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Abstract

Knowledge graphs, networks of entities and the relations between them, have
emerged as a useful data structure for storing general knowledge. One of the main
ways they are used in the context of machine learning is in knowledge completion
tasks, where various types of models are challenged to find missing links in a
given knowledge graph. Shallow embedding models, simple models that attempt
to learn how to represent entities and relations, have so far been dominant for
knowledge completion tasks in the transductive setting, but are unable to complete
inductive knowledge completion tasks. To ameliorate this, some inductive knowledge
completion models that utilise graph neural networks in unique ways have been
proposed, each with their own advantages and disadvantages.

We propose GraphRE, a new neural model for tackling knowledge completion
tasks in an inductive setting. The GraphRE model works by integrating a shallow
embedding model into the message-passing scheme of a graph neural network using
the shallow model as a tool to transform node representations during message-
passing. We perform transductive and inductive experiments to show that the
GraphRE model is competitive with other state-of-the-art inductive knowledge
completion models despite being more lightweight and foregoing much of the pre-
processing steps taken by many other inductive knowledge completion models. We
also run smaller focused experiments to explore various aspects of the GraphRE
model. These include looking at how the GraphRE model differs from classical
graph neural network models when it comes to picking an optimal aggregation
scheme, exploring a new way the GraphRE model can combine node representations
with those of their neighbourhoods by taking advantage of the structure of its
underlying knowledge graph, and examining the effect dimensionality has on the
performance of the model.
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We begin this thesis by going through some of the major background knowledge

surrounding the topics that will be tackled in this project.

1.1 Motivation

Over the last decade, the once budding field of graph representation learning has

grown from a small niche in the machine learning community to a rich research

landscape with a wide array of useful applications [18]. This development has

been motivated in large part by the ubiquitous nature of graph-structured data.

We find graphs everywhere: social media apps [19], transportation systems [20]

computer networks [21], and even the molecules making up the world around us

[22]. Understanding them and being able to answer complicated questions about

1



2 1.1. Motivation

them could therefore help us uncover innovative solutions to problems in a broad

range of adjacent research areas [23].

With all this in mind, let us unpack briefly what constitutes a graph and why

they are so challenging to work with in certain conditions. A simple graph is a tuple

(V, E) where V is a set of nodes (or points) and E is the set of edges which connect

the nodes together. For example, three points connected together to form a triangle

forms a graph where each side of the triangle is an edge and the three points of the

triangle are nodes. This example graph could be represented in the form:

G = (V, E) where V = {a, b, c}, E = {(a, b), (b, c), (c, a)}

Edges have the potential to additionally come in undirected and directed varieties.

As the names suggest, a directed edge has a direction while an undirected one does

not. This means that, for an undirected edge (a, b), the following holds:

(a, b) = (b, a)

while this would not be the case if (a, b) were a directed edge. If (a, b) were a

directed edge, we would call a the head of the edge and b the tail of the edge.

Having established the concept of a graph, we can now imagine how graphs can

become much more complex and intricate in the extreme. There are currently about

2.9 billion active Facebook users1, if we consider the graph where each of these users is

a node and two users are connected with an edge if they are “friends” on the platform,

it becomes clear how these types of large graphs can quickly get difficult to analyse.

We can impose additional conditions on graphs and the underlying data they

represent to formulate knowledge graphs. Knowledge graphs are a data structure

used to represent graphs made of different entities (nodes) that are connected to

each other through different types of relations [24]. Knowledge graphs can be used

to connect together entities into organised graphs that represent something more

akin to general knowledge, hence their name [24].
1https://datareportal.com/essential-facebook-stats
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In this thesis we will explore a way of analysing knowledge graphs using a new

type of graph neural model that leverages the benefits of simpler, shallower models

and exports those benefits into a more intricate neural space. This new construction

will allow us to answer questions about knowledge graphs that shallower models

are unable to answer. We will then compare this new model with other similar

neural models designed to tackle analogous graph analysis problems.

1.2 Background

We now go through some of the tools and ideas making up the foundation of

the research of this thesis.

1.2.1 Knowledge Graphs

Knowledge graphs are a useful and widespread tool for storing and managing data.

They utilise directed graphs to map relationships between real-world entities and

allow for various tasks like query answering and reasoning [24]. Knowledge graphs

are sets of triples, also known as facts, that each encode the way in which one entity

interacts with another [25]. We will first define in more detail what these triples are

and then give a formal definition of what a knowledge graph is. For the purposes of

this thesis, we will be using the Resource Description Framework (RDF) format

when discussing knowledge graphs and the elements that make them up [26].

We now define formally the concept of a triple. Given a relation r and two

entities c and d, a triple is a tuple (c, r, d). Conventionally, c is the head entity

of the triple and d is the tail entity of the triple. Intuitively, a triple is meant to

represent the fact that c is related to d through relation r.

Triples in general can be thought of as a form of directed edge whose edge type

is given by the relation of the triple and whose head and tail are represented by the

triple’s entities. For example, we can imagine that information about Oxford might

be encoded using triples such as (Alice, type, Student), (Bob, type, Professor), and

(Bob, supervisorOf, Alice) to model the fact that Alice is a student, Bob is a

professor, and Bob is Alice’s supervisor. Because of the way triples can capture
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the way entities interact with one another, we can analogously represent triples

using directed edges and map them all together into a graph [25].

Now that we understand the idea of a triple, we can formally introduce the

concept of a knowledge graph. Given a set of entities E and a set of relations R,

a knowledge graph (KG) K is a set of triples over E and R.

This simple construction can be extended to capture data of a wide variety of

types connected together through many different types of relations, which is why

knowledge graphs are considered to be the most apt data structure for modelling

“general knowledge” and have, for example, been used to try and organise the way

facts are represented in online environments [27], retrieve information [28], model

human languages [29], and enhance recommender systems [30].

While there are many different types of tasks and challenges posed by knowledge

graphs in the context of machine learning, this thesis focuses on the task of knowledge

completion. The goal of models doing knowledge completion tasks is to “complete”

knowledge graphs with connections that they may be missing [31]. Continuing our

previous example regarding information about Oxford, it could be that there exists a

complementary relation “supervisedBy” in addition to the “supervisorOf” relation.

In this case, if a graph only contains the triple (Bob, supervisorOf, Alice) but not

(Alice, supervisedBy, Bob) then a model trained to “complete” that knowledge

graph would ideally suggest that the missing triple be added to the graph. In

this case, the model would have hopefully learned that “supervisedBy” and

“supervisorOf” are inverse relations. These types of connections between relations

are called inference patterns [32]. In general, there are many different ways that

relations can be linked to each other, and we can model these links by defining

various types of inference patterns. We will now list some of the most prominent

types of inference patterns:

• Symmetric relations: A relation r is symmetrical if, for every triple (c, r, d),

the triple (d, r, c) holds.
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• Anti-symmetric relations: A relation r is anti-symmetric if, for every triple

(c, r, d), there should not exist a triple (d, r, c).

• Inverse relations: Given a relation r1, a relation r2 is the inverse relation of r1

if, for every triple (c, r1, d), the triple (d, r2, c) holds and vice versa.

• Composition: Given two relations r1 and r2, a relation r3 composes r1 and r2

if, for every pair of triples (c, r1, d) and (d, r2, t), the triple (c, r3, t) holds.

• Hierarchical relations: Given a relation r1, a relation r2 has a hierarchical

relationship with r1 if, for every triple (c, r1, d), the triple (c, r2, d) holds.

• Intersectional relations: Given two relations r1 and r2, a relation r3 intersects

r1 and r2 if, for every pair of triples (c, r1, d) and (c, r2, d), the triple (c, r3, d)

holds.

• Mutually exclusive relations: Given a relation r1, a relation r2 is mutually

exclusive with r1 if, for every triple (c, r1, d), there should not exist a triple

(c, r2, d).

There can exist other, more complicated types of inference patterns but the

ones listed above tend to represent the majority of the patterns found between

relations in real-world datasets [32].

Neural models described in upcoming sections will be challenged to ideally

identify rule inference patterns in the knowledge graphs they train on. If a particular

model is able to theoretically identify any possible rule inference pattern, the model

is deemed to be fully expressive. While this may sound powerful in the abstract, in

practice fully expressive models do not necessarily perform better than non-fully

expressive ones [7]. For starters, fully expressive models can be more prone to overfit

the data they train on and also tend to be less scalable than lighter models [33].
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Figure 1.1: An example of information captured by Freebase. (From [5])

Knowledge Graph Datasets

Training and testing models meant to operate on knowledge graphs necessitates

robust real-world datasets. To this end, a few prominent knowledge graphs have

been designed over the years to be used for this purpose [34]. We now go through

those datasets and briefly discuss some of their properties.

WordNet18 [1]:

One of the first and most widely used knowledge graph datasets is WordNet18

(WN18). This dataset is a subset of WordNet, a graph originally put together

in 1995 that maps out the lexical relations between different words [2]. The

most prominent inference patterns present in this dataset are symmetry, anti-

symmetry, and inverse relations [7].

WordNet18RR [3]:

Four years after WN18 was introduced, a subset of WN18 was created to control

more closely what types of inference patterns the models training on the dataset

would be exposed to. The new dataset was named WordNet18RR (WN18RR)

and is essentially just the WN18 graph with its inverse relations deleted. The

most prominent inference patterns in this dataset are therefore symmetric, anti-

symmetric, and composition relations [7].
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Freebase15k [1]:

Another important knowledge graph dataset is Freebase15k (FB15k). This

dataset is a subset of Freebase, a knowledge graph constructed in 2008 by accruing

general human knowledge and connecting it together [4]. An example of the type of

data contained in Freebase can be found in Figure 1.1. The most prominent

inference patterns present in this dataset are symmetry, anti-symmetry, and

inverse relations [7].

Freebase15k-237 [5]:

In a move similar to the creation of WN18RR, two years after FB15k was created,

a smaller version of the dataset was created to tune the distribution of inference

patterns in the graph. The inverse relations present in FB15k were deleted to create a

new dataset: Freebase15k-237 (FB15k-237). The most prominent inference patterns

present in this dataset are symmetry, anti-symmetry, and composition relations [7].

Never-Ending Language Learning [6]:

Another important dataset to consider is the Never-Ending Language Learning

(NELL) knowledge graph dataset. The usable knowledge graph version of this

dataset was created by taking a subset of the original NELL dataset and editing it

to leave only meaningful relations behind. The original NELL graph comes from an

ongoing program that continuously scrapes the web for information and analyses it

to add to the graph [35]. The most prominent inference patterns present in this

dataset are symmetry, anti-symmetry, and inverse relations.

1.2.2 Shallow Embedding Models

One particular class of models that tackles link prediction in the context of knowledge

graphs are shallow embedding models. Shallow embedding models are relatively

simplistic encoder-decoder models that use supervised learning to learn how to

embed knowledge graph entities into a high-dimensional Euclidean space [36]. The

relations between entities are then represented through learned functions on those

entity embeddings that relate the heads and tails of the triples through a scoring

function. There are a myriad of ways that scoring function can be defined, so those
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definitions in addition to other small decisions give rise to all the different types

of shallow embedding models that are widely used today [25].

We now look at some of the major types of shallow embedding models:

TransE

The TransE model, introduced in 2013, is one of the first and simplest shallow

embedding models [1]. The phrase “TransE” is a shortened version of “translational

embedding,” which captures partly how the TransE model works.

First, we will define the number of dimensions that the Euclidean space of our

embeddings will have, let us call this number d for the purposes of this section. The

goal of the TransE model is to learn a vector embedding of size d for each entity of

the knowledge as well as an optimal vector of size d for each type of relation in the

dataset. The way TransE works is that, after training, if two entities c and m are

related to each other in the knowledge graph via a relation r in a triple (c, r, m), then:

m ≈ c + r

where c, m, and r are the learned vectors representing c, m, and r respectively [1].

To train such a model, first the entities and relational embeddings are all

randomly initialised. The model then iteratively uses gradient descent over a loss

function defined as the following difference function:

L = d(t, h + r)− d(t′, h′ + r) + γ

where h and t represent the vectors for the heads and tails of real triples in the

dataset respectively, h′ and t′ represent the vectors of “corrupted” triples that do not

exist in the dataset (obtained via negative sampling), r represents the vector of the

relational embedding for relation r, and γ is a slack term that is necessary because the

model will likely not be able to perfectly satisfy these loss conditions in every case [1].

Because each relation is represented simply as a vector that is summed with entity

embeddings, the TransE model is lightweight and easy to train. This simplicity,

however, also means that the TransE model is quite limited in what types of
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relations and inference patterns it is able to represent. Most notably, TransE cannot

capture symmetric relations [33]. This becomes clear when we look at how the

model transforms head entities into tail entities. Given two true facts in the a

knowledge graph (h, r, t) and (t, r, h), to capture both of these triples at the same

time the TransE model would need the following to be true:

t− h = r = h− t

⇒ h = t

Therefore if h ̸= t then the symmetrical relation r cannot be captured by TransE.

While TransE can capture other inference patterns like anti-symmetry, inversion,

and composition, the fact that it cannot capture symmetry is a big issue because

symmetry is a commonly found inference pattern in real-world datasets.

Another important limitation of TransE is that it cannot capture 1-to-n relations.

Assume we have the triples (c, r, d) and (c, r, h) in our knowledge graph. Then,

in a TransE model:

d = c + r = h

Therefore the TransE model assumes that d = h when that may not be the

case in reality.

To overcome these limitations, other more complicated models have been

introduced to address TransE’s drawbacks.

RotatE

This type of shallow embedding model is, like TransE, also quite simplistic, but

is designed to specifically address some of the things TransE is not able to do,

namely the issue of symmetric relations.

RotatE, a shortened way of writing rotational embedding, works by mapping

each entity and relation in a knowledge into the complex plane [7]. Similarly to

how TransE models relations as vectors that are added to the heads of triples to

approximate their tails, RotatE models relations as complex vectors that rotate
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Figure 1.2: A visualisation of how RotatE works compared to TransE. (From [7])

the heads of triples to approximate their tails. Given a candidate triple (c, r, d),

we can formalise this in the following way:

d ≈ c⊙ r

where c, d, and r are the learned complex vector representations of c, d, and r

respectively [7]. This formulation is visualised in Figure 1.2.

Training a RotatE model first involves initialising the complex representations

of all the entities and relations randomly. The model then uses gradient descent

in tandem with supervised learning to iteratively improve its embeddings using

the following loss formulation:

L = − log σ(γ − dr(h, t))−
n∑

i=1

1
k

log σ(dr(h′
i, t′

i)− γ)

where dr(a, b) = ∥a⊙ r− b∥ is the distance function used to measure the loss of

a single candidate triple, h and t are the complex vector representations of the

heads and tails of the triples in the knowledge graph respectively, k is the number

of negative samples per true fact, h′
i and t′

i are the ith negative sample’s complex

head and tail representations respectively, γ is a slack term to make sure the loss

can converge even in cases where the relational rotations are only approximations,

and n is the total number of negative samples.

RotatE is useful because it can capture all of the same inference patterns that

TransE can capture, but additionally can handle symmetry. In fact, it can be

shown that TransE is just a special case of RotatE. The way that RotatE captures
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symmetry relations comes from the fact that its relations are represented through

rotations rather than translations. Given a symmetric relation, the complex vector

representing that relation would translate into a 180◦ rotation around a circle. A

head entity rotated twice through such a relation vector would therefore end up

back in the same place, reflecting the symmetric nature of the relation.

Despite this added benefit, RotatE still has come major drawbacks. For one,

the types of symmetric relations it can fit are limited in their expressivity. To

demonstrate this, let us take two entities, c and d, which are related to each other

through symmetric relations r and s such that (c, r, d) and (d, s, c) are two triples

contained in the knowledge graph. A RotatE model would be able to capture the

symmetry of these two relations as is, but now let us add a new entity h that is

related to d by the triple (d, s, h). The following must therefore be true:

c = d⊙ s = h

Unless c = h, RotatE is not capable of handling the relation s. Like TransE,

this means that RotatE cannot handle 1-to-n relations, but in addition to this

limitation, RotatE adds on the additional assumption that (h, r, d) holds because

of the symmetric connection between r and s. This means that RotatE can only

handle symmetric relations that are purely symmetric, and cannot handle relations

that are symmetric but are also involved in additional triples beyond the ones

that are mirrored versions of one another.

While RotatE does expand on the capabilities of TransE, to overcome the

problem of 1-to-n relations we need to move to a new strain of shallow embedding

models altogether.

RESCAL

One way to overcome the issue of 1-to-n relations that models like TransE and

RotatE could not handle is to use a new category of shallow embedding models:

bilinear models. These are shallow embedding models that use a different approach,

based on matrix factorisation, to learn relational embeddings. The first type of

bilinear model we will look at is RESCAL [8].
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In bilinear models, the embedded representation of relations takes the form of

a matrix. In the case of RESCAL these matrices are dense, while the entities of

the knowledge graph continue to be represented as simple vectors in a Euclidean

space. To determine whether two particular entities are joined through a certain

relation, RESCAL uses a scoring function that combines the embeddings of all

three of these elements together through matrix multiplication. We can formalise

this function in the case of the triple (c, r, d) like this:

score(c, r, d) = cMrdT

where c and d are the vector representations of c and d respectively and Mr is

the matrix representation of the relation r [8].

Depending on how the model is regularised, the exact loss function used to

optimise these embeddings varies, but regardless of which method is used, the number

of parameters used in a RESCAL model is an order of magnitude higher than in the

translational (non-bilinear) models we previously discussed, meaning the training

procedure for a RESCAL model is less scalable than that of TransE or RotatE.

Despite this drawback, RESCAL is fully expressive. This may appear on the

surface to mean that RESCAL will always be a better performing model than

TransE or RotatE, but in practice this property can cause RESCAL models to

overfit to their training data and draw connections between relations that may

not be actually expressed in the real world [37].

DistMult

We can motivate our second bilinear model, the DistMult model, as an attempt to

dial back the RESCAL model and make it more scalable and less prone to overfitting

[9]. DistMult and RESCAL are almost the same model mathematically except

for the fact that the representational matrices of relations in DistMult are limited

to only being diagonal matrices. This simple change both reduces the number

of parameters back down one order of magnitude and allows us to replace costly

matrix multiplications with simpler element-wise multiplications.
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We can formalise this change with the following scoring function used by

DistMult for a given triple (c, r, d):

score(c, r, d) = cDrdT

where c and d are the vector representations of c and d respectively and Dr is

the diagonal matrix representation of relation r [9].

While DistMult is much more lightweight and scalable than RESCAL, those

improvements come at the cost of representation, and in the case of DistMult that

cost is quite heavy. DistMult models lose the ability to represent anti-symmetry,

inverse relation, and composition. Additionally DistMult models make the general

assumption that all relations are symmetrical. We can see why when we examine

the scoring function. Given a triple (c, r, d) in an arbitrary knowledge graph,

the following is true:

score(c, r, d) = cDrdT = dDrcT = score(d, r, c)

This means that if a trained DistMult model predicts that a candidate triple should

exist in a knowledge graph, the same model should necessarily predict that the

symmetric version of that triple exists as well, meaning that the DistMult model

assumes that relation r is symmetric.

ComplEx

Given the substantial representational drawbacks of the DistMult model, it is

natural to posit whether it could be improved to make it more expressive while

keeping its scalable properties. On that note, another important bilinear model

we will look at is the ComplEx model [10]. ComplEx, a shortened version of

complex embedding, is a model similar to DistMult, except for the fact that it

extends the DistMult model into the complex plane. This simple switch extends

the representational power of DistMult dramatically.

In the ComplEx model, its scoring function looks similar to DistMult’s except

for the fact that the model’s entity and relation embeddings are made up of complex
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numbers. To make the scoring function usable, however, it only takes the the real

part of the final complex score as the true score. Putting this all together, we can

formalise ComplEx’s scoring function, given a triple (c, r, d), in the following way:

score(c, r, d) = Re(cCrdT )

where c and d are the complex vector representations of c and d respectively and

Cr is the complex diagonal matrix representing relation r [10].

ComplEx’s extension into the complex plane not only gives the model much

more representational power than DistMult, but actually makes the model fully

expressive once again. Notably, ComplEx regains the ability to learn anti-symmetric

and inverse relations and removes the assumption that all relations are symmetric

that DistMult suffered from.

1.2.3 Transductive vs. Inductive Learning

This thesis is aiming to address the discrepancy between models that are capable

of working in inductive learning environments and those only capable of working

in transductive learning environments. We now explore the differences between

these two types of learning.

Transductive Learning

Transductive learning is only capable of producing results and conducting analysis

on entities that were represented in the model’s training set [38]. In other words,

the model is incapable of learning an inductive function which governs the way its

training data is structured and which could be used to make predictions about new,

unseen data. We can visualise this type of learning by comparing the training set

in part a of Figure 1.3 with the set in part b of the same figure.

To get good performance on a test set, these types of models require that some

amount of information about the objects in the test set is present during the training

of the model [39]. In the context of knowledge graphs and embedding models, this

means that, while the training, validation, and testing sets are disjoint partitions



1. Introduction 15

Figure 1.3: An example of transductive vs. inductive learning tasks in the case of a
specific knowledge graph. (From [15])

of the total set of triples in the knowledge graph, all the triples in the testing and

validation sets are made up of entities found in the training set. This is the type

of learning that shallow embedding models engage in when they are applied to

knowledge graphs, which is why these types of models do not perform well when

challenged to make predictions about new, unseen entities [16].

Inductive Learning

Inductive learning is a form of learning wherein a model learns an inductive function

that governs how its training data came to be in the first place so that the model can

then generalise and make predictions about unseen data [15]. Instead of learning

data-specific functions that only allow predictions to be made in a limited scope, the

functions that inductive models learn have a deeper connection to the way in which

the data was generated [40]. We can visualise this type of learning by comparing

the training set in part a of Figure 1.3 with the set in part c of the same figure.

If a model is capable of this type of learning, then it can be tested using data

created after the model’s learning has already been completed. This makes these

types of models much more useful for real-world tasks because they remain relevant



16 1.2. Background

for a lot longer and are easier to use in “live learning” environments where models

are trained continuously as new data is streamed in [41]. Inductive models are

also useful in the field of interpretable machine learning as a direct consequence of

the fact that the rules they learn are more likely to approximate real connections

that exist intrinsically in the world [42].

1.2.4 Graph Neural Networks

By their very nature, graphs have consistently proven to be difficult to integrate

into the machine learning field. Their high potential for complexity makes them

hard to transform into easily accessible formats for neural models without losing

some of the inherent structural biases that graphs posses [43]. While there was some

development on the side of using the spectral properties of graphs to integrate them

with neural models, these models did not adequately capture many of the previously

mentioned structural biases of graph [44–47]. Solving these problems required the

development of a new type of neural model: graph neural networks (GNNs).

GNN models work by taking as input a graph and using a set of learned

parameters to analyse or answer questions about the graph [48]. There are various

ways that GNNs can leverage the structure of graphs to learn these parameters,

and we will now look at a few of them.

GNN Preliminaries

We now go through some of the fundamentals of GNNs needed to understand the

core message-passing framework that powers them.

First, we will define node neighbourhoods. Given an undirected graph G with

a set of nodes V and edges E, the neighbourhood of a node c in V is the set

N(c) such that:

N(c) = {s | ∃e ∈ E s.t. e = (s, c)}

where (a, b) refers to an edge connecting nodes a and b.

In the directed case, nodes have both an in-neighbourhood and and out-

neighbourhood that correspond to incoming and outgoing edges respectively.
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Figure 1.4: A visualisation of the learning process utilised by message-passing graph
neural networks. (From [11])

We also need to introduce the concept of layers to understand GNNs. A full

GNN model is made up of a number of message-passing layers stacked on top of one

another. The input of each layer is a set of node embeddings which the layer then

feeds through a message-passing process to output a new set of node embeddings.

The final node embeddings of the entire model are either left as is if the model is

completing a node-level task or they are combined in some way to form a graph

embedding if the model is completing a graph-level task.

Message-Passing Neural Networks

We now present the message-passing neural network (MPNN) framework: the core

concept that defines how popular GNN layers work [49].

The message-passing model is a pivotal innovation in the field of GNNs. Instead

of translating graphs into the Euclidean domain before training and thus losing some

of the structural information of the graph [50, 51], message-passing models learn

the model parameters by directly using the structure of the graph to inform how

the representations of each of the nodes is distributed during the training process.

They are based on the idea that, starting with some set of initial node features, we

can iteratively update node representations using information passed along edges

from local neighbourhoods. We can see a visualisation of this idea in Figure 1.4.

We now formalise these ideas by first going through node embedding (rep-

resentation) notation. We write h(t)
u as the node embedding of node u at layer
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t, where h(0)
u is node u’s initial features. With that, we can formalise the core

message-passing process in the following way:

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v | v ∈ N(u)})) (1.1)

where N(u) is the neighbourhood of node u, aggregate(t)(·) is a differentiable and

permutation-invariant function at layer t that aggregates the representations of a

set of nodes, and combine(t)(·) is a differentiable function at layer t that combines

the previous representation of a particular node with the aggregated representation

of its neighbourhood. The aggregate(t)(·) function is most commonly set as

either a summation, mean, or max function.

If the aggregate(t)(·) and combine(t)(·) functions are the same across all

layers, we call the model homogeneous and the superscripts on the function names

can be dropped, otherwise we call the model non-homogeneous. For the purposes

of this thesis, all our models are assumed to be homogeneous.

We can derive a baseline MPNN model formally by first setting combine(·) and

aggregate(·) to some concrete functions. For example, let us use a summation

aggregation scheme and set combine(·) to be a weighted sum transformed followed

by a non-linear function σ(·). Then our baseline MPNN model becomes:

h(t)
u = σ

W(t)
selfh(t−1)

u + W(t)
neigh

∑
v∈N(u)

h(t−1)
v

 (1.2)

where W(t)
self and W(t)

neigh are learnable weight parameters at layer t for the central

node representation and aggregated neighbourhood representation respectively.

The first type of message-passing GNN that was designed using a strategy

akin to this scheme is the graph convolutional network (GCN) model [11]. GCNs

take a slightly simplified version of the base message-passing model by combining

the neighbour-specific weight matrix and the self-specific weight matrix. We now

present the base form of GCNs below:

h(t)
u = σ

W(t) ∑
v∈N(u)

⋃
{u}

h(t−1)
v√

N(u) + N(v)

 (1.3)
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where W(t) ∈ Rft×ft is the matrix of weights at layer t, and σ(·) is a differentiable

non-linearity [11].

We can see from Equation 1.3 that, when using a GCN, the model is unable

to differentiate between the representation of the central node and its neighbours

during aggregation. In this way, the GCN model is similar to the form of the baseline

MPNN model in Equation 1.2 if self-loops are added to the graph. Additionally,

the GCN model normalises the representations of each node by the size of their

neighbourhoods.

On the one hand, by using this simplified form, GCNs benefit from being fast

and scalable, making them good candidate models for use on large complicated

graphs. On the other hand, the decision to mix in the central nodes’ representations

with that of their neighbours makes GCNs representationally limited, resulting in

the model’s inability to perform certain types of tasks on certain types of graphs

[13, 52, 53]. We will explore the details of these limitations when we introduce

the graph isomorphism network model.

Some other GNN variants include the GAT model [54] and GraphSAGE [55].

In the GAT model, an attention mechanism is added to the MPNN framework to

allow nodes to learn to attend to and emphasise only neighbours that are useful to

the task the model is being challenged to complete [54]. Meanwhile, GraphSAGE

is a GNN framework that focuses on improving the inductive capabilities of the

model by learning how to aggregate information from local neighbourhoods then

generating the node embeddings using learning model parameters [55].

Moving forward with GNNs, it can become important to try and formalise how

expressive they might be to better theoretically ground them. One way we might

do this is by testing how well a particular model is at checking whether or not two

graphs are isomorphic. This is known to be an NP-intermediate problem, but there

does exist an efficient but imperfect algorithm, called the Weisfeiler-Lehman (WL)

test, that can correctly tell whether two graphs are isomorphic in most cases [12].

By comparing the ability of GNNs to tackle the graph isomorphism problem with

that of the WL test, it is possible to classify GNNs based on their expressive power.
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An important realisation that researchers had when they conducted this investi-

gation is that simple message-passing GNNs (GNNs that work merely off of the

basic principle of transmitting and then combining messages along edges that are

made up of node representations) are limited to only being as “powerful” as the

WL test [13]. This means that no simple message-passing GNN can ever do better

at the graph isomorphism problem than the WL test. Given this limitation, we can

purposefully construct a new type of GNN model that is maximally powerful and

expressive while still maintaining scalability, this model is the graph isomorphism

network (GIN) model [13]. GIN achieves this by modeling an injective multiset

function for neighbourhood aggregation.

While the previously discussed simple GNN models have shown to be very

successful at various graph tasks, it might still be useful to design models that push

past the limit placed by the WL test. These types of GNN models are labelled

“higher order models” and can be exploited in specific instances for their unique

theoretical properties, however, they can also quickly become too complicated

to run on even moderately sized real-world datasets [53, 56]. Their increased

expressive power does not necessarily improve their performance in other tasks,

in some cases they they do not even perform as well as simpler, more lightweight

models [57]. Additionally, this type of expressive power can also be achieved by

randomising a portion of the node features, making the motivation behind higher

order models somewhat superfluous [58].

As we can see, many different types of GNNs have been developed in the

few years since the field took off. These models have shown promising results

in tackling inductive problems related to graphs, an ability that we will use to

develop a new way of tackling inductive learning tasks specifically in the realm

of knowledge graph completion.

1.2.5 Relational Inductive Bias

Having introduced shallow embedding models, inductive learning, and GNNs, we

now present the concept of relational inductive bias, what distinguishes it from
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the concept of an inductive learning environment, and why it is important to

the work presented in this thesis.

We say that a model operating on a relational graph incorporates a relational

inductive bias if the model is able to learn things like relational symmetries in

the data, hierarchies, and other rule inference patterns that may be present in

the data [42]. Shallow embedding models are designed to be have this property

when they operate on knowledge graphs and we can clearly predict which types

of rule inference patterns certain shallow embedding models will be able to find

and which ones they will struggle with. Meanwhile, GNNs do not inherently have

this property when operating on relational graphs.

To be clear, the concept of a relational inductive bias is distinct from that of

an inductive learning environment. The former is a property that models have

as described above, while the latter is a property of a type of task described in

Section 1.2.3 where models are challenged to be able to generalise to unseen data

not present in the models’ training sets.

Models operating on knowledge graphs are particularly poised to benefit from

having a relational inductive bias. This is because knowledge graphs, by nature,

have a strong proclivity for their relations to be guided by principled structure

because knowledge graphs represent facts about real-world entities [42]. This is

why using a model that has a strong relational inductive bias could be a huge

benefit in inductive knowledge completion tasks.

1.3 Problem Statement

We now present the main problem that we address in this work:

Given the fact that existing widely used shallow embedding models are currently

unable to extend their capabilities into the inductive learning setting. but do

exhibit a strong relational inductive bias, how can we merge some of the processes

used by those shallow models with the inductive learning potential of graph neural

networks to create a new type of neural model that is able to perform a form of
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message-passing directly on knowledge graphs in a scalable fashion and complete

inductive tasks on those graphs at a state-of-the-art level all while having some

desirable theoretical properties?
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We now go through some of the prominent models designed to tackle the main

problem in this thesis or problems adjacent to it.

2.1 The R-GCN Model

The first impactful model to tackle this inductive knowledge completion issue is

the relational GCN (R-GCN) model [14]. This model works on knowledge graphs

by representing each relation in the graph with its own weight matrix. Given

an entity in the graph, the node embeddings of that entity’s neighbours are each

transformed using the respective weight matrix that defines the relation connecting

that neighbour to the central entity. These transformed embeddings are then all

summed together along with the embedding of the central node and fed through a

ReLU function to get the new embedding of the central entity in the next layer.

23
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Figure 2.1: A visualisation of how R-GCN models work. (From [14])

We can formalise this process from a node-level perspective with the following

equation dictating how the embeddings in the model change over time:

h(t)
i = σ

∑
r∈R

∑
j∈Nr

i

1
ci,r

W(t)
r h(t−1)

j + W(t)
0 h(t−1)

i

 (2.1)

where R is the set of relations in the knowledge graph, W(t)
r is the weight matrix

of relation r at layer t (where r = 0 is the self-loop relation), and N r
i is the subset

of node i’s neighbourhood that is connected to i through relation r [14]. This

equation can be further visualised in Figure 2.1 above.

The R-GCN model has the benefit of being conceptually simple and tractable:

by representing each relation with its own weight matrix, we are essentially training

R different message-passing GNNs where the messages are partially shared. The

downside of this construction is that the model can be prone to overfitting if one

of the relations in the knowledge graph is too sparse or if there are too many

relations [15]. Since each relation is given a full weight matrix, R-GCNs are, in

principle, capable of capturing any type of inference pattern or rule that may be

present in the knowledge graph when it comes to relations, but in practice the

limited interactions between each of the relations mediated through the aggregation

of messages makes it hard for R-GCNs to fully learn the underlying rules that

may be present in the data [59].
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Figure 2.2: A visualisation of how GraIL models work. (From [15])

R-GCNs have potential in the inductive learning space, but are held back by

the fact that their learned node embeddings do not generalise well to unseen nodes

unless the nodes themselves have features attributed to them. This limitation

places the R-GCN model, with regards to its capabilities, in-between shallow

embedding models and the other models we will look at next when it comes to

knowledge graph completion.

2.2 The GraIL Model

The next important model we will look at is the graph inductive learning (GraIL)

model [15]. This model is notably different from the R-GCN model because the

GNN utilised in GraIL does not pass messages directly along edges in the knowledge

graph. Instead, the message-passing occurs in subgraphs that are constructed to

specifically facilitate inductive learning in the model.

The subgraphs induced by the GraIL model for each triple are made up of

the paths that exist between the two nodes in the triple. These paths are limited

in length by a parameter k and, for a triple (c, r, d), are made by calculating the

intersection Nk(c) ⋂
Nk(d), where Nk(u) is the k-hop neighbourhood of node u.

Since the GraIL model operates solely based on the structural information of the

graph, the features of the nodes are set to be tuples representing the distance

from the head and tail nodes respectively. The head and tail nodes themselves are

uniquely labeled (0, 1) and (1, 0) respectively. With this setup complete, the model

can now begin scoring triples. This is done by essentially running a GNN model over
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the induced subgraph that works similarly to the R-GCN model, then concatenating

key node and relation embeddings from that model to get a graph-level embedding.

The node embedding aggregation is formalised here:

h(t)
u = combine(t)(h(t−1)

u , a(t)
u )

a(t)
u = aggregate(t)({h(t−1)

s : s ∈ N(u)}, h(t−1)
u )

where aggregate(·) is the same multi-relational aggregation scheme used by

the R-GCN model in Equation 2.1, combine(·) is a function also taken from

the R-GCN model that uses a W
(t)
self weight matrix to get final embeddings for

each node, and a(t)
u is an intermediary vector used in between aggregation and

the combine(·) function [15].

With this formalisation out of the way, the graph-level representation of each

triple-induced subgraph is made by concatenating the mean of the node embeddings,

the node embedding of the head, the node embedding of the tail, and the embedding

of the relation r. This final concatenated vector is then multiplied by a final weight

matrix to get the score of the graph. Both the node-level and graph-level parts

of this calculation can be seen in Figure 2.2.

As we can see, the GraIL model is relatively sophisticated. The model out-

performs most other inductive models on knowledge graph tasks and has proven

itself to be quite robust. The biggest downside of the GraIL model is that it needs

to induce a subgraph for each triple it scores. This means that scalability is out of

the question when it comes to large unseen test sets [16]. Rather, the GraIL model

is best used in cases when a small set of poignant triples are to be tested.

2.3 The INDIGO Model

Another model that has approached this problem is the INDIGO model. Similarly

to the GraIL model, the INDIGO model is an inductive model that induces a graph

which it then uses a GNN on to score triples [16]. Unlike the GraIL model, however,

the INDIGO model is not limited to scoring triples one at a time, instead, the graph

the INDIGO model induces captures the structure of multiple triples at once.
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Figure 2.3: A visualisation of how INDIGO models work compared to R-GCN models.
(From [16])

The INDIGO model is set up by first providing a knowledge graph along with

a set Λ of candidate triples. A graph is then constructed such that each node in

the graph corresponds to a triple found in either the knowledge graph or Λ (where

the two entities can be the same). The order of the nodes in the pair does not

matter and there are no two nodes sharing the same pair. Nodes in this graph

are connected if their pairs share an entity, for example, the nodes u(c,d) and u(d,g)

would be connected. The nodes have integer features such that, given a triple in

the knowledge graph but not in Λ, each feature corresponds to a relation in the

knowledge graph. The features of such nodes are 1 if there is a triple with that

relation and those nodes, −1 if there is an inverted triple with that relation, and

0 otherwise. Nodes representing triples in Λ have features made up of only zeros.

An example of this type of graph is shown in Figure 2.3.

Once this graph is constructed, a simple GCN is run on the graph to calculate

embeddings for all the nodes. This model is trained such that, to predict whether

or not a candidate triple in Λ should be in the knowledge graph, we simply need to

check if any of the features in that node’s final embedding are above some threshold.

The original paper uses a threshold of 0.5, which was effective for the tasks set

out in said paper [16]. If feature i was above this threshold, then the model would

predict that the two entities of the node should be connected with relation I.

From a scalability perspective, the INDIGO model has an advantage over the

GraIL model because it is able to make predictions over a bulk set of candidate

triples using one induced graph rather than having to create a new graph for each



28 2.4. The NBFNet Model

triple. Despite this, the INDIGO model is still not able to easily handle live learning

environments where new candidates come to the model in a stream because the model

is limited to only working on entity pairings present in its originally induced graph.

While the INDIGO model is therefore able to perform relatively well with inductive

tasks, using the model in real-world settings would still likely necessitate that it be

completely re-trained with each new batch of incoming candidate triples [60].

2.4 The NBFNet Model

Finally, we will also look at the the Neural Bellman-Ford Network (NBFNet)

model [17]. This model is slightly similar to the GraIL model in that it uses

information from paths between two nodes in a triple to score that triple. Instead

of inducing a subgraph, the NBFNet model works by embedding a triple as a sum

of the representations of each of the paths that exist between the two nodes of

the triple. The representations for each of these paths, meanwhile, is a product

of the representations of its parts.

Instead of calculating these values directly, the model uses a modified version of

the generalised Bellman-Ford algorithm. Using this strategy, the representations

of the triples are initialised as being all zeros except for the case where the head

and tail entities are the same. The model then iteratively uses message-passing to

calculate path summations between nodes for increasingly longer paths, essentially

converging on the representations that one would arrive at had they calculated the

path summations directly. This iterative process is detailed below:

h(0)
u = indicator(u, r, d)

h(t)
u = aggregate

(
{message(h(t−1)

s , wd(s, r, u))|(s, r, u) ∈ E(u)}
⋃
{h(0)

u }
)

where E(u) is the set of edges connected to entity u, wd(s, r, u) is the weight of

the representation of triple (s, r, u), indicator(x, r, y) is a function that returns

a vector of ones if the two entities in the triple (x, r, y) are equal and a vector of

zeros otherwise, and message(·) is a generic GNN message-passing function used

to define possible reformatting operations on messages before aggregation [17].
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The NBFNet model is moderately lightweight but is still able to perform

competitively against the previously discussed models in an inductive learning

environment. The model also has the advantage of having prediction scores which

are direct measurements of the importance of various possible paths when making

predictions. This makes the model more interpretable and could allow it to be used

in other contexts that involve the analysis of paths in a knowledge graph [17].



30



3
Proposed Approach

Contents
3.1 Justification and Derivation . . . . . . . . . . . . . . . . 31
3.2 Proposed Method: the GraphRE Model . . . . . . . . 34
3.3 Properties of the GraphRE Model . . . . . . . . . . . . 36

Having discussed other inductive knowledge graph models, we now introduce

our own model for tackling problems in this space: the GraphRE model.

3.1 Justification and Derivation

The goal of this project is to derive a new neural model with a strong inductive

bias that is capable of operating on relational graphs, specifically knowledge graphs,

in an inductive setting. Ideally, such a model should be scalable, operate directly

on the knowledge graph, and require very little pre-processing. We will now

go through step by step how our model can be derived logically by breaking

down parts of the problem.

To start, the reason for our interest in GNNs is their ability to operate in

inductive learning environments. Despite this, as we mentioned earlier in Section

1.2.5, GNNs do not exhibit a strong relational inductive bias on relational graphs (we
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explored the distinction between relational inductive bias and an inductive learning

environment in Section 1.2.5). In other words, they are unable to learn and account

for various inherent phenomena that are typically found in relational graphs such as

relational symmetries, hierarchies, and the aforementioned rule inference patterns.

This limitation stops them from reaching their full potential when being used on

graphs where relational bias accounts for much of the graphs’ underlying structure.

In the case of knowledge graphs, this relational inductive bias is crucial. Com-

pared with other types of relational graphs, knowledge graphs have an especially

strong inductive bias on account of the fact that edges in knowledge graphs

correspond to principled, factual connections between real-world entities [42].

Given this characteristic, if we are to fully realise the potential of GNNs in

the knowledge graph space, it will necessarily require us to inject an inductive

capability into our models.

On this note, shallow embedding models do have this strong inductive bias.

They are adept at learning things like inference patterns and symmetries by design.

Their only major flaw for the purposes of this thesis is that, while they do exhibit

a strong inductive bias, they are unable to complete tasks in an inductive setting.

Given this information, we deducted that it might be possible to combine shallow

embedding models and GNNs to produce a new type of model that has the

inductive bias of a shallow embedding with the ability to operate in an inductive

environment like a GNN.

The first problem to address is developing a hybrid approach that reaps the

benefits of both shallow embedding models and GNNs. Shallow embedding models

work directly with entity embeddings, and since, as we mentioned earlier, we

want our model to ideally operate directly on knowledge graphs instead of using a

secondary graph, it is reasonable for us to use shallow embedding models in such a

way as to operate on the node representations used in the GNN, which are the graph

analogues of the entity embeddings in shallow embedding models. Naturally, this

means we would need to integrate the shallow embedding model with the message-

passing portion of the GNN. To this end, we opt to use the shallow embedding
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Algorithm 1 The GraphRE model
Require: Knowledge graph K with V entities, run for T layers

h(0)
v ← xv,∀v ∈ V

for t = 1...T do
for v ∈ V do

h(t)
NKG(v) ← aggregate(Φ±

r (h(t−1)
v , h(t−1)

u ), ∀u ∈ NKG(v))
h(t)

v ← σ(W(t) ·merge(h(t−1)
v , h(t)

NKG(v)))
end for
h(t)

v ← normalise(h(t)
v ),∀v ∈ V

end for
zv ← h(T )

v ,∀v ∈ V

models to transform the messages of the GNN right before they are passed along the

edges of the graph. By using this message-passing scheme, we hope to more directly

inject the structural properties of the underlying graph into the learning process.

To illustrate this process further, we now formalise some of these ideas in

mathematical notation. Let us assume we have a knowledge graph K. Given a

specific entity c in K, we can define its neighbourhood NKG(c) as:

NKG(c) = {d | ∃r s.t. (c, r, d) ∈ K ∨ (d, r, c) ∈ K}

An important thing to note about this neighbourhood is that it includes nodes

connected to c in both directions. We can then envision a message-passing GNN

that calculates a new representation for c by merging its previous value with an

aggregation of the nodes in NKG(c). We could then augment these neighbourhoods

by using a shallow embedding model to define semantically meaningful messages

to propagate within the neighbourhoods. In this case, the shallow embedding

model is transforming the values of each of the representations of the nodes in the

NKG(c) before the aggregation step is done. The details of this shallow embedding

transformation for a particular node d in NKG(c) would depend on which relation

r connected c and d as well as which direction the relation is in. Intuitively we

can see that such a scheme might have the potential of allowing the GNN to learn

how the different relations in K interact with one another. We will expand on the

details of how such a model can be actually implemented in the section below.



34 3.2. Proposed Method: the GraphRE Model

3.2 Proposed Method: the GraphRE Model

We now formally introduce the GraphRE model, its functionality, and its main prop-

erties.

The GraphRE model, short for graph relational embedding model, functions in

a manner akin to the process introduced in the previous section. We define it

formally below:

Definition 3.2.1 (GraphRE Model). Given a preset shallow embedding model

function Φ±
r (·) to transform the messages before they are passed along, the calcu-

lation of the representation of a node v under the GraphRE model is defined as

follows:

h(t)
NKG(v) = aggregate({Φ±

r (h(t−1)
v , h(t−1)

u )}|∀u ∈ NKG(v))

h(t)
v = σ(W(t) ·merge(h(t−1)

v , h(t)
NKG(v)))

where aggregate(·) is defined in the same way as in Equation 1.1, merge(·) is a

differentiable function combining h(t−1)
v and h(t)

NKG(v), and W(t) is a learnable weight

matrix.

As we can see, given a knowledge graph K, the GraphRE model operates

directly on the underlying knowledge graph. That is, we do not induce any

secondary graph through which messages are passed, they are instead passed

along the real triples in K.

As we previously discussed, the representation of any given node c is calculated

by merging its previous representation with an aggregation of representations of

nodes in NKGc) that have been transformed by a shallow embedding model. The

transformation of a particular node d in NKGc) can be generalised by a function

Φ±
r (·) where r is the specific relation between the central node and the node being

transformed and ± determines whether the tail of the relation is c (the + case) or

d (the − case). We can see how this works visually for a specific example in Figure

3.1. In this example, the representation of the central node c’s neighbourhood at
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Figure 3.1: A diagram showing how the GraphRE model performs message-passing.
Here the central entity c is connected to 5 other entities through a total of 3 different
relations. The + or − above the relation label indicates what direction the relation is
with respect to the central node, which will inform how the shallow embedding model
transforms the message passing along that edge.

a particular layer t of the GraphRE model would be:

h(t)
NKG(c) =

aggregate({Φ−
r1(h(t−1)

d1 ), Φ+
r2(h(t−1)

d2 ), Φ−
r3(h(t−1)

d3 ), Φ+
r1(h(t−1)

d4 ), Φ+
r2(h(t−1)

d5 )})

and the representation of the central node itself would then be:

h(t)
c = σ(W(t) ·merge(h(t−1)

c , h(t)
NKG(c)))

We can combine all of these concepts together and abstract some of the

implementation details to get to the main algorithm used by the GraphRE model,

which is presented in Definition 3.2.1 and Algorithm 1.

At the heart of this algorithm is the Φ±
r (·) function. We can define this function

in a variety of different ways depending on which shallow embedding model we

are merging with our GNN. To do this, we simply manipulate the scoring function

of those shallow embedding models to arrive at an expression that is meant to

capture what role the central node c is playing in the scoring function of that

shallow embedding model. To illustrate this point, we have listed various equations

below which are used for different types of shallow embedding models in the case

where c is the central node and d is one of the nodes in NKGc) whose representation

is being transformed before the aggregation procedure:
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• TransE+ (c← d):

Φ+
r (hc, hd) = hd + r

• TransE- (c→ d):

Φ−
r (hc, hd) = hd − r

• DistMult+ (c← d):

Φ+
r (hc, hd) = hd ⊙ r

• DistMult- (c→ d):

Φ−
r (hc, hd) = hd ⊙ r

• RESCAL+ (c← d):

Φ+
r (hc, hd) = hdR

• RESCAL- (c→ d):

Φ−
r (hc, hd) = (RhT

d )T

• ComplEx+ (c← d):

Φ+
r (hc, hd) = ℜ(hd)⊙ (ℜ(r) + ℑ(r)) + ℑ(hd)⊙ (ℜ(r)−ℑ(r))

• ComplEx- (c→ d):

Φ−
r (hc, hd) = ℜ(hd)⊙ (ℜ(r)−ℑ(r)) + ℑ(hd)⊙ (ℜ(r) + ℑ(r))

Where ⊙ is the element-wise multiplication operator, ℜ(z) returns the real part

of z, and ℑ(z) returns the imaginary part of z.

3.3 Properties of the GraphRE Model

The aggregate(·) function can be defined in the same way as it is in regular

MPNNs, but with a few limitations. We will explore this in more detail in Section 5.1,

but intuitively these limitations comes from the fact that knowledge graphs are able

to contain many different types of entities at the same time, which is one of the main

reasons inductive learning on knowledge graphs has been difficult to do in the past.

The GraphRE model can be seen as a way of tackling this issue by using shallow
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embedding models as a means of transitioning the representations of entities in NKGc)

into the representational space of the central node c through the relation r between

those two nodes. This process, however, does not survive aggregation through

summation because it forces the aggregated vector out of c’s representational space.

The merge(·) function also has a variety of possible implementations. One

way to generalise the function and optimise over many different implementations

is to simply add a self-loop relation over every entity that corresponds to a new

relation rs. The model then does message-passing over these new relations in

tandem with the relations already existing in the graph, ensuring that the latest

representations of the central nodes of each neighbourhood are merged with the

aggregated representation of the neighbours. For certain embedding model choices,

these self-loops can simplify further, making the merge easy to calculate and

scalable. We explore this further in Section 5.2.

Finally, we will look at another relevant property of the GraphRE model

concerning the effect that the dimensionality of its entity features and node

representations have on its performance. In most pure shallow embedding models

there is a clear performance improvement that comes from increasing the size of

the entity representations coming from the fact that these larger vectors are able

to store more information compared to smaller models [25]. This correlation does

not carry over empirically in existing message-passing GNN models that attempt

to tackle inductive knowledge completion tasks [61]. Instead, the performance of

the models remains quite consistent given a reasonable range of dimensions [15].

The GraphRE model, however, does exhibit an improvement in performance when

increasing the dimensionality of its node representations up to a certain degree.

This makes sense given both the model’s reliance on shallow embedding models,

which we expect would benefit from working in higher dimensions, and the model’s

GNN component, which we expect would perform worse as the model starts to

overfit. We take a deeper look at these ideas in Section 5.3.
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We now look at what experiments we ran to test the merits of our model, what

the results of those experiments were, and why those results are relevant.

4.1 Datasets

In the experiments we describe below, we use data from a total of three different

knowledge graph datasets organised in various ways. These datasets are Word-

Net18RR, Freebase15k-237, and NELL. As we will explain in more detail in the

next section, we have broadly split our experiments into two sets: transductive

ones and inductive ones. While some of the experiments in these sets may use
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data from the same dataset, the way that data is organised is crucial to the

nature of those experiments.

4.1.1 WordNet18RR

As we previously discussed, this dataset is subset of WordNet, a graph consisting

of lexical relations between words [2]. We use this dataset in our transductive

and inductive experiments.

In the transductive setting, we use the entirety of the WN18RR dataset and

partition it into a training, validation, and testing set with the goal of training

models for the task of link prediction. The split we use in this case is the standard

split used in the original TransE paper as well as all further shallow embedding

papers since then [1]. These splits are purposefully designed to be transductive,

with entities in the testing set also appearing in the training set. The total dataset

has 40,943 entities, 11 relations, and 93,003 triples. The training, validation, and

testing splits each have 86,835, 3,034, and 3,034 triples respectively.

In the inductive setting, we do not use the full WN18RR dataset. Instead,

we use a series of subsets of WN18RR originally introduced in the GraIL paper

to allow the knowledge graph to be tested in an inductive setting. This was

done by running a randomised algorithm that partitions small subsections of the

WN18RR graph into training, validation, and testing sets such that there is no

leakage between the sets, fulfilling the requirements needed for the experiment to

be labelled inductive [15]. This randomised algorithm was run multiple times to

create four progressively larger inductive subsets of WN18RR, which are labeled

v1_ind, v2_ind, v3_ind, and v4_ind in the WN18RR table. The GraIL paper

used a slightly modified version of this same randomised algorithm to create four

progressively larger transductive subsets of the WN18RR dataset, each of which

are labelled v1, v2, v3, and v4. We have run our models on these datasets as well

and have included those results in the inductive results table to clearly contrast

comparable transductive and inductive results. The details of the sizes of each of

these smaller datasets can be found in Appendix A.
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4.1.2 Freebase15k-237

As we have also previously discussed, this dataset is a subset of Freebase, a graph

which attempts to organise general human knowledge [4]. We use this dataset in

our transductive and inductive experiments.

In the transductive setting, we use the entirety of the FB15k-237 dataset and

partition it into a training, validation, and testing set with the goal of training

models for the task of link prediction. The split we use in this case is, just like

WN18RR, the standard split used in the original TransE paper as well as all

further shallow embedding papers since then [1]. These splits are purposefully

designed to be transductive, with entities in the testing set also appearing in the

training set. The total dataset has 14,541 entities, 237 relations, and 310,116

triples. The training, validation, and testing splits each have 272,115, 17,535,

and 20,466 triples respectively.

In the inductive setting, we do not use the full FB15k-237 dataset. Instead,

we use a series of subsets of FB15k-237 originally introduced in the GraIL paper

to allow the knowledge graph to be tested in an inductive setting. This was done

by running the same randomised algorithm used for WN18RR to partition small

subsections of the FB15k-237 graph into training, validation, and testing sets such

that there is no leakage between the sets, fulfilling the requirements needed for

the experiment to be labelled inductive [15]. The randomised algorithm was run

multiple times to create four progressively larger inductive subsets of FB15k-237,

which are labeled v1_ind, v2_ind, v3_ind, and v4_ind in the FB15k-237 table.

The GraIL paper used a slightly modified version of the randomised algorithm to

also create four progressively larger transductive subsets of the FB15k-237 dataset,

each of which are labelled v1, v2, v3, and v4. We have run our models on these

datasets as well and have included those results in the inductive results table to

clearly contrast comparable transductive and inductive results. The details of the

sizes of each of these smaller datasets can be found in Appendix A.
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4.1.3 NELL

As we have again previously discussed, this dataset is a subset of the Never-Ending

Language Learning project, a graph made by continuously scraping data from public

webpages [6]. We use this dataset only in our inductive experiments.

In the inductive setting, we do not use the full NELL dataset. Instead, we use

a series of subsets of NELL originally introduced in the GraIL paper to allow the

knowledge graph to be tested in an inductive setting. This was done by running

the same randomised algorithm used for WN18RR and FB15k-237 to partition

small subsections of the NELL graph into training, validation, and testing sets

such that there is no leakage between the sets, fulfilling the requirements needed

for the experiment to be labelled inductive [15]. The randomised algorithm was

run multiple times to create four progressively larger inductive subsets of NELL,

which are labeled v1_ind, v2_ind, v3_ind, and v4_ind in the NELL table.

The GraIL paper used a slightly modified version of the randomised algorithm

to also create four progressively larger transductive subsets of the NELL dataset,

each of which are labelled v1, v2, v3, and v4. We have run our models on these

datasets as well and have included those results in the inductive results table to

clearly contrast comparable transductive and inductive results. The details of the

sizes of each of these smaller datasets can be found in Appendix A.

4.2 Experimental Setup

For the purpose of this thesis, we ran two main sets of experiments: transductive ones

aimed at comparing the GraphRE model with pure shallow embedding models and

inductive ones pitting the GraphRE model against other inductive knowledge

completion models.

In the transductive experiments, we compare the performance of the GraphRE

model against pure shallow embedding models to see what effect adding a message-

passing component has on the shallow model. We chose to compare the GraphRE

model to a set of shallow models that we feel adequately represents a wider range of
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shallow models with regards to complexity. The TransE and RotatE models are both

relatively simple yet powerful and should sufficiently cover what can be expected

from translational models. Meanwhile, we chose DistMult and ComplEx to see how

bilinear models would fare. DistMult has the benefit of being a relatively lightweight

bilinear model, while ComplEx is able to benefit from not having a symmetrical

bias while still being much more scalable than other bilinear models like RESCAL.

These shallow embedding models were compared with two versions of the

GraphRE model: GraphRE-TransE and GraphRE-ComplEx. These two variations

differ in what type of shallow embedding procedure is used to transform the

node embeddings during the message-passing process. GraphRE-TransE learns an

embedding for each relation that is simply added to node embeddings as they are

passed along as messages, while GraphRE-ComplEx learns a complex embedding

for each relation that transforms messages in a way that corresponds to how triples

are scored in a ComplEx shallow model. Both of these procedures are outlined

in Section 3.2. By choosing TransE and ComplEx, we can see how the GraphRE

model reacts in both bilinear and translational settings.

In the inductive experiments, we similarly compare the performance of both

GraphRE-TransE and GraphRE-ComplEx with a variety of other inductive knowl-

edge completion models. Specifically, we compare GraphRE with GraIL, RuleN,

DRUM, Neural-LP, R-GCN, NBFNet, and INDIGO. There is not as much consis-

tency in this space relative to the transductive setting when it comes to models,

metrics, and datasets, so we have tried our best to aggregate the results that are

available in the best way we can to make the comparison fair. In this regard,

the tables for the WN18RR and FB15k-237 datasets do have the privilege of

having more models to compare with, which shows how much more those datasets

have been utilised in this field. We have chosen to compare these models with

GraphRE-TransE and GraphRE-ComplEx for the same reasons as previously stated

in the transductive case.
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4.2.1 Evaluation Metrics

To evaluate the performance of the GraphRE model in these different configurations

and settings, we have opted to use the same metrics used by other, similar papers

focusing on knowledge graph completion tasks. The main metrics we used for

our experiments were mean reciprocal rank and Hits@10 for the transductive

experiments and area under the curve (precision-recall) and Hits@10 for the

inductive experiments.

Mean Reciprocal Rank

The first metric that we use to evaluate the performance of our models is mean

reciprocal rank (MRR). This metric is used in tasks where models are challenged to

discern real candidates from a large body of negative samples. It is calculated by

first having the model sort a list of potential candidates in order of how likely they

are to appear in the data. Each candidate is then given a rank according to this

list. The candidates representing true facts have their ranks inverted, and these

values are then averaged across runs to give us the final MRR score.

In the context of knowledge completion, this body of negative samples consists

of a filtered list of perturbed facts based on a real one. More specifically, given

a real fact (c, r, d), we can create two sets of negative facts: (c, r, d′),∀d′ ̸= d ∈ E

and (c′, r, d), ∀c′ ̸= c ∈ E, where E is the set of all entities in the knowledge graph

and both sets are filtered so that they do not contain any true facts. We can now

simply rank where (c, r, d) sits in comparison to both of these sets, calculate the

inverse of those ranks, then average those numbers for all true facts in the test set

of our dataset. This calculation can be formalised below:

MRR = 1
2|Etest|

∑
(c,r,d)∈Etest

1
rank((c, r, d)|(c, r, d′)) + 1

rank((c, r, d)|(c′, r, d))

where Etest is the test set of entities in our dataset and rank((c, r, d)|(c, r, d′)) is the

rank of the true fact (c, r, d) when compared with the set of filtered and perturbed

negative sampled defined by the set involving (c, r, d′) described above (with an

analogous definition for rank((c, r, d)|(c′, r, d))).
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MRR can be a useful metric in that it is able to show well models can do given

suitable conditions, this is because individually well-scoring facts can sway the MRR

score quite heavily. We use this metric in our transductive experiments because it

is one of the primary metrics used by pure shallow embedding model papers.

Hits@k

The next metric we use is Hits@k. This metric is also used in tasks that have

models score how likely certain candidates are among a large body of negative

samples. Calculating this metric is quite simple. Once a given set of true facts

and each of their associated negative samples have been scored, the true facts are

ranked based on their positions in their sorted lists. Each true fact is then queried

to check whether its rank in is less than or equal to k, and the final Hits@k metric

measures the proportion of true facts that meet this criteria.

The choice of negative samples to compare with the true fact is done differently

in various places of the literature depending on which models are being compared

with each other and in which setting. In our transductive experiments, we employ

the negative sampling procedure utilised by the pure shallow embedding papers

where the negative samples are simply the same set of negative samples used in the

MRR metric calculation described above. Using these same definitions of (c, r, d′)

and (c′, r, d), we can formalise this version of Hits@k in the following way:

Hits@k = 1
2|Etest|

∑
(c,r,d)∈Etest

[1(rank((c, r, d)|(c, r, d′)) ≤ k)

+1(rank((c, r, d)|(c′, r, d)) ≤ k)]

where 1(g) is the indicator function that returns 1 if g is true and 0 otherwise.

In our inductive experiments, we follow the lead set by the GraIL paper and

followed later by other papers introducing new inductive knowledge completion

models by simply using a filtered set of 50 random candidate facts as the body

of negative samples for each true fact. This slight variation can be written in

the following way:

Hits@k = 1
|Etest|

∑
(c,r,d)∈Etest

1(rank((c, r, d)|random(50)) ≤ k)
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where random(n) is a function that returns n random filtered negative samples.

Area Under the Curve (Precision-Recall)

The last metric we use is the area under the curve (precision-recall), also referred to

as AUC-PR. This metric is a useful way of measuring how well a binary classifier

performs without suffering from all the drawbacks of a raw accuracy score. It is

calculated my measuring the area under the curve of the chart plotting precision

on one axis and recall on the other.

Precision here is defined as being the proportion of positive guesses that are

actually correct. In the context of knowledge graphs, this corresponds to the

proportion of triples the model predicted to be in the graph that are actually in the

test set. Recall, meanwhile, is the proportion of real positives that were actually

identified by the model. In the context of knowledge graphs this corresponds to the

proportion of the total test set of real triples that the model was actually able to

predict were in the graph. Both precision and recall are values that are bounded

between 0 and 1, so the area below any curve plotted between them must similarly

be bounded by 0 and 1, making AUC-PR easy to read and good for comparisons.

All together AUC-PR has the benefit of being relatively comprehensible, account-

ing for things like class imbalances, which raw accuracy does not handle well, and

focusing its attention on how well models deal with positive examples rather than

negative ones. These factors are why this metric has been used in previous literature

regarding inductive knowledge completion tasks and why we also use it in our

inductive experiments. Following the example of previous papers, one of the tasks

we run in our inductive experiments is to challenge our model to discern between real

triples and random negative samples, with a sampling ratio of 50 negative examples

for every real fact, and measure the performance of this classification using AUC-PR.

4.2.2 Implementation Details and Hyperparemeters

We now discuss what parameters were used to tune and optimise our models. Our

models were all tuned to use the most efficient hyperparameters for each given
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dataset.

Our GraphRE models consist of 3 GraphRE layers stacked back to back.

Each GraphRE layer is implemented based on Algorithm 1, the main procedure

introduced previously.

The Φ±
r (·) function described in the algorithm is implemented for the GraphRE-

TransE and GraphRE-ComplEx cases in the same way as it is described for the

TransE and ComplEx cases respectively in the list of possible implementations

found in Section 3.2.

The aggregate(·) function described in the algorithm is implemented as a mean

aggregator which calculates the average of all the transformed node representations

in the neighbourhood of any given central node. The reasons for choosing this type

of aggregator specifically are explained in Section 5.1.

The merge(·) function described in the algorithm is addressed by simply adding

self-loops to the knowledge graph mediated through a new relation. More specifically,

given a knowledge graph K, a new relation rs is added to K along with triples (c, rs, c)

for every entity c in K. This new setup lets the GraphRE model learn how to merge

neighbourhood and central node representations on its own and removes the need

for the merge(·) function to have an explicit implementation beyond just returning

ht
N(v) (which, with this self-loop construction, now includes information about ht−1

v ).

More details about this setup and its properties can be found in Section 5.2.

The normalise(·) function in the algorithm is simply a ReLU function in

our implementation.

When it comes to setting the dimensionality of the GraphRE model, one

of the interesting things we noticed is that changing the dimensionality of our

entity embeddings had a significant impact on the performance of the model,

with the optimal dimensionality values being larger than what would normally

be expected of a GNN. This makes sense because we are performing message-

passing using the embeddings generated by shallow embedding models, which in

turn tend to perform better as the number of entity dimensions increases. From

our investigations, this dimensional property does not similarly hold for other
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inductive neural knowledge completion models like GraIL that perform message-

passing on constructed graphs. With all this in mind, we set gave our model 128

dimensions in the transductive setting and set the dimensionality optimally in the

inductive case depending on the dataset the model was running on and which

shallow embedding model was integrated into GraphRE. The details of what the

specific dimension settings were in the inductive case can be found by looking at

the best performing values in Table 5.4, Table 5.5, and Table 5.6. More details

about this property are discussed in Section 5.3.

For our experiments, we used a learning rate of 9e-4 in the transductive case

and 1.5e-3 in the inductive case. For both cases we set our weight decay to be 5e-4.

All our experiments used early-stopping to determine how many epochs to

run for. Our setup makes the model run for at least 30 epochs before waiting

until no improvements occur over the validation set for 80 epochs. Each result

is an average over 5 runs.

In training, we generate negative samples with a ratio of 50 negative samples

per real fact. This ratio is the same one used by other previous papers in the field.

4.3 Experimental Results

We now present the results of the previously described experiments.

4.3.1 Transductive Experiments

WordNet18RR Freebase15k-237

M
R

R

TransE [1] 22.60 29.40
ComplEx [10] 44.00 24.70
GraphRE-TransE 29.45 27.35
GraphRE-ComplEx 37.87 22.26

H
its

@
10

TransE [1] 50.10 45.60
ComplEx [10] 51.00 42.80
GraphRE-TransE 50.64 42.89
GraphRE-ComplEx 50.97 41.95

Table 4.1: Results from transductive experiments.
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First, we ran transductive experiments to see how well the GraphRE model would

stack up against various shallow embedding models on commonly used datasets.

The results of those transductive experiments can be seen in Table 4.1.

As we can see, the GraphRE-TransE model outperforms the pure TransE model

on WN18RR, but does slightly worse on FB15k-237. Meanwhile, the GraphRE-

ComplEx model does slightly worse than the pure ComplEx model on both WN18RR

and FB15k-237. Overall, the GraphRE model appears to perform about as well

as the pure shallow embedding models in the transductive setting. This is not too

surprising considering the fact that shallow models have the advantage of adapting

completely to whatever dataset they are operating on in a transductive setting. Since

they are not designed to function in inductive settings, shallow embedding models

do not have as much pressure to generalise what they learn. On the other hand,

the GraphRE model adds a GNN component on top of its shallow model, making

it slower to converge in a transductive setting but allowing it to generalise better.

4.3.2 Inductive Experiments

NELL
v1 v2 v3 v4 v1_ind v2_ind v3_ind v4_ind

A
U

C
-P

R

GraIL [15] 83.95 92.73 92.30 89.29 86.05 92.62 93.34 87.50
RuleN [15] 80.16 87.87 86.89 84.45 84.99 88.40 87.20 80.52
DRUM [15] N/A N/A N/A N/A 59.86 83.99 87.71 85.94
Neural-LP [15] N/A N/A N/A N/A 64.66 83.61 87.58 85.69
R-GCN [16] N/A N/A N/A N/A 74.50 50.40 52.00 51.00
INDIGO [16] N/A N/A N/A N/A 94.50 92.50 95.10 92.90
GraphRE-TransE 94.87 98.00 97.80 97.49 99.34 95.22 96.07 97.32
GraphRE-ComplEx 93.73 97.61 97.59 97.62 99.28 96.58 95.99 96.99

H
its

@
10

GraIL [15] 64.08 86.88 84.19 82.33 59.5 93.25 91.41 73.19
RuleN [15] 62.82 82.82 80.72 58.84 53.5 81.75 77.26 61.35
DRUM [15] N/A N/A N/A N/A 19.42 78.55 82.71 80.58
Neural-LP [15] N/A N/A N/A N/A 40.78 78.73 82.71 80.58
GraphRE-TransE 89.01 95.95 96.21 96.05 100.00 92.12 91.52 95.73
GraphRE-ComplEx 87.24 97.42 93.55 96.05 100.00 94.70 94.38 95.35

Table 4.2: Inductive results from NELL.

Next, we ran inductive experiments to test how well the GraphRE model

performs against existing neural knowledge graph completions models that were
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WordNet18RR
v1 v2 v3 v4 v1_ind v2_ind v3_ind v4_ind

A
U

C
-P

R

GraIL [15] 89.00 90.66 88.61 90.11 94.32 94.18 85.80 92.72
RuleN [15] 81.79 83.97 81.51 82.63 90.26 89.01 76.46 85.75
DRUM [15] N/A N/A N/A N/A 86.02 84.05 63.20 82.06
Neural-LP [15] N/A N/A N/A N/A 86.02 83.78 62.90 82.06
R-GCN [16] N/A N/A N/A N/A 49.00 49.80 53.10 50.20
INDIGO [16] N/A N/A N/A N/A 91.20 92.50 92.40 94.70
GraphRE-TransE 87.93 88.22 88.85 87.23 87.66 89.21 87.23 88.06
GraphRE-ComplEx 87.79 88.38 89.98 88.91 90.85 90.13 85.67 90.14

H
its

@
10

GraIL [15] 65.59 69.36 64.63 67.28 82.45 78.68 58.43 73.41
RuleN [15] 63.42 68.09 63.05 65.55 80.85 78.23 53.39 71.59
DRUM [15] N/A N/A N/A N/A 74.37 68.93 46.18 67.13
Neural-LP [15] N/A N/A N/A N/A 74.37 68.93 46.18 67.13
NBFNet [17] N/A N/A N/A N/A 94.80 90.50 89.30 89.00
GraphRE-TransE 83.50 86.43 86.38 82.62 80.05 86.17 80.74 83.76
GraphRE-ComplEx 85.07 84.24 90.51 83.34 86.70 89.17 80.17 85.99

Table 4.3: Inductive results from WN18RR.

Freebase15k-237
v1 v2 v3 v4 v1_ind v2_ind v3_ind v4_ind

A
U

C
-P

R

GraIL [15] 88.97 93.78 95.04 95.68 84.69 90.57 91.68 94.46
RuleN [15] 87.07 92.49 94.26 95.18 75.24 88.70 91.24 91.79
DRUM [15] N/A N/A N/A N/A 69.71 76.44 74.03 76.20
Neural-LP [15] N/A N/A N/A N/A 69.64 76.55 73.95 75.74
R-GCN [16] N/A N/A N/A N/A 51.00 50.50 50.50 52.60
INDIGO [16] N/A N/A N/A N/A 93.40 96.30 96.60 95.80
GraphRE-TransE 91.05 92.16 91.94 91.59 86.58 90.74 89.37 90.19
GraphRE-ComplEx 90.45 91.67 91.69 91.42 86.69 90.86 89.68 89.74

H
its

@
10

GraIL [15] 71.93 86.3 88.95 91.55 64.15 81.8 82.83 89.29
RuleN [15] 67.53 88.00 91.47 92.35 49.76 77.82 87.69 85.6
DRUM [15] N/A N/A N/A N/A 52.92 58.73 52.9 55.88
Neural-LP [15] N/A N/A N/A N/A 52.92 58.94 52.9 55.88
NBFNet [17] N/A N/A N/A N/A 83.40 94.90 95.10 96.00
GraphRE-TransE 86.03 85.72 89.85 88.66 77.40 86.72 83.70 84.57
GraphRE-ComplEx 82.16 88.39 88.41 85.60 71.60 82.85 82.25 84.43

Table 4.4: Inductive results from FB15k-237.

made to be used in an inductive learning environment. The results of those inductive

experiments can be seen in Table 4.2, Table 4.3, and Table 4.4.

As we can see, the GraphRE model squarely outperformed every other model

on the NELL dataset. Meanwhile, the model did a fair job on the transductive

subgraphs of both WN18RR and FB15k-237, with the model lagging slightly behind

the INDIGO and NBFNet models in the inductive setting but still tending to do

fairly better than the GraIL model in most cases. These results show that the
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GraphRE model is able to remain competitive with other models in an inductive

setting despite the fact that those other models all do message-passing on tailor-

made induced graphs and the GraphRE model does not. The NELL dataset further

shows that, under certain conditions, the GraphRE model is even able to do much

better than other inductive models despite its more lightweight nature.

4.4 Empirical Benefits

We now briefly go over some of the practical benefits of the GraphRE model that

we noticed while running our experiments.

For starters, the GraphRE model is scalable and efficient even when faced with

a large dataset. Since it does not need to construct a new graph to perform its

message-passing on and instead just passes messages along real triples in the original

knowledge graph, the GraphRE model has the benefit of getting results quickly. This

property also means that this model has the potential to be used in unique settings

like live learning where constructing a new graph to run message-passing on every

time a new entity or triple is added to the knowledge graph is simply not scalable.

Another benefit of the GraphRE model is its adaptability. Since it is possible to

change which shallow embedding model is integrated with the larger neural model,

GraphRE has the potential to specialise better to certain tasks and applications

than other models which are more rigid.

Finally, as we have shown with the data above, the GraphRE model gets these

benefits while still being able to deliver results that perform competitively at a

state-of-the-art level against other high-end models. The fact that the GraphRE

model is more lightweight does not have a large enough effect on its performance

to make it untenable on inductive knowledge completion tasks.
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We now discuss some of the theoretical properties of the GraphRE model

and explore some small-scale experiments meant to hone in on some specific

aspects of the model.

5.1 Aggregation Limitations

As we have previously discussed, the aggregate(·) function in Algorithm 1 can

be implemented in the same way for the GraphRE model as it can be for any GNN.

In general, this is either a summation function, a max function, or a mean function.

In previous literature, it has been shown that the summation aggregator has certain

theoretical benefits over the other two methods, namely that it can encode more

information about the neighbourhood of each node than the other two methods,

which tend to give up information regarding the size of the neighbourhood they are
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encoding [13]. In the case of the GraphRE model, the goal of this aggregation is

slightly different than for a classical GNN. Here, we can view the transformation done

by the shallow embedding model within GraphRE as a way of transitioning from the

representational space of a neighbouring node into that of the central node through

the true triple found in the underlying knowledge graph connecting those two nodes.

Given this interpretation, we can see intuitively why the summation aggregator

does not accurately represent a prediction of the central node’s representation, while

the max and mean aggregators have more relevance.

With this mind, we can formulate an experiment for testing this property by

simply changing the aggregator of the GraphRE model and seeing whether there

is a clear difference between the sum, mean, and max aggregators.

5.1.1 Aggregation Experiments

We now present the results of comparing the GraphRE model with various different

aggregator functions to show how much of a radical difference the choice of function

makes in the case of the GraphRE model. These experiments have been set up

in a manner similar to the experiments described in Section 4.

NELL
v1 v2 v3 v4 v1_ind v2_ind v3_ind v4_ind

Su
m GraphRE-TransE 78.73 76.37 84.21 66.72 73.77 79.77 71.37 74.39

GraphRE-ComplEx 61.82 65.87 62.02 59.56 61.63 72.54 65.35 60.89

M
ax GraphRE-TransE 94.42 97.74 97.50 97.52 97.78 96.39 95.63 96.87

GraphRE-ComplEx 93.74 97.93 97.59 96.81 74.71 96.12 95.87 95.72

M
ea

n GraphRE-TransE 94.87 98.00 97.80 97.49 99.34 95.22 96.07 97.32
GraphRE-ComplEx 93.73 97.61 97.59 97.62 99.28 96.58 95.99 96.99

Table 5.1: AUC-PR results with different aggregators for NELL.

As we can see from Table 5.1, Table 5.2, and Table 5.3, it is clear that the mean

aggregator tends to trump the other two aggregators for the most part. In the

NELL dataset, the best performance values all come from the mean aggregator. In

the WN18RR dataset, there are a few instances where the max aggregator fairs

better, but for the most part the mean aggregator is still the best choice. The

FB15k-237 dataset, however, breaks this trend. Here, the max aggregator does



5. Discussion 55

WordNet18RR
v1 v2 v3 v4 v1_ind v2_ind v3_ind v4_ind

Su
m GraphRE-TransE 83.58 83.89 84.03 85.34 82.30 89.58 64.87 85.97

GraphRE-ComplEx 82.98 85.34 72.88 85.75 79.92 82.27 59.04 84.24

M
ax GraphRE-TransE 86.05 88.21 84.31 87.57 90.33 91.47 82.54 88.19

GraphRE-ComplEx 90.25 92.36 87.76 88.55 90.78 88.55 83.93 88.74

M
ea

n GraphRE-TransE 87.93 88.22 88.85 87.23 87.66 89.21 87.23 88.06
GraphRE-ComplEx 87.79 88.38 89.98 88.91 90.85 90.13 85.67 90.14

Table 5.2: AUC-PR results with different aggregators for WN18RR

Freebase15k-237
v1 v2 v3 v4 v1_ind v2_ind v3_ind v4_ind

Su
m GraphRE-TransE 78.24 84.65 73.43 84.45 76.34 79.77 76.99 76.74

GraphRE-ComplEx 59.65 58.83 59.93 59.47 66.67 63.37 56.11 73.90

M
ax GraphRE-TransE 90.93 93.28 92.19 93.10 85.89 88.89 91.25 89.44

GraphRE-ComplEx 90.95 93.24 93.52 93.48 86.25 91.89 89.87 89.22

M
ea

n GraphRE-TransE 91.05 92.16 91.94 91.59 86.58 90.74 89.37 90.19
GraphRE-ComplEx 90.45 91.67 91.69 91.42 86.69 90.86 89.68 89.74

Table 5.3: AUC-PR results with different aggregators for FB15k-237.

better more times than the mean aggregator. Despite this, one thing that is clear

from this data is that the summation aggregator is never the best option in any case.

As we have discussed, this makes sense given the fact that the shallow embedding

model used in the GraphRE model is essentially transforming the representation

of neighbouring nodes into the representational space of central nodes during

aggregation. The summation aggregator breaks this transformation, which is why

it tends to perform the worst. While both the mean and max aggregators do not

break this condition, the mean aggregator lets neighbouring nodes each “vote” on a

candidate representation for the central node while the max aggregator makes a

single node speak for the entire neighbourhood. This behaviour on the part of the

max aggregator puts a disproportionate amount of importance on individual triples

when it comes to representing the central nodes, which is why the max aggregator

tends to perform worse than the mean aggregator, although it is clear that in some

datasets the max aggregator may be useful in cutting out noise.
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5.2 Self-Loop Embeddings

We briefly explored the merge(·) function in Section 3.3 when we looked back

at Algorithm 1. As we intuited earlier, this function can have many different

implementations, each with their own benefits and drawbacks, which is why it

is important for us to address this part of the GraphRE model in a way that

fits with its other parts.

To that end, one way we might tackle the merge(·) function is to essentially

side-step it entirely by having the merger of the representations of the node

neighbourhoods with the representations of the central nodes take place during the

aggregation step. We would ideally want the model to be able to differentiate between

the central node and all of its neighbours during this process so that it can apply a

unique set of learned parameters specifically for use on the representations of central

nodes during aggregation. To achieve this, we can simply take advantage of the fact

that, being in a knowledge graph setting, our dataset has edge types (in the form of

relations). By adding a new relation rs to the knowledge graph and adding a self-

loop to each node that is of this new type, the GraphRE model can simply aggregate

the representation of the central node of each neighbourhood using those self-loops

and transform those central node representations using its shallow embedding model,

which is guaranteed to incorporate a unique embedding reserved for relation rs.

All together we can define the process formally in terms of triples. Given a

knowledge graph K, as a part of the pre-processing phase of the training of a

GraphRE model we simply add a new relation rs to K as well as new triples (c, rs, c)

for each entity c in K. Given the variable in Algorithm 1, this change can be

thought of as expanding our aggregate(·) function in the following way:

h(t)
N(v) = aggregate[Φ±

rs
(h(t−1)

v , h(t−1)
v ),

Φ±
r (h(t−1)

v , h(t−1)
u ),∀u ∈ NKG(v)]

We then just simply define the merge(·) function like so:

merge(h(t−1)
v , h(t)

NKG(v)) = h(t)
NKG(v)
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Figure 5.1: The evolution of the rs relation embedding norm during training in the case
of having a TransE model integrated with GraphRE and a ComplEx model integrated
with GraphRE.

What is nice about this formulation is the way it has the capacity to simplify

under certain conditions. For example, if the shallow embedding model integrated

with the GraphRE model is TransE with a mean aggregator, the representation

for a given central node c becomes the following:

merge(h(t−1)
c , h(t)

NKG(c)) =
h(t−1)

c + rs + h(t−1)
c − rs + ∑

u∈NKG(c) Φ±
r (h(t−1)

c , h(t−1)
u )

|NKG(c)|+ 2

=
2h(t−1)

c + ∑
u∈NKG(c) Φ±

r (h(t−1)
c , h(t−1)

u )
|NKG(c)|+ 2

To flesh out this concept, we now go through some experiments that map and

measure the changes and final value of rs to show how it is affected by the choice

of shallow embedding model integrated with the GraphRE model.

5.2.1 Self-Loop Experiments

We now present the results of some experiments we ran to explore some these ideas

regarding adding self-loops to the knowledge graph as a way of dealing with the

merger of the representations of central nodes with those of their neighbourhoods.

These experiments have been set up in a manner similar to the experiments

described in Section 4. In this case, we only needed to select one dataset to

test our hypothesis, so we decided to use NELL’s v3_ind sub-dataset, but any

of the other datasets would have also worked.
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As we can see from Figure 5.1, in the case of using a TransE model to transform

node representations in the GraphRE model, the rs embedding remains quite

unchanged from its original value. This is because it essentially cancels itself out in

the process of being used to merge central node representations with those of their

neighbours, so there are no gradients to pass back to the embedding. In contrast,

the embedding changes over time as we expect it to in the ComplEx case, where

this simplification does not occur in the same way.

These results show how using this self-loop scheme can help improve the

GraphRE model by taking advantage of the nature of knowledge graphs and

the way they are structured.

5.3 Dimensionality Scaling

We mentioned earlier that we expect the GraphRE model to be noticeably sensitive

to choices regarding the dimensionality of the node representations depending on

which shallow embedding model we choose to use for node transformations. This is

because the performance of most pure shallow embedding models is directly related

to entity dimensionality, so if we are to expect the shallow model used in our neural

model to do its job well, we should adequately equip it with enough dimensions

to do said job [25]. On the other hand, GNNs have a tendency to overfit when

supplied with too many dimensions, so we still expect there to be a limit to the

effectiveness of adding dimensions to the model to support its shallow embedding

component [61]. Determining this sweet spot depends on things like which dataset

is being operated on and the choice of shallow embedding model integrated with

the GNN, but by varying the dimensionality and measuring the performance of the

model, it should become apparent that the GraphRE model in general allows for

models with larger node representation vectors than other classical GNNs while

still eventually overfitting given a large enough dimensionality.

To this end, we have run the above described experiment to test how the

GraphRE model reacts to changes in dimensionality.
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5.3.1 Dimensionality Experiments

We now present the results of experiments that demonstrate the previously explained

property regarding the dimensionality of the GraphRE model. These experiments

have been set up in a manner similar to the experiments described in Section 4.

NELL
Dim. v1 v2 v3 v4 v1_ind v2_ind v3_ind v4_ind

GraphRE-TransE

32 91.82 97.37 96.69 96.45 98.30 93.40 94.87 96.88
64 94.87 97.44 97.53 96.99 99.34 95.22 96.07 97.32
128 94.20 98.00 97.80 97.49 97.36 94.39 96.00 97.27
256 91.43 96.01 96.44 96.22 98.93 94.47 93.93 97.07

GraphRE-ComplEx

32 93.73 96.65 96.71 96.89 99.28 96.58 94.81 96.99
64 91.58 97.61 97.38 97.43 99.22 96.13 95.99 96.92
128 92.13 97.23 97.59 97.62 98.99 95.93 95.73 96.82
256 91.99 97.49 94.80 96.41 99.21 95.41 95.45 96.52

Table 5.4: AUC-PR results with different representational dimensions for NELL.

WordNet18RR
Dim. v1 v2 v3 v4 v1_ind v2_ind v3_ind v4_ind

GraphRE-TransE

32 84.29 86.38 86.22 84.93 86.05 87.99 80.18 86.99
64 85.70 87.23 87.02 86.78 85.00 88.11 81.40 86.59
128 87.93 87.09 86.67 87.23 86.12 88.59 86.97 87.61
256 87.24 88.22 88.85 86.81 87.66 89.21 87.23 88.06

GraphRE-ComplEx

32 87.78 87.17 87.06 86.29 88.23 89.57 83.87 86.10
64 87.79 87.17 86.62 88.91 90.85 88.29 85.67 90.14
128 88.73 88.38 85.70 87.33 84.77 89.31 83.37 89.16
256 87.65 86.57 89.98 88.30 89.26 90.13 85.18 88.86

Table 5.5: AUC-PR results with different representational dimensions for WN18RR.

Freebase15k-237
Dim. v1 v2 v3 v4 v1_ind v2_ind v3_ind v4_ind

GraphRE-TransE

32 87.81 88.68 87.20 88.86 82.69 88.04 86.58 87.42
64 89.86 92.00 89.99 90.22 85.52 90.37 88.86 89.53
128 90.81 92.16 91.29 91.31 86.28 90.37 89.62 89.53
256 91.05 91.43 91.94 91.59 86.58 90.74 89.37 90.19

GraphRE-ComplEx

32 87.58 90.24 89.66 89.53 83.11 87.36 88.17 87.82
64 87.61 91.30 90.90 91.42 83.82 89.46 89.18 88.85
128 90.45 90.58 91.66 91.09 83.48 90.86 89.68 89.74
256 90.11 91.67 91.69 89.70 86.69 88.78 87.12 89.04

Table 5.6: AUC-PR results with different representational dimensions for FB15k-237.

As we can see from Table 5.4, Table 5.5, and Table 5.6, there do seem to exist

apparent “sweet spots” in dimensionality of the GraphRE model that changes



60 5.3. Dimensionality Scaling

depending on the dataset and the choice of shallow embedding model integrated

into the GraphRE model. Interestingly, across all three datasets it appears that

the TransE variant of the GraphRE model performs best in a dimensional category

that is larger than the category that the ComplEx variant of the GraphRE model

performs best in. In the case of the NELL dataset, the TransE variant settles at 64

dimensions while the ComplEx variant settles at 32. In the case of the WN18RR

dataset, the TransE variant settles at 256 dimensions while the ComplEx variant

settles at 64. In the case of the FB15k-237 dataset, the TransE variant settles at

256 dimensions while the ComplEx variant settles at 128. This consistent pattern

matches what we could expect from these shallow embedding models because, when

attempting to do tasks on their own in a transductive setting, the TransE model

tends to benefit more from a high dimensionality than the ComplEx model [7]. The

fact that this aspect of the models carries over after being integrated with a GNN

further indicates that the GraphRE model is actively making use of the advantage

that the shallow embedding models are granting it through their transformations

of the node representations being passed as messages.
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We now briefly go through some of ways future work could expand the efforts

of this thesis as well as sum up the topics built on in this project.

6.1 Potential Future Extensions

Since we are introducing a new model in this thesis, future work that builds upon

this could either go in the direction of further theoretical analysis or in the direction

of applying the GraphRE model in novel environments where it could prove useful.

On the theoretical side, it might be interesting to do a deeper dive investigating

the relationship between the GraphRE model and the limitations of the shallow

embedding model integrated within it. For example, it might be interesting to

see whether the GraphRE model is limited to learning only the rule inference

patterns that its underlying shallow embedding model can learn or whether the

GNN structure allows the GraphRE model to move past those boundaries. Another

aspect of the model that might be worth exploring is the way the model learns to
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represent the spaces of different entity types. Entities of the same type may end

up being mapped into spaces which share similar properties.

On the applications side, the GraphRE model’s inductive capabilities mixed with

its scalability might set it up for some interesting uses in the realm of live-learning.

There exists a number of continuously growing knowledge graphs that are being

expanded in a live manner [6, 62]. If it were possible to attach a GraphRE model

to such a process and allow for the knowledge in the graph to not only grow but

also for it to be subjected to a neural model that might help fill in missing links at

the same time, the quality of such a knowledge graph could dramatically improve.

The Graph RE strategies applied in a live learning setting may also be applicable

to temporal knowledge graphs, a class of knowledge graphs that have timestamps

describing changes in the graph data [63, 64]. It could also be interesting to see

whether the GraphRE model has the capability of being used outside of knowledge

graphs. If that were possible, the GraphRE model could act as a conduit for shallow

embedding models to be used in a wider range of fields and areas of research.

6.2 Closing Remarks

Tackling knowledge completion tasks in an inductive learning setting may be the

key to getting knowledge graphs to reach their full potential in useful applications

outside of machine learning. While shallow embedding models have shown how

effective they can be in transductive settings, their inability to move past that

barrier has held them back.

In the course of thesis, we have shown that, by mixing shallow embedding models

with message-passing concepts from the field of graph representation learning in

the form of graph neural networks, we can augment shallow embedding models

and use some of their strengths to solve inductive knowledge completion tasks.

The GraphRE model demonstrates how that augmentation can be done in a

distinct way that is competitive with existing state-of-the-art inductive models

while remaining scalable and lightweight.
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A
Inductive Dataset Statistics

Contents
A.1 Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . 65

Here we will present statistics regarding the datasets used in the inductive

experiments discussed in Section 4.1.

A.1 Dataset Statistics

WN18RR FB15k-237 NELL
relations nodes links relations nodes links relations nodes links

v1 train 9 2746 6678 183 2000 5226 14 10915 5540
test 9 922 1991 146 1500 2404 14 225 1034

v2 train 10 6954 18968 203 3000 12085 88 2564 10109
test 10 2923 4863 176 2000 5092 79 4937 5521

v3 train 11 12078 32150 218 4000 22394 142 4647 20117
test 11 5084 7470 187 3000 9137 122 4921 9668

v4 train 9 3861 9842 222 5000 33916 77 2092 9289
test 9 7208 15157 204 3500 14554 61 3294 8520

Table A.1: Statistics of the datasets used in our inductive experiments. Data taken
from [15].

The dataset statistics are shown above in Table A.1.
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