constructor you defined in the previous exercise.



Chapter 5

More about domain equations

In this chapter we illustrate the theory developed in the last chapter by examining
some domains and domain equations in detail. In doing this we will both develop
techniques for discovering the structures of the solutions to domain equations we
might have been given and try to develop the insight needed to decide on the right
domain equation to give us domains we may want. From time to time we will find
we need to add to our range of domain constructors.

5.1 Lists

A list is an ordered collection of objects from some type. Lists are very common in
functional programming languages and have a wide variety of uses there. If we want
to construct a semantic domain for one of these languages we will need to know how
to create an appropriate domain of lists. An examination of some such languages
will however reveal that we need not a single list constructor but many, depending
on the way lists are stored and the evaluation strategy of the language. For in
some languages lists are always finite while in others they may also be infinite. And
the required strictness (degree to which the whole list becomes undefined if some
element is) varies widely: some languages (in practice ones with only finite lists)
identify all lists which have an undefined component; others identify all those that
have an undefined first element; while others are not strict at all.

To discuss lists accurately it is useful to have a good notation for them. The
one given here is that used in various functional programming languages – see [BW]
for example. Throughout we will suppose that we are trying to create a domain of
lists with elements taken from | A |. The least element ∅ of | A | will be denoted
⊥A. Typical elements of | A | will be written α, to distinguish them from tokens
from A (written a as usual) and elements of the list domains (either written x , y ,
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z as usual, or l to denote a list).
[α0, α1, . . . , αn ] will denote the finite list containing the elements α0, α1, . . .,

αn in that order. Thus [ ] is the empty list, and [α] is the list containing only α.
If l is a list (of objects from the domain | A |, say) and α ∈| A | then α : l is the
list whose first element is α and whose subsequent elements are those of l . Thus
α0 : [α1, α2, . . . , αn ] = [α0, α1, . . . , αn ].

We will usually want to distinguish [ ] from ⊥, the undefined list. For one
can tell that [ ] is empty and use the fact in computation, whereas ⊥ will typically
denote the ‘result’ of some nonterminating or erroneous calculation. The list α : ⊥
may or may not be identified with ⊥. We would want to make the identification
in a language where the whole of the list is always computed when any part is
needed. But in a lazy language, where only those parts of the list actually required
are computed, we could either observe that α : ⊥ is nonempty or that its first
element is α without entering the calculation of ⊥. Similar considerations apply to
the decision of whether ⊥A : l should be identified with ⊥: the answer depends on
the precise capabilities of the language under consideration.

In defining the semantics of these languages we will therefore need to be
versatile. Our mathematical models should not contain whole classes of object
that can never be of use (such as infinite lists in a language without any) and
nor should they distinguish between objects that, for a given language, can never
be distinguished – for they would then fail to identify programs that ought to be
identified. This section is devoted to examining a number of domain equations that
yield domains of lists and thereby developing a repertoire of list constructors for
different occasions.

The simplest domain equation that looks as though it might give a domain
of lists of A = 〈A, Con,`〉 is

D = A×D .

The least solution to this equation is given by
⊔
{Dn | n ∈ N}, where D0 =

and Dn+1 = A ×Dn . (We define Dn to be the token-set of Dn .) Thus a typical
element of | Dn | can be identified (thanks to Proposition 4.1.2) with an object of
the form

〈α0, 〈α1, 〈. . . , 〈αn−1, ∅〉 . . .〉〉〉

where all the αi are in | A |. (From now on we will tend to make this identification
for the sake of clarity.) The final ∅ represents the only element of | |. We
also know from Proposition 4.1.2 that the order structure of | Dn | is the standard
symmetrical co-ordinatewise one.

It is convenient to think of the final ∅ as something that is as yet unknown,
and this view is reinforced by an examination of the projection function πn,m that
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maps | Dn | to | Dm | when m ≤ n. For, in Dn , information about the component
αr (r < n) is conveyed by tokens of the form 〈right, 〈. . . , 〈right, 〈left, a〉〉 . . .〉〉
(a ∈ A) where there are exactly r rights. Thus, since in general πn,m(x ) = x ∩Dm ,
the element representing 〈α0, 〈α1, 〈. . . , 〈αn−1, ∅〉 . . .〉〉〉 in Dn is mapped by πn,m

to the shorter ‘list’ 〈α0, 〈α1, 〈. . . , 〈αm−1, ∅〉 . . .〉〉〉. We can think of the last n −
m + 1 components of the first of these as being ‘collapsed’ into the final ‘unknown’
component of the second.

Now that we have identified the approximating domains Dn and the corre-
sponding projection functions, the structure of the limit domain D is easy to identify.
For it is clear that the cones of elements from the approximating domains are in
natural 1-1 correspondence with the set of infinite lists {[α0, α1, . . .] | ∀ i .αi ∈| A |}
(the nth element of the cone being 〈α0, 〈α1, 〈. . . , 〈αn−1, ∅〉 . . .〉〉〉). We have thus
constructed the domain of infinite lists of elements of | A |. We know that two
elements of this domain will be ordered (by ⊆) if and only if all the corresponding
components of their cones are ordered. It follows that the order on | D | corresponds
to the natural, componentwise order on the sequences:

[α0, α1, . . .] ⊆ [α′0, α
′
1, . . .] ⇔ ∀ i .αi ⊆ α′i .

Note that the least element of this domain is just the infinite sequence con-
sisting of the least element ⊥A = ∅ of | A |, and that this is different from, say, a
sequence whose first element is ⊥A but whose second is not. We have thus succeeded
in defining the domain of infinite lists of a given type that is not strict.

Suppose we want a domain that includes finite lists. There are two different
sorts of finite lists one might meet. The first is a list which contains a number of
elements and can be seen not to have any more. In our notation this is written
[α0, α1, . . . , αn ]. The second has a number of elements and then produces an error
state or loop if one looks at it further and is denoted α0 : α1 : . . . αn : ⊥. (Though
it only makes sense to call this second sort finite if the infinite list of ⊥As is different
from ⊥.) This sort of list is only finite in a very negative way: there is nothing
useful one can do with one that cannot be done with an infinite extension. Certainly
the first type of finite list is the one we will most often want. Consider the empty
list: there is a piece of information true of it that is true of no other (namely
that it is empty), and information about every other non-⊥ list not true of it
(either information about some element or simply the information that the list is
not empty). Therefore we can expect the empty list to be an element of our domain
incomparable to all others except ⊥. Every other non-⊥ list can be expected to be
of the form α : l for some α ∈| A | and some list l .
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This leads us to expect that the domain of lists will look something like

K = ↑ ⊕ (A×K)

or like

L = + (A× L) .

Both these equations create a separate point for [ ]; the obvious difference
between them is that the first identifies ⊥A : ⊥ with ⊥ while the second does not.
It is instructive to work out what | K | and | L | look like in more detail.

Let us first consider K, and define K0 = and Kn+1 = ↑ ⊕ (A ×
Kn). Thus | K0 | has one element (which we can identify with the undefined list
⊥) and the elements of | Kn+1 | can be identified with [ ] and α : x for α ∈|
A | and x ∈| Kn |. This means that the elements of | Kn | have two forms:
either they are [α0, α1, . . . , αk−1] for some 0 ≤ k < n and αi ∈| A | or they have
the form α0 : α1 : . . . αn−1 : ⊥. A little analysis reveals that finite lists (of the
form [α0, αn−1, . . . , αk−1]) of different lengths are incomparable, with the usual
component-wise order among ones of the same length. ‘Unfinished’ lists of the form
α0 : α1 : . . . αn−1 : ⊥ are ordered component-wise among themselves. In general

α0 : α1 : . . . αn−1 : ⊥ ⊆ [α′0, α
′
1, . . . , α

′
k−1]

if and only if αi ⊆ α′i for i < k and αi = ⊥A when i ≥ k . No finite list is below an
unfinished one. (All of the order structure that we have just set out can easily be
proved by induction from the properties of the domain constructors involved in the
equation.)

Let Kn be the token-set of Kn . Noting that, in general, the tokens of a
domain B appear in ↑⊕(A×B) with a double right tag, we see that Kn contains
two types of token. These are ι2r+1

right (ιleft(a)) (r < n) where a ∈ A, conveying
information about αr in either type of element, and ι2rright(ιleft(lifted)) (r < n)
denoting that the list has finite length r . It is thus apparent that the projection
map πn+1,n has the following effects, since it ‘forgets’ about information on αn and
whether a list of length n is finished:

πn+1,n(α0 : α1 : . . . αn : ⊥) = α0 : α1 : . . . αn−1 : ⊥
πn+1,n [α0, α1, . . . αn−1] = α0 : α1 : . . . αn−1 : ⊥
πn+1,n [α0, α1, . . . αr−1] = [α0, α1, . . . αr−1] (r < n).

The cones 〈xn | n ∈ N〉 such that xn ∈| Kn | and πn+1,n(xn+1) = xn have two forms:
either all xn are ‘unfinished’, in which case there is an infinite sequence 〈αi | i ≥ 0〉
of elements of | A | such that for all n xn = α0 : α1 : . . . αn−1 : ⊥, or some first
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xn is ‘finite’. In the latter case notice that πn,n−1(xn) can only be unfinished (as is
certain since xn is the first finite one) if xn = [α0, . . . , αn−2] for some αi . Since there
is only one element of | Km | mapping under πm+1,m to [α0, . . . , αn−1] when m > n
it follows that xr = α0 : α1 : . . . : αr−1 : ⊥ when r < n and xr = [α0, . . . , αn−2]
when r ≥ n.

We will identify the first sort of cone with the infinite sequence [αi | i ≥ 0].
The second sort of cone will be identified with the finite sequence at which the cone
stabilises. Note that there is exactly one element of | K | corresponding to each
finite or infinite sequence of | A |. The order on | K | is easily deduced (via the
cones) from those on the | Kn |:

• Finite lists of different lengths are incomparable.

• [α0, . . . , αn−1] ⊆ [α′0, . . . , α
′
n−1] iff αi ⊆ α′i for all i .

• [αi | i ≥ 0] ⊆ [α′i | i ≥ 0] iff αi ⊆ α′i for all i .

• [αi | i ≥ 0] ⊆ [α′0, . . . , α
′
n−1] iff αi ⊆ α′i for all i < n and αi = ⊥A for all i ≥ n.

• [α0, . . . , αn−1] 6⊆ [α′i | i ≥ 0].

In this domain, as in the domain of infinite sequences above, we are identi-
fying the totally undefined list with an infinite list of ⊥As. What this identification
means is that, while the fact that a list is finished is positive information that is
recorded among the tokens, the mere fact that it is not finished is not. The only way
we can tell that a list is not empty is to see information about one of its members
(not necessarily the first). This rather curious position does not accurately model
the domain of lists as modelled in real programming languages. It is much more
likely either that it should be possible to see that a list is nonempty without seeing
positive information about a member, or that a list whose first element is ⊥A should
be identified with ⊥.

Let us now examine the domain L. Here we do have a positive piece of
information that a list is not empty (the token that lifts it into the right-hand side
of the separated sum +(A×L)) that tells us nothing about any of the elements
of the list. Let Ln be the iterates of L defined in the same way as Kn . Again the
only element of | L0 | can be denoted ⊥, and this time the elements of | Ln+1 | are
⊥ (the bottom added by the separated sum), [ ] (the single element in the left-hand
side of the separated sum) and a : x for all elements a ∈| A | and x ∈| Ln |, now
all different from ⊥. Thus the elements of | Ln | are precisely α0 : α1 : . . . αr−1 : ⊥
(with 0 ≤ r ≤ n) and [α0, α1, . . . , αr−1] (with 0 ≤ r < n). We will re-christen
lists of the first sort ‘partial’ rather than ‘unfinished’ for reasons that will become
apparent, though it is arguably better to keep the old name for those where r = n.
The second sort will again be called ‘finite’. The partial order on | Ln | is as
follows:
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• Finite lists of different lengths are incomparable.

• [α0, . . . , αr−1] ⊆ [α′0, . . . , α
′
r−1] iff αi ⊆ α′i for all i .

• α0 : α1 : . . . αr−1 : ⊥ ⊆ α′0 : α′1 : . . . α′s−1 : ⊥ iff r ≤ s and αi ⊆ α′i when i < r .

• α0 : α1 : . . . αr−1 : ⊥ ⊆ [α′0, α
′
1, . . . , α

′
s−1] iff r ≤ s and αi ⊆ α′i when i < r .

• No finite list is below a partial one.

The projection functions are very similar to those for the Ln and are as
follows:

πn+1,n(α0 : α1 : . . . αn : ⊥) = α0 : α1 : . . . αn−1 : ⊥
πn+1,n(α0 : α1 : . . . αr−1 : ⊥) = α0 : α1 : . . . αr−1 : ⊥ (r ≤ n)

πn+1,n [α0, α1, . . . αn−1] = α0 : α1 : . . . αn−1 : ⊥
πn+1,n [α0, α1, . . . αr−1] = [α0, α1, . . . αr−1] (r < n).

Note that there are now two varieties of element in | Ln | with only one thing from
| Ln+1 | projecting onto them: the finite lists and the partial ones with length less
than n. There are now three sorts of cone. The first is where each xn is a partial
list of length n; necessarily there is an infinite sequence 〈αi | i ≥ 0〉 such that, for
all n, xn = α0 : α1 : . . . αn−1 : ⊥. We will identify this cone with the infinite list
[αi | i ≥ 0].

If any xn has either of the two other possible forms, finite or shorter partial,
then all subsequent xm must be identical to xn . In the first case there must be α0,
α1, . . ., αn−2 such that r ≥ n ⇒ xr = [α1, α2, . . . , αn−2], and r < n ⇒ xr = α0 :
α1 : . . . αr−1 : ⊥. We identify this cone with the finite list [α0, α1, . . . , αn−2].

In the second case there must be α0, α1, . . ., αn−1 such that r ≥ n ⇒ xr =
α0 : α1 : . . . : αn−2 : ⊥ and r < n ⇒ xr = α0 : α1 : . . . αr−1 : ⊥. We identify
this cone with the partial list α0 : α1 : . . . αn−1 : ⊥. These three types are all the
elements of | L |. The partial order is easily deduced from those of | Ln |.

• Finite lists of different lengths are incomparable.

• [α0, . . . , αr−1] ⊆ [α′0, . . . , α
′
r−1] iff αi ⊆ α′i for all i .

• [αi | i ≥ 0] ⊆ [α′i | i ≥ 0] iff αi ⊆ α′i for all i .

• Finite lists are incomparable with infinite ones.

• α0 : α1 : . . . αr−1 : ⊥ ⊆ α′0 : α′1 : . . . α′s−1 : ⊥ iff r ≤ s and αi ⊆ α′i when i < r .

• α0 : α1 : . . . αr−1 : ⊥ ⊆ [α′0, α
′
1, . . . , α

′
s−1] iff r ≤ s and αi ⊆ α′i when i < r .

• α0 : α1 : . . . αr−1 : ⊥ ⊆ [α′i | i ≥ 0] iff αi ⊆ α′i when i < r .

• No finite or infinite list is below a partial one.
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Figure 5.1 | F | – the domain of finite lists

| L | thus contains all three varieties of list identified at the start of the
chapter, with no identifications or additional elements. It is precisely the domain
of lists required for most lazy functional languages, including that of [BW].

All the domains of lists we have constructed so far contain all infinite lists.
Not all programming languages encompass these, and as we remarked before it is
undesirable to create domains which contain objects irrelevant to a language.

Now, instead of writing down some plausible domain equations and calcu-
lating the result, we will try to derive an equation that yields a domain consisting
of only finite lists (with ones of different lengths being incomparable) plus a single
bottom element ⊥. Figure 5.1 shows the domain we are aiming for; let us call
it F. The obvious domains approximating F are ones Fn whose elements consist
of finite lists of length n − 1 or less. (We get n − 1 rather than n here because
there is a list with no elements [ ], and | F0 | will contain no complete objects.)
Experience suggests that, under the projection from | Fn+1 | to | Fn |, a list of
length less than n should map to itself. There are two plausible places that a list
[α0, α1, . . . , αn−1] of length n could map to: either to [α0, α1, . . . , αn−2] or to ⊥.
If we adopted the first of these options there would be, as in K and L, cones of
elements corresponding to each infinite sequence. But we do not want infinite lists
in | F |, so the second option must apply. Indeed if we do adopt this projection map
it is easy to see that the only possible cones 〈xi | i ≥ 0〉 are the one with all xi = ⊥,
and, for each finite sequence [α0, α1, . . . , αn−1], the cone with xi = ⊥ for i ≤ n and
xi = [α0, α1, . . . , αn−1] for i > n. This leads to exactly the domain we required.

Unfortunately there is no way of producing Fn+1 from Fn via any of the
domain constructors we have seen so far. This is because, when we take the product
A×Fn , we get an element 〈α,⊥〉 for every α ∈| A |. This is not part of Fn+1 since
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the latter only has one element that is not a ‘complete’ sequence. It turns out that
we need to identify all of these elements: we need a right strict product constructor
↘× with the property that the elements of | A↘×B | correspond to the pairs 〈x , y〉
such that y 6= ⊥B plus a single bottom element. If we had such a constructor then
A↘×Fn would consist of all lists of length 1 to n plus a single bottom element.
Thus ↑ ⊕ (A↘×Fn) would have the correct shape for Fn+1. This suggests that
the domain equation generating the finite lists is

F = ↑ ⊕ (A↘×F) .

However we cannot tell if the projection maps are correct until we know more about
the constructor.

Strict product constructors

In fact there are three different strict versions of Cartesian product. ↘×, the one
discussed above, is strict in its right-hand component so that all pairs of the form
〈x ,⊥〉 are identified. ↙× is the symmetric version that is strict in its left-hand
argument. ↘↙ is strict in both: namely all elements with the form 〈x ,⊥〉 or 〈⊥, y〉
are identified.

We will start by defining the symmetric version ↘↙. When we first considered
the ordinary product constructor A ×B, tokens of the form 〈a, b〉 (a and b being
respectively tokens from A and B) were rejected. For one could not then give
information about the first component of a pair without giving information about
the second, and there might be no information about the second component (when
this equalled ∅). But of course this is exactly what is required for a strict constructor:
there can be no information about one component without knowing that the other
is not ⊥. There is, as in the case of ⊕, the complication that there may or may not
be tokens true of the least element ∅, since to make this idea work we must ensure
that the least elements of | A | and | B | have no tokens true of them. Therefore
we make the following definition.

Definition
A↘↙B = 〈(A− ∅

A
)× (B − ∅

B
), Con,`〉 where

• X ∈ Con⇔ π1(X ) ∈ ConA ∧ π2(X ) ∈ ConB

• X ` 〈a, b〉 ⇔ π1(X ) `A a ∧ π2(X ) `B b.

Here, π1(X ) = {a | 〈a, b〉 ∈ X } and π2(X ) = {b | 〈a, b〉 ∈ X } are the func-
tions that extract information about the first and second components of elements
of X .
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proposition 5.1.1

↘↙ is well-defined and continuous. Furthermore, if A and B are any two information
systems then | A↘↙B | is given by

{∅} ∪ {(x − ∅
A
)× (y − ∅

B
) | x ∈ (| A | −{∅

A
}) ∧ y ∈ (| B | −{∅

B
})} .

Thus | A↘↙B | is order isomorphic to the symmetric strict product of | A | and
| B |.

The order isomorphism here is easily deduced using the fact that, if x , x ′, y , y ′

are all nonempty sets, then x × y = x ′ × y ′ if and only if x = x ′ and y = y ′.
The situation with the left- and right-strict operators is similar. For example

in | A↘×B | there can be no information about the left-hand component without
enough information to ensure that the right-hand component is not bottom. How-
ever there should be information about the right-hand component accessible without
knowing anything about the left-hand one. Perhaps the cleanest way of achieving
this is to make sure that there are meaningless tokens in the left-hand system. Un-
fortunately we cannot guarantee they will be there in a given A, just as we could
not guarantee before that they would not be! Therefore we ‘add’ a token to A,
just as we did when lifting; however it seems appropriate to give the new token a
different name than ‘lifted’: we will call it ∆1.

Definition
A↘×B = 〈C , Con,`〉, where

• C = ({∆} ∪ {〈old, a〉 | a ∈ A})× (B − ∅
B

)

• X ∈ Con ⇔ π′1(X ) ∈ ConA ∧ π2(X ) ∈ ConB

• X ` 〈∆, b〉 ⇔ π2(X ) `B b
X ` 〈〈old, a〉, b〉 ⇔ π′1(X ) `A a ∧ π2(X ) `B b

π2 is as before and π′1(X ) = {a | 〈〈old, a〉, b〉 ∈ X }.
Note that ∆ conveys no information about the first component of a pair;

its only function is to allow pairs of the form 〈∆, b〉 to give information about
the second component. (We do not want our constructor to be strict in its first
argument; therefore it must be possible to give information about the second even
when there is nothing to tell about the first.) The following result shows that this
definition works.

1We have chosen this name because, in Scott’s original presentation of information systems

where all systems had a weakest token that was true of everything, that token was called ∆.
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proposition 5.1.2.

↘× is well-defined and continuous. If A and B are any information systems then

| A↘×B |= {∅} ∪ {ι∆(x )× (y − ∅
B

) | x ∈| A | ∧y ∈ (| B | −{∅
B
})}

where ι∆(x ) = {∆} ∪ {〈old , a〉 | a ∈ x}. Thus | A↘×B | is order isomorphic to the
right-strict product of | A | and | B |.

The order isomorphism follows from the same fact used for ↘↙. It is important
that ι∆(x ) is never empty.

Plainly there is no need for us to define the left-strict constructor ↙× here,
since it is just the symmetric version of ↘×.

Let us now return to the problem that generated this discussion, namely the
domain F of finite lists. We suspected that the equation

F = ↑ ⊕ (A↘×F)

was what was required. We already know from the discussion above that the shape
of | Fn | is a bottom element plus disjoint and incomparable copies of the domains
of sequences of all lengths k < n. Thus the elements of this domain are either ⊥ or
[α1, . . . , αk ] for some k < n (and all such are distinct). To work out the projection
πn+1,n we need to know more about the token-set Fn of Fn . F0 = ∅, and for all n,

Fn+1 = {〈left, lifted〉} ∪ {〈right, 〈∆, c〉〉 | c ∈ Fn}∪
{〈right, 〈〈old, a〉, c〉〉 | a ∈ A ∧ c ∈ Fn}

Note that we have not needed to remove meaningless tokens here, either in forming
the strict product or the coalesced sum. This is because the way the Fn are built up
means there are never any in either circumstance; for note that no coalesced sum
or (semi-) strict product ever has a meaningless token. The set-theoretic clutter
makes it a little hard to see what is going on here; it is much better if we re-write
the above equation as a BNF-style definition (where the disjointness is assumed
rather than elaborately enforced). Thus, if cn represents a typical element of Fn ,
we have

cn+1 ::= [ ] | ∆ : cn | a : cn

(where the order of the clauses is exactly as in the earlier equation). We have
chosen the list notation for tokens because, as can be seen from the definitions of ↘×
and ⊕, in Fn information about lists of the form [α1, . . . , αr ] is provided by tokens
of the form [b1, . . . , br ] of the same length, with tokens of different lengths being

inconsistent. (Here, bi is either in A \ ∅
A

or is ∆.)
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Recall that the projection maps are defined πn+1,n(x ) = x∩Fn . But the only
elements in Fn+1 − Fn are the tokens about lists of length n. Thus, if x ∈| Fn+1 |
represents a shorter list we have πn+1,n(x ) = x (for x contains no token not in Fn)
and if x represents a list of length n we have πn+1,n(x ) = ∅ (for x contains no token
in Fn). Thus the projections are exactly as we needed, so the limit domain has
exactly the form we wanted.

We could have told this without looking at the projection maps, since the
tokens of F are just the union of the token sets Fn . This is just the set defined, in
BNF style, by

c ::= [ ] | ∆ : c | a : c ,

namely all finite lists of ∆s and as. And the consistency and entailment relations
are just the limits of those of the Fn , so tokens of different lengths are inconsistent,
with the ones of a given length having just the right structure to tell us about lists
of elements of | A | of that length. Note that [∆, . . . ,∆] (n ∆s) is the weakest token
among those of length n.

A variant on this domain that one might well want is the one which is strict in
all A components: namely any finite list with a bottom in any component becomes
identified with the bottom of the whole domain. This is the domain of finite lists
found in several eager functional languages. The way to construct it is shown in
Exercise 5.1.3.

Domain constructors defined by fixed points

In the discussion of lists above we always started with a domain A of list ‘atoms’
and ended up with some domain of lists of elements of | A |. All these list-domain
forming operations are of course just domain constructors. For example L is a
constructor (which we might better write List(A) or similar) which, given any
domain A, returns the appropriate domain of lists. It would be useful to know if
these constructors had the same properties of monotonicity and continuity as the
directly defined ones earlier. For if this is the case we will be able to use them in
domain equations such as

D = B⊕ (D → D)↑ ⊕ (List(D))↑

which might be required for a functional language with lists.
In fact they do all have these desirable properties, as a consequence of the

following general result.
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5.1.3 theorem

Suppose F is a continuous binary domain constructor (i.e., 2 to 1). Then the
unary domain constructor G formed by defining G(A) to be the least solution to
B = F (A,B) is itself continuous.

proof

We know from Theorem 4.2.8 that G(A) =
⊔
{Fn

A( ) | n ∈ N} where FA(B) =
F (A,B). Suppose A � A′. Now F 0

A( ) � F 0
A′( ) trivially, and if Fn

A( ) �
Fn

A′( ) then Fn+1
A ( ) � Fn+1

A′ ( ) by monotonicity of F . Hence Fn
A( ) �

Fn
A′( ) for all n by induction. Thus⊔

{Fn
A( ) | n ∈ N} �

⊔
{Fn

A′( ) | n ∈ N}

and so G is monotone.
Next, suppose ∆ is a directed set of information systems. Since G is mono-

tone we know that
⊔
{G(A) | A ∈ ∆} � G(

⊔
∆) and hence that the token-set of

the right-hand side contains that of the left-hand side. So suppose a is a token of
G(

⊔
∆) =

⊔
{Fn

t∆( ) | n ∈ N}. Necessarily there is some n such that a is a token
of Fn

t∆( ).
Claim that Fn

t∆( ) =
⊔
{Fn

A( ) | A ∈ ∆} (i.e., Fn
A( ) is continuous as

a function of A). We will prove this by induction on n. It is trivial if n = 0, and if
it is true for n then

Fn+1
t∆ ( ) = F (

⊔
∆,Fn

t∆( ))
=

⊔
{F (A,Fn

B ( )) | A,B ∈ ∆} as F is continuous
and by induction

=
⊔
{F (A,Fn

A( )) | A ∈ ∆} ∆ directed
=

⊔
{Fn+1

A ( ) | A ∈ ∆} ,

so it is true for n + 1 and hence all n by induction.
Thus, if n is as above, there is some A ∈ ∆ such that a is a token of Fn

A( )
and hence of G(A). This proves that G is continuous on token sets and hence
continuous.

This result shows that all of the list constructors seen earlier are indeed
continuous. Of course there is a more general version of this result which applies to
more than just 2 to 1 constructors. We state it here without proof.

5.1.4 theorem

Suppose F (A,B) is a continuous n +m to m domain constructor. (Here, B denotes
an m-tuple and A an n-tuple.) Then the n to m domain constructor G formed by
defining G(A) to be the least solution to B = F (A,B) is itself continuous.
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Figure 5.2 | S | – the domain of strict finite lists

Exercises

5.1.1 Compute the structures of the least solutions to the domain equations

D = A↘×D and E = A↙×E

for an arbitrary information system A.

5.1.2 Can you find a domain equation whose solution looks like | K | and | L |
defined in the text above except that it is strict in the first element of a list.
The elements should therefore be

– finite lists [α0, . . . , αn−1] (n ≥ 0) with all αi 6= ⊥A,
– infinite lists [αi | i ≥ 0] such that all αi 6= ⊥A, and
– ‘partial’ lists α0 : α1 : . . . αn−1 : ⊥ (n ≥ 0) with all αi 6= ⊥A.

The order between these elements should be exactly as in L (and exactly as
in K if one substitutes ⊥ by an infinite list of ⊥As).

5.1.3 Show that the least solution of the domain equation

S = ↑ ⊕ (A↘↙S)

is the strict domain of finite sequences referred to in the text above where
sequences of different lengths are incomparable except that any sequence
containing a ⊥A is identified with the overall ⊥. This domain is illustrated
in Figure 5.2.
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5.1.4 The following are all domain equations attempting to describe binary trees
of elements of | A |. In each case establish the shape of the domain gener-
ated.

(a) D = A× (D×D)
(b) T = + (A× (T×T))
(c) N = A + (N×N)
(d) F = ↑ ⊕ (A↘↙(F↘↙F))
(e) G = A↑ ⊕ (G↘↙G)

5.1.5 Can you find a way of generating a domain of finite-branching trees with
nodes labelled by elements of | A |? Each node should contain a label from
| A | and an arbitrary length finite list of subtrees.

5.1.6 Suppose F and G are two continuous binary domain constructors. We can
define domains A and B by the mutual definition

A = F (A,B)
B = G(A,B) .

Alternatively we can use Theorem 5.1.3 to define a continuous domain con-
structor G1(A) whose value is the least solution (for fixed A) of the equation
B = G(A,B). We can then define A′ to be the least solution to the equation

A′ = F (A′,G1(A′)) .

Prove that A = A′.

5.1.7 There is seemingly a lot of redundancy in the tokens of the strict product
constructors. For example in 〈x , y〉 ∈| A↘↙B | all tokens of the form 〈a, b〉,
with b a piece of information about y , tell us exactly the same thing (namely
a) about x . Why do you think this is? Can it be avoided?
[Hint: You might find it helpful to consider the following question: given a
token a of A, need there be a least element of | A↘↙B | which has a true of
its first component?]

∗5.1.8 Suppose that the information systems An are such that An � An+1 and
An ≡ Am for all n,m. If each of the token sets An is finite, prove that the
limit A∗ =

⊔
{An | n ∈ N} satisfies An ≡ A∗. Need this still hold if the An

are infinite?

5.2 Function space constructors

The equation that to some extent inspired the whole subject of domain theory
was D = D → D, since solutions to this equation were required as models for
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the pure λ-calculus (see Chapter 7). Strangely enough, this equation turns out to
behave rather differently from all others we will meet. For in fact it has a very
simple solution: it is easy to verify that = → . This simply says that
there is only one function from a singleton set to itself; so the set can be regarded
as isomorphic to its own function space. Plainly is the least solution to the
equation, but equally it is not the solution we are looking for: a one-point domain
is not an interesting semantic domain.

This is the only case we will meet where the least solution to a domain
equation is not the right one. The reasons why we run into this problem will be
discussed later when we meet the λ-calculus. In some sense the solution is the
only one that is not right since, as is discussed in exercises at the end of Section 7.2,
any nontrivial system D such that D ≡ (D → D) gives a useful model for the pure
λ-calculus. Notice that we have replaced our usual equality here by isomorphism.
That this is necessary is demonstrated by the following result, which at first sight
seems to kill off all hope of finding the domains we are after.

5.2.1 proposition

is the only solution of the domain equation D = D → D.

proof

The set-theoretic axiom of foundation2 tells us that there does not exist an infinite
sequence ai of sets with a0 3 a1 3 a2 3 · · · an 3 an+1 3 · · ·. Any solution 〈D , Con,`
〉 to the domain equation with nonempty token set D would violate this. For assume
a0 is any element of D . Then, since D = Con×D by assumption, there are X1 and
a1 such that a0 = 〈X1, a1〉. Similarly there are X2 and a2 such that a1 = 〈X2, a2〉
and in general Xn+1 and an+1 such that an = 〈Xn+1, an+1〉.

In set theory, the pair 〈a, b〉 is identified with the set {{a}, {a, b}}. We
therefore have the following:

a0 3 {X1, a1} 3 a1 3 {X2, a2} . . . 3 an 3 {Xn+1, an+1} 3 an+1 3 . . .

in contravention of the axiom of foundation. Thus 〈D , Con,`〉 cannot exist.

However there is a way around this. The solution is to find another function
space constructor 7→ such that A 7→ B ≡ A → B but which does not have this
problem. Before we try to find this constructor it will be nice to know what we
want of it.

2The axiom of foundation (or regularity) states that any nonempty set x contains an element

y such that x ∩ y = ∅. This implies that there can be no sequence 〈ai | i ∈ N〉 such that ai+1 ∈ ai

for all i . For the set x = {ai | i ∈ N} would violate the axiom: ai+1 ∈ x ∩ ai for all i .

It has been argued by Aczel and others that it would be more natural to base domain theory

on a non-standard set theory without the axiom of foundation.
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Looking back at the proof of Theorem 4.2.8, where we proved domain equa-
tions had solutions, the only property of that we used was that � F ( )
– this got the induction going to create the chain 〈Fn( ) | n ∈ N〉. If A is any
system such that A � F (A) then exactly the same argument produces a chain
〈Fn(A) | n ∈ N〉 whose limit

⊔
{Fn(A) | n ∈ N} is a fixed point.

Thus what we would like is a nontrivial A and a constructor 7→ as above
such that A � (A 7→ A). To achieve this we obviously need A ⊆ A′, where A′ is
the token set of A 7→ A. In B → C, the tokens are ConB ×C – we are looking for
a way of replacing some of these by either the elements of B or of C . (The fact that
A appears on both sides of A 7→ A gives us that choice.) If we consider the case
where C = , the token set ConB ×C is empty however large B might be, which
indicates that it might be difficult to embed the tokens of B into those of B → C.

The situation is much better when we try to embed tokens of C. For whatever
the shape of B, the set ConB always contains the empty set ∅ – so ConB×C always
contains 〈∅, c〉 for all c ∈ C . The replacement of 〈∅, c〉 by c even squares well with
our basic intuition about the function space constructor: we are simply saying that a
piece of information we can get about the result f (x ) of applying a function without
knowing anything about x is recorded as itself rather than paired with ∅. And our
hopes for embedding C in B → C in this way are improved when we observe that,
in general

(B → C)\({∅} × C ) ≡ C

via the obvious bijection that sends 〈∅, c〉 to c.
There is one problem with this, the same problem we encountered when we

first defined the lifting constructor, namely that of confusion between tokens. For
what are we to do if one of the tokens of C has the form 〈X , c〉 for ∅ 6= X ∈ ConB

and c ∈ C ? We cannot adopt the same solution as before, which was to tag distinct
names onto the two types of token we wished to keep apart, since then the tokens
of C would generally not be a subset of those of the function space. And however
elaborate a name we choose to tag onto the other tokens, we cannot stop ones of
that form turning up in C .

One solution to this dilemma is only to expect C � (B 7→ C) when the
tokens of C are such as not to allow confusion, for example because C contains no
ordered pairs.

Definition
If X is any set, define

Φ(X ) = {a ∈ X | a = 〈b, c〉 for any objects b and c}
Ψ(X ) = X − Φ(X ) .
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(Φ(X ) is the set of all ordered pairs in X , Ψ(X ) is the set of all elements of X that
are not ordered pairs.) In general, X = Φ(X ) ∪Ψ(X ) and Φ(X ) ∩Ψ(X ) = ∅.

The final solution we adopt is only to replace the B → C token 〈∅, c〉 by c
when c ∈ Ψ(C ) and could therefore not be confused with any other token.

Definition
The alternative function space constructor is defined as follows. If B = 〈B , ConB ,`B

〉 and C = 〈C , ConC ,`C 〉 are two information systems, then we define B 7→ C to
be the triple 〈A, ConA,`A〉, where

A = Ψ(C ) ∪ ((ConB × C )− ({∅} ×Ψ(C )))
Z ∈ ConA ⇔ ∀{c1, . . . , cr , 〈X1, c′1〉, . . . , 〈Xs , c′s〉} ⊆ Z .

s⋃
i=1

Xi ∈ ConB ⇒ {c1, . . . , cr , c′1, . . . , c
′
s} ∈ ConC

and, if Z = {c1, . . . , cr , 〈X1, c′1〉, . . . , 〈Xs , c′s〉} ∈ ConA,

Z `A c ⇔ {c1, . . . , cr} ∪ {c′i | ∅ `B Xi} `C c

Z `A 〈X , c〉 ⇔ {c1, . . . cr} ∪ {c′i | X `B Xi} `C c .

Where, above, it is in a place properly occupied by an element of A, c denotes any
element of Ψ(C ).

5.2.2 proposition

7→ is a well-defined continuous domain constructor such that, for all B and C,

B 7→ C ≡ B → C .

proof

The last part of this result follows from the way 7→ was put together. If 〈A, Con,`〉
is as in the definition above, we know that the map θ : A → ConB × C defined

θ(a) =
{
〈∅, a〉 if a ∈ Ψ(C )
a otherwise

is a bijection. And it is clear that it is an isomorphism between 〈A, Con,`〉 and the
usual function space B → C, since in the definition of 7→ above, the tokens in Ψ(C )
play exactly the roles in the consistency and entailment relations that their images
under θ do in B → C. Since we already know that → is well-defined, the existence
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of this isomorphism actually proves that 〈A, Con,`〉 is an information system, so
that 7→ is well-defined.

The only thing left to prove is that 7→ is continuous. Last time we studied
the function space constructor we concentrated on the left-hand argument. This
time we will concentrate on the right-hand one, since the operation of the left-hand
one has not really changed and it is the right-hand one that we are applying the Ψ
trick to.

So suppose that B is fixed and that C � C′. Now it is easy to see that, since
C ⊆ C ′, we get

Φ(C ) ⊆ Φ(C ′) and Ψ(C ) ⊆ Ψ(C ′) .

The token-sets A and A′ of the domains B 7→ C and B 7→ C′ can be written

Ψ(C ) ∪ ({∅} × Φ(C )) ∪ ((ConB − {∅})× C ) and

Ψ(C ′) ∪ ({∅} × Φ(C ′)) ∪ ((ConB − {∅})× C ′)

from which it is clear that A ⊆ A′. Rather than prove the Con and ` clauses of
monotonicity directly we will again appeal to our isomorphisms θ : A → ConB ×C

and θ′ : A′ → ConB × C ′; for it is obvious from their definitions that θ = θ′\A.
We can then appeal to the result of Exercise 4.2.7 to show that 7→ is monotone in
its second argument.

The continuity (on token sets) of the second argument follows straightfor-
wardly when we observe that, if C is any set of sets,

Φ(
⋃
C) =

⋃
{Φ(C ) | C ∈ C} and

Ψ(
⋃
C) =

⋃
{Ψ(C ) | C ∈ C} .

This completes our proof of the proposition.

We are aiming to get C � (C 7→ C) for some nontrivial C. That this is
possible is shown by the following pair of lemmas.

5.2.3 lemma

If B and C are any information systems, then

(B 7→ C)\Ψ(C ) = C\Ψ(C ) .

proof

To see this all we have to do is to examine the consistency and entailment relations
of the left-hand side, which are just those from the definition of 7→ above with all
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references to pairs 〈X , c〉 removed:

{c1, . . . , cr} ∈ Con ⇔ {c1, . . . , cr} ∈ ConC

{c1, . . . , cr} ` c ⇔ {c1, . . . , cr} `C c .

These are plainly those of the right-hand side since the tokens c, ci in question are
those of Ψ(C ).

5.2.4 lemma

If A is any information system then there is another, C, such that A ≡ C and
Ψ(C ) = C .

proof

All we have to do is to find a way of systematically altering the elements of A so
that they remain distinct and are never mapped to ordered pairs. One way of doing
this is to map each a to {0, 1, {2, a}} which cannot be an ordered pair because it is
always a three-element set, while the ordered pair {{x}, {x , y}} has at most two.

This discussion has all been leading up to the following result, which shows
that domains of the type we are looking for really do exist.

5.2.5 theorem

If P is any algebraic, consistently complete cpo then there is another one Q such
that Q is order isomorphic to the continuous function space Q → Q and there is
an (order-preserving) embedding of P into Q .

proof

By Theorem 3.2.5 and Lemma 5.2.4, there is an information system C0 such that
| C0 | is order isomorphic to P and Ψ(C0) = C0. Lemma 5.2.3 then tells us that
C0 � C0 7→ C0 = C1. Define Cn+1 = Cn 7→ Cn for all n.

Then, since the domain constructor F (A) = A 7→ A is monotone, we get
Cn � Cn+1 for all n exactly as in the proof of Theorem 4.2.8. Thus {Cn | n ∈ N}
is a chain. Again, as in Theorem 4.2.8, the limit C∗ of this chain must be a fixed
point of F , namely C∗ = C∗ 7→ C∗.

Now C∗ 7→ C∗ ≡ C∗ → C∗ by Proposition 5.2.2. It follows from Proposition
4.3.1 and Theorem 3.3.2 that | C∗ 7→ C∗ | is isomorphic to the continuous function
space | C∗ |→| C∗ |. Thus, setting Q =| C∗ | we get what we want, observing that,
since C0 � C∗, the required embedding map exists.

It is interesting to examine the projection and injection maps between the
| Cn | and the resultant cones of elements. To do this we need to understand how
the token sets Cn of these domains evolve.
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C0 consists of non-pairs, and Cn+1 consists of the non-pairs of Cn together
with some pairs. It follows that Ψ(Cn) = C0 for all n. Therefore, for all n,

Cn+1 = C0 ∪ ((Conn × Cn)− ({∅} × C0)) .

If x ∈| C0 | then it is just in our starting domain – there is no a priori reason
to think of it as a function or anything else.

If x ∈| Cn+1 | then it represents the function from | Cn | to | Cn | given by

fx (y) = {a | a ∈ x ∩ C0 ∨ ∃X ⊆fin y .〈X , a〉 ∈ x} .

Let us first consider π1,0 and ι0,1. π1,0(x ) = x ∩ C0 which, looking at the

function fx defined above, is precisely fx (∅
0
) (where ∅

0
is the least element of | C0 |).

(This is true even if ∅
0
6= ∅ because of the definition of 7→.)

The definitions of the injection function and of 7→ give

ι0,1(y) = y
= y ∪ {〈X , c〉 | X 6= ∅ ∧ y `0 c}
= y ∪ {〈X , c〉 | X 6= ∅ ∧ c ∈ y} as y deductively closed

The fx corresponding to this is clearly the constant function which maps everything
to y .

So suppose n > 0, x ∈| Cn+1 | and y = πn+1,n(x ) = x ∩ Cn . We know that
fy :| Cn−1 |→| Cn−1 | is then given by

fy(z ) = {a | a ∈ (x ∩ Cn) ∩ C0 ∨ ∃X ⊆fin z .〈X , a〉 ∈ (x ∩ Cn)} .

Now 〈X , a〉 ∈ (x ∩Cn) iff 〈X , a〉 ∈ x and X ∪{a} ⊆ Cn−1. Since X ⊆fin z ∈| Cn−1 |
implies X ⊆fin Cn−1 we can re-write the above as

fy(z ) = {a | a ∈ x ∩ C0 ∨ ∃X ⊆fin z .〈X , a〉 ∈ x} ∩ Cn−1 .

Suppose z ∈| Cn−1 | and X ⊆fin ιn−1,n(z ) = z . Then there is X ′ ⊆fin z such
that X ′ `n X , and hence if a ∈ Cn then {〈X , a〉} `n+1 〈X ′, a〉. It follows that if
X ⊆fin ιn−1,n(z ) and 〈X , a〉 ∈ x then, by deductive closure of x , there is X ′ ⊆fin z
such that 〈X ′, a〉 ∈ x . It follows that we can re-write the above in the following
form.

fy(z ) = {a | a ∈ x ∩ C0 ∨ ∃X ⊆fin ιn−1,n(z ).〈X , a〉 ∈ x} ∩ Cn−1 ,

which is in turn equivalent to

fy = πn,n−1 ◦ fx ◦ ιn−1,n .
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Figure 5.3 The first iterates to C = C 7→ C.

Thus the function represented by πn+1,n(x ) can be determined from that
represented by x in an elegant way via the previous projection and injection.

Also, if y ∈| Cn | and x ∈| Cn+1 | are such that x = ιn,n+1(y) then a similar
analysis shows that

fx = ιn−1,n ◦ fy ◦ πn,n−1 .

The domains | Cn | always grow very rapidly in size except when | C0 | has
one element (and so do all | Cn |). The first three domains for the case when | C0 |
has two elements, and the associated projection functions, are illustrated in Figure
5.3. The elements of | C1 | are ⊥ and > the constant functions that map both
elements of | C0 | to its lesser and greater element respectively, plus id, the identity
function on | C0 |. The elements of | C2 | are denoted by a triple: 〈a, b, c〉 denoting
the values of the corresponding function at ⊥, id and >. There are no less than
120549 elements in | C3 |.

There is one feature of the above development which is very interesting from
a historical angle. For in fact, it brings domain theory round full circle to Scott’s
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first models of the λ-calculus from which the subject of domain theory evolved.
His construction there was based on a complete lattice D0. He then defined Dn+1

to be the continuous function space Dn → Dn . The limit domain D∞ was found
by defining projection and injection functions πm,n , ιn,m to be precisely the same
functions as were given to us above by our usual theory:

π1,0(f ) = f (⊥) where ⊥ is minimal in D0

ι0,1(x ) = λ y .x the constant function
πn+2,n+1(f ) = πn+1,n ◦ f ◦ ιn,n+1

ιn+1,n+2(f ) = ιn,n+1 ◦ f ◦ πn+1,n

πn,n = idn the identity function
ιn,n = idn the identity function
ιn,m = ιm−1,m ◦ . . . ◦ ιn,n+1 for n < m
πm,n = πn+1,n ◦ . . . ◦ πm,m−1 for n < m.

Scott then identified D∞ with the set of all cones in this system and proved that
D∞ is order isomorphic to the continuous function space D∞ → D∞. The curious
thing is that Scott ended up with exactly the same partial order (D∞) starting from
a given D0 as we did (| C∗ |) starting from a | C0 | order isomorphic to D0. We can
tell this because we know inductively that each | Cn | is order isomorphic to the
corresponding Dn ; and we know that the projection functions that define D∞ are
(under these isomorphisms) exactly the same projections that characterise | C∗ |.

This discussion of solutions to the equivalence C ≡ C → C should have
helped the reader to see more deeply into the structures of information systems. It
should have brought home the fact that, in information systems and their domain
constructors, we have rather concrete representations of the partial orders and the
constructions over them. For we have seen that there are different choices for these
representations that lead to quite different conclusions.

Everything that has been done in this section for the function space construc-
tor could have been done for the other ones. The definitions we have given of all
the standard versions of constructors are sufficiently ‘constructive’ in a set-theoretic
sense that domain equations involving them will tend only to have a single solution.
If, for any reason, it is desired to find further solutions to the underlying partial or-
der isomorphisms, it will generally be possible to find some coding trick like the one
used in this section to re-define the constructors appropriately (see Exercise 5.2.5
below). However, except for the above example we know of no legitimate reason
for wanting to do this. This is just as well, since it is at least inelegant to vary the
definitions of the various domain constructors to get the solutions we want.

Exercises
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5.2.1 Show that the construction mapping each a to {0, 1, {2, a}} used in the proof
of Lemma 5.2.4 gives rise to a continuous domain constructor.

5.2.2 Given a domain A, Lemma 5.2.4 and Theorem 5.2.5 represent the construc-
tion of a domain C∗ = C (A) which is equal to C∗ 7→ C∗ and which has A
isomorphic to a subspace.

(a) Show that, if A ≡ A′ then C (A) ≡ C (A′) and that if A ∼= A′ then
C (A) ∼= C (A′).

∗(b) Show that there is a non-trivial A such that A ≡ C (A).

[Hint: modify the construction in Lemma 5.2.4 so that it is possible that
A � C (A) for non-trivial A.]

5.2.3 Let D be the least solution to the equation

D = (D → D)↑ .

and let Dn be the approximations to D defined in the usual way. Discover
the structure of the projection and injection maps between the | Dn | by
analysis similar to that done above for 7→.
Figure 5.4 is a picture of the domain | D3 |. Find out which function each
point (other than the least one) represents from | D2 | to itself, and hence
determine the parts of the picture that project back to each of the four points
of | D2 |.

5.2.4 Write a computer program to verify that the next domain in the sequence
begun in Figure 5.3 has 120549 elements. How many of these project back
to each of the 10 elements of | C2 |?

5.2.5 Show that the two domain equations

D = D×D and E = E⊕E

have only the trivial solution . Find non-trivial domains D′ and E′ such
that

D ≡ D×D and E ≡ E⊕E .

[Hint: It is not necessary to define alternative versions of the constructors
to solve this question!]

∗5.2.6 Give alternative versions of ⊕ and × which allow you to construct a non-
trivial A such that

A ≡ A⊕ (A×A) .
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Figure 5.4 The third iterate to D = (D → D)↑ – see Exercise 5.2.3.



Chapter 6

Powerdomains

At the start of Chapter 4, when we identified a number of domain constructors
which it would be useful to have, one of them was powerset or powerdomain. The
definition of powerdomain constructors turns out to be rather more difficult than
any of the others we have met so far. Therefore this whole rather long chapter is
devoted to the subject. In the first section we introduce the various orders used for
powerdomains, and the philosophies behind them. Then, in the following sections,
we devise and analyse the corresponding domain constructors.

Necessarily the mathematics in the later parts of this chapter is rather deeper
than that needed earlier. The reader who is new to domain theory may prefer to
omit it on the first reading of the book.

6.1 Introduction: powerdomain orders

The main application of powerdomains in semantics is in the study of nondetermin-
ism. A program is said to be nondeterministic if it is unpredictable; if the outcome
of running the program is not fully determined by its inputs. There are a number
of sources of nondeterminism in real languages, notably parallel ones. The point is,
that to give a semantics to a nondeterministic program, we really have to describe
it by the set of its possible outcomes.

Consider, for example, a language describing processes that interact with
their users via a succession of inputs and outputs. A process starts in some initial
state. Whatever state it is in, on each cycle it inspects the value of its inputs then
gives some output and takes up some new state. (The output at each stage and the
new state may depend both on the old state and on the input.) If these processes are
always deterministic then an appropriate semantic domain is given by the equation

D = I → (O×D)
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where I and O are respectively the domains of inputs and outputs. Here D is the
domain of states: a state is a function from inputs to output/state pairs. However,
if they are nondeterministic with either the new state or both the output and
new state possibly varying unpredictably then we would want one of the following
domains

D1 = I → (O× P(D1))

D2 = I → P(O×D2)

where P(·) is some powerdomain constructor. For applications like this we thus seem
to need to be able to solve domain equations through the powerdomain constructor.

Cantor’s theorem tells us that no set can be put into 1-1 correspondence with
its powerset. But any continuous powerdomain constructor P(·) necessarily leads
to a solution to the domain equation

A = P(A) .

It follows that, as was the case with function space, we have to settle for a reduced
powerset – we can only hope to model a class of subsets analogous to the continuous
functions. In terms of information systems a continuous function is one whose result
on any argument can be determined from its behaviour on finite sets of information
about it. It will turn out that we can only model sets S such that whether x is
a member of S or not can be determined from which finite sets of information are
true of x .

There is another rather more annoying problem that we have to confront in
devising powerdomain constructors, namely that of finding an appropriate partial
order to give to a powerdomain. This has not worried us in the past since we could,
for example, simply choose the pointwise order on function spaces: f ≤ g if and
only if ∀ x .f (x ) ≤ g(x ). But, given a partial order Q , there seems to be no entirely
satisfactory order we can give to the powerset P(Q). In this chapter we will study
at least four different orders, each with its advantages and disadvantages.

There are of course the subset (⊆) and superset (⊇) orders, but these totally
ignore the underlying order on Q . For example, it seems natural to suppose that, if
x , y ∈ Q are such that x ≤ y , then we should have {x} ≤ {y} in P(Q) (a property
that neither ⊆ nor ⊇ can boast). Since these orders did not have all the properties
one might have hoped for, people devising powerdomains have generally looked for
orders that were related to that on the underlying domain. But that has not led
to a fully satisfactory answer either, as we shall see. One of the powerdomains we
will define later will be based on reverse inclusion (⊇) (which seems to be more
satisfactory than ⊆).
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Just how troublesome the quest for the right order is can be seen when we
look at the sets S = {x , z} and T = {y}, where x < y < z are three elements of
Q . We might reasonably claim that S is weaker than T because each element of
T has an element of S less than it. But equally each element of T has an element
of S greater than it, so perhaps T is weaker than S . Or, given this confusion,
had we better conclude that S and T are in fact incomparable. In fact, all three
answers have been arrived at by people constructing powerdomains which are based
on the orders of the underlying domains, for there are three different such orders
commonly used. Also, these orders (and the associated powerdomains) are each
commonly given at least two different names. The first order alluded to above is
formalised as

S @∼ST ⇔ ∀ y ∈ T .∃ x ∈ S .x ≤ y .

This is commonly called the Smyth order, after M.B. Smyth who first considered
it as a powerdomain order. It is also called the order of dæmonic nondeterminism
since it is only interested in the worst elements of a set – it judges whether S is
weaker than T only by looking at sufficiently small elements of S and T . The
philosophy underlying this order is that we always assume the worst: if we have a
set of possible outcomes then we are only concerned that the worst ones are good
enough. In particular, for any nonempty set S we have S ∪ {⊥}@∼S{⊥} as well as
{⊥}@∼SS ∪ {⊥}, so that all sets that have the least element in them are as bad as
each other.

The dual of this order is the following

S @∼HT ⇔ ∀ x ∈ S .∃ y ∈ T .x ≤ y .

It is said to be the order of angelic nondeterminism since it is only interested in the
best (maximal) elements of S and T . In particular, for a nonempty set S we always
have S @∼HS ∪{⊥} as well as the more obvious S ∪{⊥}@∼HS . Thus this order seems
to say that we always assume that a program will behave as well as possible. Not
surprisingly this order has found less uses than @∼S in a world where we are usually
concerned with proving correctness in every case of a nondeterministic process –
and are therefore more likely to be interested in what the worst elements of a set
are than the best. One case where this is not true is if we are only interested in
the partial correctness of a program – namely everything that is observable of it
is correct – and we are not interested in whether it actually does anything. Here,
an object in | A | with more observable of it (i.e., which is higher up the order) is
less likely to be correct, and so perversely the best possible element is the least in
the partial order on | A |. To test whether a nondeterministic program is partially
correct it is thus enough to inspect the maximal elements of its set of outcomes.
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It was because this philosophy was related to that of work by Hoare on partial
correctness that G.D. Plotkin christened this order the Hoare order.

In fact the first order to be used (by Plotkin) was the combination of these
two. It is usually called the Egli-Milner order after its inventors.

S @∼EMT ⇔ S @∼ST ∧ S @∼HT .

Clearly this is a sharper order than either of the other two. The resulting power-
domain has been called that of erratic nondeterminism (presumably because it is
no longer assumed to be angelic or dæmonic). The powerdomain derived from this
order is often called the Plotkin powerdomain after its inventor.

For all three of these orders it is true that there are distinct sets S and T such
that S @∼T and T @∼S . For example, if x < y < z , S = {x , z} and T = {x , y , z},
then this is true of all three orders. However they are all transitive, namely

R @∼S ∧ S @∼T ⇒ R @∼T .

Consider, for example, the case of @∼S . If R @∼SS , S @∼ST and x ∈ T then ∃ y ∈
S .y ≤ x . Hence there exists z ∈ R such that z ≤ y , and hence z ≤ x as required to
prove R @∼ST . The fact that @∼H is transitive follows by symmetry, and that @∼EM

is then comes from the fact that @∼S and @∼H are. All three orders are trivially
reflexive in that S @∼S for all S .

A transitive reflexive relation like these is called a preorder or sometimes a
quasi-order. Given a preorder @∼ one can define an equivalence relation ∼ by setting

S ∼ T ⇔ S @∼T ∧ T @∼S .

The three equivalences derived from the powerdomain orders will be denoted ∼S ,
∼H and ∼EM respectively. Two sets are equivalent under one of these if they
are indistinguishable under the philosophy of the appropriate order, for example
pessimistic in the case of the Smyth order. Given any preorder @∼ on a set Q , one
can define a partial order v on Q/∼, the set of all equivalence classes under ∼, by
defining x v y if and only if x @∼y – this is easily seen to be unambiguous since @∼ is
transitive. An order on equivalence classes is not a particularly attractive thing to
work with, so where possible one tries to pick some special representative of each
class and recast the order as an order on these. Fortunately it is possible to find
these for all three orders.

Definition



Powerdomains 139

If Q is a partial order and S ⊆ Q , then we define

S↑ = {x ∈ Q | ∃ y ∈ S .y ≤ x}
S↓ = {x ∈ Q | ∃ y ∈ S .y ≥ x}

ccl(S ) = {x ∈ Q | ∃ y , z ∈ S .y ≤ x ≤ z}

S↑ is the upwards closure of S , S↓ is its downwards closure and ccl(S ) is its convex
closure. S is said to be upwards-, downwards- or convex-closed if S = S↑, S = S↓
or S = ccl(S ) respectively.

6.1.1 lemma

If Q is a partial order and S ,T ⊆ Q , then we have the following

(a) S ∼S S↑, and S ∼S T if and only if S↑ = T↑;

(b) S ∼H S↓, and S ∼H T if and only if S↓ = T↓;

(c) S ∼EM ccl(S ), and S ∼EM T if and only if ccl(S ) = ccl(T ).

proof

It is immediately clear that S↑@∼SS since S↑ ⊇ S , and the fact that S @∼SS↑ follows
directly from the definition of S↑ = {x ∈ Q | ∃ y ∈ S .y ≤ x}. This proves that
S ∼S S↑. From this and the fact that ∼S is an equivalence relation it follows that if
S↑ = T↑ then S ∼S T . So suppose S ∼S T and x ∈ S↑. Then there is y ∈ S such
that y ≤ x . Now since T @∼SS it follows that there is z ∈ T such that z ≤ y , which
proves x ∈ T↑. Hence S↑ ⊆ T↑, and so S↑ = T↑ by symmetry. This completes the
proof of (a).

The proof of (b) is precisely symmetric to that of (a).
For (c), it is clear that ccl(S )↑ = S↑ and ccl(S )↓ = S↓. It follows from (a)

and (b) that ccl(S ) ∼S S and ccl(S ) ∼H S and hence ccl(S ) ∼EM S . As in (a)
it follows that if ccl(S ) = ccl(T ) then S ∼EM T . If S ∼EM T then certainly
S↑ = T↑ (by (a)) and S↓ = T↓ (by (b)). But it is not hard to see that in general
ccl(S ) = S↑ ∩ S↓, so that ccl(S ) = ccl(T ) as required. This completes the proof.

This result identifies special members of the equivalences of all three pre-
orders: every equivalence class of ∼S contains one upwards-closed member; each of
∼H contains one downwards-closed member; and each of ∼EM contains one convex
member. Rather than thinking of the three powerdomains as consisting of sets of
equivalence classes it is easier to think of them as sets of (respectively) upwards-
closed, downwards-closed and convex-closed sets. In future we will generally adopt
this simplification. Since the orders are thus turned into true partial orders they
will now be denoted vS , vH and vEM . Figure 6.1 illustrates typical elements of
the three powerdomains.
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Figure 6.1 Typical elements of the three powerdomains

Since powerdomains are usually used to measure the range of nondeterminism
of processes, it is often thought better to exclude the empty set (∅) from considera-
tion, for every process must do something (even if that thing is to fail to terminate).
In the case of the Plotkin powerdomain it is necessary to exclude it, for if S is a
nonempty set we clearly neither have S vEM ∅ nor ∅ vEM S (and so if the empty
set were present there could be no least element). In the other two cases it turns
out to be optional. If we were to allow the empty set then it would be the least
element of the Hoare powerdomain and the greatest element of the Smyth one. We
will generally exclude ∅ from our powerdomains.

As discussed earlier we will need a further property analogous to continuity
in functions before we can define the domain constructors themselves. When we do
so these will be denoted

PS (A) PH (A) PEM (A)

with the additional constructors

P∅
S (A) and P∅

H (A)
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for the versions of these domains including the empty set. However it is possible to
gain a lot of information about what might or might not be possible to achieve with
these constructors by examining what the partial orders of upwards- downwards-
and convex-closed arbitrary subsets of a given partial order look like. For now we
will use the same notation for these partial order constructions, replacing P by Q.
Thus, given a partial order X , QEM (X ) is the set of all nonempty convex subsets
of X ordered by vEM .

We can expect that any finite subset will be ‘continuous’, so that these coarse
partial order constructions ought to coincide with the real ones for finite partial
orders, at least. The exercises below demonstrate some properties and limitations
of these orders, and also show that some further restriction really is necessary.

This concludes our preliminary discussion of powerdomains. The next few
sections all discuss a specific powerdomain. In each one the powerdomain is defined
as a domain constructor, we then define and prove the correspondence between the
elements of the information system thus created and the powerdomain itself, and
finally define the basic set-theoretic operations over the powerdomain.

Exercises

6.1.1 Let X = {x , y , z} be ordered x < y < z . Show that there is no partial
order on the full powerset P(X ) that makes both the singleton set operator
(X → P(X )) and the union operator ((P(X )× P(X )) → P(X )) monotone.

6.1.2 Let X be an arbitrary partial order. Identify the least elements of QS (X ),
QH (X ) and QEM (X ). Under what circumstances does each of them have a
greatest element?

6.1.3 Show by means of example that QS (X ) need not be complete when X is a
cpo.

6.1.4 If X is a finite linear order, show that both QH (X ) and QS (X ) are order-
isomorphic to X . In each case show by means of example that the isomor-
phism need not hold if X is a linearly ordered infinite cpo.

∗6.1.5 Is there a cpo X which is not linearly ordered but which is order isomorphic
to QS (X )?

∗6.1.6 Show that there is no cpo X which is order isomorphic to Q∅
S (X ) or Q∅

H (X ).
[Hint: consider the order type of the region at the top or bottom of X , re-
spectively.]

6.1.7 Show that if S ⊆ QH (X ) is nonempty then
⋃

S is the least upper bound of
S . Find a similar formula for least upper bounds in QS (X ).
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Figure 6.2 Domain for Exercise 6.1.8

6.1.8 Consider the domain X in Figure 6.2. Find two subsets of {a, b, c, d} that
have an upper bound in QEM (X ) but no least upper bound. This exercise
shows that the Plotkin domain constructor does not preserve the property
of consistent completeness, which means that we cannot expect to define it,
at least in a pure form, over information systems.

6.1.9 Show that no partial order X with more than one element is order isomorphic
to QEM (X ).
[Hint: consider the largest antichain in X (an antichain is a subset no two
members of which are comparable).]

6.2 The Hoare powerdomain

In this section we meet the first, and easier, of the two classical powerdomains that
we can properly define. Before we introduce it we ought to meet the analogue of
the ‘continuity’ property of functions that was alluded to above.

If A is an information system, then S ⊆| A | is said to be finitely generable
if the following holds

∀ x ∈| A | .(∀Z ⊆fin A.∃ x ′ ∈ S .x ∩ Z = x ′ ∩ Z ) ⇒ x ∈ S .

This says that, if it impossible to tell from looking at finite pieces of information
about x that it is not in S , then x ∈ S . If we accept that only a finite amount
of information is observable about any object in a finite time, this is a reasonable
restriction to place on the sets that we wish to model in a powerdomain.

We can justify this claim as follows. Suppose S is some set being produced
by a computation and x satisfies the above. It is impossible to tell finitely either
by looking at positive information about x or at what information is not true of it,



Powerdomains 143

that x does not belong to S . So if we think of the value of S as the limit of what it
observable about it in a finite time, then naturally x ∈ S . Another possible situation
is where a process is making internal decisions the sum of which will determine its
overall behaviour. The set of all possible behaviours will be S . If we postulate that
the process can only make finitely many decisions in a finite time, each decision
being represented by the outcome either definitely having or definitely not having
some token true of it, then König’s Lemma (see Section 2.4) tells us that the set of
all possible outcomes is finitely generable.

Thus we identify finitely generable sets as the ‘computable’ ones, just as we
identified continuous functions as the suitable subcollection to consider there. Of
course, it is precisely this restriction that allows one to avoid the adverse conse-
quences of Cantor’s theorem referred to earlier.

This is also a very natural condition to place on sets for which we can hope
to have a continuous domain constructor. For the token set of a powerdomain P(A)
can only be built up from finite constructions over the tokens, etc., of A.

The definition of finitely generable sets given above is specific to information
systems. In case the reader is interested in how it relates to the classical definition
we have included a discussion of this in the Appendix to this chapter. One important
result which is proved there is that the finitely generable subsets of the partial order
represented by an information system do not depend on the exact structure of the
information system, only on the partial order. In other words, if A ∼= B then
the order isomorphism between | A | and | B | also induces a 1-1 correspondence
between the finitely generable elements.

While the definition of finitely generable sets is fresh in our minds it is useful
to make a second, related definition that will be needed later.

Definition
If S ⊆| A | then we define S

fg
, the fg-closure of S , to be {x ∈| A || ∀Z ⊆fin A.∃ x ′ ∈

S .x ∩ Z = x ′ ∩ Z}.
The important properties of this operator are described in the following

lemma, whose proof is trivial. Its significance will become clearer later in this
chapter when we understand more about the mathematics of finitely generable sets.

6.2.1 lemma

S
fg

is always finitely generable and is the smallest finitely generable set containing
S .

In the Hoare powerdomain we can expect to be interested only in the maximal
elements of a set, since this domain consists only of downwards-closed subsets of
| A |. A typical token should give us information about these maximal elements. In
this domain the bigger a set is, the higher up the order it is (i.e., S vH T if and only
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if S ⊆ T ). Since elements higher up an information system contain more tokens,
this leads us to expect that the tokens of PH (A) should convey positive information
about elements of a hypothetical set S . Just about the simplest possibility here
turns out to be what works: a token of PH (A) is an element X of ConA conveying
the information that some element of S has all of X true of it. Since the whole
set | A | will ‘belong’ to the powerdomain, the consistency relation of PH (A) is
trivial. The entailment relation is also rather easy to discover since, given a set
{X1, . . . ,Xn} of these tokens, they may all be referring to different elements of S
and so do not interfere.

Definition
Let A be an information system. Then PH (A) is defined to be 〈B , Con,`〉, where

• B = ConA,

• Con = ℘(B), and

• X ` X ⇔ (X ⊆fin ∅A ∨ ∃Y ∈ X .Y `A X ).

To define the corresponding domain (P∅
H (A)) which includes the empty set

it is only necessary to remove the first half of the disjunction on the right-hand side
of the definition of `. The following proposition is very easy to prove along the
usual lines.

6.2.2 proposition

The domain constructors PH (·) and P∅
H (·) are well-defined and continuous.

We need to identify the elements of | PH (A) | with nonempty finitely gener-
able downwards closed subsets of | A |. This identification is in fact very straight-
forward to establish when we recall that the tokens of this new system are supposed
to be telling us what sets of information are true of elements of our hypothetical
subset S .

Definition
Suppose z ∈| PH (A) | and S is a nonempty, finitely generable and downwards-closed
subset of | A |. Then we define

• | z |= {x ∈| A || ∀X ⊆fin x .X ∈ z}, and

• θ(S ) = {X | ∃ x ∈ S .X ⊆fin x}.

The following result shows that these two maps are order isomorphisms.
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6.2.3 theorem

The operations | · | and θ(·) defined above for PH (A) are well-defined, and further-
more

(a) | θ(S ) |= S for all finitely generable nonempty downwards-closed S ⊆| A |,

(b) θ(| z |) = z for all z ∈| PH (A) | and

(c) | PH (A) | is order isomorphic to the set of all finitely generable nonempty
downwards-closed subsets of | A | ordered by vH .

proof

Since ∅ ` X in PH (A) whenever X ⊆fin ∅A it follows that ∅A ∈| z | for all z ∈|
PH (A) |. That | z | is downwards-closed is trivial, so to prove | · | well-defined it
will be enough to prove that | z | is finitely generable. Suppose x ∈| A | is such that
for all Z ⊆fin A there is x ′ ∈| z | with x ∩Z = x ′ ∩Z . Then in particular, whenever
X ⊆fin x there must be x ′ ∈| z | with X ⊆fin x ′, which implies X ∈ z . This implies
x ∈| z | as desired.

The fact that θ is well-defined is trivial.
Suppose S is as in part (a). It is easy to see that S ⊆| θ(S ) |, so suppose

x ∈| θ(S ) |; we must prove x ∈ S . If not then there would, by the definition of
finitely generable, be a Z ⊆fin A such that ∀ x ′.x ∩Z = x ′ ∩Z ⇒ x ′ 6∈ S . Now since
x ∈| θ(S ) | and x ∩ Z ⊆fin x there must be y ∈ S such that x ∩ Z ⊆fin y . But since
S is downwards-closed it follows that x ′ = x ∩ Z ∈ S , and it is easy to see that
x ′ ∩Z = x ∩Z in contradiction to what was assumed above. We can thus conclude
that S =| θ(S ) |.

Suppose z is as in part (b). If X ∈ θ(| z |) then there is x ∈| z | such that
X ⊆fin x . But x ∈| z | and X ⊆fin x implies X ∈ z . It follows that θ(| z |) ⊆ z .
For the reverse, suppose that X ∈ z . Then certainly Y ∈ z whenever X `A Y , by
definition of ` (for PH (·)) above. It follows that {Y | Y ⊆fin X } ⊆ z and hence
X ∈| z |. This proves X ∈ θ(| z |), completing the proof of (b).

Parts (a) and (b) prove that θ and | · | are inverses of each other and are thus
bijections. That they are both order-preserving is an elementary deduction from
the fact that, if S and T are both downwards-closed, then S vH T if and only if
S ⊆ T .

The above result shows that the domain constructor we have defined really
does the job required of it.

Having constructed a powerdomain we must now discover how to use it, or
in other words how the basic set operations are defined over it. Clearly we are
restricted by the types of set that are allowed in the powerdomain: we must always
create (nonempty) finitely generable and downwards closed sets. The most obvious
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operations are singleton set (mapping | A | to | PH (A) |), intersection and union
(both mapping | PH (A) | × | PH (A) | to | PH (A) |). In the Hoare powerdomain
(and clearly in the Smyth one as well) we cannot hope to define a singleton set
operation which is ‘natural’. For the obvious definition below clearly identifies the
‘singleton’ {x}H with the set {y | y ⊆ x}. In this powerdomain the intersection
and union operations both work well, though.

Definitions
Suppose x ∈| A | and z1, z2 ∈| PH (A) |. Then we define

• {x}H = {Y ∈ ConA | Y ⊆ x};

• z1∪H z2 = z1 ∪ z2, and

• z1∩H z2 = z1 ∩ z2.

The following result shows that, with the exception already noted above,
these definitions all work well. Note that we have used variants of the usual set
notations for these operations to denote the fact that these are powerdomain oper-
ations (working on elements of the powerdomain information system) as opposed to
the operations they are modelling. Of course the H subscripts denote the particular
powerdomain we are using.

6.2.4 lemma

The operations { · }H , ∪H and ∩H are all well-defined and continuous. Further-
more

(a) | {x}H |= {y ∈| A || y ⊆ x},

(b) | z1∪H z2 |=| z1 | ∪ | z2 |, and

(c) | z1∩H z2 |=| z1 | ∩ | z2 |.

proof

The well-definedness and continuity of these operations are all very easy to show, as
is everything else perhaps with the exception of the inequality | z1∪H z2 |⊆| z1 | ∪ |
z2 |. So suppose x belongs to the left-hand side but not to the right-hand side. Then
there exist finite subsets X1 and X2 of x such that X1 6∈ z1 and X2 6∈ z2. It follows
(by the definition of the entailment relation over PH (A)) that X1 ∪ X2 6∈ z1 ∪ z2,
contradicting the assumption that every finite subset of x is in z1 ∪ z2.

It is perhaps worth noting that the union and intersection operations are,
in this powerdomain, precisely the least upper bound and greatest lower bound
operations. Note also that, even though we are restricting ourselves to nonempty
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sets, the intersection operation is always defined because all sets contain the least
element ∅A of | A |.

Of course these simple operations are far from being the only ones one might
wish to have for manipulating the ‘sets’ in powerdomains. Some make little sense;
for example set difference S−T is clearly impossible over the domain of downwards-
closed sets, while others require some restrictions. One construction that is often
used in constructing sets is that of applying a function to every element of another
set: {f (x ) | x ∈ S} (often just written f (S ), producing a ‘lifted’ version of f ).

Definition
Suppose f is a continuous function from | A | to | B |; we can define the ‘lifted’
version of this: f

H
:| PH (A) |→| PH (B) | as follows: f

H
(z ) = {Y | ∃ x ∈| z |

.Y ⊆fin f (x )}.
Given a general continuous f :| A |→| B |, we clearly do not always have f (S )

downwards closed when S is. Thus we must expect that | f
H

(z ) | contains some
extra elements on this count. Unfortunately it is sometimes not finitely generable
either, so we need to make use of the fg-closure operator defined earlier. For an
example, see Exercise 6.2.7 below. It is possible to put additional conditions on f
to make sure that f (S ) is finitely generable – see the end of the next section.

6.2.5 lemma

If f is as in the above definition and z ∈| PH (A) | then f
H

is well-defined, contin-
uous, and furthermore

| f
H

(z ) |= f (| z |)↓
fg
.

proof

Since f
H

(z ) is obviously a subset of ConB (the token set of PH (B)) and the con-
sistency relation of PH (B) is always trivial, for well-definedness it is only necessary
to show deductive closure. This follows very simply from the facts that | z | is
nonempty and the deductive closure of the f (x ).

Since z ⊆ z ′ ⇒| z |⊆| z ′ |, f
H

is obviously monotone. The fact that it is
continuous is an easy consequence of the continuity of f : any Y ∈ f

H
(z ) necessarily

is a subset of some f (X ) with X ∈ z .
We know that f (| z |) ⊆| f

H
(z ) | directly from the definition of f

H
, and the

facts that | f
H

(z ) | is known to be downwards closed and finitely generable then

give us that f (| z |)↓
fg
⊆| f

H
(z ) |. So suppose y ∈| f

H
(z ) | and Z ⊆fin B . Then

by definition of f
H

there exists x ∈| z | such that Z ∩ y ⊆ f (x ). Clearly then,
Z ∩ y ∈ f (| z |)↓ and it is easy to prove that Z ∩ y ∩ Z = y ∩ Z . Since this holds
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for all Z we know that y ∈ f (| z |)↓
fg

.

This discussion should have given the reader some idea of what can, and
what cannot, be done in this powerdomain. The reader wishing to learn more
should attempt the exercises below and also study the material in the rest of the
chapter, where much of the more general material is common to all powerdomains,
not just the ones under consideration.

Exercises

6.2.1 If X is any set, list the finitely generable subsets of the flat domain | flat(X ) |.
Hence show that | PH (flat(X )) | always gives a domain order-isomorphic to
the full powerset P(X ) of X , ordered by inclusion.

6.2.2 Prove the following order isomorphisms:

(i) PH (A⊕B) ∼= (PH (A))× (PH (B)), and
(ii) PH (A + B) ∼= (P∅

H (A))× (P∅
H (B)).

6.2.3 Suppose | A | is linearly ordered. Prove that | PH (A) | is also linearly
ordered. Show that whenever z ∈| PH (A) | then | z | contains its own
supremum (least upper bound), and hence that PH (A) ∼= A.

6.2.4 What is the structure of the least solution to the domain equation A =
P∅

H (A)?

6.2.5 Because the elements of the Hoare powerdomain are downwards closed, the
function fz :| A |→ {0, 1} defined for each z ∈| PH (A) | by

fz (x ) =
{

0 if x ∈| z |
1 if x 6∈| z |

is always monotone. Is it continuous? Compare the constructors P∅
H (·)

and PH (·) with (respectively) the constructors mapping A to A → ↑
and A ⇀ ↑. (Recall from Exercise 4.3.3 that ⇀ is the strict continuous
function space constructor.)

6.2.6 Suppose we try to extend the pairwise union operation ∪H into an operator⋃
H

:| PH (PH (A)) |→| PH (A) | by defining⋃
H
χ =

⋃
χ .

Show that this operation is well defined and continuous. Satisfy yourself, by
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looking at some (infinite) examples that the equality

|
⋃

H
χ |=

⋃
{| z || z ∈| χ |}

always holds. [We do not yet have the techniques required to prove this result.
You might like to return and complete the proof after doing Exercise 6.3.3.]
Why is it unreasonable even to try to define a corresponding intersection
operator?

6.2.7 Find domains A and B, a continuous f :| A |→| B | and a downwards closed
finitely generable S ⊆| A | such that f (S )↓ is not finitely generable.
[Hint: let B = B↑ and let A consist of infinitely many incomparable copies
of B over a single bottom element.]

6.3 The Smyth powerdomain

The tokens of the Smyth powerdomain should tell us things about the minimal
elements of a set S , rather than the maximal ones. Also we want the largest
elements of the powerdomain to correspond with the smallest, or most restricted,
subsets. Thus the natural tokens for this domain will be ones that place a restriction
on every element of S , constraining it (the element) to be sufficiently large. The
simplest solution here seems to be that a token of PS (A) is a finite subset Y of A,
conveying the information that every element of S has at least one token from Y .
If we are to exclude the empty set from the powerdomain it is obviously necessary
that we disallow Y = ∅; but no further restriction is required. The consistency and
entailment relations are defined as follows.

Definition
The Smyth powerdomain PS (A) is defined to be 〈B , Con,`〉, where

• B = ℘(A)− {∅};

• {Y1, . . . ,Yn} ∈ Con⇔ ∃ a1 ∈ Y1 . . .∃ an ∈ Yn .{a1, . . . , an} ∈ ConA;

• {Y1, . . . ,Yn} ` Y ⇔ ∀ a1 ∈ Y1 . . .∀ an ∈ Yn .{a1, . . . , an} ∈ ConA

⇒ {a1, . . . , an} ∩Y 6= ∅.

The Smyth powerdomain with empty set, P∅
S (A), has the same definition

except that ∅ is included in B and the definition of Con becomes trivial.

In both cases we will be identifying an element z of the powerdomain with
the set of all elements of | A | meeting all the constraints implied by its elements:
{x ∈| A || ∀Y ∈ z .Y ∩ x 6= ∅}. In PS (A) one can thus expect a finite set
Y = {Y1, . . . ,Yn} of tokens to be consistent if and only if the set {x ∈| A || ∀Y ∈
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Y.Y ∩ x 6= ∅} is nonempty. This is indeed what the above definition says, for on
the one hand if {a1, . . . , an} ∈ ConA is as in the definition then {a1, . . . , an} is the
required x , and on the other if x ∩Y 6= ∅ for all Y ∈ Y, then choosing ai ∈ x ∩Yi

for all i necessarily gives {a1, . . . , an} ∈ ConA.
Likewise we would expect {Y1, . . . ,Yn} ` Y if and only if, for all x ∈| A |,

if Yi ∩ x 6= ∅ for all i then also Y ∩ x 6= ∅. This is exactly what the above
definition says, once we observe that this property holds if and only if it holds of
all the smallest x satisfying the antecedent – and these smallest x are precisely the
{a1, . . . , an} of the definition.

Thus we have characterised the consistency and entailment relations of the
powerdomain by reference to the statements its tokens make about elements of | A |.
We will find this useful later on.

6.3.1 proposition

The constructors PS (·) and P∅
S (·) are well-defined and continuous.

proof

We will concentrate on PS (·). Axioms 1-4 of information systems are fairly easy
to verify. Suppose for example that Y ` Y where Y = {Y1, . . . ,Yn}. Then, since
Y ∈ Con, there are ai ∈ Yi such that {a1, . . . , an} ∈ ConA. Since Y ` Y , there is
some a ∈ Y ∩ {a1, . . . , an}. Since necessarily {a} ∪ {a1, . . . , an} ∈ ConA it follows
that Y ∪ {Y } ∈ Con.

Axiom 5 is a bit trickier to prove directly, but it follows reasonably easily
from the characterisation demonstrated above. If Y ` Z and Z ` Y then to prove
Y ` Y it is sufficient to prove that, for all x ∈| A |, if Y ′∩x 6= ∅ for all Y ′ ∈ Y, then
Y ∩ x 6= ∅. But this is easy to see, since we know from the same characterisation
that under these circumstances Z ∩ x 6= ∅ for all Z ∈ Z, and that this implies what
we want.

The argument that PS (·) is monotone is standard. Note, for example, that if
A ⊆ B then (℘(A)− {∅}) ⊆ (℘(B)− {∅}). Equally, continuity in token sets follows
much as before, with again the fact that we are using only finite sets of A’s tokens
being crucial.

As in the case of the Hoare powerdomain, we can formally define the rela-
tionship between | PS (A) | and P(| A |) by means of a pair of functions.

Definition
If S ⊆| A | is nonempty, upwards closed and finitely generable, and z ∈| PS (A) |
then we define

• | z |= {x ∈| A || ∀Y ∈ z .Y ∩ x 6= ∅}, and
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• θ(S ) = {Y | ∀ x ∈ S .Y ∩ x 6= ∅}.

Note that we have used exactly the same notation for these operations as
for the corresponding ones over PH (·). No confusion arises in practice because the
identity of the map in question should always be obvious from the context.

As was the case in the last section, these maps will turn out to be inverses and
order isomorphisms. Unfortunately the demonstration that this is so is no longer
elementary – specifically it is necessary to appeal to some form of compactness
argument, implicitly using some form of the axiom of choice. There are two main
forms in which one can use the compactness principle which at first sight may
seem unconnected, but are in fact really two sides of the same coin. One is logical
compactness and the other is topological compactness. These two ideas are equally
applicable here. To illustrate this we have chosen to analyse this powerdomain
topologically and the one in the next section logically. We hope the reader will
enjoy seeing how these two sorts of argument relate.

The starting point for any topological analysis must be to define a topology,
namely a set of open sets closed under arbitrary union and finite intersection (or
equivalently their complements, closed sets, that are closed under arbitrary inter-
section and finite union). Fortunately we are already equipped with a topology on
| A |, since it turns out that the finitely generable sets are the closed sets of a useful
topology, which we shall call TFG .

6.3.2 lemma

The finitely generable subsets of a domain | A | are closed under finite union and
arbitrary intersection. Furthermore, whenever x 6= y are two elements of | A |
then we can find clopen (closed and open) subsets U and V such that x ∈ U ,
y ∈ V , U =| A | −V . (This last property is known in topology as being ‘totally
disconnected’ and trivially implies that the topology is Hausdorff.)

proof

Since ∅ is trivially finitely generable, it is sufficient for the first part to prove that,
if S and T are finitely generable than so is S ∪ T . If x 6∈ S ∪ T then clearly x 6∈ S
and x 6∈ T so, since S and T are finitely generable, there must exist finite sets Z1

and Z2 such that if y ∩ Z1 = x ∩ Z1 then y 6∈ S and if y ∩ Z2 = x ∩ Z2 then y 6∈ T .
Setting Z = Z1 ∪ Z2, it is thus clear that if y ∩ Z = x ∩ Z then y 6∈ S and y 6∈ T ,
or in other words y 6∈ S ∪ T . This proves that S ∪ T is finitely generable.

The whole space | A | is also trivially finitely generable, and so to prove
closure under arbitrary intersection it will be sufficient to consider the case of

⋂
W ,

where W is a nonempty set of finitely generable sets. If x 6∈
⋂

W then there must
be some S ∈ W such that x 6∈ S , and hence some finite set Z such that y∩Z = x∩Z
implies y 6∈ S . But since y 6∈ S implies y 6∈

⋂
W , this means that

⋂
W is indeed



152

finitely generable.
Suppose x and y are two distinct elements of | A |, then without loss of

generality we may assume that there is some token a ∈ x − y . Set U = {z ∈| A ||
a ∈ z} and V = {z ∈| A || a 6∈ z}. It is easy to prove that these satisfy all that is
required of them.

A topology is said to be compact if every open cover (set of open sets whose
union is the whole space) has a finite subcover (a finite subset that is also a cover).
The equivalent formulation in terms of closed sets is that any set C of closed sets with
the finite intersection property (

⋂
F 6= ∅ for all F ⊆fin C) has nonempty intersection

(i.e.,
⋂
C 6= ∅). That the two are equivalent is obvious when we note that, if U is

an open cover for a space X with no finite subcover, then {X − U | U ∈ U} has
both the finite intersection property and empty intersection. It turns out that the
topology TFG is compact, which is the result we will need to justify our definitions
of θ and | · |. The next three paragraphs sketch a proof of this compactness result,
so any reader who wishes to take this result on trust should skip over them.

A basis for the closed sets of a topology is a set B of closed sets such that
every closed set can be written

⋂
A for some A ⊆ B. It should by now be easy to

see that a basis for TFG is given by

B1 = {{x ∈| A || x ∩ Z 6= Z ′} | Z ′ ⊆ Z ⊆fin A} ,

where the element determined by Z and Z ′ is denoted C1(Z ,Z ′).
Given any set A (in our case the token set of A), one can form a compact

topology T on the full powerset P(A) by means of the basis

B2 = {{x ⊆ A | x ∩ Z 6= Z ′} | Z ′ ⊆ Z ⊆fin A} .

where the element determined by Z and Z ′ is denoted C2(Z ,Z ′). The fact that
this is a compact topology is deduced from Tychonoff’s theorem1 and the fact that
this topology is homeomorphic to the product of A copies of the discrete topology
on {0, 1}. Since the corresponding elements of the bases B1 and B2 are related by
the simple relationship C1(Z ,Z ′) = C2(Z ,Z ′)∩ | A | this means that the topology
TFG is actually the subspace topology induced by (P(A), T ) on | A |.

In fact, | A | is closed in (P(A), T ), since it clearly consists precisely of the
intersection of the basis elements

{C2(X ,X ) | X 6∈ ConA} ∪ {C2(X ,X − {a}) | X `A a} ,

which respectively enforce consistency and deductive closure. But it is well known
(and very easy to prove) that the subspace topology induced by a compact space

1Tychonoff’s theorem states that the topological product of any indexed family of compact

spaces is compact. It is an equivalent of the axiom of choice.
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on one of its closed subsets is itself compact. This is precisely what we wanted to
demonstrate.

We are now in a position to prove the following theorem.

6.3.3 theorem

The operations | · | and θ(·) defined above for PS (·) are well-defined, and further-
more

(a) | θ(S ) |= S for all finitely generable nonempty and upwards closed S ⊆| A |,

(b) θ(| z |) = z for all z ∈| PS (A) | and

(c) | PS (A) | is order isomorphic to the set of all finitely generable nonempty and
upwards closed subsets of | A | ordered by vS .

proof

To prove the well-definedness of | · | we must prove that | z | is always upwards
closed, finitely generable and nonempty. The first is trivial: if x ⊆ y and x ∩Y 6= ∅
for all Y ∈ z then certainly the same holds of y . The second comes more or less
by definition: suppose that x 6∈| z |. Then, by definition of | · | there must exist
Y ∈ z such that x ∩ Y = ∅. But clearly then, if x ′ is any other element of | A |
and x ′ ∩Y = x ∩Y then x ′ 6∈| z |.

The proof that | z | is nonempty relies on compactness. For we know that
every finite subset X of z belongs to Con and so, by the argument earlier that
justified the definition of Con, there is some x ∈ {x ∈| A | ∀Y ∈ X .Y ∩ x 6= ∅}, (a
set which clearly equals | X |). We know from the last paragraph that all such | X |
are finitely generable (and hence closed), and since clearly | X ∪ Y |=| X | ∩ | Y |
for all X ,Y, we have that the family {| X || X ⊆fin z} has the finite intersection
property. Compactness tells us that the intersection of this set is nonempty. But
since every element of z belongs to some such X we have that

⋂
{| X || X ⊆fin z} =|

z |, as desired. This completes the proof that | · | is well-defined.
To prove θ well-defined we must prove that θ(S ) is always consistent and

deductively closed. Consistency follows directly from the fact that S is nonempty:
we know by definition that when x ∈ S then x ∩Y 6= ∅ for all Y ∈ θ(S ). This, and
the characterisation of Con derived earlier, give us what we want. Now suppose
X ⊆fin θ(S ) and X ` Y . If Y 6∈ θ(S ) then there would be some x ∈ S such that
x ∩Y = ∅. But we know that, since X ` Y , whenever Y ∩x = ∅ then there is some
Y ′ ∈ X such that Y ′ ∩ x = ∅. It follows that there must be Y ′ ∈ θ(S ) and x ∈ S
such that Y ′ ∩ x = ∅, in direct contradiction to the definition of θ. This completes
the proof that θ is well-defined.

We can thus turn to the proof of (a). It follows directly from the definitions
that, for all S , S ⊆| θ(S ) |. So suppose x 6∈ S . Since S is upwards closed we
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know that y ∈ S ⇒ y 6⊆ x . It follows that for every y ∈ S we can choose a
token (element of A) ay ∈ y − x . Now, for each element w of S , we define Sw =
{y ∈ S | aw 6∈ y}. Each Sw is closed (it is easily seen to be the intersection of
two finitely generable sets), and the intersection

⋂
{Sw | w ∈ S} is plainly empty

since w 6∈ Sw . Compactness thus tells us that these closed sets do not have the
finite intersection property, or in other words that there is a finite F ⊆ S such that
∅ =

⋂
{Sw | w ∈ F} = {y ∈ S | {aw | w ∈ F} ∩ y = ∅}. Let Yx = {aw | w ∈ F};

by construction we know that x ∩ Yx = ∅ and that y ∩ Yx 6= ∅ for all y ∈ S . Thus
Yx ∈ θ(S ) and so x 6∈| θ(S ) |, which proves (a).

Part (b) is proved if we can show that the operation | · | is injective. This is
because we know that | z |=| θ(| z |) | by part (a), which then implies z = θ(| z |).
So suppose for contradiction that z1 and z2 were two different elements of | PS (A) |
such that | z1 |=| z2 |. Without loss of generality we may assume that Y ∈ z1 − z2.
If X ⊆fin z2 then we know that X 6` Y and hence that the set

CX = {x ∈| A || x ∩Y = ∅ ∧ ∀Y ′ ∈ X .Y ′ ∩ x 6= ∅}

is nonempty. But it is easy to see that CX ∩ CY = CX∪Y which means that the
family of closed sets formed as X varies have the finite intersection property. Hence
their intersection, which is

{x ∈| A || x ∩Y = ∅ ∧ ∀Y ′ ∈ z2.Y ′ ∩ x 6= ∅}

is nonempty. But this shows that there is some x which is in | z2 | and yet which
satisfies x ∩ Y = ∅, which is a contradiction to x ∈| z1 |. This completes the proof
of (b).

Parts (a) and (b) show that | · | and θ are both bijections and are each
other’s inverses. We will show that they are order isomorphisms. It is clear from
their definitions and the fact that, for upwards closed sets, S vS T ⇔ S ⊇ T , that
z ⊆ z ′ ⇒| z |vS | z ′ | and that S vS S ′ ⇒ θ(S ) ⊆ θ(S ′). Suppose | z |vS | z ′ |; then
we have

z = θ(| z |) ⊆ θ(| z ′ |) = z ′

which completes the proof that | · | is an order isomorphism. The same fact about
θ can be deduced either in the same way or from the fact that it is the inverse of
an order isomorphism.

As in the last section, now that we have defined the powerdomain we should
discover what we can about how to use it. We will again begin by defining the
basic operations: singleton, union and intersection. However we cannot in general
(unless | A | has a greatest element) expect intersection to be a total function on
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| PS (A) |2, simply because the intersection of two nonempty upwards-closed sets
can be empty.

Definition
Suppose x ∈| A | and z1, z2 ∈| PS (A) |. Then we define

• {x}S = {Y ∈ ℘(A)− {∅} | Y ∩ x 6= ∅};

• z1∪S z2 = z1 ∩ z2, and

• z1∩S z2 = z1 ∪ z2 if this is defined.

Except for the restriction noted in the last section that we cannot expect to
define an ‘accurate’ singleton set operation over upwards closed sets, these opera-
tions all work well. The proof of the following result, which is very similar to that
of the corresponding result in the last section, is omitted.

6.3.4 lemma

The operations { · }S , ∪S and ∩S are all well-defined and continuous (∩S in its
domain of definition). Furthermore

(a) | {x}S |= {y ∈| A || y ⊇ x},

(b) | z1∪S z2 |=| z1 | ∪ | z2 |, and

(c) | z1∩S z2 |=| z1 | ∩ | z2 |.

Given the topological analysis earlier in this section, we should not be too
surprised that it is possible to define intersection and union operators successfully.
For we discovered there that the finitely generable sets are closed under the opera-
tions of (finite) union and (arbitrary) intersection.

Topology sheds light on the feasibility of some of the other set operations one
might want. Once again set difference makes no sense simply on the grounds that
the difference of two upwards-closed sets need not be upwards closed; but we should
also note that the difference of two finitely generable (i.e., closed) sets need not be
closed either – so that even if we used a ‘patch’ for the upwards closure problem,
we would still have to use the fg-closure operator.

Remember that in the other construction discussed earlier, f (S ) = {f (x ) |
x ∈ S} (with f :| A |→| B | continuous), we had to use the fg-closure operation. To
a topologist this at first seems surprising, for it is a well-known theorem of topology
that the continuous image in a Hausdorff space of a closed subset of a compact
Hausdorff space is closed. But this is not really a paradox because there are two
different definitions of ‘continuous’ at work here: f is assumed to be continuous in
the partial order sense defined in Chapter 2, while the notion of continuity needed
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for the theorem is topological continuity. A function f from one topological space
X to another Y is said to be continuous if, whenever U is open in Y , then f −1(U )
is open in X . (This is equivalent to saying that whenever C is closed in Y , then
f −1(C ) is closed in X .) Recall that in Section 2.4 we identified a topology (the
Scott topology) which characterised partial order continuity, and that was certainly
not the topology currently under examination.

The subject of topologies on partial orders is a large one and we do not have
space to discuss them in detail here. Their properties are, however, described in
great detail in [Compendium], where the topology of finitely generable sets is called
the Lawson topology (see Exercise 6.3.5 below). We can, however, state two criteria
for functions to be continuous with respect to TFG . The proof is left as an exercise.

6.3.5 lemma

(a) A function f :| A |→| B | is continuous with respect to TFG if and only if, for
all x ∈| A | and b ∈ B there is Z ⊆fin A such that

x ∩ Z = x ′ ∩ Z ⇒ (b ∈ f (x ) ⇔ b ∈ f (x ′)) .

(b) The distributive2 function f :| A |→| B | is continuous with respect to TFG if
and only if it is partial order continuous and infinitely distributive (i.e., f (

⋂
S ) =⋂

{f (x ) | x ∈ S} for all nonempty S ⊆| A |).

We now know that any function which satisfies either of the above can reliably
be used to define f

H
without the need for fg-closure. (It is trivial to show that if

S is finitely generable then so are S↓, and indeed S↑ and ccl(S ).) Curiously, this
analysis is not required for the Smyth powerdomain: if f :| A |→| B | is (partial
order) continuous and z ∈| PS (A) | then f (| z |) need not be finitely generable, but
f (| z |)↑ always is.

6.3.6 lemma

Suppose f :| A |→| B | is (partial order) continuous and S ⊆| A | is finitely
generable. Then f (S )↑ is finitely generable.

proof

If not then there would be y 6∈ f (S )↑ such that for all Z ⊆fin B there is x ∈ S with
f (x ) ∩ Z ⊆ y ∩ Z . Hence SZ = {x ∈ S | f (x ) ∩ Z ⊆ y} is always nonempty. It is
also closed, since it is the intersection of S and the set {x ∈| A || f (x ) ∩ Z ⊆ y}

2Recall that the function f :| A |→| B | is distributive if and only if f (x ∩ y) = f (x) ∩ f (y)

for all x , y. In other words it maps the greatest lower bounds of two elements of an information

system to the greatest lower bound of their images.
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which is closed since, if x is not a member then, as f is continuous, there is a finite
subset X of x such that f (X )∩Z 6⊆ y (and hence x ′∩X = x ∩X ⇒ f (x ′)∩Z 6⊆ y).
Using compactness and the fact that SZ∪Z ′ = SZ ∩ SZ ′ we can deduce that

∅ 6=
⋂
{SZ | Z ⊆fin B} = {x ∈ S | f (x ) ⊆ y}

which contradicts the assumption that y 6∈ f (S )↑.
This means we can now make the following definition with some confidence.

Definition
If f :| A |→| B | is a continuous function then we define f

S
:| PS (A) |→| PS (B) |

by

f
S
(z ) = {Y ∈ ℘(B)− {∅} | ∀ x ∈| z | .Y ∩ f (x ) 6= ∅}.

Given Lemma 6.3.6, the following result is quite straightforward, except per-
haps for the continuity part, which requires another compactness argument very
similar to that in the proof of Lemma 6.3.6.

6.3.7 lemma

If f :| A |→| B | is continuous, then f
S

is well-defined, continuous, and furthermore
| f

S
(z ) |= f (| z |)↑.

Exercises

6.3.1 Compute the structure of the domain PS (flat(X )). (Recall your answer to
Exercise 6.2.1.)

6.3.2 (a) If | A | ordered by ⊆ is order isomorphic to the same set ordered by
⊇ (note that | A | necessarily has a greatest element), need PS (A) ∼=
PH (A) (i) in the case where | A | is finite, and (ii) in general?
[Hint: What would happen to your answers to 6.2.1 and 6.3.1 if you
were to add a top element to the domain?]

∗(b) Explain the answer to (a).

6.3.3 Explain why | PS (A) | is a complete partial order even though QS (| A |)
need not be (see Exercise 6.1.3).

6.3.4 Recall the domain constructor over from Exercise 4.1.4. Show that PS (AoverB) ∼=
PS (A) over PS (B).

∗6.3.5 Show that, if χ ∈| PS (PS (A)) | then
⋃
{| z || z ∈| χ |} is finitely gener-

able. (Notice that this says more than is deducible from the fact that the
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finitely generable sets form a topology.) Hence define an operator
⋃

S
:|

PS (PS (A)) |→| PS (A) | such that

|
⋃

S
(χ) |=

⋃
{| z || z ∈| χ |} .

Is it continuous?
[Hint: if Λ is a finitely generable subset of | PS (A) |, show that whenever
x ∈| A | and Z ⊆fin A then

ΛZ = {z ∈ Λ | ∃ x ′ ∈| z | .x ′ ∩ Z = x ∩ Z}

is closed, and apply compactness.]

∗6.3.6 (a) Recall that a set C is closed in the Scott topology if and only if, when-
ever ∆ ⊆ C is directed, then {x | x ⊆

⋃
∆} ⊆ C . Prove that every

Scott-closed set is finitely generable.
(b) The lower topology on a partial order P is defined to be the smallest one

where all sets of the form {x}↑ (usually abbreviated x↑) are closed. (A
closed-set basis is given by {P}∪{x1↑∪ . . .∪xn↑ | n ∈ N∧∀ i .xi ∈ P}.)
Prove that every set closed in the lower topology is finitely generable.

(c) The Lawson topology is the smallest topology which contains both
the Scott topology and the lower topology. (Namely, its closed sets
are those derivable from those of the other two via finite unions and
arbitrary intersections.) Show that, if S ⊆| A | is finitely generable
and x 6∈ S then there are a Scott-closed set C1 and a lower-closed set
C2 such that S ⊆ C1 ∪C2 and x 6∈ C1 ∪C2. Deduce that the topology
of finitely generable sets is precisely the Lawson topology.

6.4 The reverse inclusion powerdomain

It is possible to define a powerdomain constructor Pfg(·) whose effect is to produce
the domain of all finitely generable subsets of a given domain, ordered by reverse
inclusion (⊇). As with the Smyth and Hoare powerdomains, one can do this either
in a way which allows the empty set or specifically excludes it. As discussed earlier
it is often useful to have the latter. The nonempty-sets-only case is a little harder
and more interesting to analyse, so we will concentrate on it. We will reserve the
notation Pfg(A) for the version without ∅, and use P∅

fg(A) for the version that
includes ∅.

Let us examine the definition of finitely generable sets more closely. It says
that x ∈| A | belongs to the set S if we cannot tell finitely that this is impossible. A
finite piece of information that x is not in S looks like the pair 〈Z ,Z ∩ x 〉 for some
Z ⊆fin A. A pair 〈Z ,Z ∩ x 〉 such that x 6∈ S if Z ∩ x ′ = Z ∩ x ⇒ x ′ 6∈ S can be
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thought of a ‘certificate’ that x 6∈ S – and the definition of finitely generable says
that some certificate must exist for every x 6∈ S . It therefore seems promising to
try to represent the set S by the set of certificates which witness non-membership
of S . We will base the token set of Pfg(A) on this idea.

The token set of Pfg(A) will consist of pairs 〈X ,Y 〉, where X , Y ⊆fin A.
The pair 〈X ,Y 〉 will mean that all elements x of our hypothetical set S either have
X 6⊆ x , or Y ∩ x 6= ∅. This asserts that, for no x ∈ S do we have (X ∪Y )∩ x = X ,
and thus says that 〈X ∪Y ,X 〉 is a ‘certificate’ for non-membership of S of the type
discussed in the last paragraph. The reason for this slightly different presentation
is to ease later definitions.

There are many pairs 〈X ,Y 〉 which are better left out of the token set.
Certainly there is no point in including tokens which will be true of every set S . We
need two restrictions to remove these: first we only allow 〈X ,Y 〉 where X ∈ ConA

(any other set cannot be a subset of x for x ∈| A |, which is necessary if x is to fail
the restriction imposed by 〈X ,Y 〉). Second, we require X ∩ Y = ∅ – for otherwise
there can be no x such that X ⊆ x ∧ x ∩ Y = ∅. Note, however, that if 〈X ,Y 〉
does satisfy both these restrictions then there is an x , namely X , which is excluded
by the token. If we choose to remove the empty set from our powerdomain then
we can allow no token 〈X ,Y 〉 which is naturally only true of it – because 〈X ,Y 〉
excludes all x from a set. If Y 6= ∅ this cannot occur – for whenever a ∈ Y the
element {a} passes the test represented by 〈X ,Y 〉. Similarly if X 6⊆ ∅A then ∅A
passes the test. However if neither of these apply, namely X ⊆ ∅A and Y = ∅ then
necessarily X ⊆ x ∧ x ∩ Y = ∅ for all x ∈| A |, and the token 〈X ,Y 〉 excludes all
nonempty sets. Thus, to satisfy Axiom 2 of information systems, we cannot allow
tokens of this form in the powerdomain of nonempty sets.

Definition
The token set B of Pfg(A) is defined

B = {〈X ,Y 〉 | X ∈ ConA ∧Y ⊆fin A−X ∧ (X 6⊆ ∅A ∨Y 6= ∅)} .

The corresponding definition for P∅
fg(A) is the same except that the last

clause X 6⊆ ∅A ∨Y 6= ∅ is omitted.

Definition
The token set B∅ of P∅

fg(A) is defined

B = {〈X ,Y 〉 | X ∈ ConA ∧Y ⊆fin A−X } .

Note that the pair 〈∅, ∅〉 is always token of P∅fg(A) but never of Pfg(A).
If we wanted to allow the empty set into the powerdomain then the con-

sistency relation would be trivial, for every token would be true of the empty
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set. (All of ∅’s members satisfy the constraints imposed by every possible to-
ken!) The situation is not so simple when we exclude it, for then a finite set
X = {〈Xi ,Yi〉 | 1 ≤ i ≤ n} of tokens will be consistent only if there is some
x ∈| A | that none of them excludes. For such an x , we know that for all i we
either have x ∩ Yi 6= ∅ or Xi 6⊆ x . Let Λ be the set of all i ∈ {1 . . .n} where the
first of these apply. For each i ∈ Λ choose ai ∈ Yi ∩ x . The set X = {ai | i ∈ Λ} is
consistent (for it is a subset of x ) and X ⊆ x . Therefore whenever i 6∈ Λ we have
X 6⊇ Xi . It follows that X is consistent in the sense defined below.

Definition
The consistency relation Con of Pfg(A) is defined as follows: X = {〈Xi ,Yi〉 | 1 ≤
i ≤ n} ∈ Con if and only if there is a subset Λ of {1 . . .n} and ai ∈ Yi for i ∈ Λ
such that X = {ai | i ∈ Λ} ∈ ConA and Xj 6⊆ X when j 6∈ Λ.

If X ∈ Con then there is an element of | A | not excluded, namely X where
X = {ai | i ∈ Λ} as in the Definition above. Thus the consistency relation Con

coincides precisely with our expectation that a X should be consistent if any only
if there is some element of | A | that it does not exclude.

Given an element X = {〈Xi ,Yi〉 | 1 ≤ i ≤ n} of Con and 〈X ,Y 〉 ∈ B ,
we would expect that X ` 〈X ,Y 〉 if and only if there is no x ∈| A | excluded by
〈X ,Y 〉 that is not excluded by some element of X . In other words, all information
conveyed by 〈X ,Y 〉 about a set S is already contained in X . If such an x existed
then we would have X ⊆ x , x ∩Y = ∅, and as in the discussion above there would
be a subset Λ of {1 . . .n} such that x ∩ Yi 6= ∅ for i ∈ Λ and Xi 6⊆ x for i 6∈ Λ.
Again pick ai ∈ x ∩ Yi for each i ∈ Λ. Defining X ∗ = X ∪ {ai | i ∈ Λ} we clearly
have

(a) X ∗ ⊆ x and hence Xi 6⊆ X ∗ for i 6∈ Λ;

(b) X ∗ ∩Yi 6= ∅ for i ∈ Λ;

(c) X ⊆ X ∗ and X ∗ ∩Y = ∅.

It follows that X 6` 〈X ,Y 〉 when ` is defined as below.

Definition
The entailment relation of Pfg(A) is defined as follows. If X = {〈Xi ,Yi〉 | 1 ≤ i ≤
n} ∈ Con and 〈X ,Y 〉 ∈ B , then X ` 〈X ,Y 〉 if and only if whenever Λ ⊆ {1 . . .n}
and ai ∈ Yi for i ∈ Λ are such that X ∗ = X ∪ {ai | i ∈ Λ} ∈ ConA then either
X ∗ ∩Y 6= ∅ or there is some j 6∈ Λ such that Xj ⊆ X ∗.

If X is as above and X 6` 〈X ,Y 〉, then the definition above generates a Λ
and X ∗ which violate the constraints. Clearly X ∗ is an element of | A | which is
not excluded by any element of X but is excluded by 〈X ,Y 〉. Thus we would not
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naturally expect to have X entail 〈X ,Y 〉 since X would be ‘true’ of the set {X ∗}
while 〈X ,Y 〉 is not. These remarks show that our definition of ` means exactly
what was intended.

The entailment relation of P∅
fg(A) has exactly the same definition (with the

larger sets Con and B . For note that a set X that excludes every x necessarily
entails every pair 〈X ,Y 〉.

Having made these definitions we have an obligation to show that they are
reasonable: namely that the constructors Pfg(·) and P∅

fg(·) are well-defined, contin-
uous and have the expected sets of elements.

The analysis of this powerdomain is at least as complex as that of the Smyth
powerdomain earlier. We illustrated there how one could use topology to prove the
trickiest parts of necessary arguments. As was stated earlier, in this section we let
logic play the same role, and in fact we can give it a slightly wider one because of
the idea that tokens are propositions about elements, so an information system is
itself logically based. The tokens of powerdomains are often assertions about the
elements of their hypothetical sets S , and it is helpful to have a framework that
allows us to integrate these assertions with logic.

Suppose A = 〈A, ConA,`A〉 is an information system. We can create a
propositional language whose statement letters are in correspondence with the to-
kens A: {pa | a ∈ A} and whose connectives are the usual ones of the propositional
calculus: {∨,∧,¬,⇒}. Intuitively we will think of formulae in this language as
making statments about a subset x of A – pa being true will correspond to a ∈ x ,
while pa being false will mean a 6∈ x . The consistency and entailment relations of
A can themselves be turned into a set of formulae, which will allow us to restrict x
to being an element of | A |.

Definition
If A = 〈A, ConA,`A〉 is as above, then we define ΓA = Γ1 ∪ Γ2, where

• Γ1 = {¬(pa1 ∧ pa2 ∧ . . . ∧ pak
) | {a1, a2, . . . , ak} 6∈ ConA} and

• Γ2 = {(pa1 ∧ pa2 ∧ . . . ∧ pak
) ⇒ pb | {a1, a2, . . . , ak} `A b}.

The set ΓA simply says that x ∈| A |. For any x satisfying it must be
consistent – for any inconsistent finite subsets would violate an element of Γ1 – and
deductively closed – for if X ⊆fin x and X `A b then b ∈ x by the appropriate
member of Γ2.

If 〈X ,Y 〉 ∈ B (the token set of Pfg(A)) where X = {a1, . . . , an} and Y =
{b1, . . . , bm} then we can easily translate it into the logical proposition it represents,
namely

φ〈X ,Y 〉 = ¬pa1 ∨ . . . ∨ ¬pak
∨ pb1 ∨ . . . ∨ pbk

.
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For an element x is only excluded by 〈X ,Y 〉 if every pai
is true (i.e., X ⊆ x ) and

every pbj is false (i.e., Y ∩ x = ∅). The set of x allowed by some subset z of B
thus becomes identified with (the truth assignments satisfying) Σz = ΓA∪{φ〈X ,Y 〉 |
〈X ,Y 〉 ∈ z}. For the subsets x of A satisfying Σz are all elements of | A | which
violate none of the constraints imposed by z .

The definitions of the consistency and entailment relations above were ac-
companied by rather detailed discussions. The first of these showed that X ∈ Con
if and only if there is some element of | A | simultaneously satisfying all the con-
straints of X . But this is precisely equivalent to the statement that the set ΣX
is satisfiable, which is equivalent to saying that it is logically consistent. In the
notation of logic we can re-write this as ΣX 6|= False.3

The second discussion showed that X ` 〈X ,Y 〉 if and only if there is no
element of | A | that satisfies the constraints of X but is excluded by 〈X ,Y 〉. This
is precisely equivalent to the logical statement ΣX |= φ〈X ,Y 〉.

We have thus characterised both the consistency and entailment relations of
the system Pfg(A) in terms of the corresponding notions from propositional logic.
We will find this invaluable, and the first application is the following.

6.4.1 proposition

The domain constructor Pfg(·) is well-defined and continuous.

proof

It is well-defined if Pfg(A) is an information system when A is. The token set
B was carefully constructed to satisfy Axiom 2, since all tokens that would have
excluded all x were discarded. All of the others follow very straightforwardly from
the characterisation above. Consider Axiom 5, for example. Suppose that X ` Y
and Y ` 〈X ,Y 〉. Then in terms of the logical representation this means that

ΣX |= φ〈X ′,Y ′〉 for all 〈X ′,Y ′〉 ∈ Y.

and that ΣY |= φ〈X ,Y 〉. But it follows easily from the first of these that ΣX |= ΣY ,
and hence that ΣX |= φ〈X ,Y 〉 (by properties of |=). This is exactly what is required.

The proof of continuity (via monotonicity and continuity in token sets) is
a fairly standard calculation. There are two more interesting parts; one is the
observation that, if A � A′, then B ⊆ B ′ because exactly the same pairs 〈X ,Y 〉
with X ,Y ⊆fin A appear in both. The other is the fact that continuity in token
sets depends vitally on the fact that the tokens 〈X ,Y 〉 are composed of finite X

3If Γ ∪ {φ} is a set of propositional formulae then the notation Γ |= φ means that there is

no assignment to the variables of the language which satisfies all of Γ but not φ. Since False is

satisfied by no assignment, the statement Γ |= False is equivalent to Γ being unsatisfiable.
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and Y : it is this and the usual directed set argument that ensures each token of
Pfg(

⊔
∆) (∆ directed) appears in some Pfg(A) for A ∈ ∆.

The corresponding result holds for P∅
fg(·) with a similar proof. We should note

that, in P∅
fg(A), the consistency relation is trivial and therefore no longer depends

on the consistency of ΣX . However the entailment relation is still modelled by |=
in precisely the same way as in Pfg(A).

The next step in this development must be to verify that | P∅
fg(A) | and

| Pfg(A) | correspond to the finitely generable, and nonempty finitely generable,
subsets of | A |. We already have a good idea of what the correspondences will look
like.

Definition
Suppose z ∈| Pfg(A) | and S is a nonempty finitely generable subset of | A |. Then,
if B is the token set of Pfg(A) as above, we define

• | z |= {x ∈| A || ∀ 〈X ,Y 〉 ∈ z .x ∩ (X ∪Y ) 6= X } and

• θ(S ) = {〈X ,Y 〉 ∈ B | ∀ x ∈ S .x ∩ (X ∪Y ) 6= X }.

Exactly the same clauses apply to P∅
fg(A), dropping the restriction that S is

nonempty and replacing B by B∅.

The following result proves (for Pfg(·)) that this correspondence has exactly
the properties we desire. Of course an analogous result holds for P∅

fg(·).

6.4.2 theorem

The operations | · | and θ(·) defined above for Pfg(·) are well-defined, and further-
more

(a) | θ(S ) |= S for all finitely generable nonempty S ⊆| A |,

(b) θ(| z |) = z for all z ∈| Pfg(A) | and

(c) | Pfg(A) | is order isomorphic to the set of all finitely generable nonempty
subsets of | A | ordered by reverse inclusion (⊇).

proof

The well-definedness of | · | requires two things demonstrated. Firstly we must show
that | z | is finitely generable, and secondly we must prove that it is nonempty. The
first of these comes more or less by definition: suppose that x 6∈| z |. Then, by
definition of | · | there must exist 〈X ,Y 〉 ∈ z such that x ∩ (X ∪ Y ) = X . But
clearly then, if x ′ is any other element of | A | and x ′ ∩ (X ∪ Y ) = x ∩ (X ∪ Y )
then x ′ 6∈| z |. It follows immediately that | z | is well-defined.
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The proof that | z | is nonempty relies on our logical reformulation of the
system above. For we know that every finite subset X of z belongs to Con. It
follows that ΣX is satisfiable for all such X . It follows that the set Σz is finitely
satisfiable (i.e., every finite subset is satisfiable); but by the compactness theorem
for the propositional calculus4 this implies that Σz is satisfiable. It is easy to see
that the set of all a such that pa is true in the satisfying assignment belongs to | z |.
This proves that | z | is indeed nonempty.

To prove θ well-defined we must prove that θ(S ) is always consistent and
deductively closed. Consistency follows directly from the fact that S is nonempty:
we know by definition that when x ∈ S then x ∩(X ∪Y ) 6= X for all 〈X ,Y 〉 ∈ θ(S ).
It follows that Σθ(S) is satisfied by the truth assignment corresponding to x . Thus,
in particular, every ΣX for X ⊆fin θ(X ) is satisfiable, so X ∈ Con. For deductive
closure, suppose X ⊆fin θ(S ) and X ` 〈X ,Y 〉. If 〈X ,Y 〉 6∈ θ(S ) then there would
be some x ∈ S such that x ∩ (X ∪ Y ) = X . But we know that, since X ` 〈X ,Y 〉,
there is no element of | A | excluded by x that is not excluded by some element of
X . It follows that there is some 〈X ′,Y ′〉 ∈ X such that x ∩ (X ′ ∪ Y ′) = X ′, in
contradiction to our assumption that X ⊆fin θ(S ).

We can thus turn to the proof of (a). It follows directly from the definitions
that, for all S , S ⊆| θ(S ) |. So suppose x 6∈ S . Since S is assumed to be finitely
generable there must be a set Z ⊆fin A such that x ∩ Z = x ′ ∩ Z ⇒ x ′ 6∈ S . Thus
the token 〈x ∩ Z ,Z − x 〉 belongs to θ(S ). But, by construction, x does not satisfy
〈x ∩ Z ,Z − x 〉, which means x 6∈| θ(S ) |. This proves S ⊇| θ(S ) |, which completes
the proof of (a).

Part (b) is proved if we can show that the operation | · | is injective. This
is because we know that | z |=| θ(| z |) | by part (a), which then implies z =
θ(| z |). So suppose for contradiction that z1 and z2 were two different elements
of | Pfg(A) | such that | z1 |=| z2 |. Since, in general, the elements of | z |
are in direct correspondence with the set of truth assignments satisfying Σz , it
follows that the sets of truth assignments satisfying Σz1 and Σz2 are the same.
In other words Σz1 |= Σz2 and Σz2 |= Σz1 . Without loss of generality we can
assume there is some 〈X ,Y 〉 ∈ z1 − z2. Now we know that Σz2 |= φ〈X ,Y 〉, and it
follows by the compactness theorem that there is some finite subset Γ of Σz2 such
that Γ |= 〈X ,Y 〉.5 But if we define X = {〈X ′,Y ′〉 | φX ′,Y ′ ∈ Γ}, we then have
X ⊆fin z2 and X ` 〈X ,Y 〉. This contradicts our assumption that 〈X ,Y 〉 6∈ z2.
Hence z1 = z2, completing the proof of part (b).

Parts (a) and (b) show that | · | and θ are both bijections and are each

4The compactness theorem for the propositional calculus states that any set of propositional

formulae which is finitely satisfiable is satisfiable. This consequence of Zorn’s Lemma is proved in

most textbooks on mathematical logic.
5If Σ |= ψ then Σ∪{¬ψ} is unsatisfiable. Therefore some finite Γ ⊆ Σ has Γ∪{¬ψ} unsatisfiable,

which means Γ |= ψ.
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other’s inverses. We will show that they are order isomorphisms. It is clear from
their definitions that z ⊆ z ′ ⇒| z |⊇| z ′ | and that S ⊇ S ′ ⇒ θ(S ) ⊆ θ(S ′). Suppose
| z |⊇| z ′ |; then we have

z = θ(| z |) ⊆ θ(| z ′ |) = z ′

which completes the proof that | · | is an order isomorphism. The same fact about
θ can be deduced either in the same way or from the fact that it is the inverse of
an order isomorphism.

Perhaps the most curious feature of this powerdomain is that its partial order
is not derived in any way from the order on the underlying domain. We will discuss
this fact and its consequences in some detail below.

The basic set operations are generally better behaved in this powerdomain
than in the other ones: singleton set, intersection and pairwise union all mean ex-
actly what one would expect. (For the set of finitely generable subsets of | A |
contains all singleton sets and is closed under finite union and arbitrary intersec-
tion.) Naturally in Pfg(A) (as opposed to P∅

fg(A)), intersection is a partial function,
since the intersection of two nonempty sets can be empty. Of course the intersec-
tion and union operations are just the least upper bound and greatest lower bound
operations on the domain.

Definition
Suppose that x ∈| A | and z1, z2 ∈| Pfg(A) |. Then we define:

• {x}fg = θ({x});

• z1∪fgz2 = z1 ∩ z2 and

• z1∩fgz2 = z1 ∪ z2 (provided | z1 | ∩ | z2 |6= ∅).

6.4.3 lemma

The operators ∪fg and ∩fg are well-defined and continuous (the latter on its domain
of definition). Furthermore, if z1, z2 ∈| Pfg(A) | then

(a) | z1∪fgz2 |=| z1 | ∪ | z2 |, and

(b) | z1∩fgz2 |=| z1 | ∩ | z2 |.

The most obvious advantage of this powerdomain is the fact that it includes
all finitely generable sets. Unlike in the classical powerdomains, there is no upwards-
closed, downwards-closed or convex-closed condition to worry about. This will be
a positive advantage if there is no good reason for expecting any of them for other
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reasons. Also the partial order used, reverse inclusion, is both naturally occurring
and has the natural interpretation that stronger means more deterministic.

The singleton sets {x}fg and {y}fg are always incomparable (in fact, maximal
in | Pfg(A) |) even if x ⊆ y . This means that the singleton set operation is not one
which can be used in a context where a monotone or continuous operation is required
in order to obtain a fixed point. This is perhaps the most obvious disadvantage of
this powerdomain, since in contexts where powerdomains are used reflexively (i.e.,
in domain equations) it is often natural to use the singleton set operation in exactly
such contexts. The best that can be done is to use an approximation to the singleton
set operator. The most obvious one is the one used in the Smyth powerdomain,
namely {y | x ⊆ y}, though in contexts where we know the image of the continuous
function f is contained in some finitely generable set S smaller than | A | it may
be preferable to use the approximation {y ∈ S | f (x ) ⊆ y} to {f (x )}.

The result of using these approximations in one’s semantics will be that one
gets semantic values that are approximations to the real answers (in some sense of
the word ‘real’). For example, if the final answer is in the powerdomain, it could
be a larger set. However it seems clear that one would always obtain a result which
was at least as good (and very possibly better) than would be obtained by using
the Smyth powerdomain itself.

Quite independently of the above, it could be viewed as a disadvantage that
the partial order on | Pfg(A) | owes nothing to that of | A |. (Though equally, if the
order on | A | is not of great importance it may be better to use the determinism
order provided by | Pfg(A) |.) Note that the same is true of the left-hand side of the
function space operator – like Pfg(·) (see the appendix at the end of this chapter)
the membership of | A → B | depends on the order on | A |, but the order does not.

The direct image f (S ) of a set under a function works well over this pow-
erdomain. It is better to consider this aspect of our analysis using the compact
topology TFG discussed in the last section. Provided f is continuous with respect
to the topology then f (S ) is bound to be finitely generable if S is. And since the
order is now just reverse inclusion it is clear that S ⊇ S ′ ⇒ f (S ) ⊇ f (S ′), or in
other words f is monotone on sets. It is also continuous, for using the fact that
finitely generable sets are closed under arbitrary intersection tells us that if ∆ is a
directed set of finitely generable sets then

⋂
∆ is also finitely generable, and clearly

f (
⋂

∆) ⊆
⋂
{f (S ) | S ∈ ∆} .

And if y were an element of the right-hand side above then the closed sets {x ∈ S |
f (x ) = y} would have the finite intersection property as S varies, proving that y is
in the left-hand side.

As before we can define this lifted version of f as an operator on powerdo-
mains.
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Definition
Suppose f :| A |→| B | is continuous with respect to the topology TFG , then we
define f

fg
:| Pfg(A) |→| Pfg(B) | as follows

f
fg

(z ) = {〈X ,Y 〉 | ∀ x ∈| z | .f (x ) ∩ (X ∪Y ) 6= X } .

6.4.4 lemma

If f :| A |→| B | is continuous with respect to TFG then f
fg

is well-defined and
continuous, and furthermore | f

fg
(z ) |= f (| z |) for all z ∈| Pfg(A) |.

Exercises

6.4.1 Calculate the structures of | Pfg(flat(N)) | and | Pfg(A) |, where A = A↑.
Comment on your answer.

6.4.2 Suppose f :| A |→| A | is monotonic and continuous with respect to TFG .

(i) Show that f is partial order continuous.
(ii) Show that if f

fg
has only one fixed point then so does f .

(iii) If | A | has a greatest element, show that if f has only one fixed point
then so does f

fg
.

(iv) Does the result of (iii) still hold if we omit the assumption that | A |
has a greatest element?

[The results of this exercise can be interpreted as being of significance to
fixed point induction – see Chapter 2.]

6.4.3 Union (
⋃

fg
) and intersection (

⋂
fg

) operators can both be defined from |
Pfg(Pfg(A)) | to | Pfg(A) | in such a way that

|
⋃

fg
χ |=

⋃
{| z || z ∈| χ |} and |

⋂
fg
χ |=

⋂
{| z || z ∈| χ |}

(the second of these when the intersection is nonempty). Give suitable def-
initions and show that the subset {χ ∈| Pfg(Pfg(A)) ||

⋂
fg
χ is defined} is

itself finitely generable.

6.4.4 The topology TFG on | Pfg(A) | consists of the finitely generable subsets of
| Pfg(A) |, each of which can be identified with a set of closed subsets of
| A |. Thus it actually defines a topology whose points are the closed sets
in another one. (This is usually called a hyperspace topology.) In fact this
particular hyperspace topology can be characterised quite nicely, purely in
terms of the topology on | A |, as the following show.
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(i) Given any topological space (X , T ), the upper hyperspace topology on
the closed sets of T is defined to be the smallest one where all sets of
the form {C | C ⊆ U }, with U open in T , are open. In the case where
X =| A | and T = TFG , show that the lower topology is precisely
the Scott topology (see Section 2.4 and Exercise 6.3.6) on the set of
TFG -closed sets ordered by reverse inclusion.

(ii) Given any topological space (X , T ), the lower hyperspace topology on
the closed sets of T is defined to be the smallest one where all sets
of the form {C | C ⊆ C ′}, with C ′ closed in T , are closed. Show
that, for (| A |, TFG) this coincides precisely with the lower topology
already defined in Exercise 6.3.6 for the closed subsets of | A | ordered
by reverse inclusion.

(iii) The Vietoris topology on the closed sets of a topology (X , T ) is de-
fined to be the smallest one containing both the upper and the lower
hyperspace topologies. Parts (i) and (ii), plus the result of Exercise
6.3.6 show that this is exactly the hyperspace topology induced by
TFG on | Pfg(A) |. What are the corresponding results for | PS (A) |
and | PH (A) |?

6.5 The Plotkin powerdomain

Readers who have attempted Exercise 6.1.8 will already know that it is impossible
to define a domain constructor whose result is always the Plotkin powerdomain of
its argument, because this domain constructor does not preserve consistent com-
pleteness. Given a cpo X , the Plotkin powerdomain will consist of the convex-closed
nonempty finitely generable sets, ordered by the Egli-Milner order. Actually, we
have not defined the notion of ‘finitely generable’ over an arbitrary cpo – readers
interested in the definition should consult the Appendix below.

To get this constructor defined we need a theory of domains that admits
partial orders that are not consistently complete. The best-known theory of this
form is that of SFP-objects (SFP stands for ‘sequence of finite partial orders’),
which is described briefly in Chapter ??. The result, of course, is a domain with
more sets in it than the Hoare or Smyth powerdomains. It has rather less sets than
the powerdomain Pfg(·) seen in the last section, but a partial order that will usually
be more satisfactory.

As in Pfg(A), the singleton set operator is properly defined over the Plotkin
powerdomain (since a singleton set is always convex). But it is now a continuous
operator. Intersection is still a partial function because of the omission of the
empty set; the definition of union requires an application of the convex closure
operator, since for example if x < y < z then we would expect {x}EM∪EM {z}EM =
{x , y , z}EM .
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The fact that it is impossible to define this constructor over information
systems is a little surprising when we observe that in a sense this powerdomain
can be seen as a combination of the Hoare and Smyth domains, both of which are
achievable without too much difficulty. Indeed one might think that a token set
consisting of Hoare-tokens and Smyth-tokens (the first telling us about the greatest
elements of a set, the second about the least elements) would be sufficient to describe
elements of the Plotkin order – after all, every convex-closed set S has a canonical
expression S↑ ∩ S↓ as the intersection of upwards- and downwards-closed sets.

What this tells us is that if, given a system A, we take a token set ConA +
(℘(A)− {∅}), then the tokens

{ιleft(X ) | ∃ x ∈ S .X ⊆fin x} ∪ {ιright(Y ) | ∀ x ∈ S .Y ∩ x 6= ∅}

describe every nonempty finitely generable convex-closed S ⊆| A | completely.
This set would of course be the map θ(·) for identifying sets with elements of a
hypothetical powerdomain. It is not at all hard to show that the subset order on
these sets corresponds precisely to the Egli-Milner order on the sets S – so this is
not what goes wrong (as something must)!

The difficulty comes when we try to invent an information system based
on these tokens whose elements are exactly these θ(S ). Any information system
containing all of these elements must necessarily contain more, in general.

We argued much earlier in this book that information systems were a general
model of computation because each process becomes identified with the set of all
finite propositions true of it or finite observations true of it. It is interesting to
look a little harder at this assertion in the context of the Plotkin powerdomain
constructor. One of the fundamental assumptions that one makes in information
systems is that every consistent, deductively closed set represents an element of
the space of possible program values. The underlying philosophy here is that any
process that has shown us such a set of tokens can legitimately decide to do no
more (generally by looping). The problem in the Plotkin powerdomain is essentially
that, given a set of observations which are consistent and from which no more can
be deduced, it is not always reasonable to regard this set as complete because, even
though one cannot deduce any more tokens, we can at least deduce that some more
will eventually be observable.

This is perhaps made a little clearer by an example. Suppose we are trying
to construct the Plotkin powerdomain using disjoint copies of the Hoare and Smyth
tokens as described above. Let A = flat({a, b}) and consider the Smyth token
{a, b}. This says that every element of some subset S of | A |= {∅, {a}, {b}}
intersects {a, b}. If, as in the Hoare domain, every finite subset of each x ∈ S
is present as a (Hoare) token, any set with {a, b} as a Smyth token must have
either {a} or {b} as a Hoare token – but we do not know which. This problem
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is surmountable (by picking different tokens) for PEM (flat({a, b})) – since this
is consistently complete. But by the time one gets to the slightly richer domain
(actually the Cartesian product of flat({a, b}) with itself) seen in Exercise 6.1.8,
any representation is bound to lead to a similar difficulty.

The question of whether it is operationally reasonable to ask for domains
with this sort of ‘I know there is something else to see but I don’t know what’
property is an interesting question. Of course the answer is subjective and may well
depend on the context. If the answer were ‘no’ then one could not define the Plotkin
powerdomain without adding additional elements (to make it consistently complete)
in a similar way to the extra bottom added in the separated sum constructor.

Exercises

6.5.1 Compute the structure of the Plotkin powerdomains of | flat(N) | and | A |,
where A = A↑.

6.5.2 Let C be the set of all tokens of Pfg(A) with the form 〈X , ∅〉 or 〈∅,Y 〉. Show

that | Pfg(A)\C | can be thought of as consisting of the convex, finitely
generable nonempty subsets of | A |, ordered by reverse inclusion.

6.6 Appendix: on finitely generable sets

The definition we have given of what it means to be finitely generable was purely in
terms of the ideas of information systems, namely token sets. When powerdomains
are presented in other formalisations of domain theory some other definition has
to be given, usually in terms of partial orders alone. There are two good reasons
for us to check that the simple definition we have used is equivalent to more usual
ones. The obvious reason is that we should check that the definition used in this
book is the same as that used elsewhere. The other reason is that it is by no means
immediately obvious that the definition of finitely generable given earlier depends
only on the partial order structure of | A | – one might think it possible that different
subsets of some partial order would be deemed finitely generable depending on which
representation of the order was chosen. In fact several of the results and exercises
in this chapter prove that the definition is representation-independent, but it is a
sufficiently important fact to warrant a direct proof – see Theorem 6.6.1 below.

The usual definition of what is meant by finitely generable (subsets of a
countably (ω-)algebraic cpo P) is given in terms of finitely branching trees T . Each
node n of the tree is labelled with an element xn of P in such a way that all the
children m of a node n are labelled so that xm ≥ xn . A subset S of P is said to be
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finitely generable if there is some such tree T where the set

{
⊔
{xni

| i ∈ N} | 〈ni | i ∈ N〉 is an infinite path though T}

equals S . Now not all information systems are countably algebraic, so this tree
definition is for a world that is neither smaller (for it does not assume consistent
completeness) nor larger than ours. Thus the most we can hope to prove is that, in
the intersection, the two definitions are the same. This will not be quite enough to
meet the second objective above, for it will not prove anything about information
systems that are not countably algebraic. Therefore our first result gives an alter-
native characterisation of finitely generable in terms of the partial order structure
of an arbitrary information system.

6.6.1 theorem

A subset S of | A | is finitely generable if and only if, when E = {X | X ∈ ConA}
is the set of | A |’s po-finite elements, S satisfies: whenever x 6∈ S , then there is a
finite subset F of E such that

∀ x ′.{e ∈ F | e ⊆ x} = {e ∈ F | e ⊆ x ′} ⇒ x ′ 6∈ S .

proof

If S is finitely generable then it certainly meets the above condition, since if x 6∈ S
then there are Z ,X such that if x ∩ Z = X and if, for any x ′, x ′ ∩ Z = X then
x ′ 6∈ S . Thus the set F = {X }∪{{a} | a ∈ Z −X } will suffice to meet the condition
in the statement of the theorem.

So suppose S satisfies the above condition; we must show that it is finitely
generable. If x 6∈ S , let

F = {Xi | 1 ≤ i ≤ n} ∪ {Yi | 1 ≤ i ≤ m}

be the finite set given by the condition for x , where Xi ⊆ x for all i and Yi 6⊆ x for
all i . Plainly an element x ′ of | A | satisfies

{e ∈ F | e ⊆ x} = {e ∈ F | e ⊆ x ′}

if and only if Xi ⊆ x ′ for all i and Yi 6⊆ x ′ for all i . (This uses the fact that, for
any information system A = 〈A, ConA,`A〉, if X ∈ Con and x ∈| A | then X ⊆ x
if and only if X ⊆ x .) Setting Z =

⋃
{Xi | 1 ≤ i ≤ n} ∪

⋃
{Yi | 1 ≤ i ≤ m} we can

thus state that x ∩ Z = x ′ ∩ Z implies that x ′ 6∈ S . This is what was required to
prove S finitely generable.
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6.6.2 theorem

If | A | is ω-algebraic then S ⊆| A | is finitely generable if and only if there is a
finite branching tree T of the type described above that generates it.

proof

Let E = {e1, e2, e3, . . .} be the po-finite elements of | A |.
First suppose that there is a tree T generating S and (for contradiction) S

is not finitely generable. Then there is x 6∈ S such that for all j there is xj ∈ S such
that

{ek | 1 ≤ k ≤ j ∧ ek ⊆ xj } = {ek | 1 ≤ k ≤ j ∧ ek ⊆ x} .

Converging to each of these xj there must be an infinite path 〈xj ,i | i ∈ N〉 of labels
in T . It is easy to see that there is some i so that i ≤ i ′ implies

{ek | 1 ≤ k ≤ j ∧ ek ⊆ xj ,i′} = {ek | 1 ≤ k ≤ j ∧ ek ⊆ x} .

Let ij = max{j , i} and choose the node nj to be the one labelled xj ,ij .
Because we have ensured that nj occurs at depth at least j in T , there

must be infinitely many different nj . Since T is, by assumption, finitely branching
there is, by König’s Lemma, an infinite path through T containing infinitely many
different nj . It is easy to see that the limit of the labels on this path is x , in
contradiction to our assumption. This proves that all sets generated by trees are
finitely generable.

To prove the reverse, suppose S is finitely generable; we must create a tree.
For each j , create a node 〈j ,F 〉 for every set F which is of the form

{ei | 1 ≤ i ≤ j ∧ ei ⊆ x} for x in S .

These will be the nodes of our tree, where the level j nodes are the 〈j ,F 〉 and where
〈j + 1,F ′〉 is a descendant of 〈j ,F 〉 if and only if F ⊆ F ′. The node 〈j ,F 〉 is labelled
by

⋃
F (the definition of F ensures it is po-consistent). It is easy to check that this

tree T generates precisely S . (Note that T has at most binary branching at each
node and has all its labels po-finite.)



Chapter 7

The lambda calculus

The λ-calculus is an abstract functional language that provided one of the main
spurs to the early work on domain theory. It was invented by Church in the 1930s,
but existed only as a syntactic formalism before Scott developed his first model for
it in the late 1960s.

The λ-calculus provides the foundation – in terms of syntax, semantics and
implementation – for all functional programming languages. Aside from this there
are several other good reasons for including it in this book. It exhibits many of
the difficulties and apparent paradoxes that we began to see in the introduction.
Furthermore it does this in a very pure form, in that its syntax is simple and its
semantics uncluttered by the relatively straightforward details that inevitably creep
in with a real programming language. This means that we are able to analyse its
semantics rather quickly, since we can concentrate on the essentials. From the time
of Strachey on the λ-calculus, and notation derived from it, have been widely used as
tools for the semantic description of more complex languages so an understanding of
its semantics is almost an essential prerequisite for those interested in the semantics
of real languages. Finally, for all the reasons described above, the λ-calculus has
become the traditional test bed for semantic techniques, so it is useful to start here
for comparative purposes.

The first part of this chapter gives an introduction to the λ-calculus as a
formal, syntactic theory. It is only a summary of those parts of the theory that
will later be of direct interest when we are constructing the semantics. Another
description on the same lines can be found in [Stoy], but note that there a slightly
different theory (including η-conversion, a conversion rule we do not adopt) is de-
scribed. Anyone who is particularly enthusiastic about the λ-calculus as a formal
system should have a look at The Lambda Calculus, its Syntax and Semantics, by
Barendregt [Bar], where a great deal more of its theory is described. We end the
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first section by some examples that illustrate the expressive power of the λ-calculus.
The second part describes its semantics in a reflexive domain. Because of its

combination of depth and simplicity, we use the λ-calculus as the main example of
this book to illustrate how a denotational semantics can be analysed in depth and
related to operational behaviour. This study is begun in Section 7.2 and concluded
in Chapter 11, where we are able to obtain a number of deep results arising from
an analysis of operational semantics.

7.1 The syntax of the lambda calculus

The λ-calculus is a notation for the description and manipulation of functions. It
can be regarded as the purest functional programming language: it consists only
of those parts of such a language (abstraction and application) that are directly
related to functions. Its syntax is therefore very simple.

syntactic domains

x ∈ Ide identifiers

E ∈ Exp expressions

(b ∈ Bas basic values or atoms) Sometimes absent:
see below.

E ::= x | E1 E2 | λ x .E ( | b)

E1 E2 represents the ‘application’ of E1 to E2, and λ x .E represents the function that
takes an argument and produces the result that comes from evaluating E with the
argument substituted for x . (λ x .E is an abbreviation for ‘f , where f (x ) = E ’.) For
example, we would expect the following λ-expressions to have the same meaning:

(λ x .(xy))(λ z .z ) (λ z .z )y y .

(The second is obtained from the first by carrying out the substitution of λ z .z
implied by the outer application; the third is then obtained by carrying out the
substitution of y for z in λ z .z .)

If Bas is present it represents any basic functional or non-functional objects
that are assumed to be present, such as natural numbers or ‘+’. If it is present we
say the language is a λ-calculus with atoms, or, if not, the λ-calculus without atoms
or the pure λ-calculus. The rest of this chapter and the next are concerned with
the λ-calculus without atoms, but almost everything can be adapted to the other
case. Indeed, since realistic functional languages are, to a large extent, just ways of
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dressing up a λ-calculus with atoms, we will be doing much of this adaptation in
the next chapter.

In addition to these constructs we will allow bracketing in the concrete syntax
of λ-expressions, to enable us to deduce their abstract syntax. We will respect the
parsing convention, mentioned in Chapter 1, that functional application associates
to the left. Thus E1 E2 E3 E4 will be read as ((E1 E2)E3)E4. We will read abstrac-
tions (λ x .) as extending over the largest expression available (i.e., extending to the
right until the end of the expression or an unmatched right bracket is reached).
Thus, λ x .xy will be the same as λ x .(xy), and λ x . λ y .xy the same as λ x .(λ y .(xy)).

Functional programmers may already be familiar with many of these ideas.
We study this notation first by formalising syntactic manipulations such as

the above. This will give us the insight necessary to formulate and analyse its
semantics later in this chapter.

Definition
An occurrence of an identifier in a λ-expression can be said to be free or bound,
much as in the predicate calculus; the binding being done by λ rather than ∀ or
∃.

(a) x appears free in y if and only if x = y .

(b) x appears free in E1 E2 if and only if it appears free in E1 or in E2.

(c) x does not appear free in λ x .E .

(d) If x 6= y then x appears free in λ y .E if and only if it appears free in E .

(a) x does not appear bound in y .

(b) x appears bound in E1 E2 if and only if it appears bound in E1 or in E2.

(c) x appears bound in λ x .E .

(d) If x 6= y then x appears bound in λ y .E if and only if it appears bound in E .

A λ-expression without any free identifiers is said to be closed and is some-
times termed a combinator.

In order to be able to ‘evaluate’ a λ-expression of the form (λ x .E1)E2

syntactically we need to be able to substitute E2 for every free occurrence of x in
E1. What does this mean? Apparently

(λ x . λ y .x ) y = λ y .y (the identity function)

whereas

(λ x . λ z .x ) y = λ z .y (a constant function).
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This is counter-intuitive because one would not expect the name of a bound identifier
to matter: λ z .x and λ y .x should both have the same meaning and one would
expect that substituting E for x in two expressions with the same meaning would
produce equivalent results. Of course this problem arises because a free identifier
in the substituted expression may become bound when it is simply copied into the
unaltered function body. Exactly the same problem arises in predicate calculus and
we adopt the same solution as is traditional there: during a substitution we carry
out systematic renaming of bound identifiers to avoid binding any free identifiers.
To do this we assume Ide contains a denumerably infinite subset {z1, z2, z3, . . .}
from which we can select a new identifier when one is needed. This set is always
sufficient because every λ-expression is finite and so contains only finitely many
different identifiers.

Definition
If x ∈ Ide and E ,E ′ ∈ Exp, we define [E ′/x ]E (the substitution of E ′ for x in E )
as follows.

(a) If E = x then [E ′/x ]E = E ′.

(b) If E = y and x 6= y then [E ′/x ]E = y .

(c) If E = E1 E2 then [E ′/x ]E = ([E ′/x ]E1) ([E ′/x ]E2).

(d) If E = λ x .E1 then [E ′/x ]E = E .

(e) If E = λ y .E1 and y 6= x and either x does not appear free in E1 or y does not
appear free in E ′ then [E ′/x ]E = λ y .[E ′/x ]E1.

(f) If E = λ y .E1 and y 6= x and x appears free in E1 and y free in E ′ then
[E ′/x ]E = λ zi .[E ′/x ]([zi/y ]E1), where zi is the first of our list of identifiers
not to occur free in E1 or E ′.

This definition needs to be justified by induction on the syntactic complexity
of E (depth of its syntax tree) rather than by straightforward structural induction,
because of the double substitution in clause (f). The first substitution [zi/y ]E1

simply replaces one identifier by another and so (provably) leaves the syntactic
complexity unaffected1.

We should now regard (λ x .E1)E2 as having the same meaning as [E2/x ]E1

and λ x .E as having the same meaning as λ y .[y/x ]E provided y is not free in E .
These ideas can be expressed formally as conversion rules.

1This would not have been the case if the inner substitution replaced the identifier with any

other type of expression.
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Definition
The binary relations cnvα and cnvβ on λ-expressions are defined as follows.

λ x .E cnvα λ y .[y/x ]E provided y is not free in E

(λ x .E1)E2 cnvβ [E2/x ]E1

(Right-to-left conversions are allowed as well as left-to-right.) In general we say
E1 cnv E2 if there is a finite sequence of λ-expressions, the first of which is E1 and
the last E2, each of which is obtained from its predecessor by some conversion (in
either direction) of the whole expression or some subexpression.

We will regard expressions that can be interconverted as equivalent.
Generally, α-conversion will be used to remove confusion of the type encoun-

tered above and β-conversion, in the left-to-right direction, to ‘evaluate’ an expres-
sion – to simplify it by eliminating λ-abstractions. We will term these two forms of
conversion reductions. If E1 cnv E2 using only α- and left-to-right β-conversion, we
write E1 red E2.

A redex is an expression that can be β-reduced (i.e., one of the form (λ x .E1)E2).
If an expression contains no redexes then it cannot be significantly reduced any fur-
ther, for α-conversion only changes the names of bound variables, never the overall
shape of an expression. In particular, α-conversion never introduces a redex. Such
an expression is said to be in normal form.

Some expressions contain several redexes, for example

(λ x .xx )((λ y . λ z .y)(λ t .t))

and therefore have several possible reduction routes. There is no immediate reason
why these should always lead to the same normal form. Indeed it is quite possible
to have two routes, one of which terminates and the other does not. Consider, for
example, the expression

(λ x . λ y .y)((λ z .zz )(λ z .zz ))

which does not alter if the right-hand expression is reduced but, if the outer redex
is reduced, is immediately in normal form.

It can however be proved that if two reduction sequences both terminate
then they both lead to the same result (modulo α-conversion). This is a direct
consequence of the following theorem (which we do not prove here, but is proved in
Barendregt [Bar], for example).

7.1.1 theorem (the church-rosser theorem)

If E and E ′ are λ-expressions and E cnv E ′, then there is a λ-expression E∗ such
that E red E∗ and E ′ red E∗.
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7.1.2 corollary

If E is a λ-expression and E cnv E1 and E cnv E2 where E1 and E2 are in normal
form, then E1 may be converted to E2 using only α-conversions.

proof

We know, by the theorem, that there exists E∗ that both E1 and E2 reduce to.
But the only reduction that can be carried out on normal form expressions is α-
conversion, so all steps in the paths from E1 and E2 to E∗ must be α-conversions.
Thus E1 may be converted to E2 by following the path to E∗ and then reversing
the steps made in getting from E2 to E∗.

Some λ-expressions reduce to normal form whatever reduction strategy is
employed and some need to be reduced with care to avoid an infinite path. There
are also some that have no normal form at all, for example

(λ x .xx )(λ x .xx )

where the only reduction leaves it unaltered and

(λ x .xxx )(λ x .xxx )

where each successive reduction only serves to increase the expression’s length. One
very interesting combinator with no normal form is

Y = λ f .(λ x .f (xx ))(λ x .f (xx )),

because for any expression E it is easy to see that

Y E cnv E (Y E )

(if necessary Y is α-converted to avoid any clashes with E ). Thus Y is a ‘function’
that apparently returns a fixed point of any function to which it is applied. For
this reason it is sometimes termed the paradoxical combinator. (After all, there
are many functions in mathematics that have no fixed point.) Y is the simplest
of infinitely many λ-expressions (known as fixed-point combinators) that have the
same effect. Some more appear in the exercises in this chapter.

There are a number of strategies that can be employed in an attempt to
reduce λ-expressions to normal form. Perhaps the most obvious one is applicative
order reduction, which can be summarised as follows.

(a) An identifier x is already in normal form.

(b) To reduce λ x .E , reduce E .
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(c) To reduce E1 E2, first reduce E1 and E2 to E ′
1 and E ′

2. If E ′
1 is not of the

form λ x .E , the expression is already in normal form. Otherwise carry out the
β-conversion and reduce the resultant expression.

This means that, when evaluating the application of a function to its argu-
ment, both the function and its argument are evaluated as much as possible before
‘applying’ the function. The fact that the argument is evaluated before substitution
will be efficient when the function uses it more than once within its body. How-
ever, as in the example above, it can lead to problems if the function ignores its
argument and the reduction of the argument expression does not terminate. There
is a reduction strategy which is always guaranteed to terminate if termination is
possible. It is called normal order reduction, and can be described in one line.

• Always reduce the leftmost redex. That is, the one with the leftmost λ.

This strategy does essentially the reverse of the earlier one: it always sub-
stitutes a function’s argument for the corresponding identifier before reducing the
argument at all. This means that if the argument is in fact ignored, it is never
reduced. On the other hand if it is used several times it has to be reduced more
than once. While this is inefficient it cannot lead to nontermination: if evaluating
the same expression several times fails to terminate, so does evaluating it once. The
subject of reduction strategies is very important in connection with real functional
programming languages, and we will return to it when we discuss their semantics
later.

We end this section with a number of examples to illustrate the use of the
λ-calculus and also to demonstrate its considerable expressive power.

example: replacing abstraction by combinators

Recall that a combinator is a λ-expression with no free identifiers. It is an interesting
and useful fact that it is possible to eliminate all use of λ-abstraction expressions
in favour of a small number of combinators (i.e., where the only uses of abstraction
appear in these combinators). Just how small a set of combinators is necessary will
be seen later, but for now we will observe that there is an ‘adequate’ set of three.
These are defined:

I = λ x .x
K = λ x . λ y .x
S = λ x . λ y . λ z .x z (y z )

The first of these is the identity function, the second takes two arguments and
returns the first. The third combinator S is of a form specially designed to play its
role of the inductive step of the Lemma below.
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Our main result is the following theorem:

7.1.3 theorem

If E is a λ-expression all of whose free identifiers are contained in the set V , then
there is an expression E ′ such that E cnv E ′ and E ′ involves only the identifiers of
V , the combinators S , K , I , and application.

proof

The proof of this theorem essentially consists of the demonstration that we can
produce a ‘compiler’ for converting λ-expressions into the special form. Most of the
work is done by the following Lemma.

lemma

Suppose E is an expression involving only the identifiers of V , S , K , I and appli-
cation. Then there exists E ′ of the same form (with V \{x} replacing V ) such that
λ x .E cnv E ′.

proof of lemma

This is proved by structural induction on E . If E = x then we set E ′ = I , and
if either E = y (y 6= x ) or E is S , K or I then we set E ′ = K E . The only case
remaining is where E = E1E2, and we then know by induction that there exist E ′

1

and E ′
2 of the correct form such that E ′

i cnv λ x .Ei . All we then have to observe
is that S E ′

1 E ′
2 cnv λ z .(λ x .E1) z ((λ x .E2) z ) which after two β-reductions and an

α-conversion becomes λ x .E1 E2 as desired. This completes the proof.

Observe that the second clause (the one using K ) can also be applied in the
case where E is any expression with no free x . Judicious use of this observation can
lead to much shorter combinator expressions in the output of our compiler.

Given this Lemma, the proof of the Theorem is now an easy structural in-
duction. If E is a identifier then it does not need to be changed. If E = E1E2 then
we can use induction to give us E ′

1 and E ′
2 of the correct form such that Ei cnv E ′

i .
We then set E ′ = E ′

1E
′
2. If E = λ x .E1 we use induction to give us E ′

1 of the correct
form (using the identifiers in V plus x ) and then appeal to the Lemma to observe
that there is an expression of the correct form equivalent to λ x .E ′

1.

Unfortunately the expressions produced by this mechanical process are gen-
erally very long and unwieldy. The reader might like to verify this by applying
the process to the λ-expression S , namely λ x . λ y . λ z .x z (y z ). There are various
‘optimisations’ which can be applied but even so the process described above rarely
produces the most elegant expression.

It is often observed that the three combinators can be reduced to two, since
S K K cnv I and so all instances of I in the output of our compiler may be replaced
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by SKK . In fact the set of combinators can be reduced in size still further. If we
define

W = λ e.e S (λ x . λ y . λ z .x )

then observe that, abbreviating λ x . λ y . λ z .x by E ,

WW cnvβ W S E
cnvβ S S E E
cnvβ S E (E E )
cnvβ λ z .E z (E E z )

(= λ z .(λ x . λ y . λ t .x ) z (E E z ) )
cnvβ λ z . λ t .z
cnvα K

and that W (W W ) cnv W K cnv K S E cnv S . Thus there is an expression
involving only W for both S and K , so W is adequate by itself! Other examples
of one-element bases (adequate sets) can be found in Exercise 7.1.6 and [Bar].

It has sometimes been argued that it is better to present the λ-calculus
using combinators (such as S , K and I ) rather than λ abstraction. To do this one
gives a number of conversion rules such as I E ≡ E , K E F ≡ E and S E F G =
E G (F G). One argument for this is that there is no need any more to name bound
identifiers – the presence of which in the standard λ-calculus leads to a certain loss
of abstractness. See Barendregt for more details.

Combinators have been much used recently in the implementation of func-
tional languages. Programs are reduced, as above, to expressions involving a limited
range of combinators (in some cases S , K and I ) and implemented on a machine
which uses the combinators as machine code. Thus the proof of Theorem 7.1.3 above
does in a genuine sense generate a compiler. The existence of the W combinator
means that it would be possible to construct a machine with only one instruction!

There are some exercises on combinators at the end of this section.

example: booleans

Although the λ-calculus only directly contains the ideas of functional application
and abstraction, it can be used to model various other concepts. One of these is the
boolean values true and false. It is convenient to model these by the combinators
K = λ x . λ y .x and K I = λ x . λ y .y both of which take two arguments and return
one of them. They are not interconvertible for they are both in normal form.

All the usual propositional connectives may be defined. For example not =
λ b.b (KI )K , and = λ p. λ q .p q (K I ) and or = λ p. λ q .p K q . The reader should
experiment to see why these definitions work and try to give definitions of some
other connectives.
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The connectives are specified only to the extent that they must give one
particular answer when applied to an appropriate number of arguments of the form
K and KI . Thus there are alternative definitions for the connectives, including
the ones we have given here, representing different functions when applied to other
arguments. An example is not′ = λ b. λ x . λ y .byx .

example: tuples

A tuple is an ordered pair, triple, etc. of objects. An n-tuple is usually written
〈a1, a2, . . . , an〉. Tuples should have the properties than for any a1, a2, . . . , an the
n-tuple 〈a1, a2, . . . , an〉 exists, and that there are projection functions πn

i such that
πn
i 〈a1, a2, . . . , an〉 = ai . It is easy to construct tupling and projection functions in

the λ-calculus. We will first treat ordered pairs.
The combinator pair is defined

pair = λ x . λ y . λ z .z x y

so that the pair 〈E1,E2〉 is identified with the expression λ z .z E1 E2. The compo-
nents of a pair can be recovered by the two combinators

fst = λ p.p(λ x . λ y .x ) and snd = λ p.p(λ x . λ y .y) .

Note that the first and second components of a pair are recovered by applying the
pair to K and KI respectively (which were identified with ‘true’ and ‘false’ in the
last example.)

One could define longer tuples by iterated pairing, since one can identify for
example the triple 〈a1, a2, a3〉 with the pair 〈a1, 〈a2, a3〉〉. But it possible to extend
the ideas used to define pairing directly, so we can define the n-tupling combinator
as follows:

Tn = λ x1. . . . λ xn . λ z .z x1 . . . xn

so that 〈E1,E2, , . . . ,En〉 is identified with λ z .z E1 . . .En . The projection function
πn
i is then λ t .t C n

i where C n
i is the combinator which selects the ith of n arguments:

C n
i = λ x1. . . . λ xn .xi .

example: the church numerals

One of the most interesting and theoretically useful classes of λ-expressions are the
so-called Church numerals, which were used by Church to show that the λ-calculus
could be said to contain arithmetic. He sought to identify the natural number n
with the expression n = λ f . λ x .f (f . . . (f x ) . . .) (f applied n times to x ). Thus
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0 = λ f . λ x .x and 1 = λ f . λ x .f x . It is possible to define a successor function

succ = λn. λ f . λ x .f (n f x )

and to build up from it a variety of the usual arithmetic operations. There are a
number of ways of defining these, for example add may be defined to be either of
the combinators

λn. λm.m succn or λn. λm. λ f . λ x .n f (m f x )

amongst others. (These two expressions are truly different as λ-expressions even
though they have the same effect when applied to two Church numerals – they
cannot be interconverted as they are both in normal form, and see also Theorem
7.2.5 below. This is the same sort of ambiguity we saw with logical combinators.)

Indeed, a little work establishes that all computable functions of the natural
numbers may be encoded as λ-expressions using the Church numerals. There are
numerous characterisations of what a ‘computable’ function is (see Cutland [], for
example) and a number of these can be used to prove this claim. The principle
that underlies these several characterisations of computability is known as Church’s
thesis, which states that all reasonable ‘complete’ models of computation have the
same expressive power. But perhaps the most natural way of showing it in this case
is to build up all the elements of a more-or-less standard functional programming
language over the numbers and booleans such as the one seen in Section 1.2. The
λ-calculus already provides us with the framework of application and abstraction;
it gives us recursion via Y and tupling via the trick seen above. A non-recursive
define . . . construct can easily be modelled using abstraction and application:

define x = E1in E2 becomes (λ x .E2)E1

with a similar trick for functional definitions. The booleans can be modelled using
K = λ x . λ y .x and KI = λ x . λ y .y as above and so the conditional construct

if E1 then E2 else E3 becomes E1E2E3 .

For clarity it is better to write the right hand side above as

condE1 E2 E3 where cond = λ x . λ y . λ z .x y z

to distinguish it from the more standard use of application. (The fact that con-
ditional composition becomes application is an accident arising from our choice of
representation of the booleans. The use of the cond connective makes this deci-
sion less crucial by modularising it into this one place: a different representation of
booleans could be matched by a different cond.)
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Thus the only things left to define are the various ‘standard’ functions of a
programming language such as +, −, ×, /, =, ≤ and and. The boolean combinators
have already been discussed above, as have the successor and addition functions.
We define two more here before leaving the rest as an exercise to the reader.

Rather than define full equality immediately it is useful to define first a test
for equality with 0. This is quite simply done as follows:

iszero = λn.n(λ x .KI )K .

When applied to a Church numeral, this function returns K or KI depending on
whether or not the numeral is 0. (The definition of the full equality over numerals
is dealt with in Exercise 7.1.2.)

The predecessor function is much trickier to define than the successor func-
tion. (The predecessor function maps n + 1 to n and 0 to 0.) Consider the combi-
nator P defined to be

λ p.cond(iszero (fst p))(pair (succ (fst p)) (snd p))
(pair (fst p) (succ (snd p)))

This is a function which, when given a pair of numerals, tests the first for equality
with 0. If it is not zero it returns the same pair with the successor function applied
to the second component. If it is zero, it returns the same pair with the successor
function applied to the first component. This allows us to define

pred = λn.snd(n P (pair 0 0))

since the result of applying P n + 1 times to pair 0 0 is pair1n.
See the exercises for ways in which these functions can be used to build up

the rest of the standard functions.

Exercises

7.1.1 Reduce each of the following λ-expressions as far as possible or reasonable.
In which of the expressions does the order of reduction make any difference?
Which of the expressions has a normal form?

(i) (λ x . λ y .yx )(λ x .yx )
(ii) (λ x . λ y .xyx )(λ x . λ y .xyx )
(iii) (λ y . λ x .xyx )z (λ y . λ x .xyx )
(iv) (λ y . λ x .x (xy))(λ y .yz )(λ x .xx )
(v) (λ x .xx )(λ x .yxxx )
(vi) (λ x .xx )(λ x .y(xxx ))
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(vii) (λ z . λ t .tz )((λ y . λ x .xyx )z (λ y . λ x .xyx ))(λ z . λ t .t)

7.1.2 Recall our definitions of successor and addition over the Church numerals.
Find λ-expressions for multiplication (times) and exponentiation (exp) so
that

timesn m cnv n ×m
expn m cnv nm

Now use the pred function to define a subtraction function minus so that
minusnm = n −m or 0 depending on whether m ≤ n or not. By using
pred or otherwise, define a function that tests for equality between arbitrary
Church numerals.

7.1.3 Find expressions using only S ,K , I which convert to the following

(i) λ x . λ y . λ z .y
(ii) (λ x .xx )(λ x .xx ) .
(iii) λ x . λ y .x (xy)

7.1.4 Let

Y0 = λ f .(λ x .f (xx ))(λ x .f (xx )), and

G = λ y . λ f .f (yf ) .

Inductively define Yn+1 = Yn G (n ≥ 0).

7.1.5 Verify that, for each λ-expression E , the λ-expression

Y E = λ f .(λ y . λ x .f (xyx ))E (λ y . λ x .f (xyx ))

is a fixed point operator (i.e. Y E f cnv f (Y E f )).

7.1.6 Show that the combinator λ e.e C 4
3 S is adequate in the same sense as W ,

namely that every λ-expression can be re-written using only it, free identifiers
and application.

7.1.7 Suggest a way of replacing the representation of natural numbers (via Church
numerals) with a representation of all integers. Define some arithmetic and
comparison operators over this new class.

7.2 The semantics of the lambda calculusc

It would appear that every object in the pure λ-calculus is a function (after all, we
are at liberty to apply any expression to any other). If we take this philosophy as
the basis of our semantics it leads to the domain equation D = D → D. We have
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already seen, in Section 5.2, that this equation has a trivial natural solution, and
that one needs to go to special lengths to get non-trivial solutions. Of course, the
reason this happens is that there is really no good reason for wanting to tell two
objects apart in a language where all we are told is that every program is a function
from programs to programs, because it is perfectly consistent to believe that there
is only one program value: a representation x of a function which, when given x
as argument, returns x . Any non-trivial model must result from imposing some
distinctions between λ-expressions, and then using these to discriminate between
the others. (These distinctions must necessarily have their origin outside the basic
philosophy that the value of a λ-expression is a function from the values of λ-
expressions to themselves.)

We will adopt a slightly different philosophy of what λ-expressions can be.
We do not admit that every expression in the pure λ-calculus can properly be called
a function. Consider for example the expression

(λ x .xx )(λ x .xx ) .

When we try to apply this to something else we just go straight down an infinite
loop: the argument never even gets looked at. If we were in a λ-calculus with atoms,
we would go down exactly the same loop if we tried to evaluate this expression as
an integer; it would not produce the ‘error’ value that one would expect if one tried
to evaluate a function as an integer. We take the view that an infinite loop should
no more be regarded as a function than as an integer: a λ-expression should not be
considered to be a function unless it can demonstrate that it is one (by conversion
to the form λ x .E so that it can actually use an argument). Note also that in a
λ-calculus with atoms, even though we would probably not choose to regard 3 as a
function, there is nothing to prevent us writing an expression like 3(λ x .x ): thus it
is sometimes reasonable not to regard an object as a function, even though it can
be applied like one. We expect that looping expression above will be identified with
the minimal element of the domain, because it can prove nothing about itself at all.

This gives us a natural reason for wanting to distinguish between two objects.
(Is an object a function, or not?) This philosophy leads us to the domain equation

D = (D → D)↑

Every object is either ∅ (because it cannot be demonstrated to be a function) or is
a function from the domain to itself. We have seen that the element set of the only
solution to this equation is infinite. Thus a pleasant side-effect of our philosophy
is that we naturally get an interesting mathematical model. We will see later that
the natural semantics for the λ-calculus in this domain ties in very well with this
philosophy.
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Perhaps the best reason to use this domain is that it is much closer to what is
required for modelling real functional languages, since as in the case of a λ-calculus
with atoms, the domain will have to be extended to handle non-functional types.
The evaluation/reduction strategies of such languages (especially ones with non-
lazy semantics) tie in much better with the philosophy of D = (D → D)↑ than
that of D = (D → D.

It is this choice of semantic model which forces us to abandon η-conversion,
for we wish to distinguish

E1 = (λ x .xx )(λ x .xx )

(which is not a function) from

E2 = λ y .(λ x .xx )(λ x .xx )y

(which is).
Now that we have decided on this philosophy for the semantics of the λ-

calculus, the definitions of the semantic domains and functions are straightforward.
Semantic Domains

ε, δ ∈ | D | where D = (D → D)↑

ρ ∈ U = Ide →| D | (environments)

We will, in defining and analysing the semantics, frequently make use of the fact
that D is the solution to this equation. Define 〈A, Con,`〉 = D and 〈A′, Con′,`′
〉 = D → D, so that we have notation for the token sets etc. of these systems, for
use in the rest of this section.

Semantic Function

E : Exp → U →| D |

Semantics

E [[x ]]ρ = ρ[[x ]]

E [[E1 E2]]ρ = apply(E [[E1]]ρ)(E [[E2]]ρ)
where apply ε δ = {a ∈ A | ∃X ⊆fin δ. 〈X , a〉 ε}

E [[λ x .E ]]ρ = ι↑({〈X , a〉 | X ∈ Con ∧ a ∈ E [[E ]]ρ[X /x ]})

The semantics of application and abstraction are exactly what we might have ex-
pected from the construction of our domain. apply is a function which takes two
elements of | D | and ‘applies’ the first to the second (ε to δ, say). To do this it
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sees what tokens it can deduce under the approximable mapping ε from the finite
subsets of δ. Note that because ε ∈| (D → D)↑ | rather than | D → D | the tokens
of ε need to be ‘projected’ before they can be applied: 〈X , a〉 ε is equivalent to
〈X , a〉 ∈ π↑(ε). Notice that in the case where ε = ∅ (the minimal element of | D |,
the only element that, since it is not in the lifted part of the domain, fails to be a
‘function’), we have apply ε δ = ∅. Since we are to identify expressions which loop
endlessly in an effort to prove they are functions with ∅, this is just what we would
expect: if the evaluation of E1 loops before it has taken its argument there is no
way in which the evaluation of E1 E2 can fail to loop.

Notice that any abstraction is automatically given semantics in the lifted
part of the domain: this is because such expressions are demonstrably functions.
To compute the value as an approximable mapping of an abstraction, we need to
see what we can deduce from each finite consistent set X of tokens. This is done
by evaluating the body of the abstraction with the closure of X substituted for the
identifier of the abstraction.

7.2.1 theorem

For every E ∈ Exp, E [[E ]] is a well-defined continuous function from U to | D |.

proof

We use structural induction on E ∈ Exp.
E [[x ]] is well-defined since, for each ρ ∈ U , E [[x ]]ρ = ρ[[x ]] which is in | D | by

definition of U . If ∆ ⊆ U is directed then, if ρ∗ =
⊔

∆, we have

ρ∗[[y ]] =
⋃

ρ∈∆ ρ[[y ]]

for each y ∈ Ide. Thus⋃
ρ∈∆ E [[x ]]ρ =

⋃
ρ∈∆ ρ[[x ]] = ρ∗[[x ]] = E [[x ]]ρ∗ .

So E [[x ]] is continuous.
As the main step in proving the result for the E1 E2 clause we will prove that

apply is well-defined and continuous. So suppose that ε, δ ∈| D |. If {a1, a2, . . . , an} ⊆fin

apply ε δ then we can find X1,X2, . . . ,Xn ⊆fin δ such that 〈Xi , ai〉 ε for each i . But
then X ∗ =

⋃n
i=1 Xi ∈ Con (as δ is consistent), so the consistency relation of the

function space constructor tells us {a1, a2, . . . , an} ∈ Con (consistent information
in. consistent information out).

For deductive closure, suppose X = {a1, a2, ..., an} ⊆fin apply ε δ and X ` b.
Then we can find Xi and X ∗ exactly as above. In the information system D → D
we then have

{〈X1, a1〉, . . . , 〈Xn , an〉} `′ 〈X ∗, b〉, since {ai | X ∗ ` Xi} ` b.
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Hence 〈X ∗, b〉 ε as ε is a (deductively closed) element of | D |=| (D → D)↑ |. Since
by construction X ∗ ⊆fin δ, we thus have b ∈ apply ε δ as required. This completes
our proof that apply ε δ is well-defined.

We will now show that apply is continuous (it is easy to see that it is mono-
tonic). By virtue of what we know about continuous functions on cpos it will be
enough to show that it is continuous in each argument separately, viz. if D is any
directed subset of | D | and ε ∈| D |, then

apply ε (
⋃
D) =

⋃
δ∈D

apply ε δ and

apply (
⋃
D) ε =

⋃
δ∈D

apply δ ε .

In the first of these equations we know, by monotonicity, that the right hand side
is a subset of the left hand side. So suppose b is an element of the left hand side.
Then there is some X such that 〈X , b〉 ε and X ⊆fin

⋃
D. Hence by the usual

directed set argument there is some δ∗ ∈ D with X ⊆ δ∗. But then b ∈ apply ε δ∗,
so that b is in the right hand side as required. The proof of continuity in the first
argument is even easier and is omitted.

The well-definedness of E [[E1 E2]] now follows trivially by induction. Its con-
tinuity follows since, if ∆ ⊆ U is directed and ρ∗ =

⊔
∆, we have

E [[E1 E2]]ρ∗ = apply(E [[E1]]ρ∗)(E [[E2]]ρ∗)

= apply(
⋃

ρ∈∆

E [[E1]]ρ)(
⋃

ρ∈∆

E [[E2]]ρ) by induction

=
⋃

ρ1,ρ2∈∆

apply(E [[E1]]ρ1)(E [[E2]]ρ2) continuity of apply

=
⋃

ρ∈∆

apply(E [[E1]]ρ)(E [[E2]]ρ)
by monotonicity and di-
rectedness, for if ρ1, ρ2 ∈
∆, there is ρ ∈ ∆ with
E [[E1]]ρj ⊆ E [[E1]]ρ, j ∈
{1, 2}

=
⋃

ρ∈∆

E [[E1 E2]]ρ .

We now turn to the case of λ x .E . Recall that E [[λ x .E ]]ρ = ι↑(φ(ρ)), where

φ(ρ) = {〈X , a〉 | X ∈ Con ∧ a ∈ E [[E ]]ρ[X /x ]} .

In view of the well-definedness and continuity of the injection ι↑ it will be enough
for this clause to prove that φ is a well-defined and continuous map from U to
| D → D |.
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Suppose that ρ ∈ U . To show that φ(ρ) is consistent it will be enough to
show that, whenever {〈X1, a1〉, . . . , 〈Xn , an〉} ⊆ φ(ρ) and X ∗ =

⋃n
i=1 Xi ∈ Con,

we have {a1, . . . , an} ∈ Con also. By induction we know that E [[E ]] is monotonic.
Hence, since by assumption ai ∈ E [[E ]]ρ[Xi/x ] for each i , we have ai ∈ E [[E ]]ρ[X

∗
/x ]

for all i . Thus {a1, . . . , an} ∈ Con by the well-definedness (by induction) of E [[E ]].
If {〈X1, a1〉, . . . , 〈Xn , an〉} ⊆ φ(ρ) and {〈X1, a1〉, . . . , 〈Xn , an〉} `′ 〈Y , b〉

then (by definition of `′) {ai | Y ` Xi} ` b. But Y ` Xi implies that Y ⊇ Xi ,
so as in the last paragraph we have ai ∈ E [[E ]]ρ[Y /x ] for each such i by mono-
tonicity of E [[E ]]. Hence b ∈ E [[E ]]ρ[Y /x ] by the deductive closure (by induction)
of E [[E ]]ρ[Y /x ]. Thus 〈Y , b〉 ∈ φ(ρ), proving that this set is deductively closed,
completing the proof that φ is well-defined.

It is easy to show by induction that φ is monotonic. Now suppose that
∆ ⊆ U is directed, and that ρ∗ =

⊔
∆.

φ(ρ∗) = {〈X , a〉 | X ∈ Con ∧ a ∈ E [[E ]]ρ∗[X /x ]}

by definition of φ

= {〈X , a〉 | X ∈ Con ∧ a ∈
⋃

ρ∈∆

E [[E ]]ρ[X /x ]}

as {ρ[X /x ] | ρ ∈ ∆} is directed with limit
ρ∗[X /x ], and E [[E ]] is continuous

=
⋃

ρ∈∆

{〈X , a〉 | X ∈ Con ∧ a ∈ E [[E ]]ρ[X /x ]}

=
⋃

ρ∈∆

φ(ρ)

Hence φ is continuous.
This completes the proof of the λ x .E case of Theorem 7.2.1. This completes

the proof of the Theorem.

Now that we have given the λ-calculus a semantics we must check that it has
all the properties that we expect: for example we would like α- or β-conversion to
preserve the semantics of a λ-expression. The following pair of lemmas show that
the semantics is well-behaved in respect of free identifiers and substitution.

7.2.2 lemma

If E ∈ Exp and x ∈ Ide does not appear free in E , then

E [[E ]]ρ = E [[E ]]ρ[δ/x ]

for all ρ ∈ U and δ ∈| D |.
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proof

This is a straightforward structural induction and is left as an exercise.

7.2.3 lemma (the substitution lemma)

If E1,E2 ∈ Exp, x ∈ Ide and ρ ∈ U , then

E [[[E1/x ]E2]]ρ = E [[E2]]ρ[E [[E1]]ρ/x ] .

proof

This result is proved by induction on the depth of the syntax tree of E2, for all E1, x
and ρ simultaneously. Specifically we will prove that the result holds for particular
E1,E2, x and ρ given that it holds for all E ′

2 simpler than E2 for every combination
of E ′

1, x
′ and ρ′.

We use induction on the depth of syntax trees rather than structural in-
duction for exactly the same reason as was alluded to earlier when discussing the
well definedness of substitution: we sometimes have to change the names of bound
identifiers.

We abbreviate ρ[E [[E1]]ρ/x ] by ρ∗.
• If E2 = x , then [E1/x ]E2 = E1, so that

E [[[E1/x ]E2]]ρ = E [[E1]]ρ = ρ∗[[x ]] = E [[E2]]ρ∗

as desired.
• If E2 = y (where y 6= x ), then [E1/x ]E2 = y , so that

E [[[E1/x ]E2]]ρ = E [[y ]]ρ = ρ[[y ]] = ρ∗[[y ]] = E [[E2]]ρ∗ .

• If E2 = E3 E4, then [E1/x ]E2 = ([E1/x ]E3)([E1/x ]E4), so that

E [[[E1/x ]E2]]ρ = E [[([E1/x ]E3)([E1/x ]E4)]]ρ

= apply(E [[[E1/x ]E3]]ρ)(E [[[E1/x ]E4]]ρ)

= apply(E [[E3]]ρ∗)(E [[E4]]ρ∗) by induction

= E [[E3 E4]]ρ∗ as required.

• If E2 = λ x .E then [E1/x ]E2 = E2. The result then follows immediately from
Lemma 7.2.2: E [[E2]]ρ∗ = E [[E2]]ρ because x is not free in E2.
• If E2 = λ y .E , where x 6= y , there are two cases to consider. The first is when
[E1/x ]E2 = λ y .[E1/x ]E . In this case either y is not free in E1 or x is not free in E .



192

In the first of these subcases, for every X ∈ Con we have

E [[[E1/x ]E ]]ρ[X /y ] = E [[E ]]ρ[X /y ][E [[E1]]ρ[X /y ]/x ] by induction

= E [[E ]]ρ[X /y ][E [[E1]]ρ/x ] as y is not free in E1

= E [[E ]]ρ∗[X /y ] .

In the second subcase

E [[[E1/x ]E ]]ρ[X /y ] = E [[E ]]ρ[X /y ][E [[E1]]ρ[X /y ]/x ] by induction

= E [[E ]]ρ∗[X /y ] for, since x is not free in E , we
may alter its value in ρ as we
please.

Hence in either subcase

E [[[E1/x ]E2]]ρ = E [[λ y .[E1/x ]E ]]ρ

= ι↑({〈X , a〉 | X ∈ Con ∧ a ∈ E [[[E1/x ]E ]]ρ[X /y ]})

= ι↑({〈X , a〉 | X ∈ Con ∧ a ∈ E [[E ]]ρ∗[X /y ]})

= E [[λ y .E ]]ρ∗ as desired.

The other case is when [E1/x ]E2 = λ z .[E1/x ][z/y ]E , where z is an identifier
chosen so that it appears neither in λ x .E nor E1. Whenever X ∈ Con, we then
have

E [[[E1/x ][z/y ]E ]]ρ[X /z ]

= E [[[z/y ]E ]]ρ[X /z ][(E [[E1]]ρ[X /z ])/x ] by induction

= E [[[z/y ]E ]]ρ[X /z ][E [[E1]]ρ/x ] z not free in E1

= E [[[z/y ]E ]]ρ∗[X /z ] as z 6= x

= E [[E ]]ρ∗[X /z ][(E [[z ]]ρ∗[X /z ])/y ] by induction

= E [[E ]]ρ∗[X /z ][X /y ]

= E [[E ]]ρ∗[X /y ] z not free in E .
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Hence

E [[[E1/x ]E2]]ρ = E [[λ z .[E1/x ][z/y ]E ]]ρ

= ι↑({〈X , a〉 | X ∈ Con ∧ a ∈ E [[[E1/x ][z/y ]E ]]ρ[X /z ]})

= ι↑({〈X , a〉 | X ∈ Con ∧ a ∈ E [[E ]]ρ∗[X /y ]})

= E [[λ y .E ]]ρ∗ as desired.

This completes the proof of Lemma 7.2.3.

Lemma 7.2.3 is very important, for it shows that the effect of syntactic sub-
stitution (as practiced in the conversion rules) coincides exactly with the technique
of substituting semantic values into the environment which was used in defining the
semantics of lambda-abstraction. It can be regarded as a justification for our rules
for syntactic substitution.

The following Theorem, which shows that conversion preserves semantics,
establishes that our semantics does provide a respectable model for our version of
the λ-calculus. Formally it shows that the conversion rules are sound with respect
to our semantics.

7.2.4 theorem

If E1,E2 ∈ Exp are such that E1 cnv E2, then E [[E1]] = E [[E2]].

proof

Our semantics is denotational, in that the semantic value of a compound expression
is determined from the values of its parts. Hence if E is a compound expression,
one of whose syntactic subcomponents is E ′, we will not change the semantic value
of E if we replace E ′ by an expression E ′′ such that E [[E ′]] = E [[E ′′]].

This observation means that in order to prove Theorem 7.2.4 it will be enough
to prove the validity of α- and β-conversion separately, for recall that E1 cnv E2 if
and only if there exist E∗

1 = E1,E∗
2 , . . . ,E

∗
n = E2 such that each E∗

r+1 (1 ≤ r ≤
n − 1) is obtained from E∗

r by α- or β-conversion either at the top level or of some
subcomponent.

α-conversion We must show that, if y is not free in E , then for all ρ ∈ U

E [[λ x .E ]]ρ = E [[λ y .[y/x ]E ]]ρ .
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Whenever X ∈ Con we have

E [[[y/x ]E ]]ρ[X /y ] = E [[E ]]ρ[X /y ][(E [[y ]]ρ[X /y ])/x ] by Lemma 7.2.3

= E [[E ]]ρ[X /y ][X /x ]

= E [[E ]]ρ[X /x ] as y is not free in E .

Hence

E [[λ y .[y/x ]E ]]ρ = ι↑({〈X , a〉 | X ∈ Con ∧ a ∈ E [[[y/x ]E ]]ρ[X /y ]})

= ι↑({〈X , a〉 | X ∈ Con ∧ a ∈ E [[E ]]ρ[X /x ]})

= E [[λ x .E ]]ρ as desired.

β-conversion We must show that, for all E ,E1 ∈ Exp, x ∈ Ide and ρ ∈ U ,

E [[(λ x .E )E1]]ρ = E [[[E1/x ]E ]]ρ .

This is done as follows:

E [[(λ x .E )E1]]ρ = {a | ∃X ⊆fin E [[E1]]ρ. a ∈ E [[E ]]ρ[X /x ]}

=
⋃
{E [[E ]]ρ[X /x ] | X ⊆fin E [[E1]]ρ}

= E [[E ]]ρ[E [[E1]]ρ/x ] as {ρ[X /x ] | X ⊆fin E [[E1]]ρ}
is directed with limit ρ[E [[E1]]ρ/x ],
and E [[E ]] is continuous by Theo-
rem 7.2.1

= E [[[E1/x ]E ]]ρ by Lemma 7.2.3.

This completes the proof of Theorem 7.2.4.
It is perhaps worth noting that not only does that this Theorem allow us

to identify many pairs of λ-expressions which are identified by E , but it also helps
to show that many pairs are distinct. The validity of β-conversion means that a
λ-abstraction really does ‘mean’ the function which it seeks to represent.

7.2.5 theorem

If E1 and E2 are two λ-expressions of the form

λ x1. λ x2. . . . λ xn .E

where E is a λ-expression with no abstractions, then E1 and E2 are semantically
equivalent if and only if they are α-convertible.
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proof

We first prove this result for the case when both E1 and E2 are Church numerals
(expressions of the form λ f . λ x .f (f (. . . f (fx ) . . .)) ). Clearly any pair of non-α-
convertible numerals can assumed to be of the form

E1 = λ f . λ x .f (f (. . . f (fx ) . . .)) (n f ’s), and

E2 = λ f . λ x .f (f (. . . f (fx ) . . .)) (m f ’s)

where n < m.
Assume for a contradiction that E [[E1]] = E [[E2]]. We then know that E [[E1E E∗]]ρ =

E [[E2E E∗]]ρ for all λ-expressions E ,E∗ and environments ρ. Now we know that
the domain | D | contains the object ∅ which is distinct from any function. Let ρ
be any environment such that ρ[[y ]] = ∅, and let

E = λ x .xy and

E∗ = λ z1. λ z2. . . . λ zm .zm .

It is not very hard (using repeated β-reduction) to show that

E1E E∗ cnv λ zn+1. . . . λ zm .zm

and E2E E∗ cnv y .

But E [[y ]]ρ 6= E [[λ zn+1. . . . λ zm .zm ]]ρ (the former is ∅, the latter is a function),
contradicting our assumption that E [[E1]] = E [[E2]].

Next we give the proof for expressions with no λ-abstractions – in other
words just combinations of identifiers. Given two such combinations we must find an
environment which distinguishes them. This is not as easy as it looks, particularly
as a single identifier can appear arbitrarily often in one expression. What we will do
is take advantage of the result proved above by associating each distinct expression
with a different Church numeral. The technique of associating expressions with
numbers is known as Gödel numbering, after its use in the proof of Gödel’s famous
incompleteness theorem. In our case one can do it by associating a different prime
g(x ) (other than 2 and 3) with each x ∈ Ide. (If for some reason there are more
than countably many identifiers one cannot do this, but to tell two expressions E1

and E2 apart – which is all we are trying to do – it is only necessary to associate a
different prime with each of the finitely many identifiers in them.) The function g
is then extended to the set of all λ-free expressions by setting

g(E1E2) = 2g(E1) × 3g(E2) .
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Because of the unique factorisation of natural numbers, the exact syntax of any
such λ-expression can be recovered from its Gödel number. It will thus be enough
to prove this case of the theorem if we can find an expression E and an environment
ρ such that the semantic value of E E ′ is, for any λ-free E ′, the same as the Church
numeral corresponding to E ′s Gödel number. For since the Gödel numbers of all
expressions are different, it follows from the fact that all Church numerals have
different values that all E ′ have different values.

To do this we will find a series of combinators E (n), and a specific one X such
that X E (n) cnv n (the nth Church numeral) for all n and E (n)E (m) cnv E (2n3m)
for all n, m. For then we can choose ρ to be the environment where each x is sent to
the semantic value of E (g(x )), and it is clear that the value of E ′ in ρ will be that
of the E (g(E ′)). Then the value of E E ′ will be the same as the g(E ′)th Church
numeral, as required.

The precise function f (n,m) = 2n3m is largely irrelevant here; we know from
the discussion of Church numerals in the last section that there is a λ expression F
such that

F n m = 2n3m

for all n,m. What in fact we will do is construct expressions E and EF (n) such
that, if f is any binary function on N represented by the function F on Church
numerals, then E EF (n) cnv n and

EF (n)EF (m) cnv EF (f n m) .

One pair of definitions that works is

EF (n) = λ y .y CF n and X = λ x .x (λ y . λ z .z )

where

CF = λ x . λ y . λ z . λ t .t x (F z y) .

To check this is just routine calculation. (Actually there is nothing in the definition
of the EF (n) which relies on n being a Church numeral or F being a function of
them. In fact these combinators show that it is possible to ‘calculate’ an arbitrary
binary function of λ-expressions by application.)

Thus we have proved our result for λ-free expressions. It is easy now to
complete the proof. First we observe that no two expressions with different numbers
of leading λs can ever be be equivalent, for if n < m and E1, E2 are λ-free then for
any identifier x

E [[(λ x1. . . . λ xn .E1) x . . . x ]]ρ⊥ = ∅
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while

E [[(λ y1. . . . λ ym .E2) x . . . x ]]ρ⊥ 6= ∅

where in each case there are n x s and ρ⊥ is the environment mapping all identifiers
to ∅.

Secondly, if λ x1. . . . λ xn .E1 and λ y1. . . . λ yn .E2 are two expressions with the
same number of λs, and z1, . . . , zn are distinct identifiers not appearing in either,
then it is clear that the two expressions are α-convertible if and only if the natural
β-reductions of

(λ x1. . . . λ xn .E1) z1 . . . zn and (λ y1. . . . λ yn .E2) z1 . . . zn .

are the same. But we know by the result about λ-free expressions that if these
expressions are different (i.e., the original expressions are not α-convertible) then
they, and hence the original expressions, have different values.

Unfortunately Theorem 7.2.5 cannot be strengthened to show that every
pair of distinct normal forms are semantically distinct (see Exercises). This can be
regarded as a disadvantage of our non-standard semantics of the λ-calculus, for a
full-strength theorem can be proved in the classical models with η-conversion.

Remember that there are λ-expressions Y ∗ with the property that, if E is any
λ-expression, then Y ∗E cnv E (Y ∗E ). Such expressions thus appear to construct
fixed points of the functions represented by arbitrary λ-expressions. Theorem 7.2.4
tells us that this really is the case, in that

E [[Y ∗E ]]ρ = apply(E [[E ]]ρ)(E [[Y ∗E ]]ρ)

for all such Y ∗ and any E ∈ Exp and ρ ∈ Env . Thus E [[Y ∗E ]]ρ is always a fixed
point of the function apply(E [[E ]]ρ). It might initially be surprising to realise that
the semantic value of every λ-expression has some fixed point, until we remember
that approximable mappings represent continuous functions, and that continuous
functions on cpos such as | D | always have fixed points. Nevertheless, fixed point
operators are one of the most intriguing features of the λ-calculus.

We will consider one fixed point combinator, the syntactically simplest one,
in detail. Remember that we defined

Y = λ f .(λ x .f (xx ))(λ x .f (xx )) .

It is elementary to show that Yf cnv f (Yf ), so that Y is indeed a fixed point
combinator. It is interesting to ask just which fixed point of a given λ-expression
Y picks out, since often a function will have many fixed points (for example λ x .x
will fix every point). An answer to this question will be important when we use a
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Y -like construct to imitate recursion. (Remember that we did this in our Lisp-like
language, when we showed that recursive define was not necessary when defining
objects recursively.)

If φ :| D |→| D | is a continuous function, the fixed point fixφ we already
know about is given by

fixφ =
⋃∞

n=0 φ
n(∅) .

Remember that fixφ ⊆ z for all fixed points z of φ; it is the least fixed point. If
we think of fixφ for a moment as a set of tokens, we see that it is the set of all
tokens that can be finitely demonstrated to be in any fixed point z of φ: clearly
∅ ⊆ z , and if a ∈ φn(∅) then by continuity there is some finite subset X of φn(∅)
such that a ∈ φ(X ). fix is thus a fixed point operator that ties in particularly well
with the idea that a token is something which is finitely observable, for it is possible
to ‘observe’ each of the tokens in z = fixφ simply by postulating that z is a fixed
point of φ.

In fact it will turn out that Y produces exactly the same fixed point as fix.
This is a very fortunate result, for it shows that the natural semantic method of
finding fixed points coincides with the most natural syntactic method. Before we
can proceed to the proof of this interesting result it is necessary to analyse our
semantic domain in a little more detail than we have done hitherto.

Definition
Recall that our domain D = 〈A, Con,`〉 is the least upper bound (under �) of the
chain of information systems Dn = 〈An ,Conn ,`n〉, where

D0 = , and

Dn+1 = (Dn → Dn)↑

Whenever ε ∈| D | and n ∈ N, define

ε↓n = ε ∩An

where deductive closure is taken in D. ε↓n is just the canonical projection of ε into
the natural embedding of the domain | Dn | within | D |; it is just the set of all
information deducible about ε from its level-n tokens. Observe that 〈ε↓n | n ∈ N〉
is a chain in | D | with union ε and that ε↓0= ∅.

Each level-n +1 token (other than the minimal lifted token, which conveys
no functional information) has the form 〈old, 〈X , a〉〉, where X is a consistent set of
level-n tokens and a is a level-n token. It means ‘from the information X about the
argument, deduce a about the result’. Thus, level-n+1 tokens tell us how level-n
tokens relate under a function, but convey no information about how the others
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relate: in particular they tell us nothing about the relationships of those level-n+1
tokens that are not also level-n tokens. This is the intuition behind the following
result.

7.2.6 lemma

If ε, δ ∈| D | and n ∈ N, then apply ε↓n+1 δ = (apply ε↓n+1 δ↓n)↓n .

proof

Clearly the right hand side above is a subset of the left hand side. Suppose, then,
that a is an element of the left hand side. This means that there is some X ⊆fin δ

such that 〈X , a〉 ε↓n+1.
By definition of ε↓n+1 it is possible to find 〈X1, b1〉, . . . , 〈Xk , bk 〉 ε ∩ An+1

such that {〈X1, b1〉, . . . , 〈Xk , bk 〉} `′ 〈X , a〉, or in other words, such that {bi | X `
Xi} ` a.

Suppose i is such that X ` Xi . Then Xi ⊆ δ as X ⊆ δ and δ is deductively
closed. Since 〈Xi , bi〉 ∈ An+1 we know that (Xi ∪ {bi}) ⊆ An . Hence Xi ⊆ δ↓n ,
and so bi ∈ (apply ε↓n+1 δ↓n) ∩An .

But {bi | X ` Xi} ` a, so we now have a ∈ (apply ε↓n+1 δ ↓n) ↓n by
definition of ↓n , as required. Hence the left hand side in the statement of this
lemma is a subset of the right hand side, completing its proof.

We are now in a position to prove our result about Y . The above Lemma,
while it is crucial in this proof, is actually of much wider interest.

7.2.7 theorem

Suppose that δ ∈| D | represents the function φ :| D |→| D | (i.e. φ = apply δ).
Then, for each ρ ∈ U ,

E [[Yf ]]ρ[δ/f ] =
⋃∞

n=0 φ
n(∅) (= fixφ) .

proof

For brevity denote E [[Yf ]]ρ[δ/f ] by x , fixφ by y , and ρ[δ/f ] by ρ′.
It is a straightforward consequence of the validity of β-conversion that

x = applyδx = φ(x ) ,

so x is a fixed point of φ. Hence y ⊆ x , for y is the least fixed point of φ. It will
therefore suffice to prove that x ⊆ y .

Now x = apply ε ε, where ε = E [[λ x .f (xx )]]ρ′. Because apply is continuous



200

we know that

apply ε ε =
⋃∞

n=0 apply ε↓n ε .

Claim that, for each n, apply ε↓n ε ⊆ φn(∅). This is trivially true when n = 0, for
apply ∅ ε = ∅. Assume that it holds for n. Then

apply ε↓n+1 ε = (apply ε↓n+1 ε↓n)↓n by Lemma 7.2.6

⊆ apply ε ε↓n monotonicity of apply

⊆ apply(E [[λ x .f (xx )]]ρ′) ε↓n by definition of ε

⊆ E [[f (xx )]]ρ′[ε↓n /x ] as β-conversion is valid

⊆ apply δ (apply ε↓n ε↓n)

⊆ φ(apply ε↓n ε) by monotonicity and
φ = apply δ

⊆ φ(φn(∅)) = φn+1(∅) by induction, as required.

The result follows immediately.

An immediate corollary to this result is that E = (λ x .xx )(λ x .xx ), the
simplest ‘looping’ λ-expression, is mapped by E to ∅ (in any environment), for
Y (λ x .x ) cnv E , and clearly the least fixed point of the identity function is ∅. This
is a pleasing result, for it is precisely the value we wanted for a λ-expression that
could never show that it was a function. In fact all λ-expressions that cannot show
themselves to be functions (or potential functions in a simple way) map to ∅, but
this is a much harder result and is delayed to the next section (Theorem 7.3.?).

We motivated the model D = (D → D)↑ by the idea that a λ-expression
should not be considered a function unless it could show itself to be one. The clearest
definition of λ-expression E ‘showing itself to be a function’ is for it to be possible
to convert E into λ x .E ′ for some x and E ′ – for in this form E demonstrably takes
an argument. We already know, by the semantic validity of the conversion rules,
that in this case E [[E ]]ρ = E [[λ x .E ′]]ρ which is in the lifted part of | D |.

Thus, expressions convertible to abstractions are never mapped to ∅. There
is another class which is sometimes (i.e., for some environments ρ) not mapped to
∅. These are ones which are convertible to something of the form

x E1E2 . . .En

(i.e., a free identifier applied to any list of expressions). For in any environment
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where x is mapped to the value of an expression of the form

λ y1. . . . λ yn+1.E ′ ,

the original expression is equivalent to an abstraction (since x is not supplied with
enough arguments to use up all its λs).

These two forms into which we might convert an expression are conveniently
grouped together under the following definition.

Definition

Say that a λ-expression is in weak head normal form (whnf) if it has either of the
forms

λ x .E

x E1E2 . . .En

or in other words, if it is a λ-abstraction or the application of a free identifier to a
number of λ-expressions.

No λ-expression that is convertible to whnf is semantically equivalent to
the looping expression (λ x .xx )(λ x .xx ). On the other hand, we might reasonably
hope that a λ-expression that cannot be converted to one in whnf is equivalent to
(λ x .xx )(λ x .xx ), since it neither shows that it can take an argument directly nor
gives us the opportunity to make a substitution for a free identifier as above. This
converse is in fact true, providing perhaps the clearest demonstration that we have
lived up to earlier aspirations.

The following result, which establishes this, requires a rather difficult proof.
The best way of presenting it is as a corollary to a general congruence between
our denotational semantics and an operational semantics. We will do this later, in
Chapter ???11. Among other corollaries will be the result that not only Y , but all
fixed point combinators, are semantically equivalent to fix.

7.2.8 theorem

If E ∈ Exp, then E [[E ]]ρ = ∅ for all ρ ∈ U if and only if E cannot be reduced to
whnf.

Exercises

7.2.1 Prove Lemma 3.2: that if x is not free in the λ-expression E then E [[E ]]ρ =
E [[E ]]ρ[δ/x ] for all ρ ∈ U and δ ∈| D |.
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∗7.2.2 Find a pair of λ-expressions E1 and E2 which have distinct (i.e. it is impos-
sible to get from one to the other by α-conversion) normal forms, but such
that E [[E1]] = E [[E2]].
[Hint: such a pair of normal forms are likely to be η-convertible.]

∗7.2.3 Prove that E [[Y E ]] = E [[Y ]], where Y E is as defined in Exercise 7.1.5.
[Hint: adapt the proof of Theorem 7.3.7 to prove a corresponding result about
Y E .]

7.2.4 Recall the combinator G = λ y . λ f .f (y f ) defined in Exercise 7.1.4. Show
that G X cnv X for a λ-expression X if and only if X f cnv f (i.e., X
is a fixed point combinator). Deduce that Y G is semantically equivalent
to Y , and hence that all the Yn defined in Exercise 7.1.4 are semantically
equivalent.

7.2.5 In Section 5.2 we showed how, by using a nonstandard function space con-
structor 7→, we could create nontrivial domains that were isomorphic to their
function spaces. Indeed, since in general A 7→ B ≡ A → B we know that,
given a solution to A = A 7→ A there is a natural information system iso-
morphism φ from A → A to A. (φ〈X , a〉 = 〈X , a〉 unless X = ∅ and a is
not an ordered pair, in which case φ〈X , a〉 = a.)
One can give a ‘classical’ semantics E ′ to the λ calculus in such a domain,
where one no longer lifts a λ-abstraction but just represents it as a pure
function. One clause is

E ′[[λ x .E ]]ρ = {φ〈X , a〉 | a ∈ E ′[[E ]]ρ[X /x ]} .

(a) Complete this by giving the clauses for application and a single iden-
tifier. Prove that η-conversion is valid in this semantics. (A much more
considerable task, should the reader want one, is to re-prove the substitution
lemma and hence get that α- and β-conversion are still valid.)
(b) Prove an analogue of Lemma 7.2.6 for this semantics and hence, assum-
ing that all conversion rules are valid, prove an analogue of Theorem 7.2.7.
(Be careful with the base case of the main induction.)

7.2.6 Show that, if Dn ⊆ ρ[[y ]] (where Dn is the token set of the nth canonical
approximation to the solution of

D = (D → D)↑

then Dn+1 ⊆ E [[λ x .y ]]ρ. By using this fact and Theorem 7.2.7, construct a
λ-expression E such that

E [[E ]]ρ′ = D for all environments ρ′,
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where D is the set of tokens of D.
What is the value of your expression E under the semantic function E ′ of
Exercise 7.2.5?


